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Abstract
In this paper, we consider the fault-tolerant k-median prob-

lem and give the first constant factor approximation algo-

rithm for it. In the fault-tolerant generalization of classical

k-median problem, each client j needs to be assigned to at

least rj ≥ 1 distinct open facilities. The service cost of j is

the sum of its distances to the rj facilities, and the k-median

constraint restricts the number of open facilities to at most k.

Previously, a constant factor was known only for the special

case when all rjs are the same, and a logarithmic approx-

imation ratio was known for the general case. In addition,

we present the first polynomial time algorithm for the fault-

tolerant k-median problem on a path or a HST by showing

that the corresponding LP always has an integral optimal so-

lution.

We also consider the fault-tolerant facility location prob-

lem, where the service cost of j can be a weighted sum of its

distance to the rj facilities. We give a simple constant fac-

tor approximation algorithm, generalizing several previous

results which only work for nonincreasing weight vectors.

1 Introduction
The k-median problem is one of the central problems in

approximation algorithms and operation research. The most

basic version of the k-median problem is defined as follows.

We are given a set of facilities F and a set of demands

(or clients) D in a metric space. We can open at most k
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facilities, and then assign each client j to the opened facility

that is closest to it. Assigning demand j to facility i incurs

an assignment cost of d(i, j), where d(i, j) is the distance

between i and j. Our goal is to choose at most k facilities

so that the sum of the assignment costs is minimized. Lin

and Vitter [35] gave a polynomial-time algorithm that, for

any ε > 0, finds a solution of cost no more than 2 + ε
times the optimum, while using at most (1 + ε)k facilities.

The first non-trivial approximation algorithm that produces

a feasible solution (i.e., open at most k facilities) achieves

a logarithmic approximation ratio by combining the metric

embedding results [6, 17] and the fact that k-median can

be solved in polynomial time in a tree metric. Charikar,

Guha, Tardos and Shmoys [11] gave the first constant factor

approximation algorithm using LP rounding. This was

improved by a series of papers [10, 22, 4, 12] and the current

best approximation ratio is 1 +
√
3 + ε for any ε > 0 via

pseudo approximation [33]. For the fault tolerant version

of k-median (FTMed), each client j needs to be assigned to

at least rj ≥ 1 distinct open facilities. The service cost of

j is the sum of its distances to the rj facilities. A special

case of FTMed is when all the rjs are the same. We call

such instance as uniform FTMed (denoted by Uni-FTMed).

For Uni-FTMed, Swamy and Shmoys [41] developed a 4-

approximation using the Lagrangian relaxation technique.

However, their technique does not work when rjs are not

same, even when rjs are either 1 or 2. For general FTMed,

where rjs can be non-uniform, the best known result is a

logarithmic factor approximation algorithm [2].

In the closely related uncapacitated facility location

problem (UFL), there is a facility opening cost fi for each

facility i and our objective is to minimize the sum of the fa-

cility opening cost and the total assignment cost. The first

constant factor approximation algorithm for UFL was given

by Shmoys, Tardos and Aardal [39], using the filtering tech-

nique of Lin and Vitter [34]. Subsequently, a variety of tech-

niques in approximation algorithms has been successfully

applied to UFL ( see e.g., [14, 24, 4, 3, 22, 15, 10, 32]).

The current best approximation ratio is 1.488 by Li [32],

which is quite close to the best known inapproximability

bound of 1.463 due to Guha and Khuller [19]. In this pa-
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per, we study the fault-tolerant version of UFL where each

client j needs to be assigned to at least rj ≥ 1 distinct

open facilities. Client j is associated with a weight vec-

tor wj = {w(1)
j , w

(2)
j , . . . , w

rj
j }. The service cost of j is

the weighted sum of its distances to the rj facilities, i.e.,∑
i w

(i)
j d(hi, j) where hi is the ith closest open facility. It

models the situation where each client needs one or more

“backup” facilities in case its closest facility fails. The fault-

tolerant facility location (FTFL) is a generalization of UFL

in which rj = 1 for each client j. FTFL with nonincreas-

ing weight vectors (w
(1)
j ≥ w

(2)
j ≥ . . . for each client

j) has been studied extensively. Jain and Vazirani gave a

primal-dual based algorithm achieving a logarithmic approx-

imation factor [25]. The first constant factor approximation

algorithm with a factor of 2.408 is due to Guha, Meyer-

son and Munagala [20]. This was later improved to 2.076
by Swamy and Shmoys [41] and 1.7245 by Byrka, Srini-

vasan and Swamy [7], which is currently the best known

ratio. However, nothing is known for FTFL with general

positive weight vectors. Measuring service cost using gen-

eral weight vectors is often a natural choice. For example,

in the fault-tolerant k-center problem [26, 13], the service

cost of a client is chosen to be its distance to the rth clos-

est facility (this corresponds to the weight vector (w
(1)
j =

0, . . . , w
(r−1)
j = 0, w

(r)
j = 1, w

(r+1)
j = 0, . . .)). Further

consider the following application in a wireless sensor net-

work. We need to place hotspots (facilities) to provide wire-

less services for a designated area. Each hotspot may fail in-

dependently with probability p at every time slot. Each client

is a sensor that needs to communicate with one hotspot. To

ensure that the communication succeeds with probability at

least 1 − δ at each time slot, the transmission radius (fixed

all the time) of the client needs to be the distance from the

client to its �logp δ�th closest hotspot. If the communication

cost of a client scales linearly with its transmission radius,

the problem is exactly FTFL with weight vectors of the form

(0, . . . , 0, 1, 0, . . .).

1.1 Our Results Our main result is a constant factor ap-

proximation algorithm for general FTMed. The current best

approximation algorithm for general FTMed achieves a log-

arithmic approximation ratio [2]. Note that no constant

factor approximation algorithm is known even for the case

where the demands are either 1 or 2 and no previous tech-

niques for k-median or uniform FTMed [11, 4, 23, 12, 41]

seem to be generalizable easily to this case. Our algorithm is

built on solving the natural linear programming (LP) relax-

ation of FTMed. Rounding is involved and proceeds through

stages. First, based on the LP solution, we classify the clients

into safe and dangerous. The safe clients are those whose

distance to the furthest fractional facility assigned to it can

be bounded by a constant factor of the connection cost de-

fined by the LP solution (for the precise definition, see Sec-

tion 2). Handling such clients is easy and well understood in

recent literature on the fault-tolerant facility location prob-

lem [41, 7, 43]. In fact, in the fault-tolerant facility location

problem, by scaling up the facility variables by a constant

factor, one can transform all clients to safe, making it easy

to approximate. However, in FTMed, we can not scale the

facility variables since scaling would violate the constraint

that we can open at most k facilities.

Next, we apply the adaptive clustering algorithm in [43]

to produce a family of disjoint sets of facilities that we call

bundles. However in [43], one can select multiple copies of

the same facility. In order to avoid that, we need to keep

a new mapping. In the rounding step, we ensure that each

bundle contains exactly 1 open facility by randomly selecting

an open facility inside it (according to the probabilities

suggested by the LP), and we can show that the expected

connection cost of a safe client is bounded by a constant

times its connection cost in the LP solution. On the other

hand, handling the dangerous clients is significantly more

challenging and requires new techniques.

We judiciously create a family {Bj} of facility sets for

each client j choosing from the fractionally open facilities

serving j such that Bj is almost laminar, that is the two

sets are either nearly disjoint, or one is almost contained in

the other. This becomes technically challenging primarily

for the fact that demands among the clients could be highly

skewed. Once we have such a structure, further refinements

through filtering and other manipulations, lead to a laminar

family of sets of facilities that have the nice property of

y(Bj) being very close to rj . Here y(Bj) is the expected

number of fractional facilities in Bj . In the randomized

rounding step, in addition to guaranteeing every bundle

contains exactly 1 facility, we can also guarantee that every

set in the laminar family contains either �y(Bj)� or �y(Bj)�
open facilities. Since y(Bj) is close to rj , the rounding

procedure opens rj facilities in Bj with high probability

and this suffices to show a constant approximation for the

expected service cost of j.

As our second result, we show there is a polynomial

time algorithm that can exactly solve general FTMed in

a line metric. Unlike for the ordinary k-median problem

on a line, which can be easily solved in polynomial time

by dynamic programming, it is unclear how to generalize

the dynamic program to FTMed (either uniform or non-

uniform). Our algorithm is in fact based on a linear program.

We show that the LP always has an optimal solution that is

integral. We rewrite the LP based on any (fractional) optimal

solution and show the new LP matrix is totally unimodular.

A similar argument can be used to show that the LP of

general FTMed on a hierarchically well separated tree (HST)

also has an integral optimal solution. This improves the

result in [9] where they showed that the integrality gap of

2 Copyright © 2014.
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the k-median LP on HSTs is at most 2. 1

We also consider the fault tolerant version of the facility

location problem (FTFL) where the service cost of a client is

a weighted sum of the distances to the closest open facility,

the 2nd closest open facility and so on. Our main result

for this problem is a simple constant factor approximation

algorithm for FTFL with a general weight vector for each

client. This generalizes several previous results [20, 41, 7],

where the weight vectors are nonincreasing. For general

weight vectors, the most commonly used ILP formulation

does not hold since the optimal integral LP solution may

not correspond to a feasible solution. To remedy this, we

use an extension of the ILP formulation for facility location

proposed by Kolen and Tamir [27]. However, one can

easily construct an example where the LP relaxation for this

formulation has an unbounded integrality gap (see Section

4). Our approach is based on formulating a strengthened

LP relaxation for the problem by adding “knapsack cover

constraints” [8, 5].

1.2 Other Related Work Facility location and k-median

are central problems in approximation algorithms. Many

variants and generalizations have been studied extensively

in the literature, including capacitated facility location [37,

30, 40] and k-median [16], multilevel facility location [1],

universal facility location [36, 31], matroid median [21, 28,

12], knapsack median [29, 12], just to name a few. A closely

related problem is the fault-tolerant k-center problem which

has also been studied and constant factor approximation

algorithms are known for several of its variants [26, 13].

Recently, Yan and Chrobak studied the fault-tolerant facility

placement problem which is almost the same as FTFL except

that we can open more than one copy of a facility and they

gave a constant factor approximation algorithm based on LP

rounding [43].

2 Fault Tolerant k-Median
We use I =

(
k, F,C, d, {rj}j∈C

)
to denote a FTMed

instance. In the instance, k ≥ 1 is an integer, F is the set

of facilities, C is the set of clients, d is a metric over F ∪ C
and rj ∈ [k] is the requirement of j. The solution of I is a

set S of k facilities from F and its cost is the sum, over all

clients j ∈ C, of the total distance from j to its closest rj
facilities in S.

The following is the natural LP relaxation for the

FTMed:

minimize
∑
j∈C

∑
i∈F

d(j, i)xi,j(2.1)

1It is well known that k-median on trees can be solved in polynomial

time by combinatorial methods (e.g., [42]).

subject to yi − xi,j ≥ 0 ∀i ∈ F, j ∈ C∑
i∈F

xi,j = rj ∀j ∈ C

∑
i∈F

yi ≤ k

xi,j , yi ∈ [0, 1] ∀i ∈ F, j ∈ C

Throughout the paper, we let y denote the y-vector

obtained by solving the above LP. For a subset S ⊆ F of

facilities, define the volume of S to be y(S) :=
∑

i∈S yi.
W.l.o.g., we assume y(F ) = k.

We can assume yi ≤ 1 and xi,j ∈ {0, yi} by the

following splitting operation. Consider a facility i and a

client j such that xij < yi. We replace i with two facilities

i1, i2 and let yi1 = xi1j = xij , yi2 = yi − xi,j , xi2j = 0. Of

course, when we make such clones of a facility, we can only

open one of them.

Instead of using (y, x), we use
(
{yi}i∈F , {Fj}j∈C , g

)
to denote an LP solution, where Fj ⊆ F and y(Fj) = rj for

every j ∈ C, and g shall be defined later. In this solution,

yi indicates whether to open the facility i. We assume

0 < yi ≤ 1 for every i ∈ F . Then i ∈ Fj if and only if

xi,j = yi. We also assume Fj contains the closest rj volume

of facilities to j. That is, for any j ∈ C, i ∈ Fj , i
′ /∈ Fj , we

have d(j, i) ≤ d(j, i′). For some non-empty set S ⊆ F with

y(S) = 0, let

dav(j, S) =

∑
i∈S d(j, i)yi

y(S)

be the average distance from j to S. Let dmax(j, S)
be the maximum distance from j to any node in S, i.e.,

maxi∈S d(j, i).
Notice that we can always split a facility i into two

facilities i′ and i′′ with yi = yi′ + yi′′ arbitrarily (replace

any Fj � i with Fj \ {i} ∪ {i′, i′′}) without changing the

value of the LP solution 2. This turns out to be convenient

in the following scenario. Suppose we are given a sequence

of facilities (i1, i2, · · · , im) such that
∑m

s=1 yis ≥ r. We

are interested in the integer t such that
∑t−1

s=1 yis < r

and
∑t

s=1 yis ≥ r. If
∑t

s=1 yis > r, we can split it
into two facilities i′ and i′′ with yi′ = r − ∑t−1

s=1 yis and

yi′′ =
∑t

s=1 yis − r. By splitting, we assume we can always

find the integer t such that
∑t

s=1 yis is exactly r. Let j ∈ C
be a client and S be a set of facilities such that y(S) ≥ r.

Sort the facilities of S according to their distances to j, from

2Note that we have split the facilities before to ensure xi,j ∈ {0, yi}.

Now, if we split a facility yi (into yi′ and yi′′ ), we need to split xi,j

accordingly for all j: If xi,j = 0, let xi′,j = xi′′,j = 0; if xi,j = yi,
let xi′,j = yi′ and xi′′,j = yi′′ . It is easy to see that we still have

xi,j ∈ {0, yi} for all i, j after the split.

3 Copyright © 2014.
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the closest to the furthest. Let s (resp. t) be the integer such

that the first s (resp. t) facilities in the order have volume

exactly r − 1 (resp. r). Then, Sr contains the p-th facility

in the sequence for every p from s + 1 to t. So y(S′) = 1.

If y is an integral solution, S′ would correspond to the r-

th closest facility to j. Define drav(j, S) = dav(j, Sr) and

drmax(j, S) = dmax(j, Sr) where Sr is the set defined above.

We observe some simple yet useful facts. Let j ∈ C be

a client and S be a set of facilities with y(S) = r for some

integer r. Then, we have that

1. dtav(j, S) ≤ dtmax(j, S) ∀t ∈ [r],

2. dtmax(j, S) ≤ dt+1
av (j, S) ∀t ∈ [r − 1],

3. dav(j, S) =
1
r

∑r
t=1 d

t
av(j, S).

In fact, the second inequality holds because

mini∈St+1
{d(j, i)} ≤ dav(j, St+1) ≤ maxi∈St+1

{d(j, i)}
and maxi∈St{d(j, i)} ≤ mini∈St+1{d(j, i)}. The third

equation holds since S1, . . . , Sr is a partition of S.

For ease of notation, we omit the second parameter

of dav and dmax if it is Fj . That is, we let dav(j) =
dav(j, Fj), dmax(j) = dmax(j, Fj), d

r
av(j) = drav(j, Fj) and

drmax(j) = drmax(j, Fj).
In several steps mentioned above, we may split one

facility into several copies. In the rounding step, to avoid

opening more than one copies for each facility, we need to

keep a mapping g where g(i) indicates the original facility

co-located with i from which i is split. g(i) = i if i itself

is the original facility. Thus, d(i, g(i)) = 0. Keep in mind

that we need to make sure in the rounding step that at most

1 facility is open in g−1(i) := {i′ ∈ F : g(i′) = i} for any

i ∈ F .

The high level idea of our algorithm is as fol-

lows. We solve LP (2.1) to obtain a fractional solution(
{yi}i∈F , {Fj}j∈C , g

)
. Our goal is to output a random set

S ⊆ F of size k such that the expected connection cost of j is

O(rjdav(j)) for each client j. We first use the adaptive clus-

tering algorithm of [43] to construct a family U of disjoint

sets of volume 1. If we randomly open 1 facility for each

set U ∈ U , we can show that the expected connection cost

of each client j ∈ C is O(1)rjdav(j) + dmax(j). This can

handle the clients j with small dmax(j)/(rjdav(j)) (which

we call safe clients).

The remaining task is to handle the dangerous clients,

i.e., the clients with a large dmax(j)/d
rj
av(j) value (the exact

definition will appear later). We first apply a filtering step to

select a subset D′ of dangerous clients. For each j ∈ D′,
we create a set B′j of facilities such that the set family

B = {B′j : j ∈ D′} is laminar. Using the laminar family

B, we design a process to output a random set S of facilities

so that (1) at most 1 facility is open inside g−1(i) for any

i ∈ F , (2) each facility i is open with probability exactly

yi; (3) exactly 1 facility in each U ∈ U is open and (4)

we open either
⌊
y(B′j)

⌋
or

⌈
y(B′j)

⌉
facilities inside each

B′j ∈ B. With these properties, we can prove the constant

approximation for FTMed.

The remainder of this section is organized as follows.

We show how to construct U and B respectively in Section

2.1 and 2.2. Then, we show how to round the fractional

solution based on U and B in Section 2.3. Finally, we prove

the constant approximation ratio in section 2.4.

2.1 Construction of the Family U Given a k-median in-

stance defined by k, F, C, d, {rj}j∈C and a fractional solu-

tion ({yi}i∈F , {Fj ⊆ F}j∈C , g) to the instance, the algo-

rithm of [43] outputs a family U of disjoint sets of volume

1, which we call bundles, as well as a set {Uj,t}t∈[rj ] of rj
different bundles from U for each j ∈ C. The algorithm is

described in Algorithm 1.

If some U is added to U at Line 7 of Algorithm 1, we say

the creator of U is j. We can see that the bundles in U are

mutually disjoint. Moreover, for any j ∈ C, the rj bundles

added to queuej are all different, since every time we add a

bundle U to the queuej , we removed U ∩ F ′j from Fj .

LEMMA 2.1. For any client j ∈ C, for any r ∈ [rj ], we
have dav(j, Uj,r) ≤ 2drmax(j) + drav(j).

Proof. We prove the following statement: when the length

of queuej is r − 1, we have d1av(j, F
′
j) ≤ drav(j) and

d1max(j, F
′
j) ≤ drmax(j). Notice that we only remove fa-

cilities from F ′j if we added some set B to queuej . More-

over, we remove at most 1 volume of facilities from F ′j .

Thus, when the length of queuej is r − 1, we removed in

total at most r − 1 volume of facilities from F ′j . It is easy

to see that in order to maximize d1av(j, F
′
j) (d1max(j, F

′
j),

resp.), it is the best to remove from F ′j the r − 1 volume

of closest facilities of j, in which case we have d1av(j, F
′
j) =

drav(j)(d
1
max(j, F

′
j) = drmax(j), resp.). Thus, we proved the

statement.

Suppose now the length of queuej is r − 1. Clearly,

the volume of F ′j is at least 1. Consider the next time when

we selected this client j and the correspondent U at Line 4.

We know dav(j, U) ≤ drav(j) and dmax(j, U) ≤ drmax(j). If

there is a U ′ ∈ U such that U ′∩U = ∅, let j′ be the creator of

U ′. Then, we have dav(j
′, U ′)+dmax(j

′, U ′) ≤ dav(j, U)+
dmax(j, U), since we selected j′ and U ′ before we selected

j and U . Thus, d(j, j′) ≤ dmax(j, U) + dmax(j
′, U ′) and

dav(j, U
′) ≤ d(j, j′) + dav(j

′, U ′)
≤ dmax(j, U) + dmax(j

′, U ′) + dav(j
′, U ′)

≤ 2dmax(j, U) + dav(j, U),

which is at most 2drmax(j) + drav(j).
If such U ′ does not exist, we added U to U and queuej

at Line 7, we have dav(j, U) ≤ drav(j).

4 Copyright © 2014.
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Algorithm 1 Create bundles

Input: A FTMed instance I =
(
k, F, C, d, {rj}j∈C

)
and a fractional solution

(
{yi}i∈F , {Fj}j∈C , g

)
to I

Output: A family U of disjoint bundles, and a set {Uj,t}t∈[rj ] of rj different bundles from U for each j ∈ C

1: U ← ∅, F ′j ← Fj and queuej ← ∅ for every client j ∈ C;

2: While there exists a client j such that the length of queuej is smaller than rj
3: Select such a client j with the minimum d1av(j, F

′
j) + d1max(j, F

′
j);

4: Let U ⊆ F ′j be the 1 volume of facilities such that d1av(j, F
′
j) = dav(j, U) and d1max(j, F

′
j) = dmax(j, U); � one

might clone facilities in obtaining the set U and g is updated suitably to reflect this.

5: If there exists a bundle U ′ ∈ U such that U ′ ∩ U = ∅
6: then add U ′ to the queuej and remove U ′ ∩ U from F ′j ;

7: else add U to U , add U to queuej , and remove U from F ′j ;

8: return U and {Uj,t}j∈C,t∈[rj ], where Uj,t is the t-th bundle in queuej .

2.2 Construction of the laminar Family B We say a

client j ∈ C is dangerous if

dmax(j) ≥ 45d
rj
av(j).

The rest of clients are safe. Let D denote the set of dangerous

clients. In this section, we first apply a filtering phase to

obtain a subset D′ ⊆ D of dangerous clients. Then, for

each j ∈ D′ we select a set B′j ⊆ Fj of facilities so that

B = {B′j : j ∈ D′} form a laminar family.

Filtering: We say two distinct dangerous clients j, j′ ∈
D conflict if rj = rj′ and

d(j, j′) ≤ 6max {dav(j), dav(j′)} .

In the filtering phase, we select a subset D′ ⊆ D of

dangerous clients such that no two clients in D′ conflict each

other. Algorithm 2 describes the filtering process.

Algorithm 2 Filtering

1: D′ ← ∅;

2: For r ← 1 to R do
3: J = {j ∈ D : rj = r};

4: While J = ∅ do
5: Let j be the client in J with the minimum dav(j);
6: Let J ′ be the set of clients in J that conflict j;

7: Let J ← J \ J ′ \ {j} and D′ ← D′ ∪ {j};

8: return D′.

FACT 2.1. If j ∈ D\D′, then there must be a client j′ ∈ D′

such that rj′ = rj , dav(j′) ≤ dav(j) and d(j, j′) ≤ 6dav(j).

Building a laminar family for dangerous clients For

any client j ∈ D′, let Bj := Ball(j, dmax(j)/15), where

Ball(j, L) = {i ∈ F : d(i, j) ≤ L} is the set of facilities

that are within a distance L from j. We notice that with the

definition of Bj , if a copy of some facility i is in Bj (recall

a facility may be split into several copies), all copies of i

are in Bj . We first present a few properties of Bj , then show

how to construct the laminar family B. The following lemma

shows that the volume of Bj is very close to rj .

LEMMA 2.2. For a client j ∈ D with rj = r, we have

r − 15drav(j)

dmax(j)
≤ y(Bj) < r.

Proof. First, we notice that dmax(j)/15 ≥ drav(j) ≥
dr−1
max(j). Since j is dangerous, we can see that all clients

in Fj \Bj contribute to drav(j). Thus we have

drav(j) ≥ y(Fj \Bj)dmax(j)/15,

which implies that y(Bj) = r−y(Fj \Bj) ≥ r− dr
av(j)

dmax(j)/15
.

The following corollary follows directly from the defi-

nition of dangerous clients and Lemma 2.2.

COROLLARY 2.1. For a client j ∈ D with rj = r, we have
that y(Bj) ≥ r − 15/45 = r − 1/3.

The following lemma shows that two distinct dangerous

clients in D′ are necessarily far way. A corollary of the

lemma which is useful later is that Bj and Bj′ are disjoint.

LEMMA 2.3. Let j and j′ be two distinct clients in D′ such
that rj = rj′ = r. Then

d(j, j′) ≥ dmax(j)/10 + dmax(j
′)/10.

Proof. Assume otherwise. First, we can see that Fj = Fj′

(due to the filtering phase). Since j and j′ have the same

demand r, it is not possible that Fj is strictly contained in

Fj′ or Fj is strictly contained in Fj′ . Combining this fact

with triangle inequalities, we can see that

|dmax(j)− dmax(j
′)| ≤ d(j, j′) <

dmax(j)

10
+

dmax(j
′)

10
.
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Figure 1: There are five facilities in the graph. (1): Before the filtering phase, 3 and 5 are in conflict and 5 is filtered out.

(2)-(4): We build the laminar family in non-decreasing order of rjs.

Thus, we have that

dmax(j
′)

dmax(j)
∈
[
1− 1/10

1 + 1/10
,
1 + 1/10

1− 1/10

]
=

[
9

11
,
11

9

]
.

By triangle inequality, we can see that Bj′ is contained

in Ball(j, d(j, j′) + dmax(j
′)/15) (this can be seen from the

fact that every point in Bj′ is at most d(j, j′) + dmax(j
′)/15

distance away from j) and

d(j, j′) +
dmax(j

′)
15

≤ 1

10

(
1 +

11

9

)
dmax(j) +

11/9

15
dmax(j)

< 0.5dmax(j),

we have Bj′ ⊆ Ball(j, 0.5dmax(j)). Thus, we have Bj ∪
Bj′ ⊆ Ball(j, 0.5dmax(j)), implying y(Bj ∪ Bj′) < r,

which, combined with Corollary 2.1, further implies that

y(Bj ∩Bj′) = y(Bj) + y(Bj′)− y(Bj ∪Bj′) ≥ r − 2

3
.

Then, dav(j, Bj∩Bj′) ≤ rdav(j)/(r−2/3) ≤ 3dav(j). Sim-

ilarly, dav(j
′, Bj ∩ Bj′) ≤ 3dav(j

′). By triangle inequality

d(j, j′) ≤ 3(dav(j) + dav(j
′)) ≤ 6max {dav(j), dav(j′)}. j

and j′ can not be both in D′ since they conflict each other,

leading to a contradiction.

The following lemma shows that if two dangerous

clients with different demands are close to each other, the

ball for the client with the larger demand is necessarily much

larger than the one for the other client.

LEMMA 2.4. Let j and j′ be two clients in D′ with r = rj >
r′ = rj′ . Suppose d(j, j′) ≤ dmax(j)/15 + dmax(j

′)/10.
Then dmax(j

′) ≤ 1
6dmax(j).

Proof. Assume otherwise; then dmax(j) < 6dmax(j
′).

Then, we have that

d(j, j′) +
dmax(j)

15
≤ 6dmax(j

′)
15

+
dmax(j

′)
10

+
6dmax(j

′)
15

= 0.9dmax(j
′)

and Bj ⊆ Ball
(
j′, d(j, j′) + dmax(j)

15

)
. Thus, we have Bj ⊆

Ball (j′, 0.9dmax(j
′)). Since y(Bj) ≥ r−1/3 > r−1 ≥ r′,

we have y(Ball(j′, 0.9dmax(j
′)) ≥ r′, contradicting the

definition of dmax.

In fact, if j and j′ satisfy the condition of Lemma 2.4,

we can see that the distance from every point in Bj′ to j is at

most

d(j, j′) +
1

15
dmax(j

′)

≤ 1

15
dmax(j) +

1

10
dmax(j

′) +
1

15
dmax(j

′)

≤ (
1

15
+

1

36
)dmax(j).

Intuitively, this suggests that Bj′ is almost contained in

Bj . If the condition of Lemma 2.4 does not hold, j and

j′ are obviously disjoint. Therefore, we can see the family

{Bj}j∈D′ is almost laminar. In fact, by slightly modifying

the sets Bj , we can form a laminar family.

Now, we present the algorithm for creating the laminar

family B. For any client j ∈ D′, we now construct a new set

B′j ⊇ Bj , which is Bj plus a small volume set of facilities.

Algorithm 3 describes the process. See Figure 1 for an

illustration of our algorithm. We prove that {B′j}j∈D′ forms

a laminar family.

LEMMA 2.5. The following properties hold for B =
{B′j}j∈D′ :

1. B′j ⊆ Ball(j, dmax(j)/10) for every j ∈ D′;

6 Copyright © 2014.
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Algorithm 3 building a laminar family B =
{
B′j : j ∈ D′

}
of sets

1: For r = 1 to R do
2: For each client j ∈ D′ such that rj = r do
3: Let D′′ be the set of clients j′ such that rj′ < r

and B′j′ ∩Bj = ∅;

4: B′j ← Bj ∪
⋃

j′∈D′′ B′j′ ;

2. B = {B′j}j∈D′ forms a laminar family.

Proof. We prove both the statements together by induction

or r. We prove B′j ⊆ Ball(j, dmax(j)/10) for any client

j such that rj ≤ r; also, the family Br = {B′j}j∈D′:rj≤r

form a laminar family. If r = 1, we have B′j = Bj =
Ball(j, dmax(j)/15) for every j ∈ D′ with rj = 1. Also, by

Lemma 2.3, B′j and B′j′ are disjoint for two distinct clients j
and j′ in D′ with rj = rj′ = 1. Thus the statements are true

for r = 1.

Suppose the statement is true for r − 1. Consider

two clients j and j′ in D′ such that rj = r, rj′ < r
and Bj ∩ B′j′ = ∅. By the induction hypothesis, B′j′ ⊆
Ball(j′, dmax(j

′)/10), implying d(j, j′) ≤ dmax(j)/15 +
dmax(j

′)/10. By Lemma 2.4, dmax(j
′) ≤ 1

6dmax(j). Then,

d(j, j′) + dmax(j
′)/10 ≤ dmax(j)/15 + dmax(j)/60 +

dmax(j
′)/60 = dmax(j)/10. Thus,

B′j′ ⊆ Ball
(
j, d(j, j′) +

dmax(j
′)

10

)
⊆ Ball

(
j,
dmax(j)

10

)
.

This is true for any such client j′. By the definition of B′j at

Line 4, we have that

B′j ⊆ Ball(j, dmax(j)/10).

Consider two distinct clients j, j′ ∈ D′ such that rj = rj′ =
r. We claim that there is no j′′ such that rj′′ < r and B′j′′
intersect both Bj and Bj′ . Assume there is such a client j′′.
Then, we have that

d(j, j′′) ≤ dmax(j)

15
+

dmax(j
′′)

10
≤ dmax(j)

12
.

Similarly d(j′, j′′) ≤ dmax(j
′)/12. Thus, d(j, j′) ≤

dmax(j)/12 + dmax(j
′)/12. Contradicting Lemma 2.3.

Notice that in order to construct B′j at Line 4, it is

enough to consider the sets in Br−1 = {B′j′′ | j′′ ∈
D′, rj′′ ≤ r − 1} that are inclusively maximal (those that

are not properly contained by other set in Br−1). By the

induction hypothesis, these inclusively maximal sets are

disjoint. Thus, for any clients j, j′ ∈ D′ with rj = rj′ = r,

B′j and B′j′ are disjoint. Moreover, for any j′′ ∈ D′ with

rj′′ < r, either B′j′′ ⊆ B′j or B′j′′ ∩ B′j = ∅. Thus, the

family Br = {B′j : j ∈ D′, rj ≤ r} is laminar.

2.3 Rounding After obtaining a LP solution

({yi : i ∈ F} , {Fj : j ∈ C}), we run the algorithm of

[43] as described in Section 2.1 to obtain a family U of

disjoint bundles and the sets {Uj,t : j ∈ C, t ∈ [rj ]}. We

then create the laminar family B = {B′j : j ∈ D′}
of sets. Notice that by Lemma 2.5, we have

Ball(j, dmax(j)/15) = Bj ⊆ B′j ⊆ Ball(j, dmax(j)/10).
Since j is dangerous, y(Ball(j, dmax(j)/45)) ≥ r − 1.

Thus, rj − 1 ≤ y(B′j) ≤ rj . Consider the polytope defined

by the following set of constraints. The set of variables is

{zi : i ∈ F}:

1.
∑

i∈U zi = 1 ∀U ∈ U
2. rj − 1 ≤ ∑

i∈B′
j
zi ≤ rj ∀j ∈ D′

3.
∑

i′∈g−1(i) zi′ ≤ 1 ∀i ∈ F

4.
∑

i∈F zi = k

From the construction of B′j , it is easy to see that either

g−1(i) ⊆ B′j or g−1(i) ∩B′j = ∅ for any i ∈ F and j ∈ D′.
Thus, B ∪ {F} ∪ {

g−1(i) : i ∈ F
}

forms a laminar family.

The constraints of the above polytope is defined by two

laminar families of sets : U and B∪{F}∪{
g−1(i) : i ∈ F

}
.

It is well known that such a polytope defined by two laminar

families is integral (the corresponding matrix is unimodular)

(see e.g., [18]). Also, notice that the zi = yi for every i ∈ F
is a feasible solution. Thus, we can express our vector y
as a convex combination of vertices of the above polytope.

Such a convex combination can be computed in polynomial

time. Treating the coefficients in the convex combination

as probabilities (note that the coefficients sum up to 1), we

sample a random vertex. Due to the last constraint, the vertex

contains exact k open facilities. Let S be the set of k facilities

defined by the vertex. We summarize the useful properties of

our rounding step as follows.

1. The probability that each facility i ∈ F is open is

exactly yi;

2. For any i ∈ F , we open at most one facility inside

g−1(i);

3. We open exactly 1 facility inside each U ∈ U ;

4. For each j ∈ D′, we open either rj − 1 or rj facilities

in B′j . Moreover, we have that

Pr[rj facilities are open in B′j ] = y(B′j)− (rj − 1),

Pr[rj − 1 facilities are open in B′j ] = rj − y(B′j).

2.4 Analysis We now have every piece ready to prove

a constant factor approximation for FTMed. Each of the

following lemmas deals with one type of clients. First, we

consider safe clients.

7 Copyright © 2014.
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LEMMA 2.6. For any client j ∈ C \ D with rj = r, the
expected connection cost of j is at most 93rdav(j).

Proof. Notice that we always open 1 facility inside Uj,t

for every t ∈ [r]. We connect j to the r facilities in⋃
t∈[r] Uj,t. Connecting j to the facility in Uj,t costs at most

2dtmax(j) + dtav(j) in expectation, by Lemma 2.1. Thus, the

expected connection cost of j is at most

r∑
t=1

(
2dtmax(j) + dtav(j)

)

≤ 2

r−1∑
t=1

dt+1
av (j) + 2dmax(j) +

r∑
t=1

dtav(j)

≤ 3rdav(j) + 2dmax(j)

≤ 3rdav(j) + 2× 45drav(j) ≤ 93rdav(j),

where the first inequality used the fact that dtmax(j) ≤
dt+1
av (j) and the third inequality holds because j is a safe

client.

LEMMA 2.7. For any client j ∈ D′ with rj = r, the
expected connection cost of j is at most 46rdav(j).

Proof. Notice that by Lemma 2.1, the distance from j to its

r-th closest open facility is always at most 3dmax(j). We

can bound the expected connection cost of j as follows. If

there are rj open facilities inside B′j , we connect j to the r
open facilities; otherwise (they are r − 1 open facilities), we

connect j to the r − 1 open facilities in B′j and a r-th open

facility outside B′j whose distance to j can be bounded by

3dmax(j). Thus, the expected connection cost of j is at most

∑
i∈B′

j

d(j, i)yi + Pr[rj − 1 facilities are open in B′j ] · 3dmax(j)

≤ rdav(j) + 3(r − y(Bj))dmax(j)

≤ rdav(j) + 3× 15drav(j) ≤ 46rdav(j),

where the second inequality follows from Lemma 2.2.

LEMMA 2.8. For any client j ∈ D \ D′ with rj = r, the
expected connection cost of j is at most 52rdav(j).

Proof. There is a j′ ∈ D′ such that rj = rj′ = r, dav(j
′) ≤

dav(j) and d(j, j′) ≤ 6dav(j). By Lemma 2.7, the expected

connection cost of j′ is at most 46rdav(j
′). By triangle

inequality, the expected connection cost of j is at most

46rdav(j
′)+rd(j, j′) ≤ 46rdav(j)+6rdav(j) = 52rdav(j).

Combining Lemma 2.6, 2.7 and 2.8, the expected con-

nection cost of any client j ∈ C is at most 93rdav(j), leading

to a 93-approximation for FTMed.

3 FTMed on Paths and HSTs
We first consider the case where all the facilities and clients

are on a line.

THEOREM 3.1. For the non-uniform FTMed on a line met-
ric, the problem can be solved exactly in polynomial time.

In fact, all we need is to show the linear program (2.1)

has an integral optimal solution. Unlike in the usual case, we

can not show that the polytope defined by the LP constraints

is integral. In fact, the polytope is the same as that for

the general NP-hard k-median problem, thus not integral.

The integral optimum is due to the specialty of the cost

coefficients, i.e., d(i, j).

LEMMA 3.1. If d(i, j)s are defined by a line metric, the
linear program (2.1) always has an integer optimal solution.

Proof. We show for any fractional optimal solution

(xi,j , yi), we can construct an integral solution with the

same cost. By the splitting trick 3, we can assume that

xi,j = {0, yi}. Each client (fractionally) connects to a con-

secutive segment of facilities. Suppose i is needed by de-

mands set J .

Now we can write another linear program without xi,j

variables as follows. We use i′ for indexing the facilities

after the split and i for original facility. We write i′ ∈ sp(i)
to indicate that the new facility i′ is derived from the original

facility i. Let Fj be the set of facilities serving j (after the

splitting process). The facilities in Fj form a consecutive

segment in the path.

minimize
∑
j

∑
i′∈Fj

d(i′, j)yi′(3.2)

subject to
∑
i′∈Fj

yi′ ≥ r, ∀j ∈ C

∑
i′∈sp(i)

yi′ ≤ 1, ∀i ∈ F

∑
i′∈F

yi′ ≤ k, ∀i ∈ F

It is easy to see that the optimal solution for the new LP

is no more than that for the original LP. The constraint matrix

of the new LP has the consecutive “one”s property: in each

row of the constraint matrix, the “1”s appear in consecutive

positions. Such matrices are known to be totally unimodular

and the corresponding linear program has an integral optimal

3Consider facility i. Let Jl be the set of clients on the left side

of i and Jr the set of clients on the right side. Consider the numbers

{xi,j}j∈J1
∪ {yi − xi,j}j∈J2

. These numbers split the interval [0, yi]
into several pieces, and for each piece, we create a facility with fractional

value equal to the length of that piece.
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solution. (See e.g.,[38]). Furthermore, it is easy to see any

integral feasible solution of (3.2) corresponds to a feasible

solution for FTMed with the same cost. Therefore, the

optimal integral solution of (3.2) has to be the same as that

of (2.1). The above argument also gives us an algorithm to

construct an integral solution of (2.1) of the optimal cost.

Using the same idea, we can get a polynomial time

algorithm on an HST metric where all facilities and clients

are located at leaves. We recall an HST (hierarchically well

separated tree) is a tree where on any root to leaf path, the

edge lengths decrease by some fixed factor in each step.

LEMMA 3.2. The general FTMed problem can be solved
exactly in polynomial time on an HST metric where all
facilities and clients are located at leaves.

Proof. We use LCA(j1, j2) to denote the least common an-

cestor of leaves j1 and j2. Suppose the leaves of the HST are

ordered according the preorder traversal. Consider a client j
and suppose the path from j to the root is {j, p1, p2, . . . , r}.

In a fractional optimal solution (xi,j , yi) of (2.1), client j
chooses to connect all the facilities in the subtree rooted at

p1, then those at p2, and so on. For any leaves j1, j2, j3,

if LCA(j1, j2) = LCA(j1, j3), we can easily see that

dT (j1, j2) = dT (j1, j3). Therefore, we can assume j con-

nects to a consecutive segment of facilities (in the preorder

sequence of the facilities). Using almost the same argument

as in Lemma 3.1, we can show that the LP has an integral

solution with the optimal value.

Note that combining this result with classic tree embed-

ding result [6, 17], we can easily get a simple O(log n)-
approximation for general FTMed on any metric. Since we

have already shown a constant approximation for general

FTMed, we omit the details.

4 Fault Tolerant Facility Location
For FTFL problem with arbitrary weights, we have a set F
of n facilities and a set C of m clients. In the following sec-

tions, the terms “demand” and “client” are used interchange-

ably. For each client j, there is a nonnegative weight vector

wj = {w(1)
j , . . . , w

(rj)
j } for some rj ≤ n. Assume that the

set of open facilities are i1, i2, . . . , ih for some 1 ≤ h ≤ n,

sorted according to the nondecreasing order of their distance

to j. The service cost of client j is
∑rj

t=1 w
(t)
j d(it, j). If

h < rj , the service cost of j is infinity.

We focus on a special case of the above problem where

only one entry of the vector wj is nonzero. For ease of

notation, we use rj to denote the index of the nonzero

coordinate in wj and wj to denote w
(rj)
j , i.e., w

(rj)
j > 0

and w
(t)
j = 0 for any t = rj . Indeed, considering this

special case is without loss of generality since we can create

multiple copies for each demand node j, with the 1st copy

associated with the weight vector {w(1)
j , 0, . . . , 0}, the 2nd

copy {0, w(2)
j , . . . , 0} and so on. It is straightforward to

establish the equivalence and we omit the proof here. From

now on, we use FTFL to denote this special case of the

fault tolerant facility location problem. Our main result is

a constant factor approximation algorithm for FTFL.

First, we note that the most natural linear integer

programming formulation that was used for nonincreasing

weight vectors in previous work does not work any more.

Hence, we use a different linear integer programming

formulation as follows. We use boolean variable yi to denote

whether facility i is open, xij to denote whether demand j is

assigned to facility i. We use π(j, t) to denote the tth facility

closest to j. Let N(j, t) = {π(j, 1), π(j, 2), . . . , π(j, t)}
and cjt = d(j, π(j, t)). Let cj0 = 0 for all j. We use

indicator variable zjt to denote the event whether demand j
is satisfied by N(j, t) (i.e., at least rj facilities among N(j, t)
are opened).

min.
∑
i

fiyi +
∑
j

wj

∑
t≥0

(1− zjt)(cj(t+1) − cjt)(4.3)

s.t.
∑
i

xij ≥ rj , ∀j ∈ C(4.4)

yi ≥ xij , ∀i, j ∈ C(4.5) ∑
i∈N(j,t)

xij ≥ rjzjt ∀j ∈ C, ∀t ∈ [n](4.6)

yi, xij , zjt ∈ {0, 1},∀i ∈ F, j ∈ C, t ∈ [n] ∪ {0}(4.7)

First, we need to explain our objective function since it

is not the most frequently used objective for facility location.

It is easy to see that a feasible solution of FTFL satisfies the

IP formulation. For any optimal solution of the IP, if N(j, t)
satisfies j, N(j, t′) also satisfies j for t′ ≥ t. Therefore,

zjt ≥ zj(t−1) for all t. If t′ is the smallest t such that

zjt = 1, we can see that wj

∑
t≥0(1 − zjt)(cj(t+1) − cjt)

is equal to wjcjt′ , which is exactly the service cost of j. We

set cj(n+1) = ∞. Constraints 4.4 specify that client j must

be connected to rj facilities. Constraints 4.5 ensure that a

client is connected only to open facilities and constraints 4.6

imply that if zjt = 1 then at least rj facilities must be open

in N(j, t). The LP relaxation is obtained by replacing last

constraints by yi, xij , zjt ∈ [0, 1].
However, we can not use the above LP directly to get a

constant factor approximation algorithm since its integrality

gap is large and can be as large as Ω(n). Consider the

following FTFL instance in a line metric. There are n
facilities and only one client. All facilities have cost zero and

the client have demand n (i.e., r1 = n). The x-coordinate of

the client is 0. The x-coordinate of the ith facility is 0 for

all 1 ≤ i ≤ n − 1 and the x-coordinate of the nth facility

9 Copyright © 2014.
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is n. The optimal integral solution opens all facilities and

the service cost is n. A feasible fractional solution opens

all facilities too. However, zjt can take fractional values
1
n

∑
i∈N(j,t) xij = t

n . The fractional service cost of the

client is n−1
n · 0 + . . . + 2

n · 0 + 1
n · n = 1. Therefore,

we obtain an integrality gap of Ω(n).
To strengthen the LP relaxation, we use the following

knapsack cover constraints to replace constraints (4.6):

∑
i∈N(j,t)\A

xij ≥ (rj − |A|)zjt, ∀j ∈ C, t ∈ [n], A ⊆ N(j, t)

(4.8)

The constraints require that if zjt = 1, then for every

subset A, at least rj − |A| facilities from the set N(j, t) \ A
must be chosen to serve j. We can also see that there

is a polynomial time separation oracle for (4.8): Suppose

(xij , zjt) is a solution. For fixed t and j, we can test the

feasibility of (4.8) for all A with |A| = k by checking

whether the sum of the smallest |N(j, t)|−k terms in N(j, t)
is at least (rj−k)zjt. Therefore, the relaxation can be solved

optimally in polynomial time by the ellipsoid algorithm. Let

(x∗, y∗, z∗) be the optimal fractional solution of the linear

program and OPT be the optimal value.

Now, we round the fractional solution (x∗, y∗, z∗) to

an integral solution (x̂, ŷ, ẑ) as follows. Let us consider a

particular demand j. Let α < 1 be a constant fixed later. Let

t∗j be the smallest integer t such that z∗jt ≥ α.

LEMMA 4.1. For every j, it holds that

cjt∗j ≤ 1

1− α

n−1∑
t=0

(1− z∗jt)(cj(t+1) − cjt).

Proof. We can easily see that

1

1− α

n−1∑
t=0

(1− z∗jt)(cj(t+1) − cjt)

≥ 1

1− α

t∗j−1∑
t=0

(1− α)(cj(t+1) − cjt) = cjt∗j .

The first inequality follows because z∗jt ≥ z∗j(t−1) for all t.

This is true because if we set z∗j,t ← max{z∗j,1, ..., z∗j,t}, it

yields a feasible solution of no greater cost.

Now, we create a set of ỹi values that we will round, based

on the y∗i values, as follows.

1. For all facility i with y∗i ≥ α, we round it up to 1, i.e.,

ỹi = 1.

2. For all facility i with y∗i < α, we let ỹi =
1
αy
∗
i .

LEMMA 4.2. For each client j,
∑

i∈N(j,t∗j )
ỹi ≥ rj .

Proof. Consider a particular client j. Let A be the set of

facility i such that x∗ij ≥ α and i ∈ N(j, t∗j ). From (4.8), we

know that∑
i∈N(j,t∗j )\A

y∗i ≥
∑

i∈N(j,t∗j )\A
x∗ij

≥ z∗jt∗j (rj − |A|) ≥ α(rj − |A|).

Therefore, we can see that∑
i∈N(j,t∗j )\A

ỹi ≥
∑

i∈N(j,t∗j )\A

1

α
y∗i ≥ rj − |A|.

For each facility i ∈ A, we have ỹi = 1. Hence,∑
i∈N(j,t∗j )

ỹi ≥ rj , which completes the proof.

Now, we round the ỹ values to integers. Our rounding

scheme is a slight variant of the one in [41]. Let Fj =
N(j, t∗j ). Let r′j be the residual requirement of j, which is

initially set to be rj . We iterate the following steps until no

client remains in the graph.

S1. We pick the client j with the minimum cjt∗j .

S2. Let M ⊆ Fj be the set of the cheapest facilities in Fj

(w.r.t. facility opening costs) such that
∑

i∈M ỹi ≥ r′j .

If
∑

i∈M ỹi is strictly larger than r′j , we replace the last

facility, say facility i, by two “clones” i1 and i2. Set

ỹi1 = r′j −
∑

i∈M\{i} ỹi and ỹi2 = ỹi − ỹi1 . Include i1
in M . Hence,

∑
i=M yi = r′j .

S3. Open the r′j cheapest facilities in M . For each client

k with Fk ∩ M = ∅, we use any min(r′k, r
′
j) of

the facilities we just opened to serve k and let r′k =
r′k −min(r′k, r

′
j). Delete facilities in M and all clients

with zero residual requirement from the input.

LEMMA 4.3. The above rounding scheme returns a feasible
solution. Moreover, the following properties hold.

1. The facility opening cost is at most
∑

i fiỹi.

2. For each client j, at least rj facilities in B(j, 3cjt∗j ) are
open.

Proof. The proof is almost the same as the one in [41].

For completeness, we include it here. Consider a particular

iteration. It is easy to see the invariant
∑

i∈Fj
ỹi ≥ r′j

is maintained throughout the three steps. So it is always

possible to choose the set M . We also need to argue that

no facility is opened twice since we have made some clones.

We argue that whenever a facility i is replaced by two clones,

the first clone never gets opened: This is simply because i is

the most expensive facility in M and there are at least r′j
facilities cheaper than i (otherwise, we do not have to make

clones).

10 Copyright © 2014.
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To bound the facility cost, just notice that the cost of

open facilities in M is less than
∑

i∈M fiỹi. This proves (1).

To bound the connection cost, consider a particular client j.

Any opened facility in Fj is at most cjt∗j distance away from

j. Notice that j may be served by some facilities in Fk for

some other client k. This only happens if Fj ∩ Fk = ∅ and

ckt∗k ≤ cjt∗j (we process client k first). A facility in Fk is at

most 2ckt∗k + cjt∗j ≤ 3cjt∗j away from j.

From Lemma 4.3, we know that the first rj copies of

client j are assigned within a distance of 3cjt∗j . Therefore,

we have that the total cost of this integral solution

SOL ≤ 1

α

∑
i

fiy
∗
i + 3

∑
j

wjcj(t∗j ) ≤
1

α

∑
i

fiy
∗
i

+
3

1− α

∑
j

wj

∑
t

(1− z∗jt)(cj(t+1) − cjt),

where the second inequality holds because of Lemma 4.1.

Setting α = 1
4 gives us an approximation ratio of 4. We

can choose a random α to improve the approximation ratio

as in [39, 20]. Let Lj(α) be cjt for the minimal t such that

zjt > α. It is easy to see the following.

LEMMA 4.4.∫ 1

0

Lj(α)dα =
∑
t

(1− z∗jt)(cj(t+1) − cjt).

Choose a random α uniformly distributed over [h, 1]. Then,

the expected cost is

E[SOL] ≤
∫ 1

h

1

1− h

( 1

α

∑
i

fiy
∗
i + 3

∑
j

wjLj(α)
)
dα

≤ 1

1− h
ln

1

h

∑
i

fiy
∗
i

+
3

1− h

∑
j

wj

∑
t

(1− z∗jt)(cj(t+1) − cjt).

The above expression is minimized at h = e−3, which gives

an approximation ratio 3.16.

THEOREM 4.1. There is a polynomial time approximation
approximation with an approximation factor 3.16 for FTFL.
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