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In this paper we continue and extend the investigations of the ensembles of random physical states introduced
in Hamma et al. [Phys. Rev. Lett. 109, 040502 (2012)]. These ensembles are constructed by finite-length
random quantum circuits (RQC) acting on the (hyper)edges of an underlying (hyper)graph structure. The latter
encodes for the locality structure associated with finite-time quantum evolutions generated by physical, i.e., local,
Hamiltonians. Our goal is to analyze physical properties of typical states in these ensembles; in particular here we
focus on proxies of quantum entanglement as purity and α-Renyi entropies. The problem is formulated in terms
of matrix elements of superoperators which depend on the graph structure, choice of probability measure over
the local unitaries, and circuit length. In the α = 2 case these superoperators act on a restricted multiqubit space
generated by permutation operators associated to the subsets of vertices of the graph. For permutationally invariant
interactions the dynamics can be further restricted to an exponentially smaller subspace. We consider different
families of RQCs and study their typical entanglement properties for finite time as well as their asymptotic
behavior. We find that area law holds in average and that the volume law is a typical property (that is, it holds in
average and the fluctuations around the average are vanishing for the large system) of physical states. The area
law arises when the evolution time is O(1) with respect to the size L of the system, while the volume law arises
as is typical when the evolution time scales like O(L).
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I. INTRODUCTION

The study of the statistical properties of ensembles
of pure quantum states is an important topic in quan-
tum information theory, quantum statistical mechanics, and
quantum many-body theory. The ensemble of pure quan-
tum states can be chosen to mimic the uniform distribu-
tion of states in the Hilbert space, low-energy states of
random Hamiltonians, or states that can be obtained by
some random quantum evolution. One can combine group
theoretical and statistical tools by construction of the ensemble
with group theoretic methods. An important example in
quantum information theory is the use of ensembles of random
unitary operators to perform quantum algorithms. In this
case one picks the unitaries from the Haar measure on the
unitary group. A related ensemble is the ensemble of states
in the Hilbert space that can be obtained by some random
preparation. If one is allowed to obtain all the possible states
with the same probability, one has again used the Haar measure
over the ensemble of states. Recently this kind of ensemble
has been studied in relation to questions of typicality of
the expectation value of observables and the foundations of
statistical mechanics [1–14].

In this paper we engineer and analyze ensembles E of pure
quantum states for multipartite systems that incorporate two
key features in quantum information theory: randomness and
locality. In practice, E is generated by applying a random
quantum circuit (RQC) to a reference state. The RQC is
obtained by picking stochastically subspaces of the total
Hilbert space that obey some locality constraint given by an
underlying graph-theoretic structure. These subspaces serve
then as the support of random unitaries. In this model,
randomness enters two times: in the choice of the support of

the unitary and in the choice of the unitary itself. The ensemble
so generated finds physical motivation in approximating the
evolution of a multipartite system given by a (time-dependent)
local Hamiltonian [15,16]. Our analysis is conducted by
putting together graph theoretic, group theoretic, and operator
algebra tools. In particular, we show how to encode all the
relevant information about the RQC in the action of a single
superoperator.

From many perspectives, an extremely important property
of pure states of multipartite quantum systems is their
entanglement [17,18] (in a given bipartition A ∪ B of the
system of linear sizes LA and LB). To measure entanglement in
the ensemble E we study the α-Renyi entropies of the reduced
density matrix to the subsystem A. In particular, because the
linear entropy is a lower bound for the von Neumann entropy,
the case α = 2 is very interesting. We show in the following
that the average purity in the RQC-defined ensembles attains
asymptotically the minimum possible value and therefore gives
a tight bound to the von Neumann entropy.

As we shall see in the following, we are interested in
studying two different regimes. The first regime is obtained
when the RQC is applied in one shot, or in a number O(1) of
instances. The second regime, is obtained by applying the RQC
a number of time scaling with the size LA of the subsystem.

We analyze two models: (1) the nearest neighbor Random
Edge Model (REM) picks the support of the circuit in
subsystems corresponding to the edges of a graph. This model
leads to estimates about the time evolution of Renyi entropy
when the system evolves with ultra-local Hamiltonians. A
variant of the REM, which we call the Fully Connected REM,
where the local structure is given by a completely connected
graph, elucidates the utility of the superoperator approach
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for purity dynamics by mapping the calculations to an
exponentially smaller space. (2) The second model of interest
is the Contiguous Edge Model (CEM). In this model we again
specify a graph, and then we consider a random quantum
circuit which has support on all N qubits of the system (and
therefore the depth of the circuit is N ). The random circuit can
be thought of as factorizable into k terms that have support
only on the edges of the graph. The application of such
random circuit to a reference state will here be referred to as
a cycle. Cycles can be iterated a number nc times. The CEM
is intended to produce ensembles of states that come from
the unitary evolution induced by a local Hamiltonian starting
from completely disentangled fiducial states φ. In this case nc

represents discretized time. For regular graphs of linear size
L, we look at the reduced state ρA, and we show in the CEM
typicality of the area law of entanglement for small times,
nc = O(1), and volume law for times, nc = O(LA). The
calculations of the purity lead to an instructive algebra of the
swap operators on different subsets A of the total nodes in
the graph � = (V,E). Moreover, asymptotically in nc we show
that the reduced system becomes the completely mixed state.

Note that in the cases where the RQC is applied a number
O(LA) of times, our result shows that the ensemble attains
in average a reduced system which is close to the completely
mixed state. This property is shared with the ensemble of
states over the Haar measure. In this sense, we show that
the ensemble E , even if contains a small fraction of the
states in the Hilbert space, nevertheless locally realizes the
averages over the Haar measure. This concept is familiar
in the context of t designs. A t design is an ensemble
{pi,ψi} of states that reproduces moments over the Haar
measure, that is,

∑
i pi(|ψi〉〈ψi |)⊗t = ∫

ψ
(|ψ〉〈ψ |)⊗t dψ . A

unitary t design is similarly an ensemble of unitaries such
that

∑
i piU

⊗t
i ρ(U †

i )⊗t = ∫
U

U⊗t ρ(U †)⊗t dU . In other terms,
the average with the Haar measure of any polynomial function
of degree t can be obtained by a t design.

It is known that exact t designs require an exponential
number of states (or unitaries). On the other hand, approximate
t designs are much more easily obtained. Indeed, it has been
shown in the literature [19–32] that RQCs of size n2 (where
n is the number of qubits in the system) are approximate t

designs, for t = 1,2,3. The typical scheme for such an RQC
is to consider a random circuit where two qubit unitaries are
drawn with the Haar measure on U(4) for every pair of qubit
in the system. Recently it has been shown that even with some
locality constraint RQCs of linear size in n are up to three
designs [33].

It is important to emphasize that in this work we focus on
a particular problem, which allows us to obtain results beyond
the asymptotic case. We are not trying to approximate any
polynomial that is a function of ψ over the Haar measure,
but, given a bipartition A ∪ B of the system, only the reduced
density matrix of the system ρA of linear size LA. With this
restriction, we find very powerful tools. In particular, (1) we
are able to make statements about typicality of entanglement
for circuits of any depth. Even the asymptotic case, scales
with LA being the size of the subsystem. (2) Our results are
valid for every momentum t of the statistical distribution.
While the REM is a RQC with locality constraints, the
protocol of the CEM is quite different, as we will see. It

is motivated and inspired by the evolution induced by a
distribution of time-dependent Hamiltonians. For this reason,
the ensembles produced by the CEM considered here are
of physical relevance for applications in the foundations of
statistical mechanics.

On the other hand, when the RQC is applied a O(1) number
of times, we obtain an ensemble of states with a typical area
law for the entanglement. In some sense, this ensemble shares
a lot with the set of the ground states of local Hamiltonians
(without topological order). Indeed, all the ground states of
such Hamiltonians can be obtained by a quantum circuit
of fixed depth from some completely factorized state [34].
Whether or not in two spatial dimensions there is an area law
for the entanglement in gapped systems is an important open
problem in quantum many-body physics [35]. Our approach
shows, that in ensembles that contain such ground states, the
area law holds in average. It is known that such states have
the area law as upper bound. Indeed, the technique of the
Lieb-Robinson bounds has shown that entanglement that can
be produced in a subsystem A by evolving for a time t with a
local Hamiltonian is upper bounded by O(|∂A|t) [36,37]. Our
study shows that such upper bounds are saturated in average,
and that the fluctuations are small.

The structure of the paper is as follows: In Sec. II we
describe the setup for our models, in Sec. III we briefly
review essential mathematics for the remainder of the paper,
in Secs. IV and V we present detailed studies of two particular
models, and we conclude in Sec. VI.

II. SETUP

Our scheme to investigate typicality of entanglement
involves two elements:

(1) A (hyper)graph � = (V,E) whose nodes V represent
local Hilbert spaces corresponding to local degrees of freedom
of the multipartite system and where the edges E represent the
support of interactions.

(2) A Random Quantum Circuit (RQC) that acts on an
input fiducial state φ that can be represented conveniently
using the abstract tensor product Hilbert space on the nodes of
the graph.

The system S is defined by the tensor product of many
local Hilbert spaces H = ⊗v∈VHv . We are concerned with
finite d-dimensional Hilbert spaces Hv , or qudits. The total
number of qudits in the system is N = |V |. We can regard the
set V as the set of vertices of a (hyper)graph � = (V,E). We
remind that a hypergraph is a set of vertices with a collection
E of subsets of V called edges. Mathematically E is a subset
of the power set P(V )\∅. For instance, the usual graph is
a set with a collection of pairs. The hypergraph is a natural
structure for multipartite quantum systems because we can
associate the vertices to the Hilbert spaces of each particle
and the edges to the support of interaction terms in the (for
instance) Hamiltonian. A bipartition in S is introduced by
considering a bipartition of the set of vertices V = A ∪ B

and then considering the tensor product H = HA ⊗ HB ,
where HY = ⊗x∈Y⊂VHx . If d = dimHx for every x, then
dimHY = d |Y |. If X ∈ E is an edge of the (hyper)graph,
X = {x1, . . . ,x|X|} with xi ∈ V and |X| is the cardinality of
the edge X. We define the Hilbert space with support on X as
HX = Hx1 ⊗ · · · ⊗ Hx|X| .
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One can regard the subsystem A as the physical “system”
of interest, and its complement B as its “environment,” usually
assuming that dA 	 dB . A totally factorized state for the
whole S (system + environment) can thus be written as
|φ〉 = ⊗i∈A|φi〉 ⊗j∈B |φj 〉 where obviously |φi〉 ∈ Hi . In this
work the fiducial state φ is any totally factorized state (and
which exactly does not matter, as we shall see).

The fiducial state φ is the input to the RQC that picks edges
X in E to act on, according to some probability distribution
P(X), with a unitary operator U acting on HX. The unitary UX

is picked with some measure dμ(U |X), e.g., the Haar measure
over U(d |X|). In other words, we first pick an edge X ∈ E with
probability P(X), and then we pick a random (with measure
dμ) unitary with support on HX. The RQC itself can thus
be labeled by the probability distribution of the edges and
choice of the measure over unitaries. The ensemble E is then
completely specified by varying on the fiducial states φ and
the chosen RQC, in the following way:

E(p,dμ) = {UX|φ〉}X,UX,φ. (1)

More generally one can describe a general RQC where instead
of picking just a single edge at each step the circuit chooses
a subset of the nodes. Such a RQC can be described using
the joint probability distribution P (k) : (Xk,Xk−1, . . . ,X1) →
P (k)(Xk,Xk−1, . . . ,X1) ∈ [0,1] where Xi ⊂ V,i = 1,2, . . . ,k

are subsets of the set of vertices V of the (hyper)graph, or, in
other words, edges in E. The sequence of set valued random
variables, X1,X2, . . . ,Xk , can be seen as a stochastic process
of length k. Assuming that such a selection of subsets of V
is a Markovian process, one can express the action of RQCs
of arbitrary depth using just the Markov transition matrix,
M (k)(Xk|Xk−1), which satisfies

∑
Xα

M (i)(Xα|Xβ) = 1 ∀i =
1,2, . . . ,k where α,β = 0,1, . . . ,2|V | − 1 label the elements
of the power set of V .

The joint probability of choosing the set Xi at the ith step
where i ranges from i = 1,2, . . . ,k is given by

P (k)(Xk,Xk−1, . . . ,X2,X1)

= M (k)(Xk|Xk−1)P (k−1)(Xk−1,Xk−2, . . . ,X2,X1), (2)

where P (k−1)(Xk−1, . . . ,X1) =∑Xk
P (k)(Xk,Xk−1, . . . ,X1)

is the marginal distribution of the preceding k − 1 set-valued
random variables. Iterating this equation one can write the
joint probability at the kth step as a product of the transition
matrices given an initial probability vectorP (1)(X1) as follows:

P (k)(Xk,Xk−1, . . . ,X1) = M (k)(Xk|Xk−1)M (k−1)(Xk−1|Xk−2)

× . . . × M (2)(X2|X1)P (1)(X1), (3)

where P (1)(X1) is a column vector representing the probability
of choosing X1 ⊂ V in the first draw by the RQC. In particular,
for independent choices of Xi,i = 1, . . . ,k at each level
of the circuit, we have that the elements of the Markov
transition matrix satisfy, M (i)(Xk|Xk−1) = P (i)(Xk), which
impliesP (k)(Xk,Xk−1, . . . ,X1) =∏k

i=1 P (i)(Xi). The depth of
this circuit is

∏k
i=1 |Xi |. If, as we assume, the subsets Xi are

finite, the depth of this circuit is O(k).
The associated k-iterated ensemble is then given by

Ek(P (k)(Xk,Xk−1, . . . ,X1),dμi)

= {UXk
. . . UX2UX1 |	〉}X,UX,	, (4)

where dμi,i = 1, . . . ,k are the measures with which the RQC
chooses the unitaries to act on the corresponding chosen
subsets Xi ⊂ V .

III. ENSEMBLE STATISTICAL MOMENTS
AND SUPEROPERATOR FORMULATION

Once the ensemble Ek of physical states has been con-
structed, we need to derive the associated ensemble for the
reduced system A. This is naturally obtained by tracing out
the environment B, that is:

Ek
A = {Tr Bρ|ρ ∈ Ek}. (5)

In order to compute the Renyi entropies for this ensemble,
given a density matrix 
 ∈ Ek

A, we will compute the trace of
its α power,

P α(
) = TrA(
α), (6)

with α � 1. The central objects of our analysis are the
statistical moments of the P α(
) within Ek

A, for instance

the average P α(
)



and higher moments. We want to stress
that the knowledge of all the statistical moments in Ek

A, is
equivalent to being able to compute also all the statistical
moments of observables with support on the reduced system
A or polynomial functions f (
) of arbitrary degree. One
pertinent example is that knowledge of the α powers allow us
to compute the Renyi entropies Hα := 1

1−α
log[Tr(ρα

A)], which
are continuous w.r.t. the parameter α [38]. Also, ∂

∂α
Hα � 0

and therefore Hα=1 � Hα=2. Since the von Neumann entropy
E(ρA) can be obtained as the limit, E(ρA) := limα→1+Hα we
see that the 2-Renyi entropy lower bounds the von Neumann
entropy. Moreover, for close to minimal purity the bound gets
very tight [39]. In order to compute the statistical moments in
Ek

A, we will use quantum information theoretic tools; then
we will introduce a superoperator formulation which will
allow for a compact description of the statistical properties
of the reduced system, and we will show how locality of the
interactions influences its entanglement properties. We start by
recalling that for every density matrix 
 of the reduced system
A,

P α = TrA(
α) = TrA
(

⊗αT̃

(α)
A

) = Tr
[
ω⊗αT

(α)
A

]
, (7)

where T̃
(α)
A : (HA)

⊗
α �→ (HA)

⊗
α,|i1,i2, . . . ,iα〉 �→ |iα,i1,

i2, . . . ,iα−1〉 is the order α shift operator acting on the
HA subspace alone. It is thus a restriction of the operator
T

(α)
A to just the A subspace where T

(α)
A |(HA)⊗α = T̃

(α)
A and

T
(α)
A |(HB )⊗α = 1(HB )⊗α . Here ω is the state of the total space


 = TrB[ω]. Note that up to a rearrangement of spaces
T̃

(α)
A = ⊗i∈AT

(α)
i ⊗ 1B . To avoid later confusion we remark at

this point that we use tensored copies H⊗α of the total Hilbert
space H = ⊗v∈VHv that is itself a tensor product of local
spaces. We denote the former as rank-α tensor space while the
latter just as a tensor product space. Note that a state in H⊗α

of the form ψ⊗α is symmetric under permutation operators
acting on the α, H spaces. In particular the α-tensored
copy of the totally factorized state ω⊗α is symmetric under
T

(α)
A ,A ⊂ V . Starting with a fiducial (completely factorized)

state ω = |φ〉〈φ| = ⊗i∈V |φi〉〈φi |, the average of P α over
unitaries UX that act on the set of vertices X drawn by the
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RQC is given by

P α
UX =

∫
dμ(U |X)Tr

[
(UXωU

†
X)⊗αT

(α)
A

]
=
∫

dμ(U |X)Tr
[
ω⊗α(U †

X)⊗αT
(α)
A U⊗α

X

]
, (8)

where in going to the second line above we used cyclicity of
the trace. By choosing the Haar measure as dμ in the integral
above, we can perform integration using standard results from
representation theory of groups [40–42].

A. General formulation

In this section we present a formulation in terms of
superoperators in order to treat general RQCs. The key insight
is given by examining the action of the operator valued integral,
R(α)

X : B(H⊗α
V ) → B(H⊗α

V ), defined by

R(α)
X (Ô) ≡

∫
dμ(UX)(U †

X)⊗αÔU⊗α
X , (9)

where as before UX are unitaries drawn with a measure
dμ(U |X) acting on the set of vertices X drawn by the RQC
and Ô ∈ B(H⊗α

V ) is any operator on the same space. We are
interested in the specific case where Ô = T

(α)
A . Note that R(α)

X

is not necessarily a self-dual (Hermitian) superoperator and
whether it is so depends on the choice of unitaries and the
measure of integration. The stochastic procedure to pick the
edge X is encoded by defining the superoperator

R(α)(Ô) =
∑
X⊂V

P(X)R(α)
X (Ô). (10)

Equation (10) represents the action of a RQC of depth O(1).
For a circuit of arbitrary depth O(k), the superoperator takes
the form

R(α)
(k) (Ô) =

∑
X1,...,Xk⊂V

P (k)(Xk,Xk−1, . . . ,X1)

×
∫ i=k∏

i=1

dμ(U |Xi)
(
UXk

. . . UX1

)†⊗α

× Ô
(
UXk

. . . UX1

)⊗α
. (11)

In the case of uncorrelated choices of the subsets at each step
Eq. (11) takes the form

R(α)
(k) (Ô) =

∑
X1,...,Xk⊂V

k∏
i=1

P (i)(Xi)

×
∫ i=k∏

i=1

dμ(U |Xi)
(
UXk

. . . UX1

)†⊗α

× Ô
(
UXk

. . . UX1

)⊗α
. (12)

From Eq. (12) one can see that for the same case (of
independent choices of Xi), R(α)

(k) (Ô) =∏k
i=1 R

(α)
i (Ô). On

the other hand, if the choices of Xi are fully correlated, i.e.,
P (i) = P,∀ i = 1, . . . ,k, then R(α)

(k) (Ô) = (R(α))k(Ô).
The superoperator formulation of the averaging procedure

over the unitaries allows one to write the average α moment

for a k level RQC very compactly as [cf. Eq. (8)]

P α
U

k = 〈ω⊗α,R(α)
(k)

(
T

(α)
A

)〉
, (13)

where 〈O1,O2〉 = Tr(O†
1O2) is the Hilbert-Schmidt inner

product.

B. Single Edge Model

As an illustrative example, we show how the averages
[Eq. (8)] can be obtained for the simplest model consisting
of two subsystems HA = ⊗rHr and HB = ⊗sHs connected
by a single edge. The graph consists of partitions A and B
connected by an edge (i,j ) with V = A ∪ B and E = {{i,j}},
and i ∈ A, and j ∈ B. The two-body unitary UX has support on
the edge X = {i,j}, that is, the Hilbert space HX = Hi ⊗ Hj ,
where dimHi = dimHj = d. We call this single edge X. For
sake of simplicity, we show first the calculation for α = 2 and
generalize to any α in the following. We have

P α=2
U = Tr

[
(ω)⊗2

∫
dUX(U †

X)⊗2T
(2)
A U⊗2

X

]

= Tr

[
(ω)⊗2

∫
dUX(U †

X)⊗2T
(2)
i U⊗2

X T
(2)
A\i

]

= Tr

[
(ω)⊗2

(
Tr
(
T

(2)
i �+

)
d+

�++

0︷ ︸︸ ︷
Tr
(
T

(2)
i �−

)
d−

�−

)
T

(2)
A\i

]
= Tr

[
(ω)⊗2Nd

(
1i,j + T

(2)
i T

(2)
j

)
T

(2)
A\i
]

= Tr
[
(ω)⊗2Nd

(
T

(2)
A\i + T

(2)
A∪j

)]

= Nd

1︷ ︸︸ ︷
Tr
[
(ω)⊗2T

(2)
A\i
]+Nd

1︷ ︸︸ ︷
Tr
[
(ω)⊗2T

(2)
A∪j

] = 2Nd,

(14)

where Nd = d
(d2+1) and dλ is the dimension of the Irreducible

subspace labeled by λ = ±, and ⊕λHλ = (HV )⊗α . The
�+,�− are the projectors onto the totally symmetric and to-
tally antisymmetric subspaces of (Hi ⊗ Hj )⊗2. In the third line
of the above derivation the trace of the product of the operator

T
(2)
i with the projector �− is zero since �− = 1i,j −T

(2)
i T

(2)
j

2 ⇒
Tr(T (2)

i �−) = (1/2)Tri,j [T (2)
i 1j − 1iT

(2)
j ] = 0 using the fact

that the swap operators on the same subspace square to one,
i.e., (T (2)

i,j )2 = 1i,j . In order to get to the last line in Eq. (14) we

use the fact that both the traces yield 1 since the T
(2)
X ,X ⊂ V

operators acting on the totally symmetric state (ω)⊗2 (under
permutations of the rank-2 tensor spaceH⊗2) leave it invariant.

Note that the fact that UX has support on both HA

and HB is crucial. Indeed, if we consider a unitary
UA with support on just A (and similarly on B), we
would obtain

∫
dUTr[ω⊗2(U †

A)⊗2T
(2)
A U⊗2

A ] = 1 since T
(2)
A ∈

S2 (symmetric group of order 2) is also an element of the
commutant of U⊗2, i.e., for U = UA,B,[U⊗2

A,B,T
(2)
A ] = 0. This

property will constitute the basis for the general formulation
to describe a general RQC.
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This calculation can be generalized to all α � 3. The
average of P α over UX ∈ U(HX = Hi ⊗ Hj ) is

P α = Tr

[
ω⊗α

∫
dU (U †)⊗αT

(α)
A U⊗α

]

= Tr

[
ω⊗α�α

+
d+

Tr
(
�α

+T
(α)
A

)]

= Tr

[
ω⊗α�α

+
d+

]
Tr
[
�α

+T
(α)
A

]
= Tr

[
1

α!
(
α+d2−1

d2−1

) ∑
σ∈Sα

(σi ⊗ σj )(σ̄i ⊗ 1j )

]

= 1(
α+d2−1

d2−1

) 1

α!

⎡
⎣∑

σ∈Sα

Tr(σiσ̄i)Tr(σj )

⎤
⎦

= 1(
α+d2−1

d2−1

) ∑
λ:IRR of Sα

m2
λ

dλ

χλ(σ̄i), (15)

where �α
+ and (d+) are the projector and the dimension of

the totally symmetric part of H⊗α
e , respectively. mλ,dλ are

the multiplicities of the different irreducible representations
(IRRs) of Sα in the σ representation. χλ(σ̄i) is the character in
those IRRs of σ̄i , which is the fixed operator that performs the
action H⊗α

i → H⊗α
i by taking a basis state |i1,i2, . . . ,iα〉 →

|iα,i1,i2〉, . . . ,iα−1; in other words the T
(α)
A operator restricted

to just the ith subspace. In going to the second line above we
use the fact that the trace of ω⊗α w.r.t. all other projectors
except onto the totally symmetric one is zero. To prove the
last line we use Schur’s orthogonality theorem [40] (or see
Appendix A).

Being able to compute averages of arbitrary powers of
the reduced system, we can also compute higher statistical
moments. We are especially interested in the variance of the
purity:

Var(P α=2) = (P α=2)2 − (P α=2)2. (16)

For the Single Edge Model the first term is computed as
follows:

(P α=2)2 =
∫

[dUe]Tr
[
ω⊗4Ū⊗4

e T
(12)
A ⊗ T

(34)
A U⊗4

e

]
= Tr

[
ω⊗4�+

d+

]
Tr
[
�+
(
T

(12)
i ⊗ T

(34)
i

)]
, (17)

where d+ = ( d2 + 4 − 1
4 ) = (d2+3)(d2+2)(d2+1)(d2)

4! is the dimension

of the totally symmetric subspace of (Hi ⊗ Hj )⊗4 and �+ =
1
4! (
∑

σ∈S4
σi ⊗ σj ) is the projector onto it. In the above, only

the symmetric projector is relevant because |φn〉〈φn|⊗4 has
support only on it. The operators T

(12)
i ,T

(34)
i represent swaps on

the first two and the last two spaces again of (Hi ⊗ Hj )⊗4; i.e.,
in cycle notation the tensor product T (12)

i ⊗ T
(34)
i represents the

(12)(34) element of S4.
Direct calculations (see Appendix B) leads to (P α=2)2 =
2(2d4+9d2+1)

(d2+3)(d2+2)(d2+1) . Finally we obtain

Var[P α=2] = 2(d2 − 1)2

(d2 + 3)(d2 + 2)(d2 + 1)2
. (18)

If the subsystems i,j are qubits, d = 2, and we obtain
Var[P α=2] = 0.017.

We have seen from Eq. (14) that for α = 2 the superoperator
on a two-vertex edge X := {a,b} and any subset A ⊂ V of the
graph acts like

R(2)
X (TA) = Nd (TA\X + TA∪X) X ∩ A �= ∅ ∧ X ∩ B �= ∅,

R(2)
X (TA) = TA otherwise. (19)

From this key relation we see that the X-supported super-
operator takes a permutation operator TA with support in A

and yields two permutation operators with support in A\X
and A ∪ X, respectively, when X is across the boundary
between A and B, and otherwise is trivial. This action has two
implications: (1) a reduction of purity (because the number
Nd < 1 appears). Therefore only when RX is supported
across the boundary it can have a nontrivial effect and (2)
a propagation in the bulks of both A and B at a distance given
by the diameter of X. When iterating with k, this implies a
propagation of entanglement in the bulk that scales with k,
as we will see in the concrete models described in the next
sections. In the case of general hypergraphs, the edges may
contain any number of vertices.

In the following, we will exploit the power of this
formulation in order to study models defined on nontrivial
graphs. In this way we will be able to show typicality of area
law and volume law for the entanglement of a subsystem.

IV. RANDOM EDGE MODEL

A. Random Edge Model for a general graph

In this model we consider a graph (V,E) where the set
of edges E ⊂ V 2, that is, a usual graph. The RQC draws an
edge X ∈ E according to the flat unit normalized measure
P : X ⊂ E → P(X) ∈ [0,1], with P(X) = 1

|E| . Conditioned
to the extraction of the edge X, a unitary with support on X

is drawn with the Haar measure dμHaar(U |X). In this way we
obtain the ensemble

E
(
P = 1

|E| ,dμHaar

)
= {UX|φ〉}X,UX,φ, (20)

where as usual φ is the completely factorized fiducial state.
This ensemble is obtained by extracting RQC of depth �
maxX∈E |X| = O(1). If we denote by ∂A ⊂ E those edges
that go across the boundary, that, is those that have non-null
intersection with both A and B, the average purity is given by

P α=2 =
∑

X∈E\∂A

P(X)Tr

[
ω⊗2

∫
d[UX](U †

X)⊗2TA(UX)⊗2

]

+
∑
X∈∂A

P(X)Tr

[
ω⊗2

∫
d[UX](U †

X)⊗2TA(UX)⊗2

]

=
∑

X∈E\∂A

P(X) × 1

+
∑

X∈∂A

P(X)(NdTr[ω⊗2TA∪X] + NdTr[ω⊗2TA\X])

= (1 − q) + 2qNd, (21)
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where q =∑X∈∂A P(X) = ∂A
|E| is the net probability of a

boundary node of A interacting with one in B. Since local
unitaries completely internal to A or B, i.e., with no support
across the bipartition, cannot affect the purity we get a 1 for
the integral in the first term on the right-hand side. Note that
this averaging procedure over the edge unitary executed once
leads to an algebra of the TX operators where with probability
q = ∂A

|E| the RQC generates an equal superposition of TA∪e and
TA\e (e being the edge on which the unitary acts) and with the
complement of the probability (1 − q) it leaves the operator TA

invariant. At this point we are ready to show how to compute
the variance of the purity P α=2 in the above ensemble.

By using the technique leading to Eq. (18) and the
probability distribution P(X) of the REM, We obtain [with
I = (P α=2)2 defined in Eq. (17)]

Var
[
P α=2

REM

]
= [1 − q + q(P α=2)2] − (1 − q + q2Nd )2

= [1 − q + q(P 2)2] − (1 − q + q2Nd )2

≈ q(1 + I − 4Nd ), (for q 	 1)

= |∂A|
|E|

[
1 − 4d5 − 4d4 + 20d3 − 18d2 + 24d − 2

(d2 + 3)(d2 + 2)(d2 + 1)

]
.

(22)

This is the variance obtained by the distribution obtained for a
single-edge extraction. We want now to compute the statistical
momenta for the ensemble in which we extract the edges a
number k of times. We iterate the procedure by using sequential
independent identical RQCs and build the k-iterated ensemble
E (k). Let us consider unitaries of the form U =∏k

i=1 UXi
where

the Xi’s and UXi
’s are drawn according to the probability

distributions
∏k

i=1 P(Xi) and
∏k

i=1 dμ(UXi
) respectively. If

we now assume that the degree of each vertex is o(|∂A|),
which implies that the boundary length changes negligibly
due to the algebra of Eq. (21), i.e., we may take |∂A ∪ e| ≈
|∂A\e| ≈ |∂A|, then for the second iteration of the procedure
we find that the average purity is given by

P α=2
k=2 =

∑
X∈E\∂A
X′∈E\∂A

P(X)[P(X′)TA + P(X′)Nd (TA∪e′ + TA\e′)]

+
∑

X∈∂A
X′∈E\∂(A∪e)

P(X)Nd [P(X′)TA∪e + P(X′)TA\e]

+
∑

X∈∂(A∪e)
X′∈∂(A\e)

P(X′)Nd [Nd (TA∪e∪e′ + TA∪e\e′)

+P(X′)Nd (TA\e∪e′ + TA\e\e′)]

∼ [(1 − q) + 2qNd ]2. (23)

It can be shown that under the same assumption (of negligible
change of boundary length) the purity for k iterations goes as
P α=2

k = [1 − q(1 − 2Nd )]k . One can understand the physical
content of these calculations by considering the thermody-
namic limit of large |E| � |∂A| ⇒ q small. In this limit the
average 2-Renyi entropy H 2 can be lower bounded (using
concavity of the log function) by the logarithm (base 2) of the

average purity, i.e.:

H 2 := −logP α=2
k � −logP α=2

k

⇒ H 2 � −klog[1 − q(1 − 2Nd )] ∼ qk(1 − 2Nd ). (24)

The number k of iterations corresponds to the time
in our scheme (and in the circuit model), so Eq. (24)
implies linear increase of the entropy with time. It also
implies that the entropy is proportional to the boundary
of the region |∂A|. For this model, the α-Renyi entropy
turns out to have the form Hα � 1

1−α
log(Tr[P α]) ∝ |∂A|,

which can be seen by considering P (α) = (1 − q) +
qTr [ω⊗α

∫
d[UX](U †

X)⊗2 T
(α)
A (UX)⊗2] = 1 + q[C(α,d) − 1]

where C(α,d) = Tr[T (α)�+]

(α+d2−1
d2−1 )

is a group theoretic factor less than

1 with �+ the projector onto the totally symmetric subspace
of H⊗α .

All of the above calculations can be reformu-
lated in terms of the expectation value of the
stochastic Hermitian superoperator R =∑X∈V P(X)RX =∑

X∈V P(X)
∫

dUX(U †)⊗2TXU⊗2. In the next sections, we
show that the asymptotic analysis of R for this case leads
to a asymptotic purity of the form as in Eq. (24).

B. Random Edge Model for the complete graph KN

Let us now consider the case in which the graph of the REM
is the complete graph KN , that is, a graph in which every two
vertices are connected by an edge: E = V × V . The number
of edges is, of course, |E| = |V 2| = ( N

2 ). As before, the RQC
draws an edge X according to flat unit normalized measure
P : X ∈ E → P(X) ∈ [0,1], with P(X) = 1

|E| . Conditioned
to the extraction of the edge X, a unitary with support on X

is drawn with the Haar measure dμHaar(U |X). The analysis of
this case highlights the utility of the superoperator formalism.
We introduce a bipartition in the system by V = A ∪ B with
A ∩ B = ∅, with cardinalities |A| = NA and |B| = NB , and,
of course, N = NA + NB . The average purity after the kth
iteration is given by

P α=2
k (TA) = Tr

[
ω⊗2R(2)

k

(
T ⊗2

A

)]
. (25)

To see what form R takes we have to see that after each
extraction, if the extracted edge is not straddling the bipartition
then the superoperator has trivial action. Therefore, the
probability q(A) that R(TA) has a trivial action is given
by the probability of drawing an edge completely inside A

or completely inside B = V \A, that is, q(A) = (NA
2 )+(N−NA

2 )
(N

2 )
.

Otherwise, R(TA) has a nontrivial action:

R(2)(TA) = q(A)TA + Nd

|E|

⎧⎨
⎩NB

∑
i∈A

TA\i + NA

∑
j∈B

TA∪j

⎫⎬
⎭ .

(26)

Notice that the superoperator R(2) acts on the space of shift
operators TA. That is, for any subset A ⊂ V , R(2)(TA) is an
operator in the Hilbert-Schmidt space on H⊗2. Therefore, the
matrix elements of R(2) in the space of the shift operators are
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given by

R(2)
B,A = 〈TB |R(2)|TA〉. (27)

Notice now that the kth iteration of the superoperator corre-
sponds to matrix multiplication, that is,(

R(2)
k

)
B,A

= 〈TB |(R(2))k|TA〉. (28)

In order to find a convenient expression for R for this model,
we show how to map the superoperator R(TA) in Eq. (26)
acting on the swap operators to a spin operator in an abstract
2N -dim Hilbert space. First, consider the mapping between
subsets of V to a pure vector which is a member of the
computational basis in an abstract 2N -dim Hilbert space:

K : A ⊂ V → ⊗i∈V |χA(i)〉 = |ψA〉
with χA(i) =

{
0i ∈ A

1i /∈ A
. (29)

Here χA(i) is the indicator function for the node i ∈ V . By
considering all the subsets X in the power setP(V ) it is obvious
that the states |ψX〉,X ⊂ V form a complete orthonormal basis
for the 2N -dimensional Hilbert space of N spin 1/2 particles.
We will call this space the abstract qubit space, and operators
in this space are denoted with a hat on top. On this space let us
introduce the total spin operators Ŝα = 1

2

∑
i∈V σα

i where σα
i

are the Pauli matrices acting at the ith spin. Note that then

Ŝz |ψA〉 = 1
2 (NA − NB) |ψA〉 , (30)

which allows us to promote the numbers NA,NB in Eq. (26)
to operators NA → N̂A = (Ŝz + N/2),NB → N̂B = (N/2 −
Ŝz), in the sense that NA = 〈ψA|N̂A|ψA〉 and similarly for
N̂B . With these definitions, we have qA = 1 − NANB

N(N−1) = 1 −
1

|E| [(N/2)2 − (Ŝz)2]. Similarly we now define the total raising

Ŝ+ = Ŝx + iŜy and lowering operators Ŝ− = Ŝx − iŜy . Then
we obtain

Ŝ−|ψA〉 =
∑
j∈B

|ψA∪j 〉, (31)

Ŝ+|ψA〉 =
∑
i∈A

|ψA\i〉. (32)

Now we can define the (hatted) operator R̂(2) acting on the
abstract qubit space as

R̂(2) :=
{

1 − 1

|E| [(N/2)2 − (Ŝz)2]

}

+ Nd

|E| [Ŝ+(N/2 − Ŝz) + Ŝ−(N/2 + Ŝz)], (33)

where R̂(2) is a non-Hermitian operator in the abstract qubit
space spanned by the vectors |ψA〉. In this space, its matrix
elements read (R̂(2))B,A = 〈ψB |R̂(2)|ψA〉. We now show that
iterations of the RQC protocol in the original space correspond
to iterations of the operator (33) in the abstract space. To this
aim, an important observation is that in the original space the
trace of the powers of the superoperator R is taken w.r.t. ω⊗2,
which belongs to the totally symmetric subspace of H⊗2. We
can finally relate the average purity of the subsystem A to a

sum over matrix elements of the matrix (R̂(2))k:

P α=2
k(A) = Tr

[
ω⊗2R(2)

k

(
T ⊗2

A

)] =
〈
ω⊗2,

∑
B⊂V

(
R(2)

k

)
B,A

TB

〉

=
∑
B⊂V

(Rk)B,A

1︷ ︸︸ ︷
〈ω⊗2,TB〉 =

∑
B⊂V

[(R̂(2))k]B,A

=
∑
B⊂V

〈ψB |(R̂(2))k|ψA〉, (34)

and thus from Eq. (34) one can see that in the abstract qubit
space

P α=2
k = (〈0| + 〈1|)⊗N (R̂(2))k |ψA〉 (35)

because
∑

B⊂V |ψB〉 = (|0〉 + |1〉)⊗N ≡ |ψsymm〉. Notice that
the state |ψsymm〉 is invariant under the action of the projector
�S = 1

N!

∑
σ∈SN

σ onto the symmetric subspace of the abstract
qubit space, where σ ∈ SN are the elements of the symmetric
group on N labels. With this in mind and the fact that total
spin operators commute with �S we can write Eq. (35) as

P 2
k = 〈ψsymm|�S(R̂(2))k�S |ψA〉. (36)

Note that �S |ψA〉 ∈ HJ=Jmax ; i.e., �S is the projector onto
the highest total spin subspace. In our case, then, it projects
onto the J = N/2 subspace. Since [(R̂(2))k,�S] = 0 we
focus on just the HJ=Jmax subspace. However, �S |ψA〉 is not
normalized. Normalization involves some algebra to relate
states in the tensor product basis for the abstract qubit space
to the total spin basis: Suppose then that the z component
of spin for some state in the tensor product basis of L spins
is m. Then Nup + Ndown = N, 1

2 (Nup − Ndown) = m ⇒ Nup =
(N/2 + m) and thus the number of distinct states in the tensor
product basis with m as their z component is ( N

Nup
) = ( N

N/2 + m ).
The state in the total spin basis in the HJ=Jmax subspace that
has the same z component is a symmetric combination of
these distinct states with appropriate normalization. It turns
out that

�S |m〉 = 1√(
N

N/2+m

) |N/2,m〉. (37)

With this in mind we see that �S |ψA〉 =
1√

( N

NA
)
|N/2, 1

2 (2NA − N )〉. Inserting this and the identity

in the HJ=Jmax subspace into Eq. (36) we obtain

P α=2
k = 1√(

N

NA

)
N/2∑

m=−N/2

〈
ψsymm

∣∣�S |L/2,m〉

× 〈N/2,m| (R̂(2))k
∣∣∣∣N/2,

1

2
(2NA − N )

〉

= C(N,NA)
N/2∑

m=−N/2

√(
N

m + N/2

)
(R̂(2))k

m, 1
2 (2NA−N)

,

(38)

052324-7



ALIOSCIA HAMMA, SIDDHARTHA SANTRA, AND PAOLO ZANARDI PHYSICAL REVIEW A 86, 052324 (2012)

10 20 30 40 50 60
k

0.2

0.4

0.6

0.8

Pk

10 20 30 40 50 60
k

1

2

3

4

5

6

ln Pk P

FIG. 1. (Color online) (Top panel) Purity as given by Eq. (38)
with fixed total size N = 10 and different subsystem sizes NA = 1
(blue circles), LN = 2 (purple squares}), NA = 3 (yellow rhombi),
NA = 4 (green upright triangles), NA = 5 (dark blue inverted
triangles). The horizontal lines are asymptotic values given by (39).
(Lower panel) Natural logarithm of the difference between purity at
the kth step and the asymptotic purity with N = 10 and same color
codes for NA as in the top panel.

where C(N,NA) =
√

NA!(N−NA)!
N! and the matrix element

of the k-iterated superoperator is (R̂(2))k
m, 1

2 (2NA−N)
=

〈N
2 ,m|(R̂(2))k|N

2 , 1
2 (2NA − N )〉.

Note that Eq. (38) expresses purity dynamics of a dN -
dimensional system in terms of dynamics in an exponentially
smaller (N + 1)-dimensional space. From Eq. (33) one can
see that for NA = 0,R̂(2)|ψA〉 = 1 as well as for NA =
N,R̂(2)|ψA〉 = 1, all other eigenvalues of the operator being
less than 1. If one assumes that these are the only two
fixed points of the operator, then asymptotically the nonzero
eigenspace is spanned by the symmetric and antisymmetric
combinations |ψ0〉+|ψN 〉√

2
,
|ψ0〉−|ψN 〉√

2
with only the symmetric

combination contributing to the purity, which reaches the value

P 2
k→∞ = d2N−NA + dN+NA

dN (dN + 1)
. (39)

The typical behavior of purity is shown in Fig. 1. An obviously
important question is: How fast in k does the protocol take the
purity to within ε > 0 of the asymptotic value? The answer to
this question can be related to the gap of the matrix R̂(2) in
the HJ=Jmax subspace. From Eq. (33) it is easy to see that the

matrix representation R has elements:

Rp,q ≡
〈
N

2
,p

∣∣∣∣R̂(2)

∣∣∣∣N2 ,q

〉

= δp,qf (p) + Nd

|E|

×
[(

N

2
+ q

)√
N

2

(
N

2
+ 1

)
− p(p − 1)δp,q+1

+
(

N

2
− q

)√
N

2

(
N

2
+ 1

)
− p(p + 1)δp,q−1

]
,

(40)

which implies that the above matrix R is tridiagonal and
satisfies the condition Rk,k+1 · Rk+1,k � 0. Such a matrix is
similar to a Hermitian matrix. One can then diagonalize the
Hermitian matrix, and asymptotics can be calculated by the
power method of eigenvalues for the derived Hermitian matrix.
We then have that SRS−1 = H ⇒ ∃Us.t.U †HU = D ⇒
U †SRS−1U = D where D,U,S are diagonal, unitary, and
invertible matrices, respectively. Using the spectral resolution
of D one can write USRS−1U † =∑i λi |λi〉〈λi | ⇒ Rk =
S−1U †∑

i λ
k
i |λi〉〈λi |US Then with M = U †S we obtain from

Eq. (36) for the case |A| = N/2:

P α=2
k→∞ = C(N,NA)

N+1∑
α=1

λk
α〈ψ+|M−1|λα〉〈λα|M|ψ0〉

= 2N/2√(
N

N/2

) N+1∑
α=1

λk
αaα, (41)

where |ψ+〉 is the normalized |ψsymm〉 and |ψ0〉 =
|J = N/2,m = 0〉 are unit normalized vectors and aα =
|〈ψ+|M|λα〉〈λα|M−1|ψ0〉|. Assuming that the eigenvalues of
R are so arranged that λ1 = λ2 = 1 and the rest are arranged
in a nonincreasing order, we find∣∣P α=2

k − P α=2∞
∣∣

= C(N,NA)

∣∣∣∣∣
L+1∑
α=3

λk
αaα

∣∣∣∣∣
= C(N,NA)

∣∣∣∣∣
L+1∑
α=3

λk
αaα

∣∣∣∣∣
� C(N,NA)

L+1∑
α=3

|λα|k|〈ψ+|M|λα〉〈λα|M−1|ψ0〉|

� C(N,NA)|λ3|k
L+1∑
α=3

|〈ψ+|M|λα〉||〈λα|M−1|ψ0〉|

� C(N,NA)|λ3|k

×
√√√√L+1∑

α=3

|〈ψ+|M|λα〉|2
√√√√L+1∑

α=3

|〈λα|M−1|ψ0〉|2

� C(N,NA)λk
3||M||∞||M−1||∞. (42)

We require the right-hand side of the above expression
to be less than ε. Therefore, taking the logarithm of the
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FIG. 2. (Color online) (Top panel) Scaling behavior of gap(�)
for the superoperator of the fully connected RQC. The best
fit line (red) gives us the equation (in natural base): log[�] =
−0.969395 log[L] + 0.0246366. (Bottom panel) Scaling behavior
of the natural logarithm of the product of operator norms for the
similarity transform matrix M and its inverse. The best fit line (red)
gives log[||M||∞||M−1||∞] = 1.17508 + 0.318L.

inequality, C(N,NA)λk
3||M||∞||M−1||∞ � ε we obtain (using

λ3 = 1 − �)

k � log C(N,NA) + log ||M||∞||M−1||∞ + log 1/ε

log 1
1−�

. (43)

Since log 1
1−�

� �, requiring

k � log C(N,NA) + log ||M||∞||M−1||∞ + log 1/ε

�
(44)

makes sure that inequality Eq .(43) is also fulfilled. Indeed, the
bound in Eq. (44) is a rather weak lower bound as for all graph
sizes N that we studied numerically the asymptotic values for

any size of the subsystem NA < N were reached much before
the above bound.

The main difficulty in estimating kmin(ε,N,NA), i.e., the
minimum number k of iterations required to reach within ε

accuracy of the asymptotic value, resides in the calculation
of the operator norms of the similarity transform matrices
M , its inverse M−1, and the gap �. This amounts to
diagonalizing the non-Hermitian matrix R in the maximal
total spin subspace. However, this is an exponentially reduced
problem of diagonalization in a (N + 1)-Dim space compared
to a dN -dimensional one. Numerical study shows that the gap
� of R to has an algebraic dependence on N as shown in
Fig. 2. From the least-squares best fit line we can evaluate

� = e0.025/N0.97 ≈ 1.025

N
. (45)

Moreover, from the lower panel of the same figure we find a
linear dependence of the logarithm of the product of operator
norms of the matrices M,M−1, i.e.,

log[||M||∞||M−1||∞] = 1.17508 + 0.318N. (46)

Thus log C(L) ≈L→∞ α1 log L, log[||M||∞||M−1||∞] ≈ α2L+
β, 1

�
≈ α3L where α1,α2,α3,β = O(1), and we finally obtain

the scaling

k � (α1 log N + α2N + β)α3N + log (1/ε)α3N = O(N2).

(47)

V. CONTIGUOUS EDGE MODEL

This model intends to mimic evolution of a multipartite
system under a local (time-dependent) Hamiltonian. Here
all the edges of graph � are acted on by the RQC with
two-local unitaries in some particular order σ denoting an
ordered sequence of edges. A RQC of depth O(N ) picks
this ordering of nodes such that finally all nodes in the
graph are acted on by nearest-neighbor unitaries. One pass
through such a circuit is called a cycle. This procedure is
then iterated through nc cycles. The composite unitary of a
cycle is the σ -ordered product of unitaries with support on
nearest neighbours according to the graph �. The ensemble is
constructed by considering all the possible orderings σ .

While our general formulation of this model extends to
graphs with any geometry in any number of dimensions we
present a detailed analysis of 1D graphs and the 2D square
lattice.

FIG. 3. (Color online) A bipartite (A,B) spin chain of length L = LA + LB with nearest-neighbor qubits interacting via two-qubit gates
(ellipses). The edge e is the one that straddles the two partitions. The gates are numbered by the subscript xi , where x = A,B denotes the two
halves of the chain and i the distance from the boundary of the two partitions.
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A. Contiguous Edge Model on the linear chain

Let us start with the 1D graph of Fig. 3, with N = L, and
introduce a bipartition into subsystems A and B of lengths
LA,LB . The sites in A on the left of the boundary are labeled
by iA = 1A, . . . ,LA increasing towards the left, while the sites
in B are labeled by iB = 1B, . . . ,LB increasing towards the
right. The edges on the chain are labeled by ai = 〈(i + 1)A,iA〉,
and the edges in B are labeled by bi = 〈iB,(i + 1)B〉. The RQC
chooses an ordering among all the edges in the chain, and then
on each edge acts with a Haar distributed two-qudit unitary
operator in the given order. The ensemble therefore contains
all possible permutations of the list of edges. For nc = O(1),
the average purity depends strongly on the order in which the
RQC chooses the edges, while when nc exceeds the subsystem
size, ordering does not really count, as we shall see in the
following. In any case we can consider the orderings that give
the two extreme situations, that is, the minimum and maximum
decrease of purity, i.e., maximum entangling power, which we
call the best sequenc,e and the one that corresponds to the
minimal decrease of purity or minimum entangling power is
termed the worst sequence. Let Uσ denote the ordered product
of two-qudit unitaries over all the edges in E with the order
given by the permutation σ , i.e., Uσ = Uσ (e1) . . . Uσ (e|E|). The
ensemble and its measure are then given by

E(σ )(�) = {Uσ |	〉}U ,

dμ(U ) = δ(U − Uσ )
∏
e∈E

dμHaar(Ue). (48)

We can now see why sequences of unitaries corresponding
to different permutations yield different purities. We start
showing which sequence produces the greatest decrease of
purity, which we dub the best case. Consider the sequence
Ubest = UeUAUB where Ue is the unitary straddling the edge,
i.e., acting on 1A and 1B , and UA = Ua1Ua2 · · · UaLA−1 is the
internal structure of UA where Ua1 means a two-qudit unitary
with support on the qudits, the nearest of which is at a

distance of one lattice spacing from the boundary. Note that
the internal structure of the unitary is nondeformable since
[Uai

,Uai+1 ] �= 0 as they share a node. With the same convention
the internal structure of UB = Ub1Ub2 · · · UbLB −1 . Physically
this corresponds to the RQC choosing and applying all possible
unitaries on the outermost nodes in A and B followed by two
nodes one lattice spacing closer to the boundary and so on till
the nodes 1A,2A and 1B,2B are acted on. Finally there is a
boundary interaction through Ue. In terms of the probability
distribution according to which the edges are picked by the
RQC the best sequence is a cycle of length (circuit depth)
k = LA + LB − 1 where the (LA − 1) levels of the circuit
choose edges in A as follows: The first set of nodes X1 is
chosen as

P (1)(X1) =
{

1 iff |X1| = 2 ∧ D(X1,1A) = LA − 2

= 0 otherwise,
(49)

while the next LA − 2 levels choose edges depending on the
choice of nodes in the previous step:

P (i)(Xi |Xi−1) =

⎧⎪⎨
⎪⎩

1 iff |Xi−1 ∩ Xi | = 1 ∧
D(Xi,1A) = LA − (i + 1),

= 0 otherwise

(50)

where i = 2,3, . . . ,(LA − 1) and the distance between two
sets D(Xi,Xj ) = minx(|xi − xj |) is the minimum difference
between any two elements belonging to the two different sets.
In our case this difference is the difference of the position
labels (1,2, . . . ,LA). Similarly for the next (LB − 1) levels
of the circuit the first set of nodes XLA

in B is picked as
follows:

P (LA)
(
XLA

|XLA−1
)

=
{

1 iff |XLA
| = 2 ∧ D

(
XLA

,1B

) = LB − 2,

= 0 otherwise
(51)

while the next (LB − 2) sets are chosen as

P (j )(Xj |Xj−1) =
{

1 iff |Xj ∩ Xj−1| = 1 ∧ D(Xj,1B ) = LB − (j + 1),

= 0 otherwise
(52)

where j = 2,3,(LB − 1). Finally the RQC chooses the boundary edge as follows:

P (LA+LB−1)
(
XLA+LB−1

∣∣XLA+LB−2
) =

{
1 iff

∣∣XLA+LB−1

∣∣= 2 ∧ ∣∣XLA+LB−1 ∩ A,B
∣∣= 1.

= 0 otherwise
(53)

One can similarly devise probability distributions for the RQC that generates any desired ordering of the edges. However, for
now, with the measure defined in Eq. (48) and iterating the algebra of Eq. (14), we find that the purity is given by nested integrals:

P α=2 = Tr

[
ω⊗2

∫
d[UB]d[UA]dUe(U †

BU
†
AU †

e )⊗2TA(UeUAUB)⊗2

]

= Tr

[
ω⊗2

∫
d[UB]

{
(U †

B)⊗2
∫

d[UA][(U †
A)⊗2

(∫
dUe(U †

e )⊗2TAU⊗2
e ]U⊗2

A

}
U⊗2

B

)]
= Tr

[
ω⊗2

(
N2

d TA + N3
d TA−1 + N4

d TA−2 · · · + N
LA

d TA−LA+2

+N
LA

d TA−LA
+ N2

d TA + N3
d TA+1 + N4

d TA+2 · · · + N
LB

d TA+LB−2 + N
LB

d TA+LB

)]
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= (
N2

d + N3
d + N4

d + · · · + N
LA

d + N
LA

d

)+ (N2
d + N3

d + N4
d + · · · + N

LB

d + N
LB

d

)
= N2

d

(
1 − N

LA−1
d

)
(1 − Nd )

+ N
(LA−1)
d + N2

d

(
1 − N

LB−1
d

)
(1 − Nd )

+ N
(LB−1)
d . (54)

The notation TA+r means the swap acting on X = A ∪ 1B,2B, . . . ,rB and similarly X = A − r = A\1A,2A, . . . ,rA. For LA,LB

reasonably large we find from Eq. (54) that at the conclusion of the first cycle, i.e., iteration 1,

P α=2
nc=1 ≈ 2N2

d

(1 − Nd )
, (55)

while for nc 	 LA,LB

P α=2
nc

≈
(

2N2
d

(1 − Nd )

)nc

, (56)

and again we recall that this is for the best case sequence. Also
note that from Eq. (14) we see that for each nontrivial action of
the averaging procedure over the unitaries we get a decrease of
purity by the same amount, (1 − 2Nd ), thus a sequence which
maximizes the number of nontrivial actions will result in the
maximum decrease of purity.

Now we want to compare the above case with the sequence
that produces the least decrease in purity (or the least 2-Renyi
entropy), or the worst case. We see that by keeping the same
internal structure of UA,UB and comparing the purities corre-
sponding to the four possible cases (1) U = UeUAUB,(2) U =
UBUeUA,(3) U = UAUeUB,(4) U = UBUAUe we can easily
see that for nc = 1 the sequence (4) is indeed the worst case
scenario. Numerically we find that sequence 4 performs the
worst also for generic large nc. As nc > 1, the decrease of
purity also depends on what is the ordering of the unitaries
in the products UA and UB . We find numerically that the
least decreasing sequence of unitaries (worst case) is given by
choosing Uworst = UBUAUe with UA = UaLA−1 · · · Ua2Ua1 and
UB = UbLB −1 · · · Ub2Ub1 . Let us quantify the purity using the
worst sequence Uworst as a function of nc. For nc = 1, we have

P α=2
nc=1 = Tr[ω⊗2(NdTA−1 + NdTA−1)] = 2Nd. (57)

We can also obtain the exact expression for the purity after
any number of iterations nc � LA where the size of the
environment is LB � LA. We find

P α=2
nc

=
m=nc−1∑

m=0

Tr

[
ω⊗2,

C(nc,m)

2
N

(nc+m)
d

× (TA−(m+1) + TA+(m+1))

]
(58)

= 2snc

{
1 − [(1 − Nd )Nd ]nc

(
2nc − 1

nc

)
2

×F1(1,2nc; 1 + nc; N )

}

= 2N
nc

d

(1 − Nd )nc
{1 − f (nc)}, (59)

where C(nc,m) = 2( nc + m − 1
m ), s = Nd

(1−Nd ) , and 2F1(1,2nc;
1 + nc; N ) is the Gauss hypergeometric function. Therefore,
our formalism allows us to obtain typicality of the purity for

arbitrary depth of the RQC. When nc = O(1), the subsystem
is very far from being the Haar case, and the RQC is not
a t design for any t ; indeed, the system features an area
law for the entanglement. As nc increases, entanglement
propagates in the bulk at distance ∼ nc from the boundary.
For large values of nc, the expression simplifies because
f (nc → Large) → 0, and we see that

P α=2
nc→Large ≈ 2N

nc

d

(1 − Nd )nc
. (60)

Comparing this expression to the one for the purity in the best
case sequence [Eq. (56)], we see that, as long as nc is smaller
than the system size, the best case sequence is better by a
factor of 1

2 (2Nd )nc ; see Fig. 4 (top panel). Nevertheless, the
same figure shows that after system size is reached, the two
cases converge to a similar value. In the following, we show
that the asymptotic value is independent of the ordering. This
means that there is a nc above which there is an onset for the
independence of the ordering. The numerical results shown in
Fig. 4 (top panel) suggest that the onset happens at nc ∼ LA.

We can give a justification of why the above given
sequences are indeed the ones that decrease the purity the
most (best) or the least (worst). At nc = 1, of course, all the
unitaries acting after Ue are not entangling at all. With nc

growing, all the unitaries that are acting before Ue allow some
entanglement to be generated among the qubits. The sequences
that go towards the boundary bring entanglement towards it,
while the ones which start with the boundary and go outwards
bring entanglement away. In this case, indeed, the site 1A would
get very entangled with the bulk in A (the same occurs to the
B side), and by monogamy this does not allow to effectively
transfer entanglement information across the partition. This
scenario also shows how in the worst case the RQC would
entangle nodes at the same length as the iteration number.

At this point we want to look for a result about the
minimum purity of the nc-iterated ensemble Enc . The purity
is a monotonically decreasing function because it is obtained
by iterated application of CP maps for all nc. As we pointed
out above, the different results above hold in the region of
validity for the scaling of nc. Of course the absolute minimum
of the purity of the reduced state cannot be less than ( 1

d
)LA

corresponding to the totally mixed state. To answer questions
about the average distance of a state in Enc asymptotically
to the totally mixed state on the subsytem A we resort to
the superoperator formulation a little later. As we noticed
above, the plot in Fig. 4 (top panel) also shows that for
large nc the ordering does not count. This means that our
scheme does indeed mimic the Trotter scheme as far as the
statistics of the reduced system is concerned. In other words,
the average decrease of purity in this model approximates the
average decrease of purity obtained by evolving with local
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FIG. 4. (Color online) (Top panel) Purity as a function of nc for
the best sequence of unitaries (circles) and for the worst (squares)
for LA = LB = 8. The smooth line connecting the squares is the
analytic expression for worst case. The other curves represent the
purities obtained for five random sequences. One can clearly see
that these data lie between the best and the worst P nc

. (Bottom
panel) Convergence of the worst case sequence to the asymptotic
formula value for different values of system or environment length.
Blue circles (L = 5,LA = 2) and yellow rhombi (L = 6,LA = 3)
converge to >99% of their asymptotic value whereas purple squares
(L = 8,LA = 3) converges to >97%.

time-dependent Hamiltonians and using the Trotter scheme.
The irrelevance of ordering for large nc can be understood
mathematically in the superoperator formalism, which we now
proceed to describe for this model. The chain superoperator
is a σ -ordered product of noncommuting projections, i.e.,
Rchain = Rσ (|E|) · · ·Rσ (1), because of the noncommutavity of
the local unitaries that make up the product. In fact the products
in the superoperator is in reverse order of unitaries. For the sake
of brevity without explicitly writing α = 2, using Eq. (9) and
the first line of Eq. (54), one can see

U = UnUn−1 · · · U1 ⇒ Rchain = R1 · · ·Rn−1Rn, (61)

where the subscripts on U denote supports for the same. Note
that, for a fixed sequence, R†

chain �= Rchain and therefore Rchain

is not a Hermitian operator. Nevertheless, the averaged sum
over all possible sequences, R = 1

n!

∑
σ Rσ , is Hermitian.

Since our definition of the best sequence is U = UeUAUB

with a specific internal structure of unitaries within UA

and UB and that for the worst sequence is U = U
†
AU

†
BUe,

Eq. (61) implies that Rbest = R†
worst. One can understand the

action of the superoperator by studying its action on the
nonorthnormal basis of the swap TX,X ⊂ V operators. We
regard the swap operators as kets in the (|V | + 1)-dimensional
subspace S = span{|i〉},0 � i � |V | of the Hilbert-Schmidt
space on (HV )⊗2. This subspace is the space of swap operators
acting on all i qubits from one end of the chain where
0 � i � |V |. The correspondence |i〉 = Ti = 1V \i ⊗ Ti then
implies that the Hilbert-Schmidt inner product 〈i|j 〉 �= δi,j . In
this basis the matrix representations of these superoperators
are real, and so it turns out that the eigenvalues of Rbest and
that of Rworst are identical. This means that for sufficiently
large iteration number nc which sequence we choose does not
matter while the rate of approach to the asymptotic value of
purity is dictated by just the gap (1 − λ2) in either case. The
difference in initial decays of the purity for the sequences
lies in the fact that the eigenvectors corresponding to identical
eigenvalues are different.

Let us now explain the action of Rchain in our chosen basis.
Consider the action of the superoperator Rchain corresponding
to the best sequence for the linear chain which has |A| =
LA,|B| = LB when it takes as an argument some TX,X ⊂ V

which is the swap on (HX)⊗2 subspace. Then the possibilities
are

Rchain(|0〉) = 1, Rchain(|V 〉) = 1,

Rchain(|i〉) =
i−1∑
p=0

N
1+p

d |i + 1 − p〉 + Ni
d |0〉, 1 < i < LA,

Rchain(|LA〉) =
LA−1∑
p=1

N
1+p

d |LA + 1 − p〉 + N
LA

d |0〉

+
|V |−LA−1∑

p=1

N
1+p

d |LA − 1 + p〉 + N
LA

d |2LA〉,

Rchain(|i〉) =
|V |−i−1∑

p=0

N
1+p

d |i − 1 + p〉 + N
|V |−i

d |V 〉,

LA < i < |V |. (62)

On this basis the matrix representation R of Rchain cannot be
guaranteed to be even normal; thus we may attempt only a
Jordan decomposition of R, but this is enough to understand
the iterative behavior of the RQC. The purity of the generated
ensemble after any number of iterations k is given by .

P α=2
nc

=
∑
|i〉∈S

〈i| Rnc |LA〉 . (63)

From Eq. (61) we see that ||Rchain|| �
∏

e∈E ||Re|| � 1, which
means that all eigenvalues λ are less than equal to 1 in modulus,
and hence asymptotically only the contribution from fixed
points survive. Note that each of the projections Re has two
eigenvectors 1 and TV (which are swaps on no nodes and all
nodes, respectively), with eigenvalue 1. If one assumes then
that the common eigenspace of Rchain is spanned by 1 and TV
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we find that the asymptotic value of the purity is

P α=2
nc→∞ = 〈

ω⊗2,R∞
chain(TA)

〉
=
〈
ω⊗2,

1 + TV√
dL(dL + 1)

〉〈
1 + TV√

dL(dL + 1)
,TA

〉

+

0︷ ︸︸ ︷〈
ω⊗2,

1 − TV√
dL(dL + 1)

〉 〈
1 − TV√

dL(dL + 1)
,TA

〉

= 1√
dL(dL + 1)

〈
1 + TV√

dL(dL + 1)
,TA

〉

= d2L−LA + dL+LA

dL(dL + 1)
, (64)

where the normalization for the symmetric and antisymmetric
combinations of the basis vectors for the common eigenspace
is obtained by setting 〈1+TV

2C
,1+TV

2C
〉 = Tr[1+TV

2C2 ] = 1 ⇒ C =√
dL(dL + 1). We have verified this result numerically using

small system lengths, and the convergence with nc to the value
given by Eq. (64) is shown by Fig. 4.

For the specific case of LA = LB we found numerically
that the subdominant eigenvalue λ2 saturates at a value of
(2Nd )2 Fig. 5 with increasing system size. Indeed, numerical
evidence indicates that the spectrum of Rchain at least for
this case is entirely positive: 0 � λ : λ ∈ Spec(Rchain) � 1.
All that happens upon increasing the system size is that the
population of eigenvalues in the subregions of the domain
0 � λ � λ2 increases proportionally, except for the largest
eigenvalue of 1, whose number remains equal to 2; see Fig. 5.
This corroborates our assumption that there exist only two
fixed points. With this value of the asymptotic purity we can
bound the average distance of states in our ensemble reduced
to the subsystem A from the totally mixed state on it, σ = 1A

d |LA | .

Indeed, we see that the trace distance, D(ρ,σ ) =
1
2 ||ρ − σ ||1 � 1

2

√
rank(ρ − σ )||ρ − σ ||2 while

1

2

√
ρ − σ ||ρ − σ ||2 = 1

2

√
ρ − σ

√
Tr[ρ2 − ρσ − σρ + σ 2]

= 1

2

√
d |A|
√

Tr(ρ2) + Tr(σ 2) − 2

dA

= 1

2

√
d |A|√P (ρ) − P (σ )

� 1

2

√
d |A|

√
ε︷ ︸︸ ︷

P (ρ) − P (σ )

� 1

2

√
d |A|√ε̄ ≈ 1

2

√
dLA

dLB
. (65)

Thus for d |B| � d |A| we can get indistinguishably close to the
totally mixed state of the subsystem.

The analytical calculation of the variance for this model is
difficult because the unitaries do not have disjoint supports.
However, we can resort to a Markov-type inequality for
positive-valued random variable to assert that the ensemble
has a small variance since the average purity itself for a large
number of iterations reaches a value exponentially small in
system size.

�

�

�

�

�
�
�

� �
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FIG. 5. (Color online) (Top panel) Saturation of the subdominant
eigenvalue for LA = LB with increasing LA for a chain of qubits.
Similar behavior is observed for general qudits. (Bottom panel)
Distribution of eigenvalues for a chain of qubits with LA = LB . The
orange bars represent population levels within bands of the domains
for the eigenvalues with LA = LB = 200. Blue bars (superimposed
on orange) are for LA = LB = 100 The gap in the spectrum can be
clearly seen as the difference between the largest eigenvalue of 1 and
the next = 0.64.

To summarize, the 1D model shows that for nc = O(1)
almost every time-dependent local Hamiltonian will evolve a
factorized state to a state obeying the area law. The fluctuations
around this average are small in view of the Markov inequality.
On the other hand, when the number of iterations (the
“time” in the Trotter scheme) scales with the size of the
subsystem nc > LA, almost every evolution will produce a
state with the volume law, and, asymptotically, maximally
entangled.

B. Contiguous Edge Model on the square lattice

Of course, the area law in one dimension is rather trivial.
In order to find a more meaningful result, we need to study
a 2D situation. We will see that in this case the fluctuations
around the area law are even smaller. We consider a 2D square
lattice with a bipartition into A ∪ B as in Fig. 6. In this case
the boundary between A and B is obviously a 1D system. For
sake of simplicity, let us start with a RQC that applies Haar
distributed two-body gates across nodes of the bipartition that
are nearest neighbors. It is easy then to see that the unitaries
across the boundary will have disjoint spaces of action and the
average purity is a product of the single-edge purities for the
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B

A

FIG. 6. (Color online) A bipartition (A,B) of a square lattice.

nc = 1 iterated ensemble. Explicitly,

P α=2 = Tr

[
ω⊗2

∫
dUe1 (U †

e1
)⊗2T1a1U

⊗2
e1

×
∫

dUe2 (U †
e2

)⊗2T1a2U
⊗2
e1

· · ·
∫

dUel

(
U †

el

)⊗2
T1alU

⊗2
e1

TA\1a1,1a2,...,1al

]
= Tr[ω⊗2Nd (11a1,1b1+T1a1T1b1)Nd (11a2,1b2+T1a2T1b2)

· · ·Nd (11al,1bl + T1alT1bl)TA\1a1,1a2,...,1al]

= Tr
[
ω⊗2Nl

d (11a1,1b1,1a2,1b2,...,1al,1bl

+ 11a1T1b1,1a2,1b2,...,1al,1bl + · · ·
+ T1a1,1b1,1a2,1b2,...,1al,1bl)TA\1a1,1a2,...,1al

]
= (2Nd )l , (66)

where l is the number of closest nodes on either side of the
boundary, i.e., the length. This means that the 2-Renyi entropy
for this case can be lower bounded as S2 > −log(P α=2) =
−l log(2Nd ). In other words, the entropy is greater than a
constant times the length of the boundary. In this case too it
turns out that acting with the internal unitaries first we can
get lower purities and the reason is the same as the monogamy
arguments presented for the linear chain analysis. For example,
in Fig. 6 if we consider the very simple system of just the nodes
1a1and1a2 in A and 1b1and1b2 in B then, upon implemen-
tation of the sequence U = U1b1,1b2U1a1,1a2U1a1,1b1U1a2,1b2

the average at iteration 1 is P α=2
k=1 = (2Nd )2 = 0.64, while

for the sequence U = U1a1,1b1U1a2,1b2U1b1,1b2U1a1,1a2 it is
P α=2

k=1 = 2N2
d + 8N4

d = 0.0525.
Let us now compute the variance. For the 2D model we

find that since the edges have disjoint supports the average of
the square of purity is a product of the average of squares of
purity for each edge, and similarly the average purity itself is
a product of the average purity for each edge:

(P )α=2
2D = (P α=2)2

e1
(P α=2)2

e2
. . . (P α=2)2

el
, (67)

P α=2
2D = P α=2

e1
P α=2

e2
. . . P α=2

el
, (68)

and the variance is thus

Var
[
P α=2

2D

] = I l − (2Nd )2l

=
[

2(2d4 + 9d2 + 1)

(d2 + 3)(d2 + 2)(d2 + 1)

]l

−
[

2d

(d2 + 1)

]2l

,

(69)

which, if we have qubits, d = 2 gives an exponentially
decaying variance of

Var
[
P α=2

2D

] = −0.64l + 0.657l (70)

This is a strong result. The average 2-Renyi entropy does
follow the area law. We are averaging over all the possible
states obtained by local unitary transformations starting from
a completely factorized state. This ensemble contains all the
ground states of local Hamiltonian (without topological order).
Moreover, we have shown that deviations from the area law
are exponentially suppressed. Proving the area law in two
dimensions for the ground states of local Hamiltonians is
one of the most sought-after results in quantum many-body
theory, and our result represents a progress also in this
direction.

VI. CONCLUSION AND DISCUSSION

The question whether a physical model can generate an
ensemble of states that reproduce moments over the Haar
measure, that is, of the set of all the states in the Hilbert
space, is an important question in quantum information theory,
simulability of quantum many-body systems, and recently
the foundations of quantum statistical mechanics. In this
paper we present some physical models with the aim of
studying the statistical moments of the reduced subsystem
A of an initially bipartite quantum many-body system A ∪ B,
and with locality constraints that should contain the essence
of the local dynamics induced by a local Hamiltonian. In
this formulation the relevant size LA at play is that of the
subsystem A.

We present a superoperator theory that allows us to make
statistical claims beyond the Haar measure. In particular, we
are able to discuss both the typicality of area law (which is
quite far from the Haar measure) and the volume law (which,
indeed, is what would hold for generic states in the Hilbert
space). In simple words, we can show that states evolved with
a local evolution for times of O(1) with respect to LA, exhibit
area law for the entanglement on average, while for large
times scaling with the subsystem size they exhibit a typical
volume law. We want to stress the fact that typically means
that in the ensemble considered, the average is such and that
the variance is vanishingly small in the large system limit. In
other words, almost all members of the ensembles constructed
show the above-mentioned entanglement properties. In the
asymptotic case, we recover results similar to those of t

designs, but, again, where the scaling is that of the subsystem
and not of the whole system. We have also discussed the
implications of these findings for the foundations of statistical
mechanics.

Our results are based on the algebra of the swap operators
on subsets of the total nodes in the graph. This algebra
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shows how the underlying graph-theoretic structure of the
system determines the propagation of entanglement within the
subsystem. In particular, the mixing time for the subsystem
is strongly dependent on the connectivity of the graph and
other graph-theoretic notions like the average distance between
two nodes or the Hausdorff dimension. Recently it has been
advanced that black holes are fast scramblers, that is, systems
in which the mixing is maximal in a logarithmic time [43,44],
and several models for the fast scrambling process have been
put forward [43–47]. We believe that our techniques can be
useful also for this line of research.

As we discussed in the introduction, as long as topological
order is absent, ground states of local gapped Hamiltonians can
be obtained by a circuit of fixed depth from a completely factor-
izable state. It would be interesting to study the statistics of the
entanglement in ensembles where the fiducial state is topolog-
ically ordered. For instance, we would like to know if in such
ensembles there is a nonvanishing topological entropy [48–50]
on average and what are the fluctuations. This technique may
prove useful to study the problem of the stability of topological
phases.
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APPENDIX A: CALCULATION OF PRODUCT OF TRACES
USING SCHUR’S ORTHOGONALITY THEOREM

For the symmetric group Sα of order α, the elements are
the permutation operators σ on some space H where H can be
broken up into a direct sum of irreducible subspaces denoted by
λ, each with dimension dλ and multiplicity mλ, i.e., formally
H = ⊕λ∈IRR(Sα)Cmλ ⊗ Cdλ . For any operator σ on the same
space we have that

Tr(σσ ) =
∑

λ

mλTrdλ
(σσ ) =

∑
λ

mλ

dλ∑
i,j=1

σ
(λ)
i,j σ

(λ)
ji , (A1)

Tr(σ ) =
∑
λ′

Trdλ′ (σ ) =
∑
λ′

dλ∑
l=1

σ
(λ′)
ll . (A2)

Using the above two equations we get that

1

α!

∑
σ

Tr(σσ )Tr(σ )

= 1

α!

∑
σ∈Sα

∑
λ,λ′∈IRR(Sα )

mλmλ′ ×
dλ∑

i,j=1

dλ′∑
l=1

σ
(λ)
i,j σ

(λ′)
ll σ

(λ)
ji

=
∑
λ,λ′

mλmλ′
∑
i,j,l

1
dλ

δλ,λ′ δi,l δj,l︷ ︸︸ ︷(
1

α!

∑
σ∈Sα

σ
(λ)
i,j σ λ′

ll

)
σ

(λ)
ji

=
∑

λ

m2
λ

dλ

dλ∑
i=1

σ
(λ)
ii =

∑
λ

m2
λ

dλ

χ (λ)(σ ), (A3)

where in the second line above the Kronecker deltas appear
due to Schur’s orthogonality theorem [40].

APPENDIX B: CALCULATION OF VARIANCE

The trace w.r.t. �+ in Eq. (17) can be given a closed-form
expression again by using Schur’s orthogonality relation for
representative functions on the irreducible representations of
a group; see, for example, Ref. [40]. The result is

Tr
[
�+
(
T

(12)
i ⊗ T

(34)
i

)= ∑
λ:IRRs of S4

m2
λ

dλ

Tr
[(

T
(12)
i ⊗ T

(34)
i

)
�λ

]
.

(B1)

Notice that now the sum is over just the irreps of S4.
The symmetric group of order 4, S4 has 4! = 24 elements
which are all permutation operators σ on four labels. In
our case the labels refer to copies of the ith or j th space
that make up (Hi ⊗ Hj )⊗4. Thus σ = σi ⊗ σj is a valid
decomposition of the permutation operators. The projector
onto the totally symmetric part of (Hi ⊗ Hj )⊗4 takes the form
�+ = 1

24

∑
σ∈S4

σi ⊗ σj and hence

Tri,j
[(

T
(12)
i ⊗ T

(34)
i

)
�+
]

= 1

24

∑
σ∈S4

Tri,j
[(

T
(12)
i ⊗ T

(34)
i ⊗ 1j

)
(σi ⊗ σj )

]
= 1

24

∑
σ∈S4

Tri
[(

T
(12)
i ⊗ T

(34)
i σi

)]
Trj [(1j σj )]. (B2)

Note that in cycle notation the operator T
(12)
i ⊗ T

(34)
i =

(12)i(34)i . Thus its product with any other σi still gives us
a permutation operator on the i space. One can then just count
the number of cycles in the product obtained where each cycle
contributes a multiplicative factor of the dimension d of the
space. For example, Tri(σi = (12)i(34)i) = d2,Tri(σi = 1i) =
d4 since there are two cycles in the permutation (12)i(34)i
and 4 in (1i). Similarly the traces over the j th spaces
can also be obtained. Finally the calculation above yields
Tri,j [(T (12)

i ⊗ T
(34)
i )�+] = d2(2d4+9d2+1)

12 .
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