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Time reversal and charge conjugation in an
embedding quantum simulator
Xiang Zhang1, Yangchao Shen1, Junhua Zhang1, Jorge Casanova2, Lucas Lamata3, Enrique Solano3,4,

Man-Hong Yung1, Jing-Ning Zhang1 & Kihwan Kim1

A quantum simulator is an important device that may soon outperform current classical

computations. A basic arithmetic operation, the complex conjugate, however, is considered to

be impossible to be implemented in such a quantum system due to the linear character of

quantum mechanics. Here, we present the experimental quantum simulation of such an

unphysical operation beyond the regime of unitary and dissipative evolutions through the

embedding of a quantum dynamics in the electronic multilevels of a 171Ybþ ion. We perform

time reversal and charge conjugation, which are paradigmatic examples of antiunitary

symmetry operators, in the evolution of a Majorana equation without the tomographic

knowledge of the evolving state. Thus, these operations can be applied regardless of the

system size. Our approach offers the possibility to add unphysical operations to the toolbox

of quantum simulation, and provides a route to efficiently compute otherwise intractable

quantities, such as entanglement monotones.
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Q
uantum computers or quantum simulators are important
quantum devices that may enable us to experimentally
address intriguing phenomena that are not directly

tractable in the laboratory1 or may outperform current classical
computations for analysing complex quantum systems2,3. In
recent years, various physical platforms such as neutral atoms4,
ions5, photons6 and superconducting circuits7 have been
fruitfully developed for the purpose of quantum simulation.
However, they are not yet able to perform some basic arithmetic
calculations such as the complex conjugate, which changes the
sign of the imaginary part of the coefficients of the state on a
certain basis. Although we are used to computing the
transformation with classical resources for useful scientific
calculations, operations involving the complex conjugate require
an antiunitary process, which is impossible to be implemented in
a quantum system. Moreover, the complex conjugate is not
scalable in classical calculation, since it requires full knowledge of
the quantum state, and the number of measurements grows
exponentially with the size of the system.

The complex conjugate is deeply inherent to the important
concepts of discrete symmetries. Wigner8 proved that any
symmetry operation acts as a unitary or antiunitary trans-
formation in the Hilbert space, while an antiunitary
transformation can always be decomposed into a unitary
transformation together with the complex conjugate. The study
of symmetries has profoundly shaped our comprehension of
physical laws in the quantum field theory, which unifies quantum
mechanics and special relativity. Charge conjugation and time
reversal are paradigmatic examples of antiunitary discrete
symmetry operations9,10. The charge conjugation, together with
the parity symmetry, is not conserved in the weak interaction11,12,
just as the time-reversal symmetry. The discovery of the violation
of these symmetries has been a decisive breakthrough of the
quantum field theory, leading to the standard model. Recently,
several important algorithms for the simulation of relativistic
quantum mechanics and quantum field theory have been
discovered13–18. So far, however, quantum simulators of unitary
and dissipative processes, the only physically allowed dynamics,
have been realized19–21.

Here, we perform the quantum simulation of the complex
conjugate and these symmetry operations in our multilevel
171Ybþ ion system through the use of the concept of embedding
quantum simulator (EQS)22–24 beyond the boundary of the
unitary operations. Our demonstration is scalable, where we can
apply the time-reversal or charge-conjugation operations in
systems of any size, since they do not require the tomographical
knowledge of the state. The essence of the EQS is based on the
finding that antiunitary operations can be implemented in a
physical system by doubling the associated Hilbert space22.
The scheme of the EQS enables us to efficiently compute
entanglement monotones23 or multi-time correlation functions24,25.
The reconstruction of these quantities would otherwise require a
number of measurements that grows exponentially with the system
size. We comment that the measurement of such quantities can be
considered as an intractable task even for medium-size systems
composed by, for example, only a dozen of qubits, whereas the EQS
scheme provides the solution at the expense of one additional qubit
to double the Hilbert space.

Results
Majorana dynamics. We first simulate the Majorana dynamics to
show the ‘unphysical’ capability of the EQS before implementing
antiunitary symmetry operations. The Majorana equation26, one
of the representative relativistic equations,

i‘ c ¼ mccc; ð1Þ

where the Feynman slash notation � gm@m with gm being the
Dirac matrices27, describes the dynamics of a non-Hamiltonian
system. Note that the spinor c and its charge conjugation cc are
present simultaneously in equation (1). Majorana envisioned
that equation (1) together with the Majorana condition c ¼ cc
would be the fundamental equation describing neutrinos26, which
exhibit the novel phenomenon as ‘neutrino oscillation’28. Besides,
the Majorana equation (1) has its own theoretical importance in
exploring physics beyond the standard model. Moreover, the
utility of the relativistic equations is not limited to relativistic
quantum mechanics and the quantum field theory. For example,
electrons propagating through graphene are described by the
(2þ 1)-dimensional Dirac equation29, and the symmetry
breaking induced by tachyon condensation is described by a
(1þ 1)-dimensional Dirac-like equation with imaginary mass30,
a non-Hamiltonian system. Recently, a quantum simulation
of the Majorana dynamics was performed in a photonic
quantum platform, by decomposing its evolution in two Dirac
equations31,32. Through the quantum simulation of the inherently
unphysical Majorana equation, we demonstrate various
unique features, such as violation of charge and momentum
conservation, broken orthogonality and nontrivial effect of the
state’s global phase.

+

+ +

+
Time rerr versalTime reversal

Charge conjugu ationCharge conjugation

e–
e+

MaMM joa ranarr dynamicsMajorana dynamics

171Yb+

Amp

AWG
~0.2 GHz

Computer
generated
sequence

Microwave generator
12.442812 GHz 

a

b

c

�(0) �(t ) = M� (t )

�1
re

�1
re

�2
re

�2
re

i�1
im

�1
im

�2
im

i�2
im

�1

�1

�(t )�(0)

�2

�2

i�3

�3

i�4

�4

t –t

⎥3〉
⎥4〉

⎥2〉

⎥1〉

Figure 1 | Schematic of the embedding quantum simulation (EQS)

(a) The ‘unphysical’ process in the original Hilbert space, where the

evolution of the two-component Majorana spinor is considered. We also

implemented the unphysical processes, such as the time-reversal and

charge-conjugation operations during the Majorana dynamics, which are

forbidden by the laws of quantum mechanics. (b) The unphysical processes

can be implemented in physical systems through the embedding scheme,

which maps the original Hilbert space to the enlarged Hilbert space. After

the physical process, the final results are remapped to the original space.

The embedding quantum simulator is built in a single 171Ybþ ion trapped in

a linear Paul trap, where the enlarged space is encoded in the ground-state

manifold of the ion. (c) The physical unitary operations in the enlarged

Hilbert space are implemented by applying microwaves with six

frequencies, which are generated by mixing the monochromatic microwave

(12.442812 GHz) with the signals from computer-programmed arbitrary

wave form generator.
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Embedding quantum simulator. The essential idea of an EQS is
the mapping from the original Hilbert space C2 to the enlarged
one R4 for spinors in 1þ 1 space-time dimension,M : C2 ! R4.
In the position basis, as shown in Fig. 1, the EQS mapping is
defined as

c xð Þ ¼ x j ch i ¼ cre
1 xð Þþ icim

1 xð Þ
cre

2 xð Þþ icim
2 xð Þ

� �
�!M C xð Þ

¼ x j Ch i ¼

cre
1 xð Þ

cre
2 xð Þ

cim
1 xð Þ

cim
2 xð Þ

0
BB@

1
CCA; ð2Þ

where creðimÞ
1ð2Þ xð Þ are real functions satisfying the overall

normalization condition
R
ð cre

1 xð Þ
�� ��2þ cim

1 xð Þ
�� ��2þ cre

2 xð Þ
�� ��2

þ cim
2 xð Þ

�� ��2Þdx ¼ 1. Inversely, as depicted in Fig. 1, the original
spinor is retrieved through a matrix multiplication after evolving
in the EQS for certain duration,

c xð Þ ¼ MC xð Þ; M ¼ 1 0 i 0
0 1 0 i

� �
: ð3Þ

Through the EQS mapping (equation (3)), the complex
conjugate operation, K̂ : c! c�, is represented by a unitary
operator K̂ ¼ ŝz � Î in the enlarged Hilbert space, which can be
implemented directly in a quantum system (see Methods and
Supplementary Note 1).

With a certain choice of the Dirac matrices in the (1þ 1)
dimension, g0 ¼ ŝz and g1 ¼ iŝy , the charge-conjugate spinor is
properly defined as cc ¼ iŝyszc

�. The Majorana equation in
1þ 1 dimensions,

i@tc x; tð Þ ¼ ŝxp̂x � imŝyK̂
� �

c x; tð Þ; ð4Þ
inherently contains the complex conjugate operator K̂ , which
makes the Majorana dynamics prohibited by nature. For
simplicity, we introduce a set of dimensionless units, that is,
mc2 for the energy, mc for the momentum and ‘

mc2 for the time.
In the enlarged Hilbert space, the original non-Hamiltonian

system is mapped to a Hamiltonian one governed by an effective
Hamiltonian,

Ĥ � iIm My cŝxp̂x � imŝyK̂
� �

M
h i

¼ p̂x Î � ŝx
� �

�m ŝx � ŝy
� �

: ð5Þ
Note that the equation of motion in the enlarged space,

i@tC x; tð Þ ¼ ĤC x; tð Þ, keeps C x; tð Þ evolving inside R4. Because
the effective Hamiltonian (equation (5)) does not contain a
position operator, we perform the experimental implementation
in momentum representation, where the dynamics of the
Fourier-transformed spinor ~C p; t ¼ 0ð Þ � 1ffiffiffiffi

2p
p
R
C x; 0ð Þe� ipxdx

is governed by a simpler Hamiltonian Hp obtained by substitut-
ing the momentum operator with its eigenvalue in equation (5)
(see Supplementary Note 2).

Along the same line, some discrete symmetry operations, that
is, the time reversal T̂ : t ! � tð Þ and the charge conjugation
Ĉ : c! cc take form of unitary two-qubit gate operations in the
enlarged Hilbert space: T̂ ¼ iŝz � ŝy and Ĉ ¼ � ŝz � ŝx ,
respectively.

Experimental set-up. The EQS is built in an ion-trap system,
which is a leading platform for quantum simulation5. The system
consists of a single 171Ybþ ion confined in a linear Paul trap33,
subjected to multifrequency microwaves. As shown in Fig. 1, the
four internal states of the ground-state manifold 2S1/2 are encoded
as |F¼ 0, mF¼ 0i�|1i and |F¼ 0, mF¼ � 1, 0, 1i�|mFþ 3i, |1i
and {|2i, |3i, |4i} are separated by the hyperfine splitting

oHF ¼ 2pð Þ12:642812GHz, and a uniform static magnetic field
B¼ 9.694 G is applied to define the quantization axis and causes
Zeeman splitting oZ ¼ 2pð Þ13:586MHz among the upper states.
As shown in the Fig. 1, the couplings between |1i and the upper
states can be directly driven by microwave with frequencies as
oHF and oHF � oZ , respectively. The couplings among the
equally spaced upper states, that is, |2i, |3i and |4i, are
implemented by the stimulated Raman process of microwaves
(see Methods). On the basis of the multi-fold microwave
technique, we achieve ultimate controllability over the Hilbert
space spanned by all of the four internal states. In other words, we
construct a ququad, an elementary unit of quantum information
processing consisting of four basis states. In principle, large-scale
EQS can always be constructed by substituting one of the qubits
in an array by a ququad, and the requisite microwave techniques
involved in the control of the ququad have been developed in
this work.

With the ability to perform any single-ququad operation,
we implement the effective Hamiltonian equation (5) in the
momentum space,

Ĥp ¼ p 1j i 2h j þ 3j i 4h jð Þþ im 1j i 4h j � 2j i 3h jð Þ þ h:c:; ð6Þ
on top of the EQS.

Experimental procedure. The experimental procedure is as
follows. First, we map an initial Majorana spinor cðx; t ¼ 0Þ to a
real bispinor Cðx; t ¼ 0Þ in the enlarged space. The momentum
representation of the bispinor ~C p; t ¼ 0ð Þ evolves according to
the enlarged space Hamiltonian Ĥp. After encoding the initial
condition ~C p; 0ð Þ into the EQS, we implement Ĥp for a certain
duration to simulate the Majorana dynamics. Then we perform
quantum-state tomography (see Supplementary Note 3) to
obtain the enlarged space density matrix R̂ p; tð Þ, which can be
mapped to the original space density matrix r̂ p; tð Þ. The average
value of a diagonal operator Ad in the momentum space
can be directly obtained via integration over the momentum,
hÂdi ¼

R
Tr Âdr̂ p; tð Þ
� 	

dp. To obtain the average value of an
off-diagonal operator in the momentum space, for example, the
average position of the Majorana particle, we change the four-
component equation of motion in the enlarged Hilbert space into
a pair of decoupled two-component equations by diagonalizing
the first qubit (see Supplementary Note 4). By coherently evolving
a couple of two-dimensional equations with different momenta,
we obtain the phase information between different momentum
components. We repeat each measurement 1,000 times to get the
expectation value. The statistical errors, which are mainly due to
quantum projection, are estimated by the s.d. of mean value.

Majorana dynamics. Figure 2 shows our experimental results of
the Majorana dynamics, where the initial spinors are chosen to be
plane-wave states with c2 ¼ 0, that is, c 0ð Þj i ¼ ð10Þ � pj i.
Figure 2a shows the momentum-space Zitterbewegung for a
Majorana particle. Due to the existence of the complex conjugate
operator in the Majorana equation, the momentum, which is
conserved for free Dirac particles, is no longer a conserved
quantity in the Majorana dynamics. Because the violation of
momentum conservation is originated by the Majorana mass
term, the amplitude of the oscillation is inversely proportional to
the magnitude of the momentum of the initial state. Meanwhile,
the frequency of the oscillation is determined by the relativistic
dispersion relation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þm2

p
, so the initial plane wave with

larger momentum will oscillate faster. As shown in Fig. 2b, the
Majorana dynamics also violates charge conservation, which may
lead to physics beyond the standard model34. In the rest frame,
the charge operator measures the difference between the
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populations of the internal states, which is equivalent to the ŝz
operator35. For the non-zero momentum case, the particle and
antiparticle basis is obtained by diagonalizing the corresponding
Dirac equation with the same momentum, and the charge of a
Majorana spinor is defined as the difference between the
populations of the particle and antiparticle components (see
Supplementary Note 5). For the same reason, the amplitude and
frequency of the charge oscillation exhibits similar momentum
dependence as that of the momentum-space Zitterbewegung.

Besides the above physical consequences, the dynamics
governed by Majorana equation also shows unphysical phenom-
ena. For example, the fidelity c tð Þ j cy tð Þh ij j2, where c tð Þj i and
cy tð Þj i are two Majorana spinors that evolve from initial states

differing only in a global phase, cy 0ð Þj i ¼ eiy c 0ð Þj i, will not
always be unity as shown in Fig. 2c. In other words, a Majorana
spinor does not have the freedom to choose an arbitrary global
phase. The reason for this surprising effect is the existence of the
complex conjugate K̂ in the Majorana equation in equation (4).
This effect can be more explicitly shown in the mapping M in
equation (2), that is, the global phase actually changes the initial
four-component spinor in the enlarged Hilbert space. Figure 2e,f
shows an example of the experimental results of the density
matrices in the enlarged and original Hilbert spaces, which are
indeed different from each other. In Fig. 2d, we experimentally
observe the non-conservation of the orthogonality defined as
c tð Þ j c? tð Þh ij j2, with c? tð Þj i being the Majorana spinor evolved

from an orthogonal initial state ð01Þ. During the evolution, the
initial Majorana spinor will be coupled to ð01Þ � pj i through the
Hermitian relativistic kinetic term ŝxp̂x , and ð01Þ � � pj i through

the non-Hermitian Majorana mass term � imŝyK̂ . The ortho-
gonality c tð Þ j c0? tð Þ


 �
, where c0? tð Þ

�� �
is the Majorana spinor

that evolves from the initial state ð01Þ � pj i, is always zero. This
clearly indicates that the non-conservation of the orthogonality
c tð Þ j c? tð Þh ij j2 stems from the non-Hermitian part of

the Majorana Hamiltonian. As a result, given the same
Majorana mass, we understand that the amplitude of the
orthogonality oscillation is inversely proportional to the initial
momentum.

Symmetry operations. Other than the plane waves, we also
implement Majorana dynamics with realistic initial wave packets
in our EQS. For example, the initial states for the Majorana
dynamics in Figs 3 and 4 are moving Gaussian states with
momentum distributions centred around P0¼ 1 with an internal
state 1ffiffi

2
p ð11Þ. The first part of the time axis (0rto4) in Figs 3 and 4

represent the Majorana dynamics of a moving wave packet, where
we observe damping oscillation in the momentum space and
Zitterbewegung in the position space. The reason of the damping
in the momentum space is that a Gaussian wave packet has
distribution over many different momentum components,
and each momentum component oscillates with different
frequency. To our surprise, although the average momentum of a
Majorana particle behaves quite different from that of a Dirac
particle, there is no visible difference in the behaviours of the
average position as well as the probability distribution in position
space. This is because a Majorana particle oscillates between the
particle and antiparticle components with inverse momentum,
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Figure 2 | Majorana dynamics. (a) Zitterbewegung in momentum space during the evolution of a single Majorana particle. (b) Violation of charge

conservation in the Majorana dynamics. The average values of the physical observables in a and b are measurement results of the Majorana spinor c tð Þj i
evolving from the initial state ð 1

0Þ � pj i. (c) Nonconserved fidelity caused by an initial global phase. The Majorana spinors cy tð Þj i evolve from the initial

states eiyð 1
0Þ � pj i with y¼p/2. (d) Nonconserved orthogonality for initially perpendicular Majorana spinors. The Majorana spinors c? tð Þj i evolve from

initial states ð01Þ � � pj i. We choose the momenta of the initial plane-wave states as P¼0 (black dots and dotted line), 0.5 (green squares and dashed

line) and 1 (red diamonds and solid line), where Majorana mass m¼ 1. The curves are from theoretical simulation. (e) Density matrices in the enlarged

space obtained by quantum-state tomography, related to the data point marked by the black arrow in c. (f) Reconstructed density matrices in the original

space. The value of each observable for the state tomography in the enlarged space is measured by averaging the experimental results after 1,000 times

repetition. We estimate the error bars in a–d by using the standard error propagation method of the standard deviation (1r) of each observable in the

tomography mainly from the quantum projection noise (see Supplementary Note 3).
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but the positions as well as the velocities of the particle and
antiparticle are exactly the same9.

During the evolution of the Majorana equation, we implement
the antiunitary time-reversal and charge-conjugation operations.
Figure 3 shows our experimental results of the time-reversal
operation during the Majorana time evolution. As shown in
Fig. 3a, right after the time-reversal operation, the momentum as
well as the velocity changes sign. As a result, the direction of the

wave packet is reversed as shown in Fig. 3c. The damped average
momentum as well as the position centre of the wave packet is
revived, which clearly shows that time is indeed reversed. Figure 4
demonstrates the experimental implementation of the charge-
conjugation operation. The latter interchanges the particle and
antiparticle components, which are defined from the correspond-
ing Dirac equation with the same momentum as discussed in
Fig. 2b. By definition, the particle and corresponding antiparticle
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discontinuity at the evolution of the picture. It is clearly shown that the momentum-space Zitterbewegung is revived after the time-reversal operation.

(b) Probability distributions in the momentum space at various times t¼0, 3, 5 and 8 from bottom to top. The solid curves are obtained from theoretical

calculation whereas the shades are from experiment. The same conventions are used for d, and b and d of Fig. 4. (c) Time-dependent probability

distribution in the position space. The average position is not affected right after the time-reversal operation, but the trajectory is reversed. (d) The same as

b in the position space. The error bars in a and c are estimated by the standard error propagation method of the measured observables with mainly the

standard deviation (1r) of quantum projection noise (see Supplementary Note 3).

0 0 0.1 0.2 0.3

8

6

4

2

–2 –1
0

8

6

4

2

0
0 4 80 1 2 –2 –8 –4 0 4 8–8 –4–1 0 1 2

0.4 0.8 1.2

t (
h

/m
c

2 )
_ t (
 h

/m
c

2 )
_

x ( h / mc)
_

p (mc)p (mc)

⎢ �
 (p, t)⎢ 2

⎢ �
(x,t)⎢ 2 × 3

a b c d

∼

x ( h / mc)
_

Figure 4 | Charge-conjugation operation. For the same initial state in Fig. 3, the charge-conjugation operation is performed at the mid-point (t¼4).

(a) Time-dependent probability distribution in the momentum space. Similar to the time-reversal operation, right after the charge-conjugation operation at

t¼4, the momentum p is reversed to � p, which makes the discontinuity at the evolution of the picture. However, the momentum-space Zitterbewegung

fades away, which is clearly different from the result of the time-reversal operation. (b) Probability distributions in the momentum space at various times

t¼0, 3, 5 and 8 from bottom to top. (c) Time-dependent probability distribution in the position space. Although the charge-conjugation has changed the

internal components of the Majorana spinor (see Supplementary Fig. 1), the trajectory of the Majorana particle is not affected by the charge-conjugation

operation. (d) The same as b in the real space. The corresponding data points are marked by blue dashed lines. The error bars in a and c come from the

same method to those in Fig. 3.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8917 ARTICLE

NATURE COMMUNICATIONS | 6:7917 | DOI: 10.1038/ncomms8917 | www.nature.com/naturecommunications 5

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


have opposite momentum but the same velocity. As a result, right
after the charge-conjugation operation, the average momentum is
reversed but not the velocity. Therefore, the trajectory in position
space remains intact, which is different from the time-reversal
operation.

Discussion
The demonstrated embedding scheme would potentially reduce
the computational complexity of ordinary quantum simulations
in the sense that it eliminates the requirements for tomographic
information. By enlarging the EQS, the demonstrated symmetry
operations, can be potentially scaled up to many-particle systems
in higher space-time dimensions, in which the conventional
quantum-state tomography is theoretically impossible. The EQS
for multipartite systems only requires doubling the original
Hilbert space dimension, which can be achieved by replacing a
single qubit in an array of coupled qubits by a ququad (quantum
four-level system). The proposed embedding scheme for the
implementation of time reversal and charge-conjugation
operations may be extended to parity symmetry operations24.
This enhanced toolbox for quantum simulators will be valuable
for studying conservation laws and improving the computational
capabilities of current quantum platforms.

Methods
Example of EQS mapping. In the following, we use a plane-wave initial state
cp xð Þ as an example of the encoding of states in the enlarged Hilbert space,

cp xð Þ ¼
C1

C2

� �
� 1ffiffiffiffiffi

2p
p eipx=‘

�!M Cp xð Þ ¼ 1
2

C�1
C�2
iC�1
iC�2

0
BBB@

1
CCCA �

1ffiffiffiffiffi
2p
p e� ipx=‘ þ 1

2

C1

C2

� iC1

� iC2

0
BBB@

1
CCCA �

1ffiffiffiffiffi
2p
p eipx=‘

�Cð� Þp xð ÞþCðþ Þp xð Þ;

ð7Þ

where C�p xð Þ corresponds to plane-wave states (unnormalized) with momentum
±p. Here we want to emphasize two points: (i) although Cp xð Þ is real, the com-
ponents C�p xð Þ are usually composed of complex functions; (ii) there are always
þ p and � p components in the enlarged space to guarantee Cp xð Þ is real.

Stimulated Raman couplings. We implement a microwave Raman scheme for
the transitions between |2i to |3i and |3i to |4i. The strengths of effective

Raman couplings are given by ~O23 ¼ O12O13
4

1
D23
þ 1

D23 þ d23

� 
and ~O34 ¼ � O13O14

4

1
D34
þ 1

D34 � d34

� 
, where O12;O13 and O14 are Rabi frequencies between |1i to |2i,

|1i to |3i, and |1i to |4i, respectively, D23ð34Þ � � 5maxfO12ð14Þ;O13g are the
detuning from |1i to |2i(|4i) and d23(34) are frequency shifts for the compensation
of AC-Stark effect between |1i to |3i. The strengths of the Raman transitions are
balanced to the direct transitions, which have around (2p)3 kHz. The cross talks
between two transitions ~O23 and ~O34 are negligible because ~O23

~O34
� �

is produced
by the combination of s� (sþ ) and p polarizations of microwave, which is
impossible to couple to |3i2|4i transition (|2i2|3i). The AC-Stark shifts from
all the microwave transitions are carefully compensated by properly adjusting the
microwave frequencies (see Supplementary Note 6).
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