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We review recent works on optomechanics of optically trapped microspheres and
nanoparticles in vacuum, which provide an ideal system for studying macroscopic quan-
tum mechanics and ultrasensitive force detection. An optically trapped particle in
vacuum has an ultrahigh mechanical quality factor as it is well-isolated from the thermal
environment. Its oscillation frequency can be tuned in real time by changing the power
of the trapping laser. Furthermore, an optically trapped particle in vacuum may rotate
freely, a unique property that does not exist in clamped mechanical oscillators. In this
review, we will introduce the current status of optical trapping of dielectric particles in
air and vacuum, Brownian motion of an optically trapped particle at room tempera-
ture, Feedback cooling and cavity cooling of the Brownian motion. We will also discuss
about using optically trapped dielectric particles for studying macroscopic quantum me-
chanics and ultrasensitive force detection. Applications range from creating macroscopic
Schrödinger’s cat state, testing objective collapse models of quantum wavefunctions,
measuring Casimir force, searching short-range non-Newtonian gravity, to detect gravi-
tational waves.
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1. Introduction

Classical mechanics is very successful in explaining the motion of macroscopic sys-

tems, which are deterministic, and predictable in principle if initial states of the

system are determined. Quantum mechanics, which explains the motion of mi-

croscopic systems successfully, on the other hand, is a probabilistic theory. The

classical degrees of freedom, such as location and momentum, become wavefunc-

tions in quantum mechanics. While the wavefunction evolves deterministically in

quantum mechanics, the wavefunctions can be in superposition states, which is the

key difference between quantum and classical physics.

Why macroscopic systems are not in quantum superposition states? In other

words, can we observe Schrödinger’s cat states of large objects in laboratory? This

question is one of the most outstanding challenges in the modern physics. We may

simply explain the quantum-classical world transition by de Broglie wavelength λ,

which is defined as λ = h/p, where h is Plank constant and p is the momentum.

Usually the momentum of macroscopic objects is very large, and the de Broglie

wavelength is too small to be observed. Such simple explanation will predict that

quantum superpositions of large objects can be observed if we can reduce the mo-

mentum p to small enough values, which requires significant cooling. Meanwhile,

several important models proposed that the quantum-classical transition is due to

more profound reasons. For example, Penrose proposed that the conflict between

general relativity and quantum mechanics leads to gravity induced collapses of

quantum superpositions states.1–3 Several other intriguing models also proposed

that the collapses of massive superposition states might intrinsically be due to

quantum mechanics not being complete.4–6 It may be necessary to introduce un-

known nonlinear terms to the von Neumann equation to describe large quantum

systems.7 Thanks to the latest experimental developments in macroscopic quantum

mechanics,8 some of these models may be tested experimentally soon, which will

significantly deepen our understanding of quantum mechanics.

In order to generate and observe the quantum superpositions in macroscopic

systems, the momentum (temperature) of the system should be slowed down to the

quantum regime. In the past several years, the new research area of optomechanics

has had tremendous progress.8,9 Quantum ground-state cooling of mechanical oscil-

lators by cavity cooling10,11 has been realized experimentally.12–14 For the readers

who are interested on the basic theory and development of optomechanics, please

read these reviews.8,9,15 Among the implementations of optomechanics, optically

levitated dielectric particles have attracted a lot of interest recently.16–25 As the

objects are levitated by optical traps, there is no mechanical contact to the en-

vironment, which is the main decoherence source in other mechanical oscillators.

Due to the absence of the mechanical contact in this system, the decoherence26

can be negligible and the oscillation frequency is fully tunable. Thus this system

is ideal for studying macroscopic quantum mechanics. The center-of-mass (CoM)

motion of an optically levitated dielectric particle could be pre-cooled down to

1330018-2

In
t. 

J.
 M

od
. P

hy
s.

 B
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
N

JI
N

G
 U

N
IV

E
R

SI
T

Y
 o

n 
09

/1
7/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



September 17, 2013 9:35 WSPC/Guidelines-IJMPB S0217979213300181

Optomechanics of Levitated Dielectric Particles

milli-Kelvin temperatures by feedback.19,22 Then, it can be further cooled to the

quantum ground-state with cavity sideband cooling.16,17,23,27,28

After the CoMmode of an optically levitated dielectric particle is cooled down to

the quantum regime, macroscopic quantum states, such as quantum superposition

states,29,30 quantum entangled states16 and squeezed states,16 may be generated.

An optically levitated dielectric particle can also be used as an ultra-sensitive de-

tector for Casimir force, non-Newtonian force,31,32 gravitational waves (GWs),33

single molecules collisions27 and others. Besides, the levitated nanoparticles are the

best testbed for gravity induced decoherence effects,1,34 which is the result of the

apparent conflict between quantum mechanics and general relativity. Beside CoM

motion, the levitated dielectric particle can also rotate freely.35 The rotation de-

gree of freedom may also be used as an resource for quantum information.36–38 The

many-body physics, such as self-assembly of the nanoparticles in vacuum, was also

proposed to study.39,40

This review is organized as follows. In Sec. 2, we will review the current status

of optical trapping of dielectric particles in air and vacuum. In Sec. 3, we will

discuss the CoM motion and cooling of a levitated dielectric particle. In Sec. 4, we

will discuss the macroscopic quantum mechanics of levitated dielectric particles.

In Sec. 5, we will talk about the applications of a levitated dielectric particle in

ultrasensitive force detection.

2. Optical Trapping of Dielectric Particles in Air and Vacuum

Optical levitation of dielectric particles in air by an upward-propagating laser beam

was first demonstrated by Ashkin and Dziedzic in 1971.41 A few years later, optical

levitation of microspheres in vacuum at pressures down to 10−6 torr was achieved.42

An optical levitation trap is formed by the balance between the scattering force

from an upward laser and the gravitational force on a particle. A photo of a 4.7-µm

diameter microsphere levitated by a laser beam in air is displayed in Fig. 1. The

trapping frequency of an optical levitation trap is usually very small (about 20

Hz),42 which is too low for quantum ground-state cooling.

In 2010, Li et al. have trapped glass microspheres in air and high vacuum with

a counter-propagating dual-beam trap18,19 (Fig. 2). The scattering forces from the

two counter-propagating beams cancel, and the gradient force forms a stable three-

dimensional (3D) trap. The microspheres were initially stuck on the surface of a

glass slide that was placed above the optical trap. They were launched to air by

ultrasonic vibration. As they were falling down under the influence of gravity, one

of them entered the optical trap and was captured. The trap was very stable and

insensitive to the laser power. A 4.7-µm particle could be trapped stably when the

power of both laser beams were changed from 5 mW to 2 W. For particles much

smaller than the wavelength of the laser, the scattering force is much smaller com-

pared to the gradient force. Thus nanoparticles may be trapped by a single tightly

focused laser beam, as was demonstrated by Gieseler et al.22 recently. A mechanical
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Fig. 1. A 4.7-µm diameter silica microsphere levitated in air inside a glass cell by an upward laser
beam. The bright dot near the center of the photo is the trapped microsphere. It appears much
larger than the real size of the microsphere because of the overexposure of the camera. Figure
adapted from Ref. 43.

s-polarized

Vacuum
Chamber

p-polarized

s-polarized

Detector

Fig. 2. A counter-propagating dual-beam optical trap in a vacuum chamber. The Brownian
motion of a trapped particle will change the direction of the output lasers, which can be used to
monitor the instantaneous position of the particle. Figure adapted from Ref. 18.

quality factor (Q) of 107 has been experimentally demonstrated at 10−5 mbar,22

and a Q-factor of 108 was recently observed at 0.5 × 10−6 mbar.44 These values

are already higher than the quality factors achieved with clamped oscillators. In

ultrahigh vacuum (10−10 mbar) regime, the quality factor is expected to be higher

than 1012.

Figure 2 also shows a simple fast detection system that can monitor the trajec-

tory of a trapped particle with ultrahigh resolution.18 When the trapped particle

moves, it will change the direction of the output laser slightly. Thus we can mea-

sure the particle position by monitoring the direction of one of the laser that passes
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through the particle. Li et al. have demonstrated a detection sensitivity of about

39 fm/
√
Hz.19

3. Center-of-Mass Motion and Cooling of a Levitated

Dielectric Particle

3.1. Brownian motion

An optically trapped microsphere in air (or a nonperfect vacuum) will exhibit Brow-

nian motion due to collisions between the microsphere and air molecules. The Brow-

nian motion was discovered by Robert Brown (1773–1858) in 1827 when he used a

simple microscope to study the action of particles contained in the grains of pollens.

The trajectories of a Brownian particle are commonly thought to be continuous ev-

erywhere but not differentiable anywhere, which means the velocity of a Brownian

particle is undefined.

In 1907, Einstein published a paper entitled “Theoretical observations on the

Brownian motion” in which he considered the instantaneous velocity of a Brownian

particle.45 Einstein showed that by measuring this quantity, one could prove that

“the kinetic energy of the motion of the center of gravity of a particle is indepen-

dent of the size and nature of the particle and independent of the nature of its

environment”. This is one of the basic tenets of statistical mechanics, known as

the equipartition theorem. However, Einstein concluded that because of the very

rapid randomization of the motion, the instantaneous velocity of a Brownian par-

ticle would be impossible to measure in practice. In 2010, Li and et al. built a fast

detection system with ultrahigh resolution and measured the instantaneous velocity

of the Brownian motion of an optically levitated microsphere in air.18

The distributions of the instantaneous velocities measured by Li et al. are

displayed in Fig. 3. They agree with the Maxwell–Boltzmann distribution very

-2 -1 0 1 2
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noise
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Fig. 3. The distribution of the measured instantaneous velocities of a 3 µm silica bead. The
statistics at each pressure are calculated from 4 million instantaneous velocities. The solid lines
are Maxwell-Boltzmann distributions. Figure adapted from Ref. 18.

1330018-5

In
t. 

J.
 M

od
. P

hy
s.

 B
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
N

JI
N

G
 U

N
IV

E
R

SI
T

Y
 o

n 
09

/1
7/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



September 17, 2013 9:35 WSPC/Guidelines-IJMPB S0217979213300181

Z.-Q. Yin, A. A. Geraci & T. Li

well. The measured rms velocities are vrms = 0.422 mm/s at 99.8 kPa and

vrms = 0.425 mm/s at 2.75 kPa. These are very close to the prediction of the energy

equipartition theorem, vrms =
√

kBT/M , which is 0.429 mm/s. As expected, the

velocity distribution is independent of pressure. The rms value of the noise signal

is 0.021 mm/s, which means 1.0 Å spatial resolution in 5 µs. This measurement

noise is about 4.8% of the rms velocity. Figure 3 represents direct verification of

the Maxwell–Boltzmann distribution of velocities and the equipartition theorem of

energy for Brownian motion.

The Langevin equation of the Brownian motion of an optically trapped micro-

sphere is:

d2xj
dt2

+ Γ0
dxj
dt

+Ω2
jx = F th

j , (1)

where Γ0 is the viscous damping factor due to air molecules, Ωj/2π (j = 1, 2, 3)

are the resonant frequencies of the optical trap along the three fundamental axes

(x-, y- and z-axes), and F th
j = ζj(t)

√

2kBTΓ0/M is the Brownian stochastic force.

Here ζj(t) is the normalized white noise process.

The damping term Γ0(dx/dt) tends to stop any vibration, while the F th
j term

drives the motion. It is very interesting that Γ0 is also contained in F th
j due to

fluctuation-dissipation theorem. This keeps the average mechanical energy (kinetic

and potential energy) of the microsphere to be kBT in each direction at thermal

equilibrium.

At thermal equilibrium, the power spectrum of COM motion of a trapped mi-

crosphere along each of the three fundamental mode axes is46:

Sj(ω) =
2kBT0
M

Γ0

(Ω2
j − ω2)2 + ω2Γ2

0

, (2)

where ω/2π is the observation frequency.

3.2. Feedback cooling

Since we can measure the instantaneous velocity of the optically trapped dielectric

particle, we can cool its CoM motion by applying a feedback force proportional to

the velocity of the particle but with opposite direction (Fig. 4):

F cool
j = −Γcool

j

dxj
dt

. (3)

This force will slow down the motion of the particle. With feedback cooling, the

Langevin equation of the Brownian motion of an optically trapped particle is:

d2xj
dt2

+ (Γ0 + Γcool
j )

dxj
dt

+Ω2
jx = ζj(t)

√

2kBTΓ0

M
. (4)

In contrast to the Γ0 due to air molecules, Γcool
j is only contained in the damping

term but not in the heating term. Let Γtot
j = Γ0+Γcool

j be the total damping factor,

1330018-6
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Z cooling 

   beam

Y cooling 

   beam

X cooling 

   beam

s-polarized

 trap beam p-polarized

 trap beam

Fig. 4. Simplified schematics showing a glass microsphere trapped at the focus of a counter-
propagating dual-beam optical tweezer (1064 nm), and three 532 nm laser beams along the axes
for cooling. Figure adapted from Ref. 19.

and T cool
j = T0Γ0/Γ

tot
j be the effective temperature of the motion with feedback

cooling, the power spectrum with feedback cooling can be rewritten as:

Scool
j (ω) =

2kBT
cool
j

M

Γtot
j

(Ω2
j − ω2)2 + ω2(Γtot

j )2
, (5)

which has the same form as Eq. (2). Because the effective temperature is T cool
j =

T0Γ0/(Γ0 + Γcool
j ), the motion can be cooled significantly by applying a feedback

damping Γcool
j ≫ Γ0.

Figure 5 shows experimental results of feedback cooling along Y -axis by Li

et al.19 Before feedback is turned on, the resonant frequencies (ωj/2π) are 8066±
5 Hz, 9095± 4 Hz, and 2072± 6 Hz for the fundamental modes at 637 Pa along the

X-, Y - and Z-axes, respectively. After the feedback cooling circuits were turned on,

the temperature of the Y mode changed from 297 K to 24 K at 637 Pa. The mode

temperature is obtained by fitting the measured power spectrum with Eq. (5). Then

Li et al. reduced the air pressure while keeping the feedback gain almost constant,

thus the heating rate due to collisions from air molecules decreases, while the cooling

rate remains constant. As a result, the temperature of the motion dropped. At

5.2 mPa, the mode temperatures were 150 ± 8 mK, 1.5 ± 0.2 mK and 68 ± 5 mK

for the x, y and z modes. The mean thermal occupation number 〈n〉 = kBT
fb
j /~ωj

of the y mode is reduced from about 6.8× 108 at 297 K to about 3400 at 1.5 mK.

3.3. Cavity sideband cooling

In 2009, two groups proposed to use the cavity sideband cooling scheme10,11 to cool

the CoM mode of optically levitated nanoparticle down to the ground-state.16,17
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Fig. 5. (Color online) Power spectra of a trapped 3-µm diameter microsphere along the Y -axis
as it is cooled. The red curve is the intrinsic spectrum at 637 Pa without feedback cooling, the
blue curve is the spectrum at 637 Pa with feedback cooling, the green curve is the spectrum at
5.2 mPa with feedback cooling and the orange curve is the noise signal when there is no particle
in the optical trap. The black curve is the fit of a thermal model (see text for details). The mode
temperatures are obtained from these fits. Figure adapted from Ref. 19.

Recently, the cavity cooling was partially realized by Kiesel et al.23 and Asenbaum

et al.24 Kiesel et al. have optically trapped a nanoparticle inside the optical cavity,

and achieved the sideband limit.23 Because of the relatively high pressure (4 mbar)

in their experiment, they were only able to cool the effective temperature of a

levitated nanoparticle from room temperature to about 64 K. They believe that the

quantum ground-state may approach, if they can increase the vacuum to 10−7 mbar.

Here, we will give a short review on the theory of cavity sideband cooling of optically

trapped nanoparticle.

The typical scheme of cavity sideband cooling for optically trapped nanoparticle

is shown in Fig. 6. The optical trap is placed in the optical cavity, and a nanosphere

with massm is loaded in the trap. We denote vibration frequency of the nanoparticle

along the z-axis be ωm, the frequency of the cooling laser as ωl, the resonant

frequency of the cavity as ωc, the intrinsic cavity linewidth as κ and the rate of

a photon scattered by the microsphere as γsc. The sideband cooling requires that

the linewidth κ is much shorter than the optical trap frequency ωm. As the size of

nanoparticle is much lesser than the wavelength of the trapping and cooling light,

and the molecule collision rate is very low at high vaccum, the photon scattering

decoherence rate γrc is usually much less than κ, and can be neglected.

Let us consider a nanoparticle at position z moving with momentum p along

the z-axis inside of a driven cavity. The nanoparticle causes the cavity frequency

1330018-8
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x

z

cavity

cooling laser

trap laser
(a) (b)

 

cooling laser

L- M

L+ M

L C

cavity transmission curve

Fig. 6. (a) Scheme of 1D cavity cooling. A nanoparticle is trapped inside an optical cavity with
a dual-beam trap. (b) Principle of 1D cavity cooling. The frequency of the cooling laser ωl is
slightly smaller than the resonant frequency of the optical cavity ωc. The mechanical vibration
of the trapped microsphere at frequency ωm induces two side bands of the laser at frequencies of
ωl + ωm and ωl − ωm.

to shift by an amount:

δωc = −1

2

∫

d3rδP (r)Ė(r)
∫

d3rǫ0E
2(r)

· ωc0 ,

where ωc0 is the resonant frequency of a cavity without the nanosphere, E(r) is

the cavity mode profile and δP (r) is the variation in permittivity induced by the

nanosphere. Due to the tiny scale of the nanosphere (much less than laser wave-

length), we can use Rayleigh approximation, and have P (r′) ≃ αindE(r)δ(r − r′),

with r the CoM position of the nanosphere, αind = 3ǫ0V (ǫ− 1)/(ǫ+ 2) the polar-

izability, V the sphere volume and ǫ is the electric permittivity.

The Hamiltonian of the system can be approximated as:

Heff = ~ωma
†
mam − ~∆ca

†
cac +

~Ωc

2
(ac + a†c) + ~gja

†
cac(am + a†m) , (6)

where gj = qzpfj∂U(z)/∂j|z=z0 characterizes the coupling strength between the

cavity mode and the oscillation of the nanosphere, U(z) is the nanoparticle induced

frequency shift and zzpf =
√

~/2mωj is zero-point fluctuation for the phonon mode

am. ∆c = ωc−ωl is detunings between the lasers and the cavity modes ac. Ω is the

driving strength of the cooling laser.

From Eq. (6), the linearized Langevin equations of motion for our system are,

ȧc = (i∆′
c − κj/2)ac − igαc(am + a†m) +

√
κja

in
c ,

ȧm = −iωmam − ig(αca
†
c + α∗

mac) ,
(7)

where αc = iΩ/(2i∆′
c − κ), ∆′

c = ∆c + 2g2j |αc|2/ωm, αc is the amplitude of cavity

mode ac and ∆′
c is the effective detuning between the driving laser and the cavity
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mode ac. The linearization of the Langevin equations is valid only if the state is

stable. The stable criteria is27 S1 = 4∆′
cωmg

2α2
cκ

2 > 0, S2 = ωm∆c
′2−g2α2

c∆
′
c > 0.

Because of ∆′
c > 0, the criteria S1 is always valid. The criteria S2 are valid only

when gαc <
√

ωm∆′
c. To realize resolved sideband cooling, we require ωm ≫ κ. We

suppose |gαc| ≪ κ and find that the final phonon number is:

nm = − (ωm +∆′
c)

2 + (κ/2)2

4ωm∆′
c

.

In the special case of ∆′
c = −ωm, the final phonon number is nm = (κ/4ωm)2 ≪ 1.

The cooling rate is Γ = g2|αc|2/[κ(1 + (κ2/16ω2
m))].

3.4. 3D sideband cooling

A nanoparticle will scatter the trapping/cooling laser to all three dimensions and

cause 3D heating. In order to achieve ground-state cooling of an optically trapped

nanosphere, we must use a 3D cooling scheme. We can add two more cavities for

cooling the other two dimensions, but the system will become too complex to be

realized experimentally. A better method to cool and measure the 3D motion of a

nanosphere is to use the TEM00, TEM01 and TEM10 modes of a single cavity, as

proposed by Yin et al.27 The TEM01 and TEM10 beams can be generated from a

TEM00 beam by two phase plates. Each one of these three modes can be coupled

to the motion of a trapped nanosphere along one orthogonal axis.

As shown in Fig. 7, we consider an optically trapped nanosphere with mass m

confined in a cavity by means of an optical tweezer.18 The frequencies of the optical

trap along the z-, x- and y-axes are (ω1, ω2 and ω3). Beside the conventional method

of using a cooling laser with TEM00 mode to cool the motion along z-direction, we

add two non-Gaussian beams with TEM01 and TEM10 modes to drive the cavity

in order to cool the motion along the x- and y-directions, respectively. The resonant

frequencies of the cavity modes ac1, ac2 and ac3 are ωc1, ωc2 and ωc3, respectively.

The detunings between the lasers and the cavity modes are ∆cj = ωj
c − ωj

L (j =

1, 2, 3). We suppose that the TEM01 and TEM10 lasers have the same frequency,

but with orthogonal polarization. The TEM00 and TEM01 lasers have the same

polarization, but different frequencies. In practice, the frequency differences between

TEM00 and TEM01 (TEM10) could be very large, and the TEM01 and TEM10

modes are orthogonal in polarizations. Therefore the interference between the three

cavity modes can be neglected.

The total Hamiltonian of the system in the rotating frame is27:

H =

3
∑

j=1

[

~ωja
†
jaj − ~(∆j − Uj)a

†
cjacj +

~Ωj

2
(acj + a†cj)

]

, (8)

where aj characterizes the phonon mode along qj direction with q1 = z, q2 = x,

q3 = y. Ωj is the driving strength by the lasers and Uj characterizes the coupling

between the cavity mode acj and the nanosphere. In the limit that ǫ≫ 1, where ǫ
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radial

TEM00

TEM01

TEM10

x

y

Fig. 7. (a) Cooling and detecting scheme. A nanosphere is trapped by a dual-beam optical
tweezer inside of a cavity. The cavity is driven by three lasers in TEM00, TEM01 and TEM10
modes. The TEM01 mode laser has different polarization, and is separated from the other two
lasers by a polarizing beam splitter for detection. The TEM00 and TEM01 lasers have different
frequencies, and are separated by a grating for detection. (b) Three cooling modes TEM00, TEM01
and TEM10, and their radial distribution. The black dot represents the position of a trapped
nanosphere. Figure adapted from Ref. 27.

is the electric permittivity of the nanosphere, we get16:

U1 = − 3V

2Vc1
exp

(

−2x2 + 2y2

w2

)

cos2(k1z + ϕ1)ωc1 ,

U2 = − 3V

2Vc2

x2

w2
exp

(

−2x2 + 2y2

w2

)

cos2(k2z + ϕ2)ωc2 ,

U3 = − 3V

2Vc3

y2

w2
exp

(

−2x2 + 2y2

w2

)

cos2(k3z + ϕ3)ωc3 ,

with Vc1 = (π/4)Lw2 and Vc2 = Vc3 = (π/16)Lw2.

We assume the optical tweezer to be much stronger than the cavity-mode-

induced trap, and neglect the effects of cooling lights on trapping. Besides, if we

carefully choose the location of the trap, such as z0 = 0, x0 = y0 = 0.25w, ϕ1 = π/4

and ϕ2 = ϕ3 = 0, the gradients of the three light fields lie approximately along the

three axes. The effective Hamiltonian is:

Heff =

3
∑

j=1

[

~ωja
†
jaj − ~∆ja

†
cjacj +

~Ωj

2
(acj + a†cj) + ~gja

†
cjacj(aj + a†j)

]

, (9)
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where gj = qzpfj∂U(x, y, z)/∂j|x=x0,y=y0,z=z0 characterizes the coupling strength

between the cavity mode and the oscillation of the nanosphere, and qzpfj =
√

~/2mωj is zero-point fluctuation for the phonon mode aj . In general, g1 can

be one to two orders larger than g2 and g3.

As the 3D motional modes of the system are decoupled with each other in

effective Hamiltonian (9), we can find the final phonon number equation with the

similar method discussed in Sec. 3.3. nmj = −((ωj +∆′
cj)

2 + (κj/2)
2)/(4ωj∆

′
cj).

In the special case of ∆cj = −ω′
j, the final phonon number is nmj = (κj/4ωj)

2 ≪ 1.

3.5. Noise and decoherence

Here we briefly discuss the noise and decoherence in optically levitated nanopar-

ticles system. The dominant noise sources for the CoM mode of nanoparticles are

collisions with a background gas and momentum recoil kicks due to scattered pho-

tons. The noise contributions from shot noise, blackbody radiation are negligible.16

For collisions with a background gas, it is found that the damping rate of the

phonon is γg = (16/π)(P/vrρ), where P and v are background gas pressure and

mean speed, r is the radius of the sphere and ρ is the density of the nanosphere. For

ωm = 0.5 MHz, r = 50 nm, room temperature gas with P = 10−10 Torr, we find

that γg = 10−6 s−1. Therefore, the molecules collision induced decoherence is also

very small. In fact, we can directly measure this collision by output mode.27 We will

discuss this in the next section. Photon scattering will entangle the mechanical mode

and output light, and leads to heating of the mechanical mode, too. Considering

motion only along the z-direction, it is found that16 γsc = (2/5)(ωr/ωm)Rsc, where

ωr = ~k2/2ρV is the recoil frequency, Rsc = 24π3(I0/λ
4)(V 2/~ωc)(ǫ − 1/ǫ+ 2)2

is the photon scattering rate for sphere. The photon scattering rate could be very

large (Rsc ∼ 1014 s−1 for I0 = 1 W/µm2 and r = 50 nm), while the momentum

of photons is much smaller than that of background air molecules. It is convenient

to define a dimensionless parameter φ = γsc/ωm = (4π2/5)(ǫ− 1)/(ǫ + 2)(V/λ3),16

which can be much less than 1 if V of nanophere is much less than λ3. Therefore, if

we want to decrease the photon recoil heating, we should trap smaller nanoparticle,

or use trapping and cooling laser with longer wavelength. We may also use magnetic

force to trap the nanoparticle, where the photon scattering effect is negligible.47,48

Then we consider the heating effects from the optical trap.49 The heating mainly

comes from the laser intensity fluctuation and the laser-beam-pointing noise. For

the former, we define the fluctuations of the laser ǫ(t) = (I(t)− I0)/I0, with I0 the

average intensity and I(t) the laser intensity at time t. By using first-order time-

dependent perturbation theory, we get 〈Ė〉 = (π/2)ω2
jSǫ(2ωj)〈E〉.49 The heating

constant is Γǫ = (π/2)ω2
jSǫ(2ωj), where Sǫ(ω) = (2/π)

∫∞

0
dτ cos(ωτ)〈ǫ(t)ǫ(t + τ)〉

is the one-sided power spectrum of the fractional intensity noise, which could be

on the order of 10−14 Hz−1. For the trap frequency of MHz, Γǫ approaches the

order of 10−1 Hz. The laser-beam-pointing noise is originated from the fluctuation

relevant to the location of the trap center, which is independent of the phonon
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energy. Similarly, we may get 〈Ė〉 = (π/2)mω4
jSj(ωj), where j = x, y, z, and

Sj(ω) is the noise spectrum of location fluctuations. We define the heating rate

as Γj = (π/2)mω4
jSj(ωj)/(~ωj), which represents phonon number increase per sec-

ond. If we set Γj to be on the order of 10−1 Hz, we should make sure that Sj(ωj)

is around 10−35 m2/Hz for ωj ∼ 1 MHz. Experimentally Sj(ω) has been controlled

less than 10−34 m2/Hz for ω ∼ 2π kHz.50 With the increase of the optical trap

frequency to large detuning from the system’s resonant frequency, Sj(ωj) is drop-

ping down quickly. Therefore, we believe that the laser-beam-pointing noise could

be well controlled and the heating rate Γj would be less than 0.1 Hz.

The phase noise induced by the cooling laser also need to be seriously consid-

ered.26,51,52 Because the cooling laser is of finite linewidth, the laser field can be writ-

ten down as ε(t) = εeiφ(t). We assume the phase noise φ(t) to be Gaussian and with

zero mean value. For the Lorentzian noise spectrum with Sφ̇(ω) = 2ΓLγc/(γ
2
c +ω

2)

and correlation function {φ̇(s)φ̇(s′)} = ΓLγc exp(−γc|s − s′|), where ΓL is the

linewidth of the laser and γ−1
c is the correlation time of the laser phase noise,

the phonon number limited by this noise is nph > nc(ΓL/κ)(γ
2
c/(γ

2
c + ω2

j )).
52 If we

choose ΓL = 1 kHz, γc = 3 kHz, ωj = 106 Hz and nc = 107, we have nph ≪ 1.

Besides, we may use double resonance scheme to further increase the cooling rate

and suppress the phase noise.26,53

4. Macroscopic Quantum Mechanics

After the CoM mode of optically trapped nano(micro)-particle being cooled to

the quantum ground-state, a lot of quantum states can be generated, and many

interesting quantum phenomena could be observed in this macroscopic systems. In

this section, we will summarize the recent developments in this direction.

4.1. State transfer and applications

In the previous section, we focused on the CoM mode of the nanoparticle and cal-

culated the steady phonon number when the cooling laser is on. In fact, the cooling

laser also realizes the quantum interface between cavity mode and the phonon mode.

With the interface, we can archive quantum state transfer between the cavity and

phonon modes.16 From Eq. (7), we have a reduced equation under rotating wave

approximation, in the case of ∆′
cj = −ωm and ωm ≫ κ, αcg, as,

27

ȧc = −κ
2
ac − igαcam +

√
κainc ,

˙am −igαcac .
(10)

In the limit κ ≫ gαc, using boundary condition aoutc = −ainc +
√
κac, we get

aoutc = −i(2gαc/
√
κ)am + ainc , ȧm = −(2g2α2

c/κ)am − (2igαc/
√
κ)ainc . Therefore

the CoM motion of the nanosphere can be mapped to the cavity output fields.

Physically, the cooling mechanism can be viewed as transferring phonon excitation

to the cavity mode and finally leaking out of cavity.
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The quantum state transfer between photon and phonon modes has many ap-

plications. The first one is generating superposition state (|0〉 + |1〉)/
√
2,17 where

|0〉 (|1〉) is the ground-state (first Fock state) of the CoM phonon mode. We im-

pinge a single-photon state into the cavity. Part of the photon will reflect, and

part of it transmit. In presence of cooling laser, the Langevin equations (10) swap

the photon state into the CoM phonon state of nanoparticle. We get the entan-

gled state |0〉r|1〉m + |1〉r|0〉m, where r denotes the reflecting photon mode, and

m denotes the CoM phonon mode. The motional state collapses into the super-

position state Ψ〉 = c0|0〉m + c1|1〉1, by performing a balanced homodyne measure-

ment and by switching off the driving field. Here the coefficients c0(1) depend on

the measurement result. This state can be detected by transferring it back to the

cavity with a red-detuning laser and then performing tomography on the output

field.

The second application of the quantum state transfer is generating the squeezed

state of light.16 In order to generate the squeezed light we need to create the me-

chanical squeezed state, then transfer the squeezed properties to the output light by

quantum state transfer. We add a sinusoidally varying component to the intensity

of the trapping beam, which yields the Hamiltonian of a parametric amplifier:

Hs = ǫmω
2
mz

2 sin 2ωmt . (11)

Here ǫm is a small parameter characterizing the strength of the modulation of the

trap frequency. We are interested in the outgoing light over a narrow frequency

range near the cavity resonance, specifically considering X±,out(ω = 0). Taking the

limit as one approaches threshold and Γ = κ, the variance in the output light is

given by16:

∆X2
+,out(ω = 0) =

5

16

κ2

ω2
m

.

Here we neglect the phonon recoil heating effects. We find that the output squeez-

ing could easily approach to 30 dB of noise reduction relative to the vacuum

state.

We can use quantum state transfer to realize entanglement transfer between

remote nanoparticles trapped in separate cavities,16 or to generate the Schrödingers

cat state |α〉+ |−α〉.17 Besides, if we drive the light on resonance of blue sideband,

we will generate two-mode squeezed state between phonon and photon modes. By

combing blue and red sideband driving, we can generate two-mode squeezed light

with the method similar as the Ref. 54. However, as there is no nonlinear coupling

in CoM mode of trapped nano-particles (at least for the first order), the non-

Gaussian state of mechanical mode can only be generated by mapping the photon

state into it. Therefore, the quantum state that can be generated (detected) in

trapped nanoparticle is depending on the input(output) state of light, which highly

limits the applications of the system.
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4.2. Optically trapped nanoparticle with built-in spins

Nanodiamonds with NV centers have been recently trapped by optical tweezers

in fluid56,57 and atmospheric air,58 and similar technologies can be used to op-

tically trap them in vacuum.22 The nonlinear interaction required for generation

of non-Gaussian quantum states is enabled through the spin-mechanical coupling

with a built-in nitrogen-vacancy center inside the nanodiamond.55 By detecting the

spin state of NV center in nanocrystal diamond, the phonon state can be detected

without cavity mode.

As shown in Fig. 8, we consider a nanodiamond of mass m optically trapped in

vacuum with trapping frequency ωm. The motion of its CoM mode am is described

by the Hamiltonian Hm = ~ωma
†
mam. The nanodiamond has a built-in NV center

with its level configuration shown in Fig. 1(b) in the ground-state manifold. The

NV spin is described by the Hamiltonian HNV = ~(ω+1|+1〉〈+1|+ω−1| − 1〉〈−1|),
where we have set |0〉 as the energy zero point. A magnet tip near the NV center

induces a strong magnetic field gradient,59 which couples the electron spin and

the CoM oscillation of the nanodiamond. The coupling Hamiltonian is denoted by

HNVm = ~λSz(am + a†m),60,61 where Sz ≡ | + 1〉〈+1| − | − 1〉〈−1|. The coupling

strength λ = gsµBGma0/~, where a0 =
√

~/2mωm, gs ≃ 2 is the Landé g-factor,

µB is the Bohr magneton and Gm is the magnetic field gradient along the NV center

axis.

In order to prepare the Fock states, we first cool the mechanical mode to the

ground-state with sideband cooling,16 or spin assistant phonon cooling.60 The NV

spin is initially set to the state |0〉, which is decoupled from the mechanical mode

Fig. 8. (a) A nanodiamond with a NV center is optically trapped in vacuum with spin-mechanical
coupling enabled through a nearby magnetic tip and opto-mechanical coupling through a cavity
around. (b) The atomic structure (left) and the level diagram (right) in the ground-state manifold
for a NV center in the nanodiamond. Figure adapted from Ref. 55.
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during the cooling. Initialization and single shot detection of the NV spin have been

well accomplished experimentally.62 We assume that the NV center is at a position

with zero magnetic field and a large field gradient. We apply a microwave drive with

the HamiltonianHdrive = ~(ΩNV,+1e
iωl+t|0〉〈+1|+ΩNV,−1e

iωl−t|0〉〈−1|+h.c.)/2 and

set the Rabi frequency ΩNV,±1 = ΩNV and the detuning ∆± ≡ ωl± − ω±1 = ∆.

With ∆ ≫ |ΩNV|, we adiabatically eliminate the level |0〉 and get the following

effective Hamiltonian:

He = ~ωma
†
mam + ~Ωσz + ~λ(σ+ + σ−)(am + a†m) , (12)

where Ω = |ΩNV|2/4∆, σz = |+〉〈+| − |−〉〈−|, σ+ = |+〉〈−|, σ− = |−〉〈+| and we

have defined the new basis states |+〉 = (|+1〉+|−1〉)/
√
2, |−〉 = (|+1〉−|−1〉)/

√
2.

In the limit λ ≪ ωm, we set Ω = ωm/2 and use the rotating wave approximation

to get an effective interaction Hamiltonian between the mechanical mode and the

NV center spin, with the form HJC = ~λσ+am + h.c. This represents the standard

Jaynes–Cummings (J–C) coupling Hamiltonian. Similarly, if we set Ω = −ωm/2,

the anti J–C Hamiltonian can be realized with HaJC = ~λσ+a
†
m + h.c.

Arbitrary Fock states and their superpositions can be prepared with a combi-

nation of J–C and anti J–C coupling Hamiltonians. For example, to generate the

Fock state |2〉m, we initialize the state to |+〉|0〉m, turn on the J–C coupling for a

duration t1 = π/(2λ) to get |−〉|1〉m, and then turn on the anti J–C coupling for a

duration t2 = t1/
√
2 to get |+〉|2〉m. The Fock state with arbitrary phonon number

nm can be generated by repeating the above two basic steps, and the interaction

time is ti = t1/
√
i for the ith step.63 Superpositions of different Fock states can also

be generated. For instance, if we initialize the state to (c0|+〉 + c1|−〉) ⊗ |0〉m/
√
2

through a microwave with arbitrary coefficients c0, c1 and turn on the J–C coupling

for a duration t1, we get the superposition state |−〉⊗ (c1|0〉m+ ic0|1〉m)/
√
2. Using

the optical cavity, the Fock state |nm〉m of mechanical mode can also be mapped

to the corresponding Fock state of the output light field.27

The effective Hamiltonian for the spin-phonon coupling takes the form HQND =

~χσza
†
mam with χ = 4Ωλ2/(4Ω2 − ω2

m) when the detuning ||Ω| − ωm/2| ≫ λ. The

Hamiltonian HQND can be used for a quantum non-demolition measurement(QND)

of the phonon number: we prepare the NV center spin in a superposition state

|+〉+eiφ|−〉)/
√
2, and the phase φ evolves by φ(t) = φ0+2χnmt, where nm = a†mam

denotes the phonon number. Through a measurement of the phase change, one can

detect the phonon number.

The preparation and detection of the Fock states can all be done within the

spin coherence time. Let us estimate the typical parameters. A large magnetic field

gradient can be generated by moving the nanodiamond close to a magnetic tip.

Here we take the gradient G = 105 T/m and get the coupling λ ≃ 2π × 52 kHz for

a nanodiamond with the diameter d = 30 nm in an optical trap with a trapping

frequency ωm = 2π × 0.5 MHz. The Fock states and their superpositions can then

be generated with a time scale 1/λ about a few µs, and the QND detection rate

2|χ| ∼ 2π × 25 kHz with the detuning ||Ω| − ωm/2| ∼ 5λ. The NV electron spin
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dephasing time over 1.8 ms has been observed at room temperature,64 which is

long compared with the Fock state preparation time 1/λ and the detection time

1/(2|χ|).

4.3. Schödinger’s cat states

Creating Shrödinger’s cat states with massive objects is one of the most challeng-

ing and attractive goals in macroscopic quantum mechanics.6–8 To generate spa-

tial quantum superpositions and other non-Gaussian states with an optical cavity,

however, requires a very strong quadratic coupling.28,29,65 This is a very demanding

requirement. To enhance the quadratic coupling, Romero-Isart et al.28 proposed to

prepare spatial quantum superpositions of nanoparticles with two inter-connected

high-finesse optical cavities: one cavity for ground-state cooling and the other cavity

for preparing the superposition state with a squared position measurement when

the nanoparticle falls through it. The Schödinger’s cat state can also be generated

by ultraviolet (UV) laser if the ground-state is reached.34 Then, we turn off the

optical trap, and let the wavefunction expand for a time t1. A tightly focused UV

laser pulse is shot through the center of the expanded wavefunction, whose scale

is in the order of hundreds of nanometers. The Schrödinger’s cat state will gen-

erate condition on no light being scattered. We can repeat the procedures until

Schrödinger’s cat state is generated.

Here we discuss how to create the Schödinger’s cat state with a levitated nan-

odiamond with a NV center.55 As we discussed in the previous subsection, the

strong nonlinear coupling can be realized in the nanocrystal diamond with building

in NV centers. Therefore, in this system, spatial quantum superposition state, or

Schrödinger’s cat state, can be easily generated without measurement. Without the

microwave driving, the spin-mechanical coupling Hamiltonian takes the form:

H = ~ωma
†
mam + ~λSz(am + a†m) . (13)

The mechanical mode is initialized to the vacuum state |0〉m (or a Fock state |nm〉m)

in a strong trap with the trapping frequency ωm0 and the NV center spin is prepared

in the state |0〉. Although the ground-state cooling is most effective in a strong trap,

to generate large spatial separation of the wave packets it is better to first lower the

trap frequency by tuning the laser intensity for the optical trap. While it is possible

to lower the trap frequency through an adiabatic sweep to keep the phonon state

unchanged, a more effective way is to use a nonadiabatic state-preserving sweep,66

which allows arbitrarily short sweeping time. We denote |nm〉m1 as the mechanical

state in the lower frequency ωm1.

We then apply an impulsive microwave pulse to suddenly change the NV spin

to the state (|+ 1〉+ | − 1〉)/
√
2 and simultaneously decrease the trap frequency to

ωm2 ≤ ωm1. The evolution of the system state under the Hamiltonian [Eq. (13)] then

automatically split the wave packet for the CoM motion of the nanodiamond (see

the illustration in Fig. 9). The splitting attains the maximum at time T2/2 = π/ωm2,
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Fig. 9. (a) Maximum spatial separation Dm of the superposition state as a function of trap
frequency ωm2 when the magnetic gradient is 105 T/m. (b) Maximum spatial separation Dm

as a function of the magnetic gradient G when the trapping frequency is 1 kHz. Macroscopic
superposition states with separation larger than the size of the particle can be achieved with a
moderate magnetic gradient. (Figure adapted from Ref. 55).

where the maximum distance of the two wave packets in the superposition state

is Dm = 8λa2/ωm2 = 4gsµBG/(mω
2
m2), where a2 =

√

~/2mωm2. At this moment,

the system state is |ΨS〉 = (| + 1〉|Dm/2〉nm
+ | − 1〉| − Dm/2〉nm

)/
√
2, where

|±Dm/2〉nm
≡ (−1)a

†
m
am exp[±Dm(a†m−am)/4a2]|nm〉1 is the displaced Fock state

(or coherent states when nm = 0). This is just the entangled spatial superposition

state. To transform the entangled cat state |ΨS〉 to the standard cat state |ψ±〉nm
≡

(|Dm/2〉nm
± | − Dm/2〉nm

)/
√
2, we need to apply a disentangling operation to

conditionally flip the NV spin using displacement of the diamond as the control

qubit. This can be achieved as different displacements of the wavepacket induce

relative energy shifts of the spin levels due to the applied magnetic field gradient.

As an estimate, for the example that we consider a 30 nm-diameter diamond in a

20 kHz trap under a magnetic gradient of 3× 104 T/m, the spin energy splitting is

about 2.4 MHz between the | + 1〉|Dm/2〉nm
and | − 1〉| −Dm/2〉nm

components,

which is much larger than the typical transition linewidth of the NV spin (in the

order of kHz). So we can apply first an impulsive microwave pulse to transfer the

component state |+1〉|Dm/2〉nm
to |0〉|Dm/2〉nm

without affecting |−1〉|−Dm/2〉nm

and then another pulse to transfer |− 1〉|− Dm/2〉nm
to ±|0〉| − Dm/2〉nm

. After

the two pulses, the spin state gets disentangled and the position of the diamond is

prepared in the quantum superposition state |ψ±〉nm
.

To detect spatial superposition state, we can turn off the optical trap and let

the spatial wavefunction freely evolve for some time t. The split wave packets will

cause interference just like the Young’s double slit experiment. The period of the

interference pattern is ∆z = 2π~t/(mDm). As an estimation of typical parameters,

we take ωm1 = ωm2 = 2π × 20 kHz, d = 30 nm and magnetic field gradient

3 × 104 T/m. The spin-phonon coupling rate λ ≃ 2π × 77 kHz and the maximum

distance Dm ≃ 31a2. The preparing time of superposition state is about 25 µs,

1330018-18

In
t. 

J.
 M

od
. P

hy
s.

 B
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
N

JI
N

G
 U

N
IV

E
R

SI
T

Y
 o

n 
09

/1
7/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://www.worldscientific.com/action/showImage?doi=10.1142/S0217979213300181&iName=master.img-221.jpg&w=320&h=142


September 17, 2013 9:35 WSPC/Guidelines-IJMPB S0217979213300181

Optomechanics of Levitated Dielectric Particles

which is much less than the coherence time of the NV spin. For the time of flight

measurement after turn-off of the trap, we see the interference pattern with a period

of 47 nm after t = 10 ms, which is large enough to be spatially resolved.18,19,22

5. Ultrasensitive Force Detection

In an ultra-high vacuum environment, the CoM motion of optically levitated

sensors experiences minimal dissipation, enabling ultra-sensitive force detec-

tion.27,31,67–69 Unlike conventional sensors consisting of solid-state mechanical res-

onators, e.g., cantilevers or membranes, the CoM motion of optically trapped di-

electric objects is immune to the chief sources of dissipation in these devices at low

pressure, consisting of lossy internal flexural and vibrational modes, surface imper-

fections and clamping mechanisms. The result is sub-attonewton force sensitivity

that may have a number of applications ranging from Casimir force measurements,

experimental gravitation, electric or magnetic field sensing, single molecules detect-

ing, to inertial sensing.

5.1. Force sensing with mechanical oscillators.

High force sensitivity resonant sensors have typically consisted of solid-state micro-

fabricated structures, for example cantilever beams or membranes.67,70 The achieve-

ment of aN/Hz1/2 sensitivity in cryogenic cantilevers has lead to magnetic resonance

force microscopy with the sensitivity to detect single electron spins in solids71 and

has allowed sensitive tests for non-Newtonian gravity at the ∼ 10 µm length scale.72

In these systems, the internal materials losses and clamping mechanisms are respon-

sible for limiting the quality factor of the oscillator to typically below Q ∼ 106. For

force detection, it is desirable to have minimal dissipation, as the minimum de-

tectable force due to thermal noise scales as Q−1/2. For a harmonic oscillator with

natural frequency ω0 it can be expressed as

Fmin = [4kkBTb/ω0Q]1/2 , (14)

where b is the bandwidth of the measurement, T is the effective temperature of

the mode under consideration and k is the spring constant. In ultra-high vacuum,

the CoM motion of optically levitated micron-sized dielectric spheres could exhibit

Q factors approaching 1012, leading to force sensitivity well below 1 aN/Hz1/2 at

room temperature. Experiments performed thus far have achieved inferred force

sensitivities at the level of ∼ 10−20 N/Hz1/2 for a 70 nm particle at P = 10−5 mbar

in Ref. 22, and of order 10−19 N/Hz1/2 for a 3 µm diameter sphere feedback-cooled

to 1.5 mK at 5.2 mPa in Ref. 19.

For a particle of mass m in an optical trap, we can rewrite Eq. (14) as

Fmin = [4kBTmbγg]
1/2, where the background gas collision has a loss rate of

γg = 16Pgas/(πv̄ρa),
73 for a background air pressure of Pgas and rms gas velocity v̄,

and a sphere of radius a and density ρ. However, as we discussed below, this formula

must be modified due to heating by the recoil of scattered trap laser photons. Such
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scattering produces a heating rate γsc = (2/5)(π2ω0V /λ
3)((ǫ − 1)/(ǫ+ 2)), where

V is the sphere volume, λ is the trap laser wavelength and ǫ is the real part of the

dielectric function for the sphere.

Laser cooling is essential for operation in high vacuum for several reasons. A

mechanical oscillator with frequency ∼ 100 kHz and Q = 1012 will respond to

perturbations with a characteristic time scale of 2Q/ω0 ≈ 3 × 106 s, which is

not practical for laboratory measurement. The cooling thus serves to damp the

motion of the oscillator so that perturbations to the system can ring-down within

reasonably short periods of time. In addition, as the laser intensity determines the

trapping frequency, it must be stabilized if the particle is to remain on resonance in

the case of resonant detection. By also damping the oscillator, the laser cooling can

therefore significantly reduce the requirement on the laser intensity stabilization.

Finally, the cooling is necessary to mitigate heating due to the recoil of trap laser

photons. Such recoil heating leads to a momentum diffusion process, which left

unchecked, can result in heating of the CoM motion of the particle and its eventual

loss. This heating modifies the expected form of the thermal noise limited force

sensitivity.

Either (active) feedback cooling or (passive) cavity cooling serves to damp the Q

factor to Qeff while at the same time the mode temperature is reduced to Teff . The

force sensitivity scales as
√

Teff/Qeff : the minimum detectable force due to thermal

noise at temperature Teff is Fmin =
√

4kkBTeffb/ω0Qeff , where k is the CoM mode

spring constant, and b is the bandwidth of the measurement.

For example, in the case of cavity-cooling, the thermal-noise limited minimum

detectable force becomes:

Fmin =

√

4kBTmbγg

[

1 +
γsc +R+

niγg

]

. (15)

We can define a factor χ = (γsc +R+)/niγg which describes the importance of

photon recoil heating γsc and the efficiency of the cavity cooling. Here ni ≡ kBT/~ω0

is the initial mean phonon occupation number. The factor R+, defined in Ref. 16

can be minimized by going into the resolved sideband regime and can be generally

neglected when compared with γsc. There are two general regimes of scaling, χ≪ 1

and χ≫ 1. For χ≪ 1, the effects of photon recoil do not significantly degrade the

force sensitivity, and Fmin ∝ aT 1/4P 1/2 and is independent of trap frequency. In

the regime χ≫ 1, photon recoil heating becomes significant, and damping without

an equal amount of cooling occurs. Here for a nanosphere the sensitivity scales as

Fmin ∝ ω0a
3 and is independent of T and P . A micro-disc geometry scatters much

less light, as pointed out in Ref. 74 and recoil heating is significantly reduced. Also

the micro-disc allows a larger mass to be trapped and localized in a particular anti-

node of the standing wave in the cavity which is advantageous e.g., for GW strain

sensitivity.33

In Fig. 10 we show the dependence of the force and acceleration sensitivity on

the radius of the sphere at fixed trapping frequency of 1 kHz assuming R+ ≪ γsc,

1330018-20

In
t. 

J.
 M

od
. P

hy
s.

 B
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
N

JI
N

G
 U

N
IV

E
R

SI
T

Y
 o

n 
09

/1
7/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



September 17, 2013 9:35 WSPC/Guidelines-IJMPB S0217979213300181

Optomechanics of Levitated Dielectric Particles

10
-7

10
-6

10
-22

10
-21

10
-20

10
-19

F
o
rc
e
S
en
si
ti
v
it
y
(N
/H
z1
/2
)

sphere radius (m)

Force

Force (
sc
=0)

10
-9

10
-8

10
-7

10
-6

10
-5

Acceleration

Acceleration (
sc
=0)

A
cc
el
er
at
io
n
se
n
si
ti
v
it
y
(g
/H
z1
/2
)

Fig. 10. Thermal noise limited force sensitivity and acceleration sensitivity for an optically
trapped silica microsphere at pressure P = 10−10 Torr and T = 300 K versus sphere radius at
1 kHz trap frequency. The deviation from the scaling in Eq. (14) is due to photon recoil heating.
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Fig. 11. Scattering-limited sensitivity for a 0.3 µm diameter bead versus trapping frequency for
planned experimental parameters.

at T = 300 K and P = 10−10 torr. At larger radii the regime χ ≫ 1 is realized,

with the minimum detectable force scaling as the sphere volume. In Fig. 11 we

show the dependence of the force sensitivity on trapping frequency for the fixed

size a = 150 nm. As the trapping frequency increases, the linear scaling with ω0 is

apparent as the regime χ≫ 1 is realized.
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5.2. Applications

For the following discussion, we consider a dielectric sphere optically trapped and

cooled in a cavity using two light fields of wavevector kt = 2π/λtrap and kc =

2π/λcool, respectively. The sphere is levitated in an anti-node of the trapping light

which can be located near one of the mirrors of the cavity at frequencies ranging

from ∼ 1−100 kHz. The Gaussian profile of the trapping beam near the mode waist

provides transverse confinement. Cooling of the transverse motion can be done with

active feedback to modulate the power of a transverse cooling laser using the signal

from a transverse position measurement.

For detecting the position of the sensor, the phase of the cooling light reflected

from the cavity is modulated through the optomechanical coupling ∂ωc/∂z = kcg.

Photon shot-noise limits the minimum detectable phase shift to δφ ≈ 1/(2
√
I),

where I ≡ Pc/(~ωc).
75 The corresponding photon shot-noise limited displace-

ment sensitivity is
√

Sz(ω) = (κ/4kcg)(1/
√
I)
√

1 + (4ω2/κ2),76 for an impedance

matched cavity. Here Pc and ωc are the cooling laser power and frequency, g =

(3V /4Vc)((ǫ − 1)/(ǫ+ 2))ωc, and κ is the optical cavity loss rate. The cavity mode

volume is Vc. The thermally-driven resonant motion of the sensor is typically much

greater than the photon shot noise limited detection floor due to the high Qeff .

5.2.1. Short-distance tests of gravity

By trapping a nanosphere at an anti-node located at sub-micron distance from

one of the cavity mirrors, it is possible to realize an experiment for testing gravity

at the micron length scale.31 Non-Newtonian gravity-like forces can be tested by

monitoring the displacement of the sphere as a mass is brought behind the cavity

mirror. Short-range corrections to Newtonian gravity are generally parameterized

according to a Yukawa-type potential:

V = −GNm1m2

r
[1 + αe−r/λ] , (16)

where m1 and m2 are two masses interacting at distance r, α is the strength of the

correction relative to gravity and λ is the range of the interaction. For two masses

with density ρ and linear dimesion λ that are separated by r ≈ λ, a Yukawa-force

scales roughly as FY ∼ GNρ
2αλ4, rapidly decreasing with smaller λ. For a gold

mass, for an interaction potential with α = 105 and λ = 1 µm, FY ∼ 10−21 N. As

the thermal-noise-limited force sensitivity of micron-size trapped spheres can be of

order ∼ 10−21 N/
√
Hz, this setup therefore allows probing deep into unexplored

regimes. For instance, current experimental limits at λ = 1 µm have only ruled out

interactions with |α| exceeding 1010.31,77–79

5.2.2. Casimir Forces

The Casimir Effect80 is a macroscopic manifestation of quantum vacuum fluctua-

tions, and is a testament to the theory of quantum electrodynamics, arguably the
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most accurately known theory in physics. At the same time, developing our under-

standing of it is becoming essential for pushing the size limits in nanotechnology

and nano-electro-mechanical systems. One of the most widely studied geometries in-

volves the Casimir interaction between a sphere and plane. Previous measurements

have been performed in the limit that their separation distance d is small compared

with the sphere radius a.81–85 On the other hand, the Casimir-polder limit has also

been explored using cold atoms, where the atomic size is much smaller than their

distance to the plane.86,87 However, there is a completely unexplored intermediate

regime where the size of the sphere is on the order of the sphere-surface separation.

Such a regime poses an experimental challenge for commonly used measurement

approaches involving a sphere attached to a torsional resonator — the mechanical

resonator which is used for force sensing is tethered to the sphere, and therefore

affects the geometry once the separation distance approaches the size of the sphere.

By using an optically-trapped nanosphere as the force sensor, one inherently over-

comes this difficulty. With a sphere trapped in an anti-node close to an end-mirror

of the cavity, Casimir forces due to the metallic end-mirror can be measured as

a frequency shift of the oscillator. This type of experiment could allow a pristine

dielectric-sphere/metal-plate geometry to be explored over a range of distances,

from the short range limit where the proximity force approximation (PFA) is valid

and the force varies as 1/d3, to the long range 1/d5 Casimir-polder limit.31

5.2.3. Gravitational waves

Nano- and micro-scale dielectric sensors trapped inside a medium-finesse optical

cavity can be used to detect high frequency gravitational wave (GW) radiation.33

The direct detection of gravitational radiation is very likely to occur in the next

decade with the new generation of laser-interferometer gravitational wave obser-

vatories.88–94 While these detectors have been optimized in the frequency band of

10−104 Hz, their sensitivity decreases at higher frequency due to photon shot noise.

The optically trapped sensor offers improved sensitivity in the frequency range of

50− 300 kHz using an approach that does not rely on a shot-noise limited displace-

ment measurement of test mass mirrors, but rather depends on a precision force

measurement on the resonant harmonically trapped sensor. The detector can yield

sensitivities improved by more than an order of magnitude in this frequency band

when compared with existing interferometers, while being only a fraction of their

size. The approach extends the effective search volume for sources between 100

and 300 kHz by ∼ 10 − 103 when compared with advanced LIGO.89 At such high

frequencies, there may be sources of gravitational radiation from physics beyond

the standard model. One example may result from the effects of the QCD axion

on stellar mass black holes (BHs) through BH superradiance.95,96 This novel signal

comes from axion annihilation to gravitons and is monochromatic and long-lived.

In the approach proposed in Ref. 33, a dielectic nanosphere or microdisc is

optically trapped in an anti-node of a cavity of length at a position close to the
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input mirror. A second light field with two different frequency components is used

to cool and read out the axial position of the levitated object, respectively. A

passing GW displaces the sensor from its equilibrium position in the cavity, resulting

in a measurable displacement of the levitated object. Gravitational wave strain

sensitivity can approach ∼ 10−22/
√
Hz for frequencies near 100 kHz for micron-

sized discs in a cavity of length 100 m. The resulting displacement of the sensor is

resonantly enhanced when the frequency of the GW coincides with the optical trap

frequency.

5.2.4. Detecting single molecule collisions

Detection of individual collisions between single molecules and the nanosphere

would lead to a test of the Maxwell–Boltzmann distribution on single-collision level.

By using the 3D cooling sideband cooling scheme, we may archive it by detecting

the output light pulses. Considering the gas pressure P at temperature Tenv, the

radius of the sphere r, the molecule mass mm, we have the collision number per

second N = (2πr2)P/
√

πmmkBTenv/2, where kB is the Boltzmann constant. The

collision time is estimated to be much less than the nanosphere oscillation time

scale. The three phonon modes initially in vacuum will be in a state with mean

phonon number nj0: 〈a†j(t0)aj(t0)〉 = nj0 after a single collision, where t0 is the

time when collision happens. For this case, the output field is:

aoutcj (t) = −i2gαj√
κj

exp

[

−
2g2j |αj |2
κj

(t− t0)

]

aj(t0) + aincj ,

It is easy to find that
∫∞

t0
〈aoutcj (t)aout†cj (t)〉dt = nj0. This implies that the output-

pulse photon number is equal to the increase of the phonon number after the col-

lision. From above discussion, we get the phonon decay time τj = κj/(4g
2
j |αj |2),

which is also the pulse duration of the output light of mode acj . The phonon

number can be measured by detecting the output light pulse. Therefore, τj is the

measurement time for the phonon mode aj after the collision. Therefore, as long as

τj ≪ 1/N , the collision events can be measured individually.

Moreover, to make detecting efficiency high, the phonon number after the

collision requires to be more than one. For the first case, we suppose the colli-

sion is completely elastic. The average increase of the phonon number for aj is

nj0 = 2m2
m〈v2j 〉/(~ωjm) with 〈v2j 〉 the mean velocity square along the axis qj .

As a result, the requirement for the phonon number change could be rewritten

as 2kBTenv > ~ωj(m/mm). If the collision is completely inelastic, the molecule

will attach on the surface of the nanosphere for a while before being kicked out.

The output velocity distribution is completely determined by the temperature of

the nanosphere surface. The criteria should be either kBTenv > 2~ωj(m/mm),

or kBTsur > 2~ωj(m/mm), where Tsur is the temperature of the surface of the

nanosphere. To distinguish elastic and inelastic collision, we can cool the tem-

perature to the limit that kBTenv ≪ ~ωj(m/mm), and fulfills the condition
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kBTsur > 2~ωj(m/mm) by adding a long wavelength laser to heat the sphere.

If the collisions are all elastic, there is no signal on the photon detectors. If parts

of the collisions are inelastic, there are output pulses of lights. Besides, the dis-

tribution of the photon numbers is determined by the surface temperature of the

sphere. In other words, we can measure the surface temperature of the nanosphere

by detecting the output light pulses.

5.2.5. Other applications

By carrying a nonzero net electric charge, an optically trapped dielectric sphere be-

comes a sensitive detector for electric fields. For a charged sphere of diameter 300 nm

with an electric field of ∼ 107 V/m at its surface, a 10−21 N/
√
Hz sensitivity cor-

responds to an electric field sensitivity of ∼ 10 µV/m/
√
Hz. Correspondingly if the

sphere were functionalized with a magnetic moment, sensitive magnetic field sensing

may be possible, for example enabling magnetic resonance force microscopy.71
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