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Abstract

Characterizing the binding behaviors of RNA-binding proteins (RBPs) is important for under-

standing their functional roles in gene expression regulation. However, current high-throughput ex-

perimental methods for identifying RBP targets, such as CLIP-seq and RNAcompete, usually suffer

from the false positive and false negative issues. Here, we develop a deep boosting based machine

learning approach, called DeBooster, to accurately model the binding sequence preferences and iden-

tify the corresponding binding targets of RBPs from CLIP-seq data. Comprehensive validation tests

have shown that DeBooster can outperform other state-of-the-art approaches in predicting RBP tar-

gets and recover false negatives that are common in current CLIP-seq data. In addition, we have

demonstrated several new potential applications of DeBooster in understanding the regulatory func-
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tions of RBPs, including the binding effects of the RNA helicase MOV10 on mRNA degradation, the

influence of different binding behaviors of the ADAR proteins on RNA editing, as well as the antag-

onizing effect of RBP binding on miRNA repression. Moreover, DeBooster may provide an effective

index to investigate the effect of pathogenic mutations in RBP binding sites, especially those related

to splicing events. We expect that DeBooster will be widely applied to analyze large-scale CLIP-seq

experimental data and can provide a practically useful tool for novel biological discoveries in under-

standing the regulatory mechanisms of RBPs.

1 Introduction

RNA binding proteins (RBPs) play important roles in multiple aspects of gene expression regu-

lation, such as alternative splicing, RNA modification, mRNA export and localization [1]. Not only

does the dysregulation of RBPs induce abnormality, but also the mutations in their binding targets

have the potential to cause diseases [2]. So, capturing the intrinsic binding preferences of RBPs and

identifying their binding targets in a precise and large-scale manner are essential to understand the

regulatory roles of RBPs and reveal their connections to the pathogenesis of complex diseases.

Before the development of high-throughput techniques for characterizing RNA-protein interactions,

only a few RBPs were well studied based on the small-scale experiments, such as in vitro EMSA [3] and

in vivo fluorescence methods [4]. Recently, several high-throughput sequencing-based approaches, e.g.,

CLIP-seq [5–7], SELEX [8,9] and RNAcompete [10,11], have been proposed to measure RBP binding

sites and binding affinities in a transcriptome-wide manner. However, despite the huge amount of

data generated by these techniques, they still suffer from the false positive and false negative issues

mainly due to experimental noise and bias [12]. To overcome these drawbacks, various computational

models [13–19] have been developed to learn RBP binding preferences and detect putative RBP targets

based on abundant experimental data. As many RBPs have been validated to recognize structured

regions [20], there is a tendency in recent studies to incorporate the structural features of target RNAs

into prediction models, such as MEMERIS [15], GraphProt [17] and our recent deep learning based

model [19], where the integration of RNA structural information has been shown to largely boost

the prediction performance. Nevertheless, the current transcriptome-wide experimental techniques

for measuring RNA structures are far from maturity. On the other hand, predicting RNA structures
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using computational models usually requires a substantial amount of additional effort and time, and

a predicted RNA structure is generally less accurate compared to that derived from experimental

approaches. In addition, systematic integration of both sequence and structural information generally

requires a more complex prediction model. So far, it remains largely unknown whether we can derive

a sequence based prediction model that only takes RNA seqeuence as input, while still achieving

prediction performance comparable to that of the state-of-the-art prediction methods that require

both sequence and structural profiles. To fill this gap between modeling accuracy and computational

complexity, we develop a deep boosting based model, called DeBooster, that requires only sequence

information and can capture RBP binding preferences and predict binding sites from high-throughput

CLIP-seq data with high accuracy and efficiency.

Through testing on 24 CLIP-seq datasets, we have shown that even without using RNA struc-

tural information, DeBooster can outperform the state-of-the-art methods that take both sequence

and structural information as input, including both GraphProt [17] and our previous deep learning

based model [19]. In addition, we have performed comprehensive tests to validate the superiority

of DeBooster: (i) DeBooster can accurately capture RBP binding preferences and generate RBP

binding motifs that are consistent with previous studies in the literature; (ii) DeBooster can success-

fully carry out the cross-platform prediction task and effectively address the false negative problem

that is prevalent in current CLIP-seq data; (iii) In addition to binary classification, DeBooster can

be easily extended to solve a regression problem such that the prediction scores closely match the

experimentally-measured binding affinities.

In addition to the above extensive validation tests, we have further demonstrated several new pos-

sible applications of DeBooster in studying the regulatory roles of RBPs. With an integrative analysis

based on other types of data and our prediction results, we not only derive literature-consistent results

concerning RBP regulation, but also hope to gain novel insights into the biological rationale of the

regulatory roles of RBPs. In particular, we have conformed that the binding targets of the RNA heli-

case MOV10 predicted by DeBooster are highly associated with the fold changes of mRNA half-lives,

providing another evidence on the regulatory functions of RNA helicases on mRNA half-lives. In

addition, it has been suggested that a fraction of ADAR binding events might be “non-productive”,

i.e., these bindings may not trigger any RNA editing [21]. Consistent with this hypothesis, we have

also observed a clear discrepancy in the predicted ADAR binding patterns between “non-productive”

and “productive” binding behaviors, which may indicate the existence of different ADAR binding
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modes to accomplish its diverse regulatory functions. Moreover, we applied DeBooster to study the

antagonizing effect of RBP binding on miRNA repression. In particular, it has been known that in

the 3′ UTR of the oncogene ERBB2, the RBP ELAVL1 (also called HUR) antagonizes the repression

effect of the miRNA miR-331-3p by binding to a U-rich element (URE) near the miRNA target region

called miR-331b [22]. With a mutant URE, we have observed that the new ELAVL1 binding sites

predicted by DeBooster shift to a position more distant from the miR-331b region, which is largely

consistent with the previous experimental studies. At last, we have used DeBooster to predict the

effects of the single nucleotide variant (SNV) mutations on the RBP binding sites related to splicing

events, which may provide useful hints for identifying pathogenic mutations and investigating their

connections to the pathogenesis of complex diseases. Based on these test results, we expect that De-

Booster will have great application potentials and be widely used by the community to analyze more

CLIP-seq experimental data and discover more biologically relevant findings on the functional roles of

RBPs in post-transcriptional gene regulation.

2 Results

2.1 The DeBooster framework

We have developed a deep boosting based approach, called DeBooster, to predict the sequence

specificities of RNA-binding proteins (RBPs) from high-throughput CLIP-seq data (Fig 1). As RNA

primary sequence can be viewed as a string over the alphabet {A, U, C, G}, we mainly use the

basic bag-of-words model [23] as in the nature language processing field to encode the features of a

given RNA sequence (Fig 1a). In particular, for each word of fixed length k, we count how many

times it appears in the RNA sequence and store its frequency information in a vector of length 4k.

We extract the word frequency information for both an RBP target region and its upstream and

downstream flanking regions of 150 nucleotides each. We consider words of lengths 1, 2, 3, which

results in 2× (4 + 42 + 43) = 168 features in total.

Note that the bag-of-words model mainly focuses on the occurrences of words and reflects little

about the order of the letters in a sequence. In other words, if we swap the first half and the second half

of an RNA sequence, the features provided by the bag-of-words model would roughly remain the same.
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To better incorporate the order of letters into the model, we futher use the following scheme to extract

the ‘second-order’ word count information. For a fixed stride m and a given RNA sequence a1a2 · · · at,

we count the words a1am+1, a2am+2, . . . , at−mat and use a vector to record the corresponding count

information. As before, we also consider both an RBP target region and the flanking regions of 150

nucleotides both upstream and downstream. We consider the stride lengths 4, 5 and 6, which generates

2 × 3 × 42 = 96 more features in total. Moreover, we consider five additional features, such as the

length of the target region, whether the word length is a multiple of 3, whether the target region

contains the stop codons UAG, UAA and UGA. Thus, overall we extract 168 + 96 + 5 = 269 features

for a given RNA sequence.

We then apply a deep boosting based method, to learn a classification model from the above

encoded features (Fig 1b). The deep boosting method [24] is a generalization of several well-established

learning approachs, such as AdaBoost [25] and logistic regression [26]. It uses decision tree models

as base classifiers and partitions the decision trees of different depths into different sets, denoted

by H1, · · · , Hk, respectively, where Hi stands for the set of decision trees of depth k. In our deep

boosting method, we aim to learn a classifier from a family of convex ensembles f = conv(
⋃k

i=1Hi).

That is, f can be written in the form of f(x) =
∑n

t=1 αtht(x), where αt ≥ 0, and ht ∈ Hpt for some

pt ∈ [1, k]. During the training process, the deep boosting method seeks to minimize the following

objective function:

E =
1

m

m∑
i=1

Φ(1− yi
n∑

t=1

αtht(xi)) +

n∑
t=1

(λrt + β)αt,

where (xi, yi) denotes the i-th training sample, m strands for the total number of training samples, Φ

stands for the loss function (e.g., the exponential cost function as in AdaBoost [25] or the logitstic func-

tion [26]), rt stands for the Rademacher complexity of set Hpt , and λ and β are two hyperparameters

to be chosen. The above objective function can be optimized as in other boosting algorithms [25,27].

After training, the learned model can be used to predict the sequence specificities and investigate the

corresponding binding motifs of the RBP targets (Fig 1b, Methods).

2.2 DeBooster captures the sequence preferences of RBP binding

We first ran a 10-fold cross-validation procedure for each of 24 CLIP-seq datasets (Methods) to

evaluate the overall prediction performance of DeBooster. The hyperparameters in the deep boost-

ing framework were determined using an independent dataset (Methods). We also compared the
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performance of DeBooster with the state-of-the-art approaches for predicting RBP target sites, in-

cluding GraphProt [17] and the deep belief net (DBN) method [19]. The comparison results (Figs

1a-1c) showed that DeepBooster can significantly outperform both GraphProt and the DBN method,

with the increase of the area under receiver operator characteristic curve (AUROC) by up to 10.1%.

Note that GraphProt and the DBN method integrate both RNA sequence and structural information

(i.e., RNA secondary structural information [17] or both RNA secondary and tertiary structural pro-

files [19]) into the prediction framework, while DeBooster requires only RNA sequence information.

The performance improvement in DeBooster was probably attributed to our new feature encoding

scheme (see Fig 1a and Section 2.1) and the better predictive power of the underlying deep boosting

model.

Through a transcriptome-wide analysis on RBP binding targets, we also found that the difference

in the predicted binding scores of DeBooster over different characterized genomic regions mostly re-

flected the known functions of individual RBPs (Supplementary Notes). In addition, we examined

the sequence motifs of the RBP binding sites generated from training data (Methods). Our results

indicated that the sequence motifs resulting from DeBooster agreed well with those reported in the

literature (Fig 2d). For example, the binding sequence motif of AGO2 computed by DeBooster was

enriched with A, U and C but depleted of G, which was consistent with the previous study [28].

PTB, as indicated by its name (polypyrimidine tract-binding protein), mainly binds to the U/C-rich

regions [29], which was also reflected in the sequence motif derived from DeBooster. EWSR1, FUS

and TAF15 belong to the FET family. Although several works showed that they bind to the GU-rich

motif [30, 31], recent studies found that the FET protein family prefers binding to the AU-rich stem

loops, and the AU-rich sequences achieve higher binding affinities than those enriched with G and

U [32]. Such an AU-rich pattern was also observed in the sequence motif generated by DeBooster. It

has been found that the binding targets of QKI usually contain a core sequence NACUAAY (where Y

stands for a pyrimidine) and a half-site UAAY [33]. The biniding motif of QKI identified by DeBooster

also agreed well with such a pattern. DeBooster yielded a U-rich sequence motif for the binding sites of

HNRNPC, which can also be supported by a known fact that HNRNPC generally binds to the poly-U

tracts [34]. According to the DeBooster prediction results, SFRS1 prefers binding to a GA-rich motif,

which aligned well with the previous result [35]. As shown in the previous study [7], PUM2 binds to

a consensus motif UGUANAUA, which shared high similarity with the corresponding binding motif

predicted by DeBooster. The majority of the TDP43 binding sites predicted by DeBooster contained
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the (UG)n motif and was relatively less enriched with A and C. Such an observation agreed well with

the previous known result [36]. Taken together, most of the sequence motifs of RBP binding sites

captured by DeBooster were consistent with the previous known results in the literature.

2.3 The predictions of DeBooster can be validated through cross-platform datasets

It is well-known that different CLIP-seq experiments can yeild a large fraction of non-overlapping

results and individual experiments may miss a vast number of true RBP binding sites [37,38]. Here, we

showed that the prediction results of DeBooster can be validated through cross-platform datasets and

thus effectively alleviate the false negative problem in current high-throughput CLIP-seq data (Fig

3). In particular, we tested DeBooster on different cross-platform ELAVL1 datasets, which displayed

a large degree of discrepancy between the original RBP binding targets measured from CLIP-seq

experiments (Fig 3a). Such a large variation indicated that in general a single CLIP-seq experiment

cannot cover all RBP binding sites and individual datasets may have high false negative rates in

current experimental measurement. The tests on the cross-platform ELAVL1 datasets showed that

the predictions of DeBooster from one dataset can be well validated by another one collected from

a different platform, achieving both high AUROC scores and similar sequence motifs (Fig 3b). In

addition, most of the sequence features encoded in DeBooster displayed highly correlated weights

except the outliers G and UNNNNU (Figs 3c-3d), which was probably due to experimental bias

introduced from the original CLIP-seq data. Thses results implied that the predictions of DeBooster

can be well validated through cross-platform CLIP-seq datasets.

We also investigated the agreement of the DeBooster prediction results between different RBPs

from the same family. In particular, we examined the consistency between the DeBooster prediction

scores of 8-mers for TAF15, FUS and EWSR1, all belonging to the FET family. Consistent with the

previous results that these three RBPs have a large overlap in binding sites [32], our tests showed

that the 8-mers from different RBPs exhibited highly correlated prediction scores (Figs 3e-3f). Such

observations further supported the above argument that the prediction results of DeBooster can be

verified from cross-platform CLIP-seq datasets, even for different RBPs from the same family. These

results suggested that DeBooster was not prone to overfitting, and may provide a practically useful

tool to analyze high-throughput CLIP-seq data and recover false negatives that are common in current

CLIP-seq data.
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2.4 The binding scores predicted by DeBooster match the experimentally mea-

sured binding affinity data

To investigate whether the prediction results of DeBooster can truely reflect the RBP binding

preferences, we further checked the agreement between the binding scores predicted by DeBooster

and the experimentally determined binding affinity data. In particular, we compared the predicted

binding scores with both in vivo determined Kd values [39,40] and in vitro measured binding affinities

from RNAcompete assays [10,11].

We first checked the agreement between the prediction scores of DeBooster, which was trained

using the in vivo CLIP-seq data, and the experimentally determined Kd values for two RBPs, including

SFRS1 and TDP43 (Figs 4a-4b). Our comparison showed that for the 8-mers as the potential RNA

targets of SFRS1, the prediction scores of DeBooster closely matched the in vivo measured Kd values

[39] (Fig 4a). In addition, for the RNA nucleotides as the potential binding targets of TDP43, the

prediction scores of DeBooster aligned well with the Kd values experimentally measured from the

electrophoretic mobility shift assay (EMSA) [40] (Fig 4b).

Next, we examined the prediction performance of DeBooster on the in vitro binding data derived

from the RNAcompete experiments [10,11]. The original version of DeBooster took binary (i.e., pos-

itive or negative) samples as input. To enable the model to consider the real-valued RNAcompete

data, we also made a simple extention and proposed a “regression” version of DeBooster (Methods).

A cross-validation test (Methods) showed that the prediction scores of DeBooster and the in vitro

binding scores from the RNAcompete assays [10, 11] for the synthesized oligonucleotides displayed

high correlations. In particular, the comparisons to the earlier version of the RNAcompete data [10]

for the synthesized 7-mers of nine RBPs exhibited high consistency, in which most of Pearson cor-

relation efficients were above 0.7 (Fig 4c). In addition, the comparisons to the latest version of the

RNAcompete data [11] for three RBPs, including FUS, QKI and HNRNPC, showed good agreement

between the prediction scores and the in vitro binding affinity scores, with Pearson correlation co-

efficients above 0.65 (Figs 4d-4f). Overall, these comparison results implied that the binding scores

predicted by DeBooster may be regarded as a useful indicator of RBP binding affinities for both in

vivo and in vitro scenarios.
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2.5 The predicted targets of RNA helicases may be associated with the regulation

of mRNA degradation

RNA helicases, such as MOV10, regulate the life cycle of mRNAs and thus gene expression by

remodeling RNA secondary structures and RNA-protein interactions [41]. Here, we showed that the

RNA targets of MOV10 predicted by DeBooster can be connected to the regulation of mRNA half-lives

and thus may provide useful hints for understanding the funcitonal roles of MOV10 in controlling gene

expression. Our analysis was performed on a set of 7000 mRNAs, in which the fold changes of their

half-lives had been measured after MOV10 knockdown [42]. These mRNAs were basically divided

into four groups according to the fold changes of their half-lives, i.e., top 25%, 25%-50%, 50%-75%

and bottom 25%, which corresponded to Group 1, Group 2, Group 3 and Group 4, respectively. Only

the bottom group (i.e., Group 4) contained those genes whose expression levels were unchanged or

up-regulated after MOV10 knockdown.

Compared to the results derived directly from the original CLIP-seq data (Fig 5a), the fraction of

UTRs with MOV10 binding resulting from DeBooster prediction displayed a more evident decreasing

trend (Fig 5b). In addition, the sum of all positive prediction scores per UTR, which basically con-

sidered both binding strength and the number of hits for the MOV10 binding targets on individual

genes, also exhibited the same decreasing order for four groups of genes that were divided and ranked

according to the fold changes of mRNA half-lives (Fig 5c). Moreover, when we grouped all transcripts

according to the DeBooster prediction scores, the resulting fold changes of mRNA half-lives also pre-

sented a similar decreasing trend (Fig 5d). Furthermore, the DeBooster predition scores for seven

genes also showed good agreement with the fold changes of mRNA half-lives experimentally measured

by qRT-PCR (Fig 5e). Taken together, the above results demonstrated that the binding targets of the

RNA helicase MOV10 predicted by DeBooster were associated with the changes of mRNA half-lives.

Thus, the prediction results from DeBooster may provide useful clues for further understanding the

regulatory machanisms of RNA helicases on the life cycle of mRNAs.

2.6 Applying DeBooster to study the difference between productive and non-

productive ADAR binding patterns

ADARs are a family of homologous enzymes catalyzing adenosine-to-inosine (A-to-I) editing in the

RNA, and have similar double-stranded RNA binding domains (dsRBDs) and a common deaminase
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domain [43]. Despite their major role as RNA-editing enzymes, a fraction of ADAR binding events

might be “non-productive”, that is, these bindings might not trigger any RNA editing [21]. On the

contary, those ADAR binding events that indeed produce RNA editing were considered “productive”.

To investigate the difference of the binding behaviors between productive and non-productive ADAR

binding targets, we compared the prediction results from three DeBooster models, which were trained

using all, productive and non-productive ADAR binding sites, respectively.

We first introduced the concept of the binding-editing distance, which was defined as the genomic

distance between an ADAR binding position and its closest editing site. The known RNA editing

sites were obtained from the RADAR database [44]. Our first model, also called the all-binding

model, was trained using all ADAR1 binding sites measured from CLIP-seq experiments [45] as the

postive samples. The negative samples were defined as those unbound regions that were adjacent to

the positive samples in transcripts and had the lengths equal to those of the corresponding positve

samples. In our second model, also called the productive binding model, the CLIP-seq sites (i.e.,

the ADAR1 binding sites measured from CLIP-seq experiments) with small binding-editing distances

(0−100 nt) were used as the positive samples, while the CLIP-seq sites with large binding-editing

distances (>1000 nt) together with the adjacent unbound regions were used as the negative samples.

In our third model, also called the non-productive binding model, the CLIP-seq sites with large

binding-editing distances (>1000 nt) were used as the positive samples, while the CLIP-seq sites with

small binding-editing distances (0−100 nt) together with the adjacent unbounded regions were used

as the negative samples. The median of the binding-editing distances resulting from the all-binding

model was 814 nt (Fig 6a), which was roughly on the same scale as from the original CLIP-seq data

(606 nt). The median of the binding-editing distances from the productive binding model was zero

(i.e., the ADAR binding region contained at least one editing site), which was significantly different

from that of the non-productive binding model (4665 nt, Fig 6a). The above results implied that

indeed DeBooster may be able to distinguish productive and non-productive ADAR binding sites

based on current high-throughput CLIP-seq data.

We also examined the sequence motifs of the ADAR binding sites identified by three different

DeBooster models (Fig 6b). Although all three sequence motifs showed high GC content, the motif

generated by the productive-binding model had relatively higher frequencies of As and Us than those

from the other two models. This observation indicated that those ADAR binding sites with relatively

lower GC content might be more prone to being edited. This result was also in agreement with the
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known evidence that the published motif of the ADAR binding sites [45] contained relatively higher

GC content than that of the genomic regions near the editing sites [46].

As in previous studies [21], our results showed that some ADAR binding sites were close to the

editing sites, while many others were thousands of nucleotides away from the editing sites. Although

it was possible that this phenomenon was attributed to the lack of the complete editing records in

the database, the clear discrepancy of the binding-editing distances and the sequence motifs of the

ADAR binding sites between productive and non-productive models derived from DeBooster indicated

that there may exist different binding modes to accomplish diverse regulatory effects of ADAR binding.

2.7 The shift of the predicted RBP binding scores from mutations may predict

the antagonizing effect of RBP binding on miRNA repression

RBPs and miRNAs are two classes of essential regulators controlling mRNA degradation and

expression, and they often interplay with each other to display co-regulatory effects [47]. For example,

in the 3′ UTR of an oncogene ERBB2, the RBP ELAVL1 (also called HUR) antagonizes the repression

effect of the miRNA miR-331-3p by binding to a U-rich element (URE) near the miRNA target region

called miR-331b [22]. With a mutant URE, the repression effect of ELAVL1 binding on miR-331-

3p is weakened, since the new ELAVL1 binding sites shift to a position that is more distant from

the miR-331b region (Fig 7a), and also reduces the binding affinity of ELAVL1 (the magnitude of

the experimentally measured Kd values change from 10−8 M to 10−7 M) [22]. Here, we showed

that DeBooster can successfully identify this mutational effect that was consistent with the previous

experimental observation.

We used the CLIP-seq dataset of ELAVL1 measured from the Hela cells [48] as training data (those

overlapping records about the measured binding sites in the 3′ UTR of gene ERBB2 were removed) and

performed a comparative study on the predicted binding scores of four cases, i.e., WT-URE/WT-331b,

MT-URE/WT-331b, WT-URE/MT-331b and MT-URE/MT-331b, which represented the wild-type

sequence, a URE mutant with the wild-type miR-331b region, the wild-type URE with a miR-331b

mutant, and a sequence with mutations in both URE and miR-331b regions, respectively (Fig 7b).

All the binding scores predicted by DeBooster showed obvious peaks near the URE, indicating the

high-affinity binding of ELAVL1 in this region. More importantly, the prediction results of DeBooster

displayed a clear position-shifted and affinity-decreased pattern of ELAVL1 binding on a URE mutant
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(Fig 7b). The curves of the predicted binding scores for WT-URE/WT-331b (i.e., wild-type) and WT-

URE/MT-331b (i.e., only mutations in the miR-331b region) had similar shapes, which was consistent

with the previous experimental result that the mutations in the miR-331b region rarely affect ELAVL1

binding [22]. In addition, the peaks of these two curves were approximately located in positions 50-90

along the 3′ UTR of ERBB2, while the peaks of the other two curves with mutations in the URE

region (i.e., MT-URE/WT-331b and MT-URE/MT-331b) were located around positions 45-60. Such

a position shift of the ELAVL1 binding sites identified by DeBooster in fact agreed with the previous

experimental RNA footprinting results (see Fig 7b in [22]). Morever, the decrease of the binding scores

predicted by DeBooster was also consistent with the loss of the experimentally-determined Kd values

with respect to the same mutations [22]. Taken together, these results indicated that DeBooster can

successfully identify the changes of the RBP binding scores caused by the mutations in binding targets

which may be used to predict the antagonizing effect of RBP binding on miRNA repression.

2.8 The prediction scores of DeBooster may provide a useful index to study

pathogenic mutations affecting RNA splicing

Recent studies revealed that abnormal splicing play a vital role in development of many human

diseases, such as cancer and neurological disorders [49–51]. The mutations near splice sites or on

splicing regulatory elements, such as exonic splicing enhancers (ESEs) and exonic splicing silencers

(ESSs), may influence RNA splicing and cause human diseases by disrupting RBP binding [2]. Here,

we were particularly interested in whether DeBooster can identify pathogenic mutations and thus be

used as a useful tool to study the mutational effects of sequence variants related to splicing events.

We first examined the overall changes of the predicted binding scores of individual RBPs with respect

to the sequence variants of their binding targets near 5′ and 3′ splice sites (Methods) and checked

whether DeBooster was able to distinguish pathogenic mutations from neutral sequence variants. Our

comparisons showed that the changes of the binding scores predicted by DeBooster for a majority of

pathogenic sequence variants in regions near 5′ and 3′ splice sites were significantly different from those

of neutral mutations (Fig 8). In addition, almost all of these pathogenic mutations displayed relatively

larger changes in the predicted binding scores than neutral variants. On the other hand, most of the

neutral mutations near 5′ and 3′ splice sites displayed similar effects (with only 4 among 20 RBPs

showing significant difference with p<0.001 in the Student’s t test). Furthermore, the pathogenic mu-
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tations near splice sites generally showed a greater extent of difference in the predicted binding scores

than those pathogenic mutations randomly chosen from the COSMIC records [52] (Supplementary

Fig 2). For instance, among 20 RBPs, 15 and 18 proteins exhibited significantly different mutational

effects on the pathogenic variants near 5′ and 3′ splice sites, respectively, compared to only 7 RBPs

in those pathogenic mutations randomly selected from COSMIC (Fig 8 and Supplementary Fig 1).

Such an observation implied that the seqeuence disruptions of the RBP binding targets around splice

sites may generally play a more important role in the pathogenisis of a disease. Overall, our stud-

ies indicated that the binding scores derived from DeBooster may provide an effective indicator for

distinguishing pathogenic mutations from neutral variants in RBP binding targets near splice sites.

Next, we further analyzed the mutational effects predicted by DeBooster for a number of known

pathogenic single-nucleotide variants (SNVs) obtained from COSMIC [52]. Below we describe several

examples (Fig 9). First, a synonymous substitution of the last base in Exon 7 (G to A) of gene CDH1

(which encodes the E-cadherin protein) led to an increase in the SFRS1 binding scores predicted by

DeBooster near a 5 splice site (Fig 9a), which may be related to the dysregulation of CDH1 that

causes tumor metastasis [53]. Such an observation may also be supported by a previous experimental

validation study that this mutation can actually alter splicing by causing intron retention to various

extents [54].

As a second example, a mutation from G to A in a TCF7L2 exon [55] disrupted the ESE motifs

(which are 6 nt motifs located in exons and bound by SR proteins to promote exon splicing [56]) and

suppressed SFRS1 binding (Fig 9b), while a mutation from U to A in a THRAP3 exon [55] enriched

the ESE motifs and thus enhanced SFRS1 binding (Fig 9c). Such disruptions in those disease-relevant

genes may influence the binding behaviors of the important splicing regulator SFRS1, and thus may

be related to the tumorgenesis associated with aberrant splicing [39].

In our third example, the mutation from U to C near a 3 splice site of gene TRRAP [55] weakened

TIA1 binding (Fig 9d). TRRAP interacts with oncoproteins MYC and E2A [57], and its mis-regulation

can be heavily related to various types of cancers [58]. On the other hand, another mutation from C to

U near a 3 splice site of gene KTN1 [55] strengthened TIA1 binding (Fig 9e). KTN1 encodes kinectin

1, and has been shown to display different splicing patterns in cancers [59]. Thus, these two sequence

variants in the binding sites of TIA1 may be associated with cancer pathogenesis by changing the

alternative splicing modes of its target genes.

Another interesting example is the intronic mutation near a 5 splice site of gene ATM [55], which
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increased the binding scores of both FUS and QKI (Fig 9f). Such a mutation may influence the

splicing result of this tumor suppressor (i.e., ATM) [60] by creating new potential binding sites for

both splicing regulators (i.e., FUS and QKI).

In addition to the above cases, there were other examples to demonstrate that the prediction

scores of DeBooster may reflect the pathogenic effects of sequence disruptions in RBP binding. For

instance, a substitution from C to U near a 5 splice site of gene NF1 [55] enhanced HNRNPC binding

(Supplementary Fig 3a), which may be associated with the known related neurologic disorders [61].

On the other hand, a mutation from U to C near a splice site of the proto-oncogene BRAF [55]

decreased the HNRNPC binding score (Supplementary Fig 3b). In addition, a mutation from A to

G [55] near a splice site of gene TET2 may help form a novel GU-repeat region for strong TDP43

binding (Supplementary Fig 3c), and thus influence the splicing process. Moreover, the SMAD4

splicing site may be disrupted by the mutation from G to U [55] that may increase the PTB binding

score (Supplementary Fig 3d) and thus alter the corresponding splicing result. Both TET2 and the

SMAD4 genes act as tumor suppressors [62, 63], so the inhibition of their normal splicing may thus

facilitate cancer formation.

Taken together, the above examples illustrated that the RBP binding scores predicted by De-

Booster may offer a useful index to investigate the pathogenic effects of sequence disruptions related

to RNA splicing.

3 Conclusion

We developed DeBooster, a deep boosting based framework to model the sequence binding speci-

ficities of RNA-binding proteins (RBPs) from high-throughput CLIP-seq data. Compared to the

state-of-the-art methods which usually require both sequence and structure profiles, DeBooster uses

only sequence information as input. Tests on 24 CLIP-seq datasets demonstrated that DeBooster can

achieve better prediction performance than previous methods. Through a validation test on several

cross-platform CLIP-seq datasets of ELAVL1, we showed that DeBooster can be useful for addressing

the false negative problem that is prevalent in current CLIP-seq data. In addition, the prediction

scores of DeBooster agreed with the experimentally-determined binding affinity scores, such as in vivo

measured Kd values and the in vitro binding affinities measured from RNAcompete.
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We further showed the great application potentials of DeBooster by applying it to study the regula-

tory roles of several important RBPs. In particular, we demonstrated that the predicted targets of the

RNA helicase MOV10 can better explain its binding effects on the regulation of mRNA degredation

than the original CLIP-seq data. In addition, the predicted RBP binding sites may help understand

the difference between productive and non-productive binding patterns of the RNA-editing enzymes

ADAR. We also showed that a shift of the predicted ELAVL1 binding scores from wild-type to mutant

in a U-rich element (URE) region of gene ERBB2 can effectively predict the antagonizing effect of

RBP binding on miRNA regulation. Moreover, DeBooster may be used as an effective index to identify

pathogenic mutations from normal sequence variants and study the effects of potential disease-causing

mutations in RBP binding sites related to splicing. Based on these test results and analyses, we expect

that DeBooster will provide a promising tool to analyze more large-scale CLIP-seq data and gain more

biological insights related to RBP regulation.

4 Methods

4.1 Datasets

We used 24 sets of CLIP-seq based data about RBP binding sites to train and validate our predic-

tion model. These datasets were preprocessed in [17] to generate both positive and negative samples.

The list of all RBP names in these 24 CLIP-seq datasets can also be found in Fig 2a. Among

these datasets, AGO1-3 and IGF2BP1-3 contained the binding targets of several RBPs from the

same protein family, while ELAVL1 HITS-CLIP, ELAVL1 PAR-CLIP(A), ELAVL1 PAR-CLIP(B)

and ELAVL1 PAR-CLIP(C) included the binding sites of RBP ELAVL1 measured from different

experimental platforms.

4.2 Determination of hyperparameters

We use an independent validation dataset of RBP C22ORF28 to determine the optimal setting

of the hyperparameters of DeBooster, including the type of the loss function (denoted by Φ), the

number of the base decision tree classifiers (denoted by n), the maximun depth of these decision trees

(denoted by k), and parameters λ, β controlling the relative importance of the complexity penalty.
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This process yields the following optimal setting of the hyperparameters: the exponential function as

the loss function Φ, n = 200, k = 5, λ = 0.3 and β = 0.

4.3 Motif generation

We use the following procedure to generate representive motifs of the RBP binding sites predicted

by DeBooster. First, we use the set of the weighted decision trees resulted from the deep boosting

algorithm to evaluate the relative importance of each encoded feature. In particular, for each decision

tree with weight ω in the model, we identify the feature ψ and the corresponding threshold τ used

to split the root node for this feature. Suppose that at the root node a fraction p1 of all examples

in the training set are postive, and at the right child of the root node (in which the value of feature

ψ is larger than τ), a proportion p2 of all examples in the training set are positive. We then use

(p1 − p2)ω to represent the importance of feature ψ. By doing so, we score each feature based on its

contribution to RBP binding. A higher absolute value of a positive score means higher contribution

to RBP binding, while a higher absolute value of a negative score means less contribution to RBP

binding. We use a vector s to store the importance scores of all encoded features. Next, we go through

all 8-mers and extract the feature vector vi for each of them. We then rank these 8-mers according to

the inner product of vi and s, and we select the top 500 8-mers with the highest ranking scores. As

the top 8-mers may come from shifts around the best one, we align all 8-mers with respect to the top

one such that the largest number of base matchings is achieved. After that, we generate the binding

motif based on this alignment step and visualize it using the WebLogo site [64].

4.4 An extension of DeBooster to real-value labeled data

Although the original version of DeBooster is designed to take only binary (i.e., positive or negative)

labeled examples in training data, its output value is nevertheless real-valued, which offers us the

possibility to adapt it to handle a regression problem.

To be specific, suppose the training set S for the regression task is {(x1, y1), . . . , (xn, yn)}, where

each target value (i.e., the label) yi is real-valued. We now construct a new training set S̃ as follows:

for each (xi, yi) ∈ S, we add an example (xi, ỹi) into S̃, where ỹi takes value 1 with probability pi, −1

with probability 1− pi and pi = exp(2yi)/(1 + exp(2yi)).

In this way, the new training set S̃ only consists of examples with binary labels (i.e., either 1 or
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−1), and thus is suitable for classification. In addition, we assert that the ground truth value yi should

minimize the loss in expectation. Therefore, ideally the output value predicted by the model for xi

after training using dataset S̃ should be equal to yi.

To see that, recall that our model uses the exponential function as the loss function Φ. Hence, if

the original deep boosting model outputs ti for the ith example, the expected loss is given by:

E[loss(ti, ỹi)] = E[Φ(1− ỹiti)]

= pi · Φ(1− ti) + (1− pi) · Φ(1 + ti)

= pi · exp(1− ti) + (1− pi) · exp(1 + ti)

We seek a variable ti that minimizes the above expected loss by setting the derivative to 0, i.e.,

∂E[loss(ti, ỹi)]

∂ti
= −pi · exp(1− ti) + (1− pi) · exp(1 + ti) = 0

Plugging in pi = exp(2yi)/(1+exp(2yi)), we can see that ti = yi satisfies the above equation, which

means that ti = yi minimizes the expected loss. Therefore, in an ideal case the model will output yi

on an input xi after training based on S̃.

We also consider several practical issues for the above regression version of DeBooster. First, in

order to handle different training sets whose distributions of the target values y’s may be largely

different, we first preprocess the y’s and transform them into a Gaussian distribution. To do so, all

y’s are sorted and the ith y is then transformed into (2∗ i−1)/(2n), where n is the number of training

examples. In this way, these transformed y’s will have a uniform distribution in [0, 1]. Hence it can

be further transformed into a Gaussian distribution in a standard way.

Besides, as the output range of the deep boosting model is only within [−1, 1], it would only

make sense to guarantee the transformed y’s to mainly fall in this range. Therefore, we choose to

transform the y into a Gaussian distribution with zero mean and standard deviation of 0.4. Notice

that 1/0.4 = 2.5, which means that we treat those target values y’s that are outside 2.5 standard

deviations as outliers and force them into [−1, 1] by assigning them with value 1 or −1.

To evaluate the performance of the regression, we first split the dataset into 70% for training and

30% for testing. A transformation function f is first learned from the training set, and then used to

predict the value t for each example in the test set. After that, the Pearson coefficient between t’s

and and f(y)’s is used to evaluate the regression performance.
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4.5 Predicting ELAVL1 binding scores along the 3′ UTR of gene ERBB2

Both wild-type and mutant 3′ UTR sequences were obtained from [22] (Supplementary Notes).

The lengths of these sequences are all 119 nt. For each sequence, we took a window of length 41 nt

(the average length of the ELAVL1 target regions over training samples) and slided this window along

the 3′ UTR of mRNA ERBB2 with a stride length of 1 nt. For each sliding window, we assigned the

resulting prediction score to the central nucleotide of this window. Overall, we obtained the prediction

scores along positions 21-99 for each sequence (Fig 7), and the first and last 20 nucleotides were not

included in our analysis.

4.6 Studying the effects of mutations in RBP binding targets

The mutation data related to splicing events were derived from COSMIC [52]. Sequences with

mutation sites in the middle and lengths equal to those of the corresponding RBP binding targets

were prepared as input samples to DeBooster. For both pathogenic or neutral mutations near 5′ or

3′ splice sites, we selected those single-nucleotide variant (SNV) mutations within 10 nt from splice

sites. The lengths of RBP binding targets are usually larger than 20 nt, so generally splice sites were

covered by samples centered at mutation positions. In total, we collected 7,000 neutral mutations in

both regions near 5′ and 3′ splice sites, and 4,000 and 20,000 mutations in regions near 5′ and 3′ splice

sites, respectively. In Fig 8, the change of the prediction score resulting from a mutation was calculated

as “(prediction score for the mutant sequence)−(prediction score for the wild-type sequence)”.

In Fig 9 and Supplementary Fig 3, the prediction scores for regions around the mutation sites

along both wild-type and mutant sequences were shown. For each selected mutation, we showed the

prediction scores for 41 positions, including the mutation site and the flanking regions of 20 nucleotides

both upstream and downstream. For each site, its prediction score was calculated using the window

centered at this position and of length equal to the average length of the corresponding RBP targets

in the training data.
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[47] Silvia Anna Ciafrè and Silvia Galardi. microRNAs and RNA-binding proteins: a complex network

of interactions and reciprocal regulations in cancer. RNA biology, 10(6):934–942, 2013.

[48] Svetlana Lebedeva, Marvin Jens, Kathrin Theil, Björn Schwanhäusser, Matthias Selbach, Markus

Landthaler, and Nikolaus Rajewsky. Transcriptome-wide analysis of regulatory interactions of

the RNA-binding protein HuR. Molecular cell, 43(3):340–352, 2011.

[49] Sebastian Oltean and D O Bates. Hallmarks of alternative splicing in cancer. Oncogene,

33(46):5311–5318, 2014.

24

.CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/086421doi: bioRxiv preprint first posted online Nov. 8, 2016; 

http://dx.doi.org/10.1101/086421
http://creativecommons.org/licenses/by-nc-nd/4.0/


[50] Maria J Pajares, Teresa Ezponda, Raul Catena, Alfonso Calvo, Ruben Pio, and Luis M

Montuenga. Alternative splicing: an emerging topic in molecular and clinical oncology. Lancet

Oncology, 8(4):349–357, 2007.

[51] B Kate Dredge, Alexandros D Polydorides, and Robert B Darnell. The splice of life: Alternative

splicing and neurological disease. Nature Reviews Neuroscience, 2(1):43–50, 2001.

[52] Simon Forbes, David Beare, Prasad Gunasekaran, Kenric Leung, Nidhi Bindal, Harry Boutselakis,

Minjie Ding, Sally Bamford, Charlotte Cole, Sari Ward, et al. COSMIC: exploring the world’s

knowledge of somatic mutations in human cancer. Nucleic Acids Research, 43, 2015.

[53] Tamer T Onder, Piyush B Gupta, Sendurai A Mani, Jing Yang, Eric S Lander, and Robert A

Weinberg. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional path-

ways. Cancer research, 68(10):3645–3654, 2008.

[54] Tatsuya Oda, Yae Kanai, Tsukasa Oyama, Kenta Yoshiura, Yutaka Shimoyama, Walter Birch-

meier, Takashi Sugimura, and Setsuo Hirohashi. E-cadherin gene mutations in human gastric

carcinoma cell lines. Proceedings of the National Academy of Sciences, 91(5):1858–1862, 1994.

[55] John N Weinstein, Eric A Collisson, Gordon B Mills, Kenna R Mills Shaw, Brad Ozenberger, Kyle

Ellrott, Ilya Shmulevich, C Sander, and Joshua M Stuart. The cancer genome atlas pan-cancer

analysis project. Nature Genetics, 45(10):1113, 2013.

[56] Jun Zhu and Adrian R Krainer. Exon identity established through differential antagonism between

exonic splicing silencer-bound hnRNP A1 and enhancer-bound SR proteins. Molecular Cell,

8(6):1351–1361, 2001.

[57] Steven B Mcmahon, Heather A Van Buskirk, Kerri A Dugan, Terry D Copeland, and Michael D

Cole. The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F

oncoproteins. Cell, 94(3):363–374, 1998.

[58] Rabih Murr, Thomas Vaissiere, Carla Sawan, Vivek Shukla, and Zdenko Herceg. Orchestration

of chromatin-based processes: mind the TRRAP. Oncogene, 26(37):5358–5372, 2007.

[59] Hongcheng Wang, Yanrong Su, Kejun Han, Xuewen Pang, Jirun Peng, Bin Liang, S G Wang,

and Weifeng Chen. Multiple variants and a differential splicing pattern of kinectin in human

hepatocellular carcinoma. Biochemistry and Cell Biology, 82(2):321–327, 2004.

25

.CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/086421doi: bioRxiv preprint first posted online Nov. 8, 2016; 

http://dx.doi.org/10.1101/086421
http://creativecommons.org/licenses/by-nc-nd/4.0/


[60] Susan E Morgan and M B Kastan. p53 and ATM: cell cycle, cell death, and cancer. Advances in

Cancer Research, 71:1–25, 1997.

[61] David H Viskochil. Review article : Genetics of neurofibromatosis 1 and the NF1 gene. Journal

of Child Neurology, 17(8):562–570, 2002.

[62] Francois Delhommeau, Sabrina Dupont, Chloe James, Aline Masse, Jean Pierre le Couedic,

Veronique Della Valle, Antonio Alberdi, Philippe Dessen, Michaela Fontenay, Nicole Casadevall,

Jean Soulier, Bernard, Olivier, and William Vainchenker. TET2 is a novel tumor suppressor gene

inactivated in myeloproliferative neoplasms: identification of a pre-JAK2 V617F event. Blood,

112(11), 2008.

[63] Irmgard Schwartewaldhoff, Olga V Volpert, Noel Bouck, Bence Sipos, Stephan A Hahn, Su-

sanne Kleinscory, J Luttges, Gunter Kloppel, Ulrich Graeven, Christina Eilertmicus, et al.

Smad4/DPC4-mediated tumor suppression through suppression of angiogenesis. Proceedings of

the National Academy of Sciences of the United States of America, 97(17):9624, 2000.

[64] Gavin E Crooks, Gary C Hon, Johnmarc Chandonia, and Steven E Brenner. Weblogo: A sequence

logo generator. Genome Research, 14, 2004.

[65] Rufang Yeh, Phillip A Sharp, and Christopher B Burge. Predictive identification of exonic splicing

enhancers in human genes. Science, 297(5583):1007–1013, 2002.

26

.CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/086421doi: bioRxiv preprint first posted online Nov. 8, 2016; 

http://dx.doi.org/10.1101/086421
http://creativecommons.org/licenses/by-nc-nd/4.0/


Input

Sequence

Word

Frequency

Word

Order

Total

Additional

Features

cgacga...gcgacgUUUCUCGUGUCGgauccg...aucgu

A C G U

A
A
A

a  c  g  u

A
A
C

U
U
G

U
U
U

A
A

A
C

U
G

U
U... ...

......

C
G

A
G

A

aa
a

aa
c

uu
g

uu
u

aa ac ug uu

... ...

......

cg
a

ga

A
(N

) k
A

A
(N

) k
C

U
(N

) k
G

U
(N

) k
U......

C
(N

) k
A

a(
n) k

a
a(

n) k
c

u(
n) k

g
u(

n) k
u......

c(
n) k

a

{
{

k = 3, 4, 5

Length of binding sites, stop codons ...

4×2

16×2

64×2

16×2×3

5

269

Input

Sequence

Feature

Encoding

Training

a b

AUU

UUU
C

GG

AUG

AA

ANNNNU

CCA

UNNNNNU

GUG

CGA

0 3 3 5

... ...

5 7 8 3

0 0 0 1 21 0 0 1 0 5 0 0 0

0 100000 01 0000 0

............

............

......

......

1 0 2 0 4 3 1 1 2 3 4 5 6 7

12 0 0 01

30 3 5 1 2 3 4 5 6 1 00 0

Motif GenerationTranscriptome-Wide

Prediction

Feature Scores Motif

......30 3 5 1 2 3 4 5 6 1 00 0

C
A
U
C
A
U
C
A
U
C
A
U
C
A
U
C
A
U
C
A
U
G

C
A
U

150 nt RBP target sites 150 nt cgacga...gcgacgUUUCUCGUGUCGgauccg...aucgu

Figure 1 Schematic overview of DeBooster, a deep boosting approach for identifying the sequence

specificities of RNA-binding proteins (RBPs). (a) Schematic illustration of the strategy for encoding

the sequence features of RBP binding targets. The nucleotides in the target region of an input sequence

are represented by capitalized letters while the extended regions on both sides are represented by

lowercase letters. Each number within a box stands for the value of the corresponding feature. The

numbers on the right side represent the total number of feaures in individual catagories. (b) Schematic

illustration of the prediction pipeline. More details can be found in the main text.
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Figure 2 Performance evaluation of DeBooster on 24 CLIP-seq datasets. (a) The comparisons of

the area under receiver operator characteristic curve (AUROC) scores between different prediction

approaches via a 10-fold cross-validation procedure. The best prediction result for each dataset is

highlighted in bold. (b) and (c) The receiver operator characteristic (ROC) and precision-recall (PR)

curves achieved by DeBooster for all 24 CLIP-seq datasets in the cross-validation results, respectively.

(d) Examples of the sequence motifs of the RBP binding targets predicted by DeBooster.

28

.CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/086421doi: bioRxiv preprint first posted online Nov. 8, 2016; 

http://dx.doi.org/10.1101/086421
http://creativecommons.org/licenses/by-nc-nd/4.0/


Training\Test

Dataset 
 ELAVL1 ELAVL1(A) ELAVL1(B) ELAVL1(C) Motif 

ELAVL1 0.972 0.975 0.955 0.943  

ELAVL1(A) 0.972 0.972 0.950 0.940  

ELAVL1(B) 0.941 0.944 0.976 0.937  

ELAVL1(C) 0.967 0.983 0.929 0.995  

C
A
U
C
A
U
C
A
U
C
A
U
C
A
U
C
A
U
C
A
U
G

C
A
U

G
C
A
U
C
A
G
U
C
A
G
U
A
G
C
U
G
C
A
U
G

C
A
U
G
C
A
U
C
A
U
G

A
C
U
A
C
U
C
A
U
C
A
U

C
A
U

C
A
U
C
A
U
C
A
U

C
A
U
C
A
U
C
A
U
C
A
U
C
A
U
C
A
U
A
C
U
C
A
U

a

b

c d

f

ELAVL1 feature score

E
L

A
V

L
1

(B
) 

fe
a

tu
re

 s
c
o

re UNNNNU

UUU
AG
UU

GA GC

GU

G

ELAVL1 feature score

E
L

A
V

L
1

(A
) 

fe
a

tu
re

 s
c
o

re

UU

UG

AG
G

GG

GU
GC

GA

e

2

1

0

-1

-2

-3

-4
210-1-2-3-4

EWSR1 8-mer score

T
A

F
1

5
 8

-m
e

r 
s
c
o

re

2

1

0

-1

-2

-3

-4
-4

F
U

S
 8

-m
e

r 
s
c
o

re

210-1-2-3

EWSR1 8-mer score

0.10

0.05

0.00

-0.05

-0.10

-0.15

-0.20
0.100.00-0.10-0.20

0.10

0.05

0.00

-0.05

-0.10

-0.15

-0.20
0.100.00-0.10-0.20

Pearson r = 0.99 Pearson r = 0.99

ELAVL1

ELAVL1(A) ELAVL1(B)

ELAVL1(C)

1240

13068 1268

106191

216

168

154

1251

698

1236

10607
494

2134

2894

830

Figure 3 Performance validation of DeBooster through cross-platform CLIP-seq datasets. (a) The

Venn diagram of four ELAVL1 CLIP-seq datasets collected from different experimental platforms.

If binding region A from a dataset has at least one nucleotide overlap with binding region B from
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another dataset, we regarded A and B as a common element of these two datasets. The datasets

ELAVL1, ELAVL1(A) and ELAVL1(C) were from the HEK293 cells, while the dataset ELAVL1(B)

was from the Hela cells. (b) The AUROC scores and binding sequence motifs computed by DeBooster

using different combinations of training and test datasets. The diagonal scores shown in bold corre-

spond to the cross-validation results in which both training and test datasets were collected from the

same experimental platform. (c, d) The plots of the relative weights of individual sequence features

computed by DeBooster for the ELAVL1 datasets collected from different experimental platforms,

including ELAVL1(B) vs. ELAVL1 (c) and ELAVL1(A) vs. ELAVL1 (d). (e, f) The plots of the

DeBooster prediction scores for all 8-mers across different RBPs within the same family, including

TAF15 vs. EWSR1 (e) and FUS vs. EWRS1 (f). TAF15, FUS and EWSR1 all belong to the FET

family and generally share similar binding preferences.
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Figure 4 The comparisons between the prediction scores derived by DeBooster and the experimen-

tally determined binding affinity data. (a, b) The plots of the prediction scores derived by DeBooster

(which was trained based on CLIP-seq data) vs. the experimentally determined Kd values of different

8-mers or RNA oligonucleotides for SFRS1 and TDP43, respectively. The Kd values of SFRS1 were
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measured in vivo [39], while the Kd scores of TDP43 were acquired from the electrophoretic mobility

shift assay (EMSA) [40]. The same terminology as in [40] for the names of RNA oligonucleotides was

used for the binding targets of TDP43 (Supplementary Notes). (c) The Pearson correlation coeffi-

cients between the prediction scores derived by DeBooster vs. the in vitro binding affinity scores of

7-mers derived from the RNAcompete data in [10]. (d-f) The plots of the prediction scores derived

by DeBooster vs. the in vitro exprimentally measured binding affinity scores of 7-mers derived from

the RNAcompete data in [11] for FUS, QKI and HNRNPC, respectively. In (c-f), an extended “re-

gression” version of DeBooster was used and a cross-validation procedure was applied to evaluate the

prediction performance (Methods).
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Figure 5 Understanding the predicted binding effects of MOV10 on mRNA dagradation. (a, b) Frac-

tions of 3′ UTRs with MOV10 binding for four groups classified according to the original CLIP-seq

data (a) and the DeBooster prediction results (b), respectively. Genes were evenly separated into

four groups according to the fold changes of their mRNA half-lives. Groups 1, 2, 3 and 4 corresponded

to top 25%, 25%-50%, 50%-75% and bottom 25%, respectively. In the DeBooster prediction results,

we only considered those robust binding targets with prediction scores > 0.2 (The default threshold

was zero and the range of prediction scores was in [-1,1]). (c) The sum of positive prediction scores

per UTR for four groups of genes, which were classified and ranked according to the fold changes of

their mRNA half-lives in a descending order. *: p value < 0.001, Wilicoxon rank sum test. (d) The

cumulative distribution on the fold changes of mRNA half-lives for four groups of genes, classified and

ranked according to the DeBooster prediction scores in a descending order. That is, Groups 1, 2, 3

and 4 corresponded to genes with top 25%, 25%-50%, 50%-75% and bottom 25% predicted scores,

respectively. The p values were computed using the Wilicoxon rank sum test. (e) The plot of the

DeBooster prediction scores vs. the fold changes of mRNA half-lives meansured by qRT-PCR for

seven genes.
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Figure 6 The comparison results on three different DeBooster models, which were trained using all

ADAR binding sites identified by CLIP-seq experiments, productive ADAR binding sites (i.e, trigger-

ing A-to-I editting), and non-productive ADAR binding sites (i.e, without triggering A-to-I editting),

respectively. (a) The boxplot of the binding-editing distances, which were defined as the genomic

distances between the ADAR binding sites and the closet editing sites, for three different DeBooster

models. *: p value < 0.001, Wilicoxon rank sum test. (b) The sequence motifs of the ADAR binding

sites identified by three different DeBooster models. More details can be found in the main text.
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Figure 7 The predicted influence of ELAVL1 binding on the repression effect of miRNA miR-331-3p.

(a) An illustrative model of the co-binding of RBP ELAVL1 and miRNA miR-331-3p on the 3′ UTR

of gene ERBB2. miR-331b represents the binding region of miRNA miR-331-3p. The width of the

arrow represents the relative strength of miR-331-3p binding. (b) The change of the predicted binding

scores corresponded to the shift of ELAVL1 binding sites from the wild-type to the URE mutant on

the 3′ UTR of gene ERBB2. The bottom shows the locations of URE and miR-331b regions, mutation

positions in the URE region, mutation positions in the miR-331b region, mutation positions in both

URE and miR-331b regions, and the experimentally detected shift of ELAVL1 binding resulting from

the URE mutant, respectively. All mutation sites are represented by the inverted triangles. Abbrevi-

ation: WT, wild-type; MT, mutant; URE, U-rich element.
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Figure 8 The comparisons between the overall changes of the predicted binding scores of individual

RBPs after pathogenic or neutral mutations in regions near 5′ and 3′ splice sites. *: p<0.001, Stu-

dent’s t test.
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Figure 9 Examples of the predicted effects on the potentially disease-causing mutations near splice

sites or on exonic splicing enhancers (ESEs). (a) The exonic mutations of the SFRS1 binding sites

near a 5′ splice site for gene CDH1. (b, c) The mutations of SFRS1 binding sites disrupting or cre-

ating exonic splicing enhancer (ESE) motifs for genes TCFIL2 and THRAP3, repectively. The ESE

motifs were obtained from [65]. (d, e) The exonic mutations of the TIA1 binding sites near the splice

sites for genes TRRAP and KTN1, respectively. (f) A mutation near a 5′ splice site of gene ATM

that changed the predicted binding scores of both QKI and FUS. Abbreviation: WT, wild-type; MT,

mutant; URE, U-rich element.
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