Downloaded 06/19/18 to 166.111.142.88. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

SIAM J. DISCRETE MATH. (© 2014 Society for Industrial and Applied Mathematics
Vol. 28, No. 1, pp. 99-115

SUBMODULARITY HELPS IN NASH AND NONSYMMETRIC
BARGAINING GAMES*

DEEPARNAB CHAKRABARTY', GAGAN GOEL}, VIJAY V. VAZIRANI¢, LEI WANGY,
AND CHANGYUAN YUI

Abstract. Motivated by the recent work of [V. V. Vazirani, J. ACM, 59 (2012), 7], we take a
fresh look at understanding the quality and robustness of solutions to Nash and nonsymmetric
bargaining games by subjecting them to several stress tests. Our tests are quite basic; e.g., we ask
whether the solutions are computable in polynomial time, and whether they have certain properties
such as efficiency, fairness, and desirable response when agents change their disagreement points or
play with a subset of the agents. Our main conclusion is that imposing submodularity, a natural
economies of scale condition, on Nash and nonsymmetric bargaining games endows them with several
desirable properties.

Key words. Nash bargaining, submodularity, convex programs
AMS subject classification. 91B26

DOI. 10.1137/110821433

1. Introduction. Bargaining is perhaps the oldest situation of conflict of inter-
est, and since game theory develops solution concepts for negotiating in such situ-
ations, it is perhaps not surprising that bargaining was first modeled as a game in
John Nash’s seminal 1950 paper [Nas50], using the framework of game theory given
a few years earlier by von Neumann and Morgenstern [vNM44]. Since then, this has
led to a theory (of bargaining) that lies today at the heart of game theory (e.g., see
[Kal85, TL89, OR90, Tho94al).

In Nash’s model, n agents participating in the bargaining game define a feasible
set of utilities depending on the constraints of the game. Furthermore, each agent also
possesses a disagreement utility below which she pulls out of the game. The feasible
set is assumed to be downward closed, and the n-tuple of disagreement utilities is
assumed to lie in the set. Nash proposed that a solution to the bargaining game must
satisfy four reasonable axioms and proved that there is a unique point in the feasible
set of utilities of the agents which satisfies all these.

Over the years, the theory of bargaining developed along two major aspects. The
more prominent one was the axiomatic approach, whose goal was to characterize
the solution concept that results from assuming a given set of axioms. Notable is the

*Received by the editors January 18, 2011; accepted for publication (in revised form) October 8,
2013; published electronically January 23, 2014. This work was supported in part by National Natural
Science Foundation of China grant 60553001 and National Basic Research Program of China grant
2007CB807900,2007CB807901. A preliminary version of this paper appeared in Proceedings of the
4th Workshop on Internet and Network FEconomics, Shanghai, 2008.

http://www.siam.org/journals/sidma/28-1/82143.html

TMicrosoft Research, Bangalore 560001, India (dechakr@microsoft.com). This author’s work was
done as a graduate student at Georgia Tech.

fGoogle Inc., New York, NY 10011 (gagan@google.com). This author’s work was done as a
graduate student at Georgia Tech.

§College of Computing, Georgia Tech, Atlanta, GA 30332-0280 (vazirani@Qcc.gatech.edu).

TMicrosoft Corporation, Bellevue, WA 98004 (leiwa@microsoft.com). This author’s work was
done as a graduate student at Georgia Tech.

Institute for Theoretical Computer Science, Tsinghua University, Beijing 100084, China
(yu@gmail.com).

99

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/19/18 to 166.111.142.88. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

100 CHAKRABARTY, GOEL, VAZIRANI, WANG, AND YU

work of Kalai [Kal77], which removes one of the axioms of Nash (that of symmetry).
Unlike the Nash bargaining solution, which is unique, a game can have infinitely many
nonsymmetric bargaining solutions. One can single out one of these by specifying the
clout of each player. Kalai’s main theorem implies that the nonsymmetric solution to
an n-person bargaining game, with integral clouts, corresponds to a Nash bargaining
solution to a game with a larger number of players which is obtained by replicating
each of the n players as many times as her clout.

The second direction was to determine the quality of the basic solution concepts
of this theory by subjecting them to what may be viewed as “stress tests.” These
determine whether or not a particular solution concept satisfies a particular property
for all instances of the bargaining game. We list the properties of Nash bargaining
games that have been studied so far (e.g., see [Thol0]). Thomson [Tho87] shows
that all such games satisfy monotonicity; i.e., if the disagreement utility of a player
is increased, then her utility cannot decrease. He also studied strong monotonicity;
i.e., if the disagreement utility of one player is increased, then any other player’s
utility should not increase. He showed that Nash bargaining games do not always
satisfy strong monotonicity. Thomson [Tho83] also defines the notion of population
monotonicity, i.e., when bargaining with a proper subset of the players, an agent’s
utility should be nondecreasing, and shows that the Nash bargaining solution does
not satisfy this property.

Although useful, such “negative” results can give only limited information on the
quality of a solution concept. In particular, the instances of interest may be highly
structured and therefore may pass the test even though the entire solution concept
does not. Motivated by recent insights on the two solution concepts of Nash and
nonsymmetric bargaining games, obtained from an algorithmic study of these notions
[Vaz12], we take a fresh look at understanding their quality and robustness. We
deviate from the earlier line of work in two respects. First, we use the classification
of these games given in [Vazl2] to determine whether specific classes of these games
satisfy a given property. Second, we define and study new tests that follow naturally
from an algorithmic game theory perspective.

Our main conclusion is that imposing submodularity, a natural and well-studied
economies of scale condition, on Nash and nonsymmetric bargaining games endows
them with several desirable properties. More precisely, if the maximum possible fea-
sible utility obtained by a subset of agents is bounded by a submodular function on
the subset, then the corresponding Nash and nonsymmetric bargaining solutions sat-
isfy all the properties we study. Our new tests are of a basic nature. The first test
is computational: whether the Nash and nonsymmetric bargaining solutions can be
efficiently computed in polynomial time. We show that submodularity leads to com-
binatorial, strongly polynomial time algorithms. Then we ask whether the solutions
yielded by these two concepts are “efficient” and “fair,” after giving reasonable, quan-
titative definitions of efficiency and fairness. We also define and study the notion of
surplus monotonicity; i.e., if the disagreement utility of a player is increased, then her
surplus utility, over and above the disagreement utility, increases. As stated above,
an important catalyst for our results is the insight gained from the combinatorial
algorithmic approach to the Nash and nonsymmetric bargaining games.

1.1. Detailed description of our results. In order to describe our results
more formally, we need to recall some classes of Nash and nonsymmetric bargaining
games defined recently in [Vaz12]. LNB (linear Nash and nonsymmetric bargaining)
games is the class of games whose feasible set of utilities is defined by finitely many

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/19/18 to 166.111.142.88. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

SUBMODULARITY IN BARGAINING GAMES 101

linear constraints. UNB (uniform utility Nash and nonsymmetric bargaining) games
is the subclass of LNB games in which for each available resource, each agent who
uses this resource uses it in the same way; i.e., the linear constraints are all packing
constraints and the coefficients in each constraint are 0/1. Clearly, only 2141 such
constraints are needed, where A is the set of agents—one for each subset of A. We
can now view the right-hand sides of these constraints as being given by a set valued
function over the power set of A. If this function is submodular, the game is said
to be in the subclass SNB (submodular utility Nash and nonsymmetric bargaining)
games of UNB games.

UNB and SNB capture a large class of bargaining scenarios. At the risk of vi-
olating linearity of exposition, we refer the interested reader to section 3 for several
illustrative examples of UNB and SNB games. We give one simple example here, as it
might be useful to keep it in mind for the forthcoming properties. Consider n agents
bargaining for k divisible items. The utility of an item j to any agent is either 0 or a
fixed quantity p; (say the value of item j) that depends only on item j. Furthermore,
the utilities of all agents are linear. It is not too hard to see that the feasible set
of utilities forms a downward closed polytope. In fact, given a subset S of agents,
the total utility obtainable by this subset is precisely the total value of items which
give nonzero utility to at least one agent in the set; and these inequalities capture the
polytope. Thus, this bargaining game lies in UNB, and in fact it lies in SNB (since
neighborhood functions are submodular).

The first result of our paper is the computational complexity of the solutions
in SNB. We give a completely combinatorial, strongly polynomial time algorithm to
compute solutions for all games in SNB; as a corollary we show that equilibrium allo-
cations are always rational numbers. Furthermore, the insight obtained in developing
this algorithm is useful in our subsequent results regarding the various properties of
bargaining games.

Several of our results show that a game in UNB has a certain property iff it is in
SNB. Equivalently, these results characterize SNB within UNB. These results should
not, come as a surprise; submodularity has been exploited in similar ways in the past in
game theory (e.g., see Moulin and Shenker [MS01]), showing that a cross-monotonic
cost sharing method gives rise to a budget balanced and group strategyproof cost
sharing mechanism if the cost function is submodular, and the results of [JV10, CD09],
giving analogous characterizations of Eisenberg—Gale markets defined via submodular
functions. We now describe the properties we study; the reader may want to keep the
example described above in mind for an illustration.

We say that a Nash bargaining game is utilitarian efficient iff the total value of
the Nash bargaining solution is the same as that of the most efficient solution that
can be obtained in a centralized manner. We will say that a Nash bargaining game
is strongly monotone if whenever one player increases his disagreement utility, no
other player’s utility can increase in the resulting Nash or nonsymmetric bargaining
solution. We define the surplus utility of an agent to be the utility she gets in a Nash
or nonsymmetric bargaining solution, over and above her disagreement utility. We
say that a Nash or nonsymmetric bargaining game is surplus monotone if increasing
the disagreement utility of any agent does not lead to an increase in her surplus
utility. We say that a bargaining solution is min-max fair if the surplus utility vector
of the bargaining solution sorted in a decreasing order is lexicographically dominated
by the surplus utility obtained from any other Pareto optimal solution; a solution is
Pareto optimal if there is no other feasible utility vector coordinatewise dominating
this utility vector. Similarly, maz-min fairness is defined.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/19/18 to 166.111.142.88. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

102 CHAKRABARTY, GOEL, VAZIRANI, WANG, AND YU

The above properties fixed the number of players involved in the game. The
following notion, defined by Thomson [Tho94b], studies the quality of the solution
as the set of agents changes. A Nash bargaining game is defined to be population
monotone if the utility of any agent in the bargaining solution can increase only when
playing with a subset of the agents. Similarly, we say that a nonsymmetric bargaining
game is population monotone if the utility of any agent in the bargaining solution can
increase only if clouts of other agents are decreased.

For each of the properties stated above, except surplus monotonicity, we show
that a game in UNB has this property iff it is also in SNB; i.e., these properties
characterize SNB within UNB.

Organization. We start with formal definitions of Nash and nonsymmetric bar-
gaining games, UNB, SNB, and the properties described above in section 2. We then
give illustrative examples in section 3. After giving some mathematical preliminaries
in section 4, we spend the subsequent sections describing each property we study.

2. Nash and nonsymmetric bargaining games. For a set of agents A, a
Nash bargaining game is defined by a pair! (c,P), where P C R'fl is a compact and
convex set which defines the feasible set of utilities of all the agents, and ¢ € P is
known as the disagreement point which defines the amount of utility each agent will
get if the bargaining process fails.

Nash [Nas50] defined the bargaining solution u* € P of this game to be the one
which satisfies four axioms:

1. Pareto optimality. No point x in P can weakly dominate u*, that is, z; > u;}
for all 1 € A.
2. Invariance under transformation of utilities. The affine transformation of the
utilities leads to the same affine transformation on u*.
3. Symmetry. If the agents are renumbered, then it suffices to renumber the
coordinates of u*.
4. Independence of irrelevant alternatives. If u* is the solution for (c,P), where
c,u* € S and § C P, then u* is also the solution for (c,S).
Nash proved that there is a unique point in P which satisfies these axioms, and,
moreover, this point (u € P) is the one that maximizes [[, ,(u; —¢;) or, equivalently,
> icalog(ui — ci).

In the nonsymmetric bargaining game, each agent ¢ has a positive bargaining
weight or clout «; which represents his relative bargaining power. The bargaining
solution in this case is the point in the feasible region P which maximizes the objective
function), 4 a;log(u; — c;).

2.1. Uniform utility Nash and nonsymmetric bargaining games. The
class linear Nash and nonsymmetric bargaining (LNB) games, defined in [Vazl2],
consists of games whose feasible set P is defined by a finite number of linear con-
straints. The main focus of our paper will be on the subclass of LNB games called
uniform utility Nash and nonsymmetric bargaining (UNB) games [Vaz12]. In these
games, the linear constraints are all packing constraints and, in each of them, the
coefficients of the variables are either 0 or 1. Clearly, there can be at most 214! such
constraints; thus a function of the form v : 24 — R* uniquely encodes a feasible set
in UNB games. A UNB game is called an SNB game if the function v is a submodular

IThroughout the paper, we will use boldface to denote vectors; however, when we wish to denote
the coordinates we will revert to normal font. For instance, c is a vector, and ¢; is the ith coordinate,
which is a scalar.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/19/18 to 166.111.142.88. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

SUBMODULARITY IN BARGAINING GAMES 103

function. As stated in the introduction, we give examples of UNB and SNB games in
section 3.

Now given a disagreement point ¢ and a fixed set of agents T' C A, the solution
to a uniform utility Nash bargaining game among the agents in 7" is captured by the
following convex program:

(1) maxz log(u; — ¢;)

€T
st.VS CT, > ui <o(S),
€S
VieT, u; > 0.

For uniform utility nonsymmetric bargaining games, the objective functions that needs
to be maximized is), a; log(u; — ¢;).

For a fixed function v : 24 — R*, we will define a family of games F(v) to be the
set of all Nash bargaining games for various choices of disagreement points ¢ and sets
T C A. An instance (c¢,T') € F(v) will refer to a particular Nash bargaining game in
F(v) with a fixed set T and disagreement point c. We call a game (c,T") feasible if
there exists at least one feasible u with u; > ¢; for all ¢ € T. Otherwise, we call it
infeasible. We will use u}(c,T') to denote the utility of the player ¢ in Nash’s solution
for a feasible bargaining game (c,T) € F'(v).

Similarly, for a fixed function v : 24 — R* and a positive bargaining weight vector
a = (a;)iea, we can define F(v,) to be the set of all nonsymmetric bargaining games
for various choices of disagreement points ¢ and set T C A.

We will assume that the following two natural conditions are satisfied by the
function v:

1. Nondegenerate. v()) = 0.

2. Nonredundancy of sets. For all subsets S C A, there exists a feasible utility
vector u such that set S is tight w.r.t. u, that is, > . g u; = v(S). It is easy
to see (using duality) that this property is equivalent to the property that v
satisfies fractional covering property, that is, for all S, v(S) < > 5 4 v(B)x B,
where xg’s are such that for all i € S, ZB:iEB zp > 1. a

We call such functions valid functions. Note that the second condition is without
loss of generality, as one can always modify the function v to satisfy this property
without losing any of the feasible points. The second condition also implies the
following: (1) monotonicity: for any Z; C Za C A, we have v(Z1) < v(Z3); and
(2) complement freeness: v(Z1 U Zs) < v(Z1) + v(Z2).

2.2. Properties of UNB games. In this paper, we are interested in the fol-
lowing game theoretic properties of UNB games.

1. Utilitarian efficiency. For any valid function v : 24 — R*, we say that F(v)
is wtilitarian efficient if for all subsets T C A, min(ryep() u*(c,T) is equal
to v(T), where u*(c,T) = >, uj(c,T).

2. Fairness. For any instance I = (¢,T) € F(v), define core(I) to be the set of
all feasible Pareto optimal solutions. For any vector u, let uge. be the vector
obtained by sorting the components of u in decreasing order. A vector x min-
maz dominates y if Xge. is lexicographically smaller than yg... Also let u* be
the bargaining solution of instance I. Instance [is said to be min-maz fair if
the vector u* — ¢ min-maz dominates y — c for all y € core(I). F(v) is said
to be min-maz fair if all the instances in F'(v) are min-max fair. Similarly,
we define the notion of maz-min fairness.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/19/18 to 166.111.142.88. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

104 CHAKRABARTY, GOEL, VAZIRANI, WANG, AND YU

3. Strong monotonicity. For any valid function v : 24 — R*, we say that F(v) is
strongly monotone if, for all games in F(v), the following property holds: On
increasing the disagreement utility ¢; of an agent i, the bargaining solution
does not increase the utility for any other agent j, where j # . Formally, for
any instance (c,7) and (¢/,T), T C A, where ¢’ = ¢ except that ¢, > ¢;, we
have for all j # 4, u}(c',T) < uj(c,T).

4. Surplus monotonicity. For any valid function v : 24 — RT, we say that
F(v) is surplus monotone if the surplus (i.e., uf — ¢;) of any agent 4 in the
bargaining solution does not increase if her disagreement utility ¢; increases.
Formally, for any instance (c,T) and (¢/,T), T C A, where ¢’ = ¢ except
that ¢, > ¢;, we have uf(c/,T) — ¢, <ui(c,T) — ¢.

5. Population monotonicity. For any valid function v : 24 — R*, we say that
F(v) is population monotone if, for any T3 C T» C A and any agent i € 11,
agent ¢ cannot obtain more utility in the bargaining solution of instance (c, 75)
than in the bargaining solution of (c,T}), i.e., uf(c,T1) > uf(c, T2).

In this paper we show that for each of the above properties, other than surplus
monotonicity, the property holds for F'(v) iff v is submodular.

All of the above definitions can be naturally extended for F(v,a)—the family
of nonsymmetric bargaining games. Most of our results also extend naturally to
this family of games; we point out the key differences in section 10. For the case
of population monotonicity, one can instead consider a stronger version, which says
that the bargaining utility of an agent should not decrease as the clout of some other
agent is decreased. We again show that F'(v,«) satisfies population monotonicity
w.r.t. clouts iff v is submodular. From this point on until section 10, we will concern
ourselves with the Nash bargaining game.

3. Examples of UNB and SNB games. We give some natural examples of
UNB and SNB games here. Example 1 illustrates a game which is in SNB; Example 2
illustrates a game which is in UNB but not in SNB; Example 3 illustrates a game
which is in LNB but not in UNB. In each of these examples we give only the feasible
set of utilities. The disagreement point ¢ could be any point in the strict interior of
the feasible set.

Ezample 1 (sharing arcs of a network with a single source). Consider a directed
network N = (V, A) with capacities on arcs. Let there be a fixed source s in the
network. Suppose there is a set of n agents where each agent controls a node ¢; and is
interested in receiving flow from the source s. The utility of an agent ¢ is the amount
of flow that goes from source s to sink ¢;. For any set S of agents, let v(S) be the size
of min cut separating source s and set S. Note that the function v is a submodular
function [Meg74]. Now the feasible polytope of utilities is given by

P = {u:VS’CA, Zuigv(S); Vi, ui>0}.

i€S

Ezample 2 (branchings in a network). As in the previous example, consider a
directed graph G = (V, A) with capacities on the arcs. Agents are subsets of V. For
an agent s € V, let her desired object be branchings rooted at s and spanning all V,
i.e., directed trees rooted at s and containing a path from s to each vertex in V.
Suppose agent s sends a flow fg, to each vertex in V' using the branching object b;
then his total utility is equal to the total flow sent along all his branchings, which is
equal to >, fo. For S CV, let v(S) be the capacity of the minimum cut separating

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/19/18 to 166.111.142.88. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

SUBMODULARITY IN BARGAINING GAMES 105

a vertex in V'\ S from S. A result of [JV10] on the characterization of the feasible
set of utilities shows that the game lies in (UNB\SNB), when the number of agents
|A| > 3. Moreover, the feasible utility set is given via

P = {u:VSQV, ZuiSU(S); Vi, uiz()}.

€S

Ezample 3 (sharing arcs of a network with source-sink pairs). Consider a directed
graph G = (V, A) where the arcs have capacities and there are k source-sink pairs
(s1,t1) ... (Sk,tr), each being a player in the game. The utility of each agent i is the
flow f; that can be routed from s; to ¢; concurrently. Since all feasible flows from the
sources to the sinks can be written as an LP, this game is in LNB.

We give a small example with £ = 2 to show that this game is not in UNB. There
are two arc-disjoint directed paths from sy to 1, each of length 3—(s1,a,b,t;) and
(s1,z,y,t1)—where a,b,z,y are nodes in the network; and there is a single directed
path from s to to—(s2,a,b,x,y,t2). The only arcs that have capacities are (a,b) and
(z,y), and each has a capacity of 1. Observe that when agent 2 sends § units of flow
from s5 to to, she “eats up” 0 units on each path of agent 1. Moreover, if agent 2 were
absent, agent 1 could have sent a flow of 2 units (on each of her paths), while agent 2
could have sent a maximum of 1 unit of flow in the absence of agent 1. That is, the
two agents do not share the resources in a uniform manner. The feasible polytope of
utilities in this example is given by

P={(ur,u2): 0<wu; <2, 0<ug <2; ug+2us <2}.

We remark that this game, for the case of 2 players, and in fact all 2-player games in
LNB have rational solutions and can be solved in polynomial time. This follows from
a result of [CDV10].

4. Preliminaries. For any valid function v, we say that S is tight w.r.t. u if
Y iesui = v(S). Let u* be the solution to the convex program given in (1). KKT
conditions of optimality of convex programs imply the existence of Lagrangian duals
p(S) for every set S C T satisfying the following three conditions:
1. For all S C T, p(S) > 0.
2. For all S C T, p(S) >0 = u* makes set S tight.
3. For all k € T', we have uj, > cx = > g.,cqP(S) =

We will call p(S) the price of set S.

The following lemma shows that for any set T C A of agents and any Pareto
optimal point u € P, there exists a disagreement vector ¢ such that u is the bargaining
solution for (¢, T).

LEMMA 4.1. Given any valid function v, a set T C A of agents, and a utility
vector w with u; > 0, for alli € T, u is Pareto optimal iff there exists a vector c, with
¢i >0 for alli € T, such that u is the bargaining solution for the instance (c,T).

Proof. If u is a bargaining solution, it has to be Pareto optimal. We now prove
the converse. Let § := min;c7 u; > 0. If u is Pareto optimal, we cannot increase u;
without changing other coordinates of u. Therefore, every agent i € T is in (at least)
one tight set Z; C T w.r.t. u. Set the price of any tight set Z; C T to be p(Z;) = P,
where P > %. Define ¢;’s as follows:

_1
uy—cp

1

® aTmT ZZQT:ieZ p(Z)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/19/18 to 166.111.142.88. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

106 CHAKRABARTY, GOEL, VAZIRANI, WANG, AND YU

We claim that the u, c and the prices satisfy the KKT conditions implying u is the
Nash bargaining solution with disagreement vector c. This is because only tight sets
are prices and ¢;’s are so defined to satisfy the second KKT condition. It remains to
check ¢; > 0 for all 4. This is true because every agent in 7' is in at least one tight
set, and therefore)., p(Z) > P > 1/§. This gives ¢; > u; — 6 > 0. O

Now we give some properties of the submodular and nonsubmodular functions
which will be used in our proofs.

PROPERTY 4.1. Given a valid submodular function v : 24 — R, and a utility
vector wu, if Z1,Z2 C A are tight sets w.r.t. u, then Z1 U Zy and Z1 N Zs are also tight
sets w.r.t. u.

Proof. w(Z1U Zy) +u(Z1N Zs) = w(Z1) + uw(Za) = v(Z1) +v(Z2) > v(Z1 U Zs) +
v(Z1 N Zy) > u(Zy U Za) + u(Z1 N Z3), where the second equality follows from the
tightness of Z; and Zs. O

By using the uncrossing argument and the above property, we get the following
corollary.

COROLLARY 4.1. Given any valid submodular function v and (¢,T) € F(v), we
can choose the prices for all subsets of T' in the KKT conditions such that the tight sets
with positive prices form a mested set family, i.e., T =Ty D To D+ Tp D Ty = 0.

We next state a property of nonsubmodular valid functions which enhances the
following theorem of [CD09)].

THEOREM 4.1 (Theorem 3.1 of [CD09]). Given any valid nonsubmodular func-
tion v, there exist a set S C A, i,j € A\ S, and a feasible utility vector u such that
the following hold:

1. S, Su{i}, SU{j} are all tight w.r.t. u.

2. No set containing both v and j is tight.

3. All tight sets containing either i or j must contain the agent ¢ € S with
ug > 0.

Chakrabarty and Devanur [CD09] prove the above theorem by choosing the set
S and i,7 € A\ S to be the minimal set which violates submodularity, that is,
v(SUiUj) +v(S) > v(SUi)+v(SUj). Since S is minimal, the restriction of v
to the set S U4 (or SUj) is indeed submodular. Since v is valid, there is at least
one utility vector u which makes S tight. Of these, u is chosen, which minimizes
the number of tight subsets of S. wu; and u; are defined so that S U7 and S U j
are tight, establishing part 1. Nonsubmodularity implies that the set SU iU j is
nontight. Chakrabarty and Devanur [CD09] show that this is indeed true for any set
containing both 7 and j, establishing part 2. Establishing part 3 requires more work;
Chakrabarty and Devanur [CD09] show that if there exist tight sets containing ¢ and
j which are disjoint, then one can show that the set S U U j is also tight, which is
not, possible. We refer the interested reader to their paper for full details. We now
extend the above theorem in a straightforward way.

PROPERTY 4.2. Given any valid nonsubmodular function v, there exists a set
SCA ijeA\S, LS, and a feasible utility vector 0’ such that the following hold:

(a) v is submodular on S U {i}.

(b) SU{i}, SU{j} are both tight.

(c) Let Fy denote the set of all subsets which contain k and are tight w.r.t. u’.

We have

Fo=F; UFj, fiﬂ]‘—jz(ﬂ.

(d) up >0 forallk e SUIUJ.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/19/18 to 166.111.142.88. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

SUBMODULARITY IN BARGAINING GAMES 107

Proof. Let S,i,j,u be as in Theorem 4.1. As sketched in the proof above, the set
S and i,j € T\ S is chosen so that S is the minimal set contradicting submodularity.
That is, v restricted to S Ui is submodular. Note that parts (a) and (b) are satisfied.
In part (c), we have F; N F; = 0 from part 2 of the above theorem. Part 3 implies
Fi UF; C Fu; we need equality. Furthermore, part (d) might not be true since uy
could be 0 for some k.

We now modify the utility vector u to another vector u’ such that u’ satisfies
our requirements. First, we show that we may assume without loss of generality that
up > 0 for all k € S. If there is any r € S such that w, = 0, we remove the agent r
from set S: let " = S\ {r}. Note the element ¢ in part 3 of the above theorem remains
in S’. Note that S’, 1, 7, £, u still satisfy the conditions in Theorem 4.1. S’, 5" Ui, 5" Uj
are tight since the total utility of these sets remains the same, and since the larger
sets were tight, the valuations remain the same due to the feasibility of u and the
monotonicity of v. Parts 2 and 3 are easy to check. Thus, ug > 0 for all k € S. Also
note that the validity of part (a) is retained since S’ is a subset of S.

Now define u’ as follows:

up =u; +€, uy=uj+e and up =up —¢, up =u Yk e T\ {i,j,(},

where € is defined as follows to keep u’ feasible:

(0(Z) = 3 pez ur)
i 2 h = i S4 .
e < min{eg, ue/2}, where € - 5
Since T is not tight, €p is well defined and strictly positive. First, we show that u’ is
feasible. For any set Z C T which is not tight w.r.t. u, we have

Zu;C < Zuk +2¢e9 < v(2).

keZ keZ

Thus a nontight set remains nontight.

For any tight set Z7 C T w.r.t. u, since we know that Z does not contain both i
and j, there are two cases. If Z contains either i or j, then it contains [as well. Thus
the total utility of that set does not change. Furthermore, the set remains tight. If Z
does not contain ¢ or j, then its total utility decreases, implying feasibility.

We end by checking that all parts (a), (b), (c), and (d) are satisfied. Part (a) is
not affected by the definition of u’ and is satisfied. Since tight sets containing ¢ or
j remain tight, part (b) remains true. Since nontight sets remain nontight, we have
F; N F; = 0. Since tight sets containing ¢ and j remain tight, we have F; U F; C Fy.
Finally, any tight set containing ¢ and not ¢ or j becomes nontight. So, we have
equality in the above subset relation. Part (d) is true since uj,u} > 0, and for any
k € S, we have u) > 0 as well. d

5. Efficient algorithms. We will show that there is a combinatorial, strongly
polynomial algorithm for solving each game in SNB; as a corollary we will get that all
such games are rational. Our result and algorithm generalize those of [JV10], giving
a combinatorial, strongly polynomial algorithm for finding the equilibrium for any
Eisenberg-Gale market in the class SUA (submodular utility allocation) markets.

Recall a set S is tight w.r.t. wif)7, g u; = v(S). An agent i € T' is called free if
it exists in no tight set. If v is submodular, then by Property 4.1, if no agent in 7T is
free, then T is tight. In particular, the set of all nonfree agents is tight.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/19/18 to 166.111.142.88. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

108 CHAKRABARTY, GOEL, VAZIRANI, WANG, AND YU

We will repeatedly use a strongly polynomial time, combinatorial algorithm to
minimize submodular functions. Such an algorithm is due to Iwata, Fleischer, and
Fujishige [IFF01] and Schrijver [Sch00] for general submodular functions. In par-
ticular, this gives us a strongly polynomial time, combinatorial subroutine to check
whether a particular utility allocation u is feasible or not—it amounts to checking
whether the minimum value of the submodular function v’(S) := v(S) — u(S) is at
least 0 or not. Furthermore, given a feasible utility allocation, the above subroutine
can be used to obtain a maximal tight set; a set S is tight iff v'(S) = 0, and, by
repeatedly shrinking a tight set and moving to residual set systems, one can get the
maximal tight set. This is standard, and we refer the reader to [Sch03] for more
details.

The algorithm starts off by assigning each client in T initial utility u; = ¢;. If
this initial allocation is infeasible or even if there exists a tight set, the algorithm
returns that the game is infeasible. The algorithm maintains a collection 7 of tight
sets, prices of tight sets, and allocation u; for each agent and terminates when the
KKT conditions for (1) are satisfied.

ALGORITHM FOR SNB GAMES.

1. Feasibility check. Initialize u; = ¢; for all ¢ € T'. If this allocation is infeasible
or there is a tight set, return that the game is infeasible. Initialize 7 to be
empty. Set time t = 0.

2. While there exists a free agent i € T'

o Utility augmentation. Increase t and u; for all the free agents ¢ at rate 1,
until some new set X gets tight.

e Set pricing. Pick X to be the unique, maximal (inclusionwise) tight set,
and put it in 7. Set the price of X at p(X) = 1/t. For all maximal
subsets Y € T of X, decrease the price p(Y') = p(Y) —1/t. Since p(Y) =
1/t for some t' < t, p(Y) remains positive; furthermore, it is never
decreased again since it will never be a maximal subset subsequently.

THEOREM 5.1. The above algorithm terminates and returns either that the game
is infeasible or it is an optimal solution to (1).

Proof. If the feasibility check passes, then the game is feasible. At each iteration,
a new agent participates in a tight set. The algorithm terminates in at most |T|
iterations. We now show that the prices returned satisfy the KKT conditions for (1).

Nonnegativity is clear from the discussion in the price setting step. Furthermore,
only tight sets are priced. Finally, note that the price faced by an agent, > ¢... ¢ p(S5),
remains unchanged from the time she becomes tight. This is guaranteed by the
decrease in the prices of the maximal subsets of a newly formed tight set. So, the
price faced by an agent is precisely 1/¢, where ¢ is the time she entered the tight set.
Since the utility of the agent does not change henceforth, u; = t + ¢;, ensuring the
third KKT condition. O

We end this section noting two corollaries. First, observe that if v(.5) is a rational
number for all subsets 5, then the optimum solution and prices are all rational num-
bers as well. Thus, SNB games always have rational solutions, with any number of
agents. This is in contrast to UNB games, which may have irrational solutions when
the number of agents is at least 3 (similar to examples in [JV10]). Furthermore, any
function v satisfying the covering property is submodular for |A| = 2. So, all 2-agent
UNB games are in SNB and thus can be solved in strongly polynomial time.

6. Utilitarian efficiency. Recall that F'(v) is utilitarian efficient if u*(c,T") is
equal to v(T') for all feasible (c,T) € F'(v). We prove the following theorem.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/19/18 to 166.111.142.88. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

SUBMODULARITY IN BARGAINING GAMES 109

THEOREM 6.1. For any wvalid function v, F(v) is utilitarian efficient iff v is
submodular.

Proof. <=: Suppose v is submodular. We want to show that for any disagreement
point ¢ and set S C A, if we restrict ourselves to the subproblem among agents in .S,
the Nash bargaining solution u* satisfies), g u; = v(S5). Since u* is the solution of
the Nash bargaining game, it must be Pareto optimal. Therefore every agent i is in
some tight set T;. Therefore by Property 4.1, we have that S = U;csT; is also tight,
which means . ¢ ui = v(S5).

=: Suppose v is not submodular. By Property 4.2, there are aset T = S U{4,j}
and a feasible utility vector u = (ug)rer such that (1) up > 0forall k € T, (2) SUi
and S U j are tight w.r.t. u, and (3) T is not tight w.r.t. u. This is obtained from
FinF;=0.

Now for any k € T, k is in some tight set w.r.t. u, and hence by Lemma 4.1,
there exists ¢ such that u is the Nash bargaining solution corresponding to c. By
condition (3) above, we have), - ux < v(7T'), which implies that it is not utilitarian
efficient. d

7. Fairness. In this section, we prove the following theorem.

THEOREM 7.1. For any valid function v, F(v) is min-max and max-min fair iff
v 1s submodular.

Proof. <=: Suppose v is submodular. Let u* be the Nash bargaining solution for
(¢, T) where T' C A. By Corollary 4.1, we can choose the prices such that the tight
sets w.r.t. u* with positive price form a nested set family, T =T DTy D --- D T} D ().
Since for any agent i, uf —c¢; =1/ Zj:ieTj p(T}), we see that (u* — ¢)ge. has elements
of Ty \ T» followed by those in T5 \ T3, and so on. Moreover, agents in T; \ Tj41 have
the same v} — ¢;.

Pick any element g # u* in core((c,T)). Suppose g — ¢ min-max dominates
u* — c. Since g is Pareto optimal, every agent is in some tight set w.r.t. g. Hence by
Property 4.1, the whole set T is tight, >, ., gx = v(T'). Since g is feasible, we also
have

> g < o(Ty).

keTs

Since T and Ty are tight sets w.r.t. u*, taking differences we get

3) S oaz Y u

keT\T kE€T\T,

Since each agent ¢ in T\ T5 has the highest u] — ¢; among all the agents, if g — ¢
min-max dominates u* — c, then for any k € T'\ T, we have g, < uj. Then by (3),
we have g, = uj, for all k € T'\ T5. Similarly, we can show that for any 1 <i <t and
any k € T; \ Ti41, gr = uj. Hence g = u*, which is a contradiction. This proof also
shows that u* — c is the unique min-max fair utility vector. By using an argument
similar to that in [JV08], we can show that any unique min-max fair utility vector is
also max-min fair.

= Suppose v is not submodular; then by Property 4.2, there are a set T =
SU{i,j} and a g = (gr)rker such that (1) g > 0forall k € T, (2) SU{i} and SU{j}
are tight w.r.t. g, and (3) Fp = F; UF;, F; NF; = 0. For each k € T', let ¢, = gi — €,
where 0 < € < minger{gr}. Clearly, g is a feasible core element corresponding to ¢
since each k is in a tight set (either S U {i} or SU{j}).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/19/18 to 166.111.142.88. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

110 CHAKRABARTY, GOEL, VAZIRANI, WANG, AND YU

Let u* be the Nash bargaining solution corresponding to (c,T’). Note that by
definition, g — ¢ is a vector with all entries equal to €. Thus, since g is Pareto optimal,
it is the unique min-max and max-min feasible solution. We now show that g cannot
be the solution to the Nash bargaining game implying the solution; u* is not fair.

If g were the solution, by KKT conditions, we could price all the subsets of T’

such that
=Y kD)= Y D)+ Y PO =+ —
= p = p p = ,
ge—ct 527, ZEF; ZEF; gi—C 9iTC
which contradicts the fact that gp —c/ = ¢g; —¢ci = g; —¢; = €. 0

8. Strong monotonicity and surplus monotonicity. In this section we show
that any SNB game F'(v) is both strongly monotone and surplus monotone. Moreover,
we also show that any UNB game which is strongly monotone must be an SNB game.
We will be using the algorithm for computing the optimal solution and the dual KKT
prices for (1), described in section 5.

THEOREM 8.1. For any submodular valid function v, F(v) is surplus and strongly
monotone.

Proof. Suppose the disagreement of some agent (say agent i) goes from ¢; to
¢i + 9. Denote the new disagreement vector by ¢’. Let u and u’ be the bargaining
utility vectors with disagreement points ¢ and ¢’, respectively. We will show that for
all j, u}; — ¢} < wuj —c;. Tt is easy to see that this implies both surplus monotonicity
and strong monotonicity.

We will use the continuous time algorithm presented in section 5 to show that
u; — c; < u; —c¢j for all j. We will use algorithm C and algorithm C’to denote the
run of the algorithm with disagreement vectors ¢ and ¢’, respectively.

Now suppose that an agent j becomes nonfree at time ¢ in the algorithm C, i.e.,
u; —c¢; = t. We will show that by time ¢ some set containing j will go tight in
algorithm C’ as well, which will imply that u} — ¢} <t.

Let A be the minimal set containing j which becomes tight at time ¢ in algo-
rithm C. Let @ := {k € A| agent k becomes tight in algorithm C’ before time t}. If
j € @, we are done. Thus assume that j ¢ Q. Now the fact that agents in @ become
tight before time ¢ in algorithm C’ but not in algorithm C implies that there exists a
set Zj, containing ¢ and k € @ that becomes tight in algorithm C’ before time t. Let
7 = UZy. Since, for submodular functions, the union of tight sets is tight, we get
that Z is tight in algorithm C’ before time ¢.

Now we want to show that the total utility accumulated by the set Z U A in
algorithm C’ by time ¢ is at least v(A U Z). This is so because

W(ZUA) =u'(A\Q)+u'(Z) > u(A\Q)+v(Z)
— u(A) — w(Q) +v(2) > v(A) — (@) + v(Z) > v(AU).

The first inequality follows from the definition of @ and the fact that u/(Z) =
v(Z), the second inequality from the tightness of A under w and the feasibility of w,
and the last inequality from the submodularity of v.

This implies that all the agents in the set Z U A are tight by time ¢ in algorithm
C’. Hence we get that u; — c; < t. O

THEOREM 8.2. If a valid function v is not submodular, then F(v) is not strongly
monotone.

Proof. Since v is not submodular, by Property 4.2 there must exist a set S and
agents i,j € A\ S, [€ S, and a feasible utility vector u such that (1) SU{i}, SU{j}

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/19/18 to 166.111.142.88. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

SUBMODULARITY IN BARGAINING GAMES 111

are both tight w.r.t. u, (2) Fp = F;,UF;, F;NF; =0, and (3) ux, > 0 for all k € T,
where T'= S U {i,j}.

We will now construct an instance (c,T") € F'(v) which is not strongly monotone.
Let 0 = minger ug > 0. For tight sets SU{i}, SU{j}, we set their prices to be p(S, i),
p(S, j), respectively, where p(S,i) = p(S,j) = P = %. For any other set Z C T, we
set its price p(Z) to be zero.

Let the following hold:

1
ZZQT,keZ p(Z)

Since SU{i} and SU{j} are both tight, for any k € T', there exists at least one Z C S
such that p(Z) = P, and we have

VkET, Ck = Uk —

0
Ckzuk—§>0.

By the definition of c, all the KKT conditions hold, and thus u is the bargaining
solution w.r.t. (c, 7).

Suppose there exist a ¢’ and a corresponding bargaining solution u’ such that (1)
forall k € T, k # j, ¢}, > ¢, and (2) ¢} = ¢; and u} > u;.

Using this, we can show that there exists a game in F'(v) which is not strongly
monotone. This is because ¢’ can be obtained from c by increasing only the coordi-
nates other than j. If F'(v) is strongly monotone, then each time a coordinate of c is
increased, the utility allocated to j should not increase. But if u; > u; is true, then
we get a contradiction.

Let u’ be the same as u except that u; = u; + ¢, uj = u; + ¢, uj = uy — ¢. Using
arguments similar to the proof of Property 4.2, one can show that there exists small
enough € (given below) so that u’ is feasible:

(v(Z) - Zkez ug) .

min
nontight ZCT 2

e < min{eg,up/2}, where ¢ :=

Now we will construct ¢’ satisfying the above mentioned conditions, and price the
sets so that along with u’ they satisfy the KKT conditions, which would imply that
u’ is the bargaining solution for the disagreement point c’.

We assign positive price to sets S Ui, S U j only, say p'(S,i) and p'(S,j), re-
spectively, which is consistent with the second KKT condition, as both sets are tight

. .. o 1 o 1
under u’. The third KKT1 condition says that (1) ¢; = u}— 75 (2 ch = uj— 75T
and (3) ¢}, = u), — TEITED for all k € T, k #i,7. Thus to get ¢/, one can equiv-
alently find prices p’(S,) and p'(S, 7).

Now, since we want ¢ = c;, we get that

1 1 1 1

UWy— = =Ujte— ——— = e— — =
oS, P'(S.7) P'(S.7) p(S,4)

Similarly, for k # j, we want ¢}, > ¢;. Expanding ¢, and ¢, for different k, we
get that the following necessary condition should hold:

1 1
IR R COET 1Y)

—€

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/19/18 to 166.111.142.88. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

112 CHAKRABARTY, GOEL, VAZIRANI, WANG, AND YU

It is not difficult to see that one can find p'(S,4) and p’(S,7), which satisfy the
above two conditions as long as the € is chosen such that € < m = g.
To sum up, by setting € = min{ey/2,d/8}, we can find p’(S,1),p’'(S, 7) such that

_ 1 _ 1 _
p'(S,j) = P — P'(8,i) > ————— —p'(S.J).
€T 25D PS5 ¢

Note that this value of € is consistent with the previous mentioned upper bound on
it. Therefore, we can construct ¢’ such that u’ is the bargaining solution w.r.t. ¢’ and
¢, > ¢y forall k € T, ¢ = ¢;. Thus (¢, T) € F(v) is not strongly monotone. O

However, SNB games are not the only UNB games which are surplus monotone.
The following is an example of a UNB game which is not an SNB game but is still
surplus monotone. It is an interesting open question how to characterize surplus
monotone games based on their valuation functions.

Ezample 4. Consider the following game with three agents, A = {1,2,3}, and
v : 24 = RT is defined as v(0) = 0, v({1}) = v({2}) = v({3}) = 3, v({1,2}) =
v({2,3}) = v({3,1}) = 4, v({1,2,3}) = 6. This game is not an SNB game. However,
rate monotonicity holds. To prove this rigorously, one needs to do a case analysis. We
sketch how this is done. It is not hard to see that any bargaining solution either has
u; = ug = us = 2, or there is an agent, say agent 1, with utility between 2 and 3. In
the former case, the sets {1,2},{2,3},{3, 1}, {1, 2,3} are tight and can have positive
price. In the latter case, however, all tight sets contain agent 1. Now suppose the
disagreement of some agent j is increased, and for contradiction’s sake, assume that
the difference (u; — ¢;) also increases. Note that, by the KKT conditions, this is
equivalent to saying that the price “faced” by agent j (3. jes p(S)) decreases. This
cannot happen, and one can argue by going over all cases. We do so for one such
case. Suppose agent j has utility between 2 and 3 (and thus all tight sets contain 7).
When c¢; is increased and rate monotonicity is violated, u; also increases. Thus, wuy,
decreases for all k # j (since the only tight set containing k # j contains j). Since
¢y is the same, the price faced by k increases. Thus, with the new disagreements, the
total price faced by k # j increases, but the total price faced by j decreases; this is
not possible since all tight sets (priced sets) contain j. One can argue the other cases
similarly.

9. Population monotonicity. In this section, we investigate population mono-
tonicity in a UNB game. Generally speaking, population monotonicity means that
when bargaining with a superset of agents, one cannot obtain more utility. This
seems to be a reasonable property for bargaining games; however, it turns out that
the population monotonicity holds only for SNB games.

THEOREM 9.1. For any valid function v, F(v) is population monotone iff v is
submodular.

Proof. <: The proof of this is similar to the proof that SNB games are strongly
monotone. Once again, we use the continuous time algorithm of section 5 to prove
that for submodular v, F'(v) is population monotone, and we urge the reader to recall
the same algorithm.

Consider the run of the algorithm when the set of agents is 77 and T5. Let the
utility vectors obtained be u™) and u®, respectively, and let y(* := u) — ¢(T})
and y® := u® — ¢(T3). It is enough to show that for all agents in T7, ygl) > yfg).
Pick an agent i € TY, and sup(pg)se in the run of the algorithm with 77 that, at time ¢,
1

i becomes nonfree, that is, y,

= t. We now show that in the run of the algorithm

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/19/18 to 166.111.142.88. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

SUBMODULARITY IN BARGAINING GAMES 113

with T5, there exists a subset of Ty containing ¢ which is tight by time ¢ (or overtight,
which would imply yfg) <t= yz(l)).

Let A be the first set containing ¢ which goes tight in the run of the algorithm
with 77, Let Q C A= {j € A: yj(-z) < yj(-l)}. We may assume that ¢ ¢ @, for

otherwise we are done. Moreover, for any j € @, yj(?) < yj(»l) implies that there must
be a set Z; C T5 which goes tight in the run of the algorithm with 75 and Z; is not a
subset of 7. Let Z be the union of all these sets {Z; : j € Q}. Note that Q = ZN A
and that Z is tight.

Consider the set Z U A: we have

y@(ZUA) =y (2) +yP(A\ Q) > v(Z) +y M (A\ Q)
=0(2) +yD(A) —yD(Q) = v(Z) + v(A) —v(Q) > v(Z U A),

where the second-to-last inequality follows from the fact that A was tight w.r.t. y(!)
and y(1) was feasible, and the last follows from the submodularity of v.
= If v is not submodular, recall that by Property 4.2, there exist a set S C A,
te S, i,j€ A\ S, and a feasible utility vector u such that the following hold:
1. SU{i} and SU{j} are both tight w.r.t. u.
2. Fu Z]'-iU]:j and]:iﬂ]'—j = 0.
3. v is submodular on S U {i}.
4. For any k € T, uj, > 0, where T = S U {4, j}.
For this utility u, we can find ¢ such that u is the bargaining solution of instance
(c,T), i.e., u = u*(c,T). We will show that after we remove agent j, there must
be some agent in S U {i} such that her utility in the bargaining solution of instance
(c, S U {i}) will be smaller.
Consider the instance (¢, S U {i}) € F(v), and let the bargaining solution be
u’ = u*(c, S U{i}). Since v is submodular on S U {i}, we know that S U {i} is tight
w.r.t. u’. Recalling that S U {i} is also tight w.r.t. u, we have

Z u = Z ul.

keSu{i} keSU{i}

If no agent’s utility differs in two bargaining solutions, the set of tight sets does

not change. Consider ry := ueiq in the solution of instance (¢, T):

re= Y pZ)=Y pZ)+ Y p(Z)=ri+r;

ZeF, ZeF ZeF;

After we remove agent j, since F; is removed from Fy, i.e., F; = F/, we have

79

r¢ = r;, which is a contradiction. So at least one agent’s utility differs. Since

/
D w=),

keSu{i} keSU{i}

there must be an agent k € SU {i} with u} < ug. Therefore, if any UNB game F(v)
is population monotone, v must be submodular. a

10. Extension to nonsymmetric Nash bargaining games. Recall that
F(v,) is a family of nonsymmetric bargaining games, where function v : 24 — R*

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/19/18 to 166.111.142.88. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

114 CHAKRABARTY, GOEL, VAZIRANI, WANG, AND YU

encodes the feasible set and o = (a;);c 4 specifies the bargaining weights or clouts of
all the agents.
THEOREM 10.1. For any wvalid function v and positive vector o, we have the
following:
1. There is a strongly polynomial time, combinatorial algorithm to compute the
solution of F(v,«) if v is submodular.

2. F(v,«) is utilitarian efficient iff v is submodular.

3. F(v,a) is max-min fair and min-max fair iff v is submodular.
4. F(v,a) is strongly monotone iff v is submodular.

5. F(v,a) is surplus monotone.

6. F(v,«) is population monotone w.r.t. clouts iff v is submodular.

Proof. All the proofs can be easily extended; we give only key modifications that
are required for some of the above properties:

1. In the algorithm described in section 5, instead of increasing u; at rate 1 for all
free agents, we raise u; at rate «;. The prices remain the same. The total price faced
by an agent 7 in the end is precisely «;/(u; — ¢;), satistying the KKT condition of the
new convex program. With this modification, the proofs of 4 and 5 are the same as
in the Nash case.

2. In (2), which is based on the KKT conditions, we do the following modification:

Qg

EZQT:ieZ p(Z)’

so that Lemma 4.1 still holds for the nonsymmetric case. The rest of the proof follows
in similar fashion.

3. For the case of fairness, we need to redefine the notion of fairness taking into
account the relative bargaining powers of different agents. A bargaining game is

C; = U; —

said to be min-max (or max-min) fair if the vector { %}Z dominates {#%}; for
all vectors x in the core. The proof follows along the same lines as that given in
section 7.

6. The proof for one direction, namely F'(v, «) is population monotone w.r.t. clouts
when v is submodular, follows from the algorithm and the arguments used in section 8.
For the other direction, we use the same examples as given in [CD09] and keep the
disagreement vector as the 0 vector. d

11. Discussion. Many of our criteria, e.g., for efficiency or fairness, are the
most stringent possible, i.e., characterizing games having full efficiency or max-min
and min-max fairness. There is probably much to be gained by considering relaxed
notions of these properties.

A more specific problem is that we have proved surplus monotonicity for games
in SNB and have given examples to show that this does not characterize SNB within
UNB. We leave the open problem of characterizing the family of games within UNB
that are surplus monotonic.

We note that the study of these properties is not applicable to Kalai-Smorodinsky
(KS) bargaining games [KS75] since the KS solution is not well defined for UNB games
when the number of players is more than two [Rot79].2

Acknowledgments. We wish to thank Ehud Kalai and William Thomson for
valuable discussions and pointers into the literature.

2 Although Roth [Rot79] did not explicitly mention that his impossibility example is in UNB, this
is clear from the proof, and it is also not difficult to show it.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 06/19/18 to 166.111.142.88. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

[CDOY]

[CDV10]

[TFFO1]
[TV08]
[IV10]
[Kal77]

[Kal85]

[KS75]
[Meg74]
[MS01]

[Nas50]
[OR90]

[Rot79)]
[Sch00)]

[Sch03)]
[Tho83]

[Tho87]
[Tho94a]
[Tho94b)
[Thol0]
[TL&Y]
[Vaz12]

[VNM44]

D.

D.

S.

-~ A

E.

E.

E.

N.

H.

J.

M.

Al

A.

A.
W

W.

W.

W.

V.

J.

SUBMODULARITY IN BARGAINING GAMES 115

REFERENCES

CHAKRABARTY AND N. DEVANUR, On competitiveness in uniform utility allocation
markets, Oper. Res. Lett., 37 (2009), pp. 155-158.

CHAKRABARTY, N. R. DEVANUR, AND V. V. VAZIRANI, Rationality and strongly poly-
nomial solvability of Eisenberg—Gale markets with two agents, STAM J. Discrete
Math., 24 (2010), pp. 1117-1136.

IwATA, L. FLEISCHER, AND S. FUJISHIGE, A combinatorial strongly polynomial algo-
rithm for minimizing submodular functions, J. ACM, 48 (2001), pp. 761-777.

JAIN AND V. V. VAZIRANI, Equitable cost allocations via primal—dual-type algorithms,
SIAM J. Comput., 38 (2008), pp. 241-256.

JAIN AND V. V. VAZIRANI, Fisenberg-Gale markets: Algorithms and game-theoretic
properties, Games Econom. Behav., 70 (2010), pp. 84-106.

KAvLal, Nonsymmetric Nash solutions and replications of 2-person bargaining, Inter-
nat. J. Game Theory, 6 (1977), pp. 129-133.

KALAIL, Solutions to the bargaining problem, in Social Goals and Social Organization,
L. Hurwicz, D. Schmeidler, and H. Sonnenschein, eds., Cambridge University Press,
Cambridge, UK, 1985, pp. 77-105.

KALAl AND M. SMORODINSKY, Other solutions to Nash’s bargaining problem, Econo-
metrica, 43 (1975), pp. 513-518.

MEGIDDO, Optimal flows in networks with multiple sources and sinks, Math. Pro-
gramming, 7 (1974), pp. 97-107.

MOULIN AND S. SHENKER, Strategyproof sharing of submodular costs: Budget balance
versus efficiency, Econom. Theory, 18 (2001), pp. 511-533.

F. NasH, The bargaining problem, Econometrica, 18 (1950), pp. 155-162.

OSBORNE AND A. RUBINSTEIN, Bargaining and Markets, Academic Press, New York,
1990.

E. ROTH, An impossibility result concerning n-person bargaining games, Internat. J.
Game Theory, 8 (1979), pp. 129-132.

SCHRIJVER, A combinatorial algorithm minimizing submodular functions in strongly
polynomial time, J. Combin. Theory Ser. B, 80 (2000), pp. 346-355.

SCHRIJVER, Combinatorial Optimization, Vol. B, Springer, Berlin, 2003.

. THOMSON, The fair division of a fixed supply among a growing population, Math.

Oper. Res., 8 (1983), pp. 319-326.

THOMSON, Monotonicity of bargaining solutions with respect to the disagreement
point, J. Econom. Theory, 42 (1987), pp. 50-58.

THOMSON, Cooperative models of bargaining, in Handbook of Game Theory with
Economic Applications, R. Aumann and S. Hart, eds., North—Holland, Amsterdam,
1994, pp. 1237-1284.

W. THOMSON, Anonymity and Population-Monotonicity, mimeo, 1994.
W.

THOMSON, Bargaining and the Theory of Cooperative Games: John Nash and Be-
yond, Edward Elgar, Cheltenham, UK, 2010.
THOMSON AND T. LENSBERG, Aziomatic Theory of Bargaining with a Variable Pop-
ulation, Cambridge University Press, Cambridge, UK, 1989.
V. VAZIRANI, The notion of a rational convexr program, and an algorithm for the
Arrow-Debreu Nash Bargaining game, J. ACM, 59 (2012), 7.
VON NEUMANN AND O. MORGENSTERN, Theory of Games and Economic Behavior,
Princeton University Press, Princeton, NJ, 1944.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

