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We propose a feasible experimental scheme to realize a three-dimensional chiral topological insulator
with cold fermionic atoms in an optical lattice, which is characterized by an integer topological invariant
distinct from the conventional Z2 topological insulators and has a remarkable macroscopic zero-energy flat
band. To probe its property, we show that its characteristic surface states—the Dirac cones—can be probed
through time-of-flight imaging or Bragg spectroscopy and the flat band can be detected via measurement of
the atomic density profile in a weak global trap. The realization of this novel topological phase with a flat
band in an optical lattice will provide a unique experimental platform to study the interplay between
interaction and topology and open new avenues for application of topological states.
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The exploration of topological phases of matter has
become a major theme at the frontiers of condensed matter
physics since the discovery of topological insulators (TIs)
[1]. The TIs are band insulators with peculiar topological
properties that are protected by time reversal symmetry.
A recent remarkable theoretical advance is the finding that
there are various other kinds of topological phases of free
fermions apart from the conventional TIs, which can be
classified by a periodic table according to system symmetry
and dimensionality [2]. An important question then is
whether the new topological phases predicted by the
periodic table can be physically realized. Several model
Hamiltonians have been proposed to have the predicted
topological phases as their ground states [3–7]. However,
these model Hamiltonians typically require complicated
spin-orbital couplings that are hard to be realized in real
materials. Implementations of these model Hamiltonians
still remain very challenging for experiments.
In this Letter, we propose an experimental scheme to

realize a three-dimensional (3D) chiral TI with cold
fermionic atoms in an optical lattice. The chiral TI is
protected by the chiral symmetry, also known as the
sublattice symmetry [3,8,9]. Unlike the conventional TIs
protected by time reversal symmetry, which is character-
ized by a Z2 topological invariant, the chiral TI is
characterized by a topological invariant taking arbitrary
integer values [2]. By controlling the spin-orbital coupling
of cold fermionic atoms in a tilted optical lattice based on
the Raman-assisted hopping [10–12], we realize a tight-
binding model Hamiltonian first proposed in Ref. [4],
which supports a chiral TI with a zero-energy flat band.
In such a flat band, the kinetic energy is suppressed and the
atomic interaction, which can be tuned by the Feshbach
resonance technique [13], will lead to a novel nonpertur-
bative effect. In a cold atom experiment, flat bands have
been studied in a 2D frustrated Kagome lattice [14].

Inspired by the discovery of the fractional quantum Hall
effect in a topologically nontrivial flat-band Landau level,
one expects that the atomic interaction in a flat-band TI
may lead to exciting new physics [15]. To probe the
properties of the chiral TI in our proposed realization,
we show that topological phase transition and the character-
istic surface states of the TIs, the Dirac cones, can both be
detected by mapping out the Fermi surface structure
through time-of-flight imaging [16,17] or Bragg spectros-
copy [18]. Furthermore, we show that the flat band can be
verified by measurement of the atomic density profile under
a weak global harmonic trap [19,20].
We consider realization of the following tight-binding

model Hamiltonian in the momentum space [4]

HðkÞ ¼

0
B@

0 0 q1 − iq2
0 0 q3 − iq0

q1 þ iq2 q3 þ iq0 0

1
CA; ð1Þ

with q0¼2tðhþcoskxaþcoskyaþcoskzaÞ, q1¼2tsinkxa,
q2 ¼ 2t sin kya, q3 ¼ 2t sin kza, where k ¼ ðkx; ky; kzÞ
denotes the momentum, a is the lattice constant, t is the
hopping energy, and h is a dimensionless control parameter.
This model Hamiltonian has a chiral symmetry represented
by SHðkÞS−1 ¼ −HðkÞ with the unitary matrix S≡
diagð1; 1;−1Þ. It has three bands, with a flat middle
band exactly at zero energy protected by the chiral
symmetry. The other two bands have energies E�ðkÞ¼
�2t½sin2ðkxaÞþsin2ðkyaÞþsin2ðkzaÞþðcoskxaþcoskyaþ
coskzaþhÞ2�1=2. The topological index for this model can
be characterized by the integral [4,21]

Γ ¼ 1

12π2

Z
BZ

dkϵαβγρϵμντ
1

E4þ
qα∂μqβ∂νqγ∂τqρ; ð2Þ
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where ϵ is the Levi-Civita symbol with ðα; β; γ; ρÞ and
ðμ; ν; τÞ taking values respectively from f0; 1; 2; 3g and
fkx; ky; kzg.
To realize the model Hamiltonian (1), we consider

interaction-free fermionic atoms in an optical lattice and
choose three internal atomic states in the ground state
manifold to carry three spin states j1i; j2i; j3i. The other
levels in the ground state manifold are irrelevant as they are
initially depopulated by the optical pumping and transitions
to these levels are forbidden during Raman-assisted atomic
hopping because of a large energy detuning. The Hamiltonian
(1), expressed in real space, has the following form:

H ¼ t
X
r

½ð2ihc†3;rc2;r þ H:c:Þ þHrx þHry þHrz�;

Hrx ¼ ic†3;r−xðc1;r þ c2;rÞ − ic†3;rþxðc1;r − c2;rÞ þ H:c:;

Hry ¼ −c†3;r−yðc1;r − ic2;rÞ þ c†3;rþyðc1;r þ ic2;rÞ þ H:c:;

Hrz ¼ 2ic†3;r−zc2;r þ H:c:; ð3Þ

where ðx; y; zÞ represents a unit vector along the ðx; y; zÞ-
direction of a cubic lattice and cj;r ðj ¼ 1; 2; 3Þ denotes the
annihilation operator of the fermionic mode at the lattice site r
with the spin state jji. To implement this Hamiltonian, the
major difficulty is to realize the spin-transferring hopping
terms Hrx; Hry; Hrz along each direction (see the
Supplemental Material [22]). The hopping terms and the
associated spin transformation can be visualized diagram-
matically as

x direction∶j3i↶i
ffiffi
2

p
j1xi↷× þ↶

× j2xi ↷−i
ffiffi
2

p
j3i þ H:c:;

y direction∶j3i↶−
ffiffi
2

p
j1yi↷× þ↶

× j2yi↷
ffiffi
2

p
j3i þ H:c:;

z direction∶j3i↶2i j2i↷× þ H:c:; ð4Þ

where ↷
×

indicates that hopping is forbidden along that
direction, and j1xi ¼ ðj1i þ j2iÞ= ffiffiffi

2
p

; j2xi ¼ ðj1i − j2iÞ=ffiffiffi
2

p
; j1yi ¼ ðj1i − ij2iÞ= ffiffiffi

2
p

; j2yi ¼ ðj1i þ ij2iÞ= ffiffiffi
2

p
are

superpositions of the original spin-basis vectors j1i; j2i; j3i.
We use Raman-assisted tunneling to achieve the spin-

transferring hopping terms depicted in Eq. (4). Note that the
parity (left-right) symmetry is explicitly broken by these
hopping terms. To break the parity symmetry, we assume
the optical lattice is tilted with a homogeneous energy
gradient along the x-, y-, and z-directions. This can be
achieved, for instance, through the natural gravitational
field, the magnetic field gradient, or the gradient of a dc- or
ac-Stark shift [10–12]. Raman-assisted hopping in a tilted
optical lattice has been demonstrated in recent experiments
[11,12]. In our scheme, we require a different linear energy
shift per site Δx;y;z along the x-, y-, and z-directions. In
particular, we take Δz ≈ 1.5Δy ≈ 3Δx with the energy
difference lower bounded by Δx, and assume the natural

tunneling rate t0 ≪ Δx so that the hopping probability
ðt0=ΔxÞ2 induced by the natural tunneling is negligible in
this tilted lattice.
To realize the hopping terms in Eq. (4), we apply

two-photon Raman transitions with the configuration
(polarization and propagating direction) of the laser beams
depicted in Fig. 1 [22]. The internal states j1i; j3i; j2i differ
in the magnetic quantum number m by one successively so
that the atomic addressing can be achieved using polari-
zation selection. The π-polarized lights consist of two laser
beams Ωπ

1 ¼ Ω0eikx and Ωπ
2 ¼ Ω0eiky, propagating along

the x and y directions, respectively, where k is the
magnitude of the laser wave vector. The other five beams
Ωx;y;z

1;2 are all propagating along the z direction and the
polarizations are shown in Fig. 1. The Rabi frequencies
Ωx;y;z

1;2 , expressed in terms of the unit Ω0, are given in the
caption of Fig. 1 to produce the required phase and

FIG. 1 (color online). Schematics of the laser configuration to
realize the Hamiltonian in Eq. (3). Panel (a) shows the propagation
direction (big arrows) and the polarization (small arrows) of each
laser beam. (b) A linear tilt Δx;y;z per site in the lattice along each
direction. The detuning in each direction matches the frequency
offset of the corresponding Raman beams, which are shown in
panels (c), (d), and (e). Polarizations of each beam are
shown in brackets. Rabi frequencies for each beam are:
Ωπ

1 ¼ Ω0eikx, Ωπ
2 ¼ Ω0eiky, Ωx

1 ¼ i
ffiffiffi
2

p
Ω0eikz, Ωx

2 ¼−i
ffiffiffi
2

p
Ω0eikz,

Ωy
1 ¼ −

ffiffiffi
2

p
Ω0eikz, Ω

y
2 ¼

ffiffiffi
2

p
Ω0eikz, Ωz ¼ 2iΩ0eikz(see the Sup-

plemental Material [22]). (a) laser configuration. (b) tilted optical
lattice. (c) x direction. (d) y direction. (e) z direction.
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amplitude relations of the hopping terms in Eq. (4).
Between the sites r and rþm, the Raman-assisted hopping
rate is given by

tr;m ¼ Ω�
βmΩαm

δ

Z
d3r0w�ðr0 − r −mÞeiδk·r0wðr0 − rÞ;

where δ is a large single-photon detuning to the excited
state, wðr0 − rÞ is the Wannier-(Stark) function at the site r
[23], and δk ¼ kα − kβ is the momentum difference
between the relevant Raman beams with the corresponding
single-photon Rabi frequencies Ωαm and Ωβm. Because
of the fast decay of the Wannier function, we consider
only the nearest-neighbor Raman-assisted hopping with
m ¼ �x;�y;�z. When δk ¼ 0, we have tr;m ¼ 0 for any
m ≠ 0 terms because of the orthogonality of Wannier
functions. Let us take one of the tunneling terms along

the x direction j3i↶i
ffiffi
2

p
j1xi as an example to explain the

Raman-assisted hopping rate. The relevant Raman pair
is Ωx

1 ¼ i
ffiffiffi
2

p
Ω0eikz and Ωπ

1 ¼ Ω0eikx in Fig. 1, so
Ωαm ¼ i

ffiffiffi
2

p
Ω0 and Ωβm ¼ Ω0. The laser beam Ωx

1 has
two frequency components, generated, e.g., by an electric
optical modulator (EOM), which are resonant with the
levels j1i; j2i respectively so that in the rotating frame the
levels j1i and j2i are degenerate in energy. The beam Ωx

1 is
polarized along the x direction, so, together with Ωπ

1 , it
couples the state j1xi to the state j3i through the two-
photon transition. The two-photon detuning Δx is in
resonance with the potential gradient along the x
direction so that the beams only induce the nearest-
neighbor hopping from r to r − x. Using factoriza-
tion of the Wannier function wðr0Þ ¼ wðx0Þwðy0Þwðz0Þ
in a cubic lattice, we find the hopping rate
tr;−x ¼ i

ffiffiffi
2

p
βΩReiδk·r, where ΩR ≡ jΩ0j2=δ and β≡R

dxw�ðxþaÞe−ikxwðxÞR dyw�ðyÞwðyÞR dzw�ðzÞeikzwðzÞ.
For this hopping term, δk ¼ ð−k; 0; kÞ. Actually, for the
beams shown in Fig. 1, any nonzero δk has the form
ð�k; 0;∓kÞ or ð0;�k;∓kÞ, so the site dependent phase
term can always be reduced to eiδk·r ¼ 1 if we take the
lattice constant a to satisfy the condition ka ¼ 2π by
adjusting the interfering angle of the lattice beams.
Under this condition, all the hopping terms in Eq. (4)
are obtained through the laser beams shown in Fig. 1 with
the hopping rate t ¼ βΩR [22]. The on-site spin trans-
ferring term hc†3;rc2;r can be achieved through application
of a simple radio-frequency (rf) field (or another copropa-
gating Raman beam). The Raman beams Ωx;y;z

1;2 and Ωπ
1;2

may also induce some on-site spin transferring terms,
which can be similarly compensated (canceled) with
additional rf fields.
Although the laser configuration illustrated in Fig. 1

involves several beams, all of them can be drawn from the
same laser, with the small relative frequency shift induced

by an acoustic optical modulator (AOM) or EOM. The
absolute frequencies of these beams and their fluctuations
are not important as long as we can lock the relative
frequency differences, which can be well controlled with
the driving rf fields of the AOMs and EOMs. To show that
the proposed scheme is feasible with current technology,
we give a parameter estimation for typical experiments. For
instance, with 40K atoms of mass m in an optical lattice
with the lattice constant a ¼ 2π=k ¼ 764 nm [24,25],
gravity induces a potential gradient (per site) Δ ¼
mga=ℏ ≈ 2π × 0.75 kHz. Gravity provides the gradients
for free along three directions with an appropriate choice of
the relative axes of the frame to satisfyΔx∶Δy∶Δz ¼ 1∶2∶3

and Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

x þ Δ2
y þ Δ2

z

q
. We then have Δx ≈

2π × 200 Hz. For a lattice with depth V0 ≈ 2.3Er, where
Er ¼ ℏ2k2=2m is the recoil energy, the overlap ratio β ≈
0.34 and the natural tunneling rate t0=ℏ ≈ 2π × 50 Hz [22].
For Raman beams with Ω0=2π ≈ 15 MHz and the single-
photon detuning δ=2π ≈ 1.7 THz [24], we have ΩR ¼
jΩ0j2=δ ≈ 2π × 120 Hz and the Raman-assisted hopping
rate t=ℏ ≈ 2π × 40 Hz. Apparently, the undesired off-
resonant hopping probabilities, upper bounded by t2=Δ2

x

or t20=Δ2
x, are less than 6% and the effective spontaneous

emission rate, estimated by jΩ0=δj2Γs (Γs ≈ 2π × 6 MHz is
the decay rate of the excited state), is negligible during the
experimental time of the order of 10=t.
We now proceed to discuss detection methods to probe

the exotic phases of the realized Hamiltonian. The
topological index Γ defined in Eq. (2) is shown in
Fig. 2(a) under different values of h. The system is
topologically nontrivial for jhj < 3, and Γ changes at
jhj ¼ 1; 3, indicating a topological quantum phase
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FIG. 2 (color online). (a) The topological index Γ as a function
of the parameter h. (b) Energy dispersion for three bulk bands
(surface plot) and surface states (mesh plot) at the boundary along
the z direction for h ¼ 2. (c) Quasimomentum distribution
ρcryðkÞ for various h ¼ 0; 0.5; 1; 1.5; 2 at a fixed chemical
potential μ=2t ¼ −2 (see the Supplemental Material [22]). One
hundred layers are taken along the z direction with open
boundaries in (b) and (c).
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transition. We calculate the band structure numerically for
a homogeneous system by keeping x and y directions in
momentum space and z direction in real space with open
boundaries. Figure 2(b) shows the result, revealing the
macroscopic flat band as well as the surface states with
Dirac cones. Experimentally, the band structure can be
probed by mapping out the crystal quasimomentum
distribution ρcryðkÞ. By abruptly turning off the lattice
potential, one could measure the momentum distribution
ρðkÞ, and the quasimomentum can then be extracted as
ρcryðkÞ ¼ ρðkÞ=jwðkÞj2, where wðkÞ is the Fourier trans-
form of the Wannier function wðrÞ [16]. Here, we numeri-
cally calculate the crystal quasimomentum distribution,
which can be used to track the topological phase transition
[Fig. 2(c)]. At a fixed chemical potential, as one varies h
from 0 to 2, the quasimomentum distribution reshapes
accordingly when the bulk gap closes and reopens and
the number of surface Dirac cones changes from 2 to 1,
indicated by a change of topology of the Fermi surface
(see the Supplemental Material [22]).
Bragg spectroscopy is a complementary detection

method to reveal the Dirac cone structure [18,19]. One
could shine two laser beams at a certain angle to induce a
Raman transition from an occupied spin state to another
hyperfine level and focus them near the surface of the 3D
atomic gas. The atomic transition rate can be measured,
which is peaked when the momentum and energy con-
servation conditions are satisfied. By scanning the Raman
frequency difference, one can map out the surface
energy-momentum dispersion relation [19]. The surface
Dirac cones, with their characteristic linear dispersion, can
therefore be probed through Bragg spectroscopy.
So far, we considered a homogeneous system under a

box-type trap at zero temperature. In a realistic experiment,
finite temperature and a weak confining harmonic trap may
introduce noise. To include these effects, an important
element to consider is the size of the bulk gap. In our
parameter regime, the minimum band gap from the top or
bottom bulk band to the middle flat band is 2t ¼ ð2πℏÞ ×
80 Hz at h ¼ 2 [Fig. 2(b)], which corresponds to a temper-
ature around 4 nK. Direct cooling to subnanokelvin
temperature is challenging but has been attained exper-
imentally [26]. Parametric cooling based on adiabatic
preparation can be used to further reduce the effective
temperature of the system. With a band gap considerably
larger than the probing Raman Rabi frequency, bulk
contribution to the Bragg spectroscopy is negligible. In
the following, we include the effect of a weak harmonic
trap via the local density approximation (LDA) and
consider the finite temperature effects to be minimal.
The characteristic flat band can be detected through

measurement of the atomic density profile under the global
harmonic trap [20,27]. Under the LDA, the local chemical
potential of the system is μðrÞ ¼ μ0 −mω2r2=2, where μ0
denotes the chemical potential at the center of a spherically

harmonic trap with the potential VðrÞ ¼ mω2r2=2. The
local atomic density nðrÞ is uniquely determined by μðrÞ,
and μ0 is specified by the total atom number N throughR
nðrÞ4πr2dr ¼ N. The atomic density profile nðrÞ, which

can be measured in situ in experiments [20], is calculated
and shown in Fig. 3. A steep fall or rise in nðrÞ is a clear
signature of a macroscopic flat band (horizontal arrows in
Fig. 3). The plateaus at 1=3 and 2=3 fillings [vertical arrows
in Fig. 3(a)] reveal the corresponding band gap. At h ¼ 1,
the plateaus vanish [Fig. 3(b)]. The disappearance of the
plateaus at this point indicates the phase transition where
the band gap closes. In experiments, due to the finite spatial
resolution, the detected signal may correspond to a locally
averaged nðrÞ. The dashed lines show the local average
density n̄i ¼

P
1
j¼−1 niþj=3, averaged over a spherical shell

of 3 lattice sites. One can see that major features associated
with the band gap and the flat band remain clearly visible
even when the signal is blurred by the local spatial
averaging.
In summary, we have proposed an experimental scheme

to realize and probe a 3D chiral TI with a zero-energy flat
band. The experimental realization of this model will mark
an important advance in the ultracold atom simulation of
topological phases.
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