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Abstract—Traditional quantum error-correcting codes are de-
signed for the depolarizing channel modeled by generalized Pauli
errors occurring with equal probability. Amplitude damping
channels, in general, model the decay process of a multilevel atom
or energy dissipation of a bosonic system at zero temperature.
We discuss quantum error-correcting codes adapted to amplitude
damping channels for higher dimensional systems (qudits). For
multi-level atoms, we consider a natural kind of decay process,
and for bosonic systems, we consider the qudit amplitude
damping channel obtained by truncating the Fock basis of the
bosonic modes to a certain maximum occupation number. We
construct families of single-error-correcting quantum codes that
can be used for both cases. Our codes have larger code dimensions
than the previously known single-error-correcting codes of the
same lengths.

Index Terms—amplitude damping channel, quantum codes

I. INTRODUCTION

For a q-level quantum system with Hilbert space Cq , called a
qudit, the most general physical operations (or quantum chan-
nels) allowed by quantum mechanics are completely positive,
trace preserving linear maps which can be represented in the
following Kraus decomposition form N (ρ) =

∑
k EkρE

†
k,

where the matrices Ek are called Kraus operators of the
quantum channel N and satisfy the trace-preserving condition∑

k E
†
kEk = 1l.

In designing error-correcting codes for sending n qudits
through a channel N , it is usually assumed that the errors to
be corrected are completely random, with no knowledge other
than that they affect different qudits independently [1], [2].
That is, the channel N is the depolarizing channel modeled
by equal probability of generalized Pauli operators [3]–[5]
(Xq)

a(Zq)
b, for a, b ∈ {0, 1, . . . , q−1}, where Xq|s⟩ = |s+1

mod q⟩ and Zq|s⟩ = ωs|s⟩, ω = exp(2πi/q). When it is clear
from the context, we may just write X and Z, dropping the
index q.

However, if further information about the error process is
available, more efficient codes can be designed. Indeed, in
many physical systems, the noise is likely to be unbalanced
between amplitude (X-type) errors and phase (Z-type) errors.
Recently a lot of attention has been put into designing codes
for this situation and into studying their fault tolerance prop-

erties [6]–[11]. All these results use error models described by
Kraus operators that are generalized Pauli operators, but for
which the X-type errors (i.e., non-diagonal Pauli matrices)
happen with probability px which might be different from the
probability pz that Z-type errors (i.e., diagonal Pauli matrices)
happen. Quantum channels affected by this kind of noise are
called asymmetric channels.

A closer look at the real physical process of amplitude
damping noise shows that one needs to go even further, beyond
Kraus operators of Pauli type. To be more precise, for q = 2,
the qubit amplitude damping (AD) channel is given by the
Kraus operators [12]

A0 =

(
1 0
0

√
1− γ

)
and A1 =

(
0

√
γ

0 0

)
. (1)

Since the error model of the qubit AD channel is not described
by Pauli Kraus operators, the known techniques dealing with
Pauli errors result in codes with non-optimal parameters. Sev-
eral new techniques for the construction of codes adapted to
this type of noise with non-Pauli Kraus operators, and the qubit
AD channel in particular, have been developed [8], [12]–[15].
Systematic methods for constructing high performance single-
error-correcting codes [13], [15] and multi-error-correcting
codes [16] have been found.

In this paper, we discuss quantum code constructions for
AD channels of general qudit systems. Unlike the qubit case,
where the AD channel is unique, for qudit systems there
are different AD channels associated with different physical
systems. We will focus on two different models: multi-level
atoms with a natural kind of decay process, and bosonic
systems obtained by truncating the Fock basis of the bosonic
modes to the maximum occupation number q− 1 for a single
bosonic mode.

II. THE AMPLITUDE DAMPING CHANNEL

For two-level atoms, the decay process at zero temperature
is described by the Kraus operators A0, A1 as given in Eq.
(1). For multi-level atoms, there are different kinds of decay
processes at zero temperature. One natural decay process is
the cascade structure Ξ, where the decay process is governed
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by the master equation [17], [18]
dρ

dt
=∑

1≤i≤q−1

ki
(
2σ−

i−1,iρσ
+
i−1,i − σ+

i−1,iσ
−
i−1,iρ− ρσ+

i−1,iσ
−
i−1,i

)
.

(2)

Here {|i⟩}q−1
i=0 is a basis of the Hilbert space Cq , and σ−

i−1,i =

|i− 1⟩⟨i| and σ+
i−1,i = |i⟩⟨i− 1|.

The solution to this master equation gives the Kraus expres-
sion

Ξ(ρ) = A0ρA
†
0 +

∑
0≤i<j≤q−1

AijρA
†
ij , (3)

where Aij =
√
γij |i⟩⟨j| with positive coefficients γij , and

A0 is a diagonal matrix with its elements given by A†
0A0 +∑

0≤i<j≤q−1A
†
ijAij = I . Furthermore, when the decay time

t is small, γij is of order tℓ for any j = i + ℓ, ℓ > 0. As a
consequence, A0 is of order t, and Aij is of order tℓ/2 for any
j = i + ℓ, ℓ > 0. This is intuitively sound as for the cascade
structure, the first order transition always happens from |i+1⟩
to |i⟩.

As an example, for three-level atoms, i.e., q = 3, we have

A01 =
√
γ01|0⟩⟨1|, A12 =

√
γ12|1⟩⟨2|,

A02 =
√
γ02|0⟩⟨2|,

A0 = |0⟩⟨0|+
√

1− γ01|1⟩⟨1|+
√
1− γ02 − γ12|2⟩⟨2|,

where

γ01 = 2k2t+O(t2),

γ02 = 2(k1 + k2)t
2 +O(t3),

γ12 = 2k1t+O(t2),

for k1 ̸= k2. The values of γij are slightly different for k1 =
k2, but the order of γij in terms of t remains similar.

The channel A describing energy dissipation of a bosonic
system at zero temperature is discussed in [12]. The Kraus
operators are given by

Ak =

q−1∑
r=k

√(
r

k

)√
(1− γ)r−kγk|r − k⟩⟨r|, (4)

where q − 1 is the maximum occupation number of a single
bosonic mode, and k = 0, 1, . . . , q− 1. The parameter γ is of
first order in terms of the decay time t, i.e., γ = ct + O(t2).
As a consequence, the non-identity part of A0 is of order t,
and Ak is of order tk/2 for 1 ≤ k ≤ d− 1.

For instance, for the qubit case, i.e., q = 2, we have the
qubit amplitude channel given by Eq. (1). For q = 3, we have

A0 = |0⟩⟨0|+
√

1− γ|1⟩⟨1|+ (1− γ)|2⟩⟨2|,
A1 =

√
γ|0⟩⟨1|+

√
2γ(1− γ)|1⟩⟨2|,

and A2 = γ|0⟩⟨2|.
Note that for q = 3, the non-diagonal Kraus operators of

the channel A for bosonic systems are linear combinations of
the Kraus operators of the channel Ξ. Hence codes correcting
errors of the channel Ξ are also codes for the channel A.

III. ERROR CORRECTION CRITERIA

A quantum error-correcting code Q is a subspace of (Cq)⊗n,
the space of n qudits. For a K-dimensional code space
spanned by the orthonormal basis |ψi⟩, i = 1, . . . ,K, and
a set of errors E , there is a physical operation correcting all
elements Ek ∈ E if the error correction conditions [19], [20]
are satisfied:

∀i, j, k, l : ⟨ψi|E†
kEl|ψj⟩ = λklδij , (5)

where λkl depends only on k and l. A code is said to be pure
with respect to some set of errors E if λkl = δkl.

For the AD channels Ξ and A, if the decay time t is
small, we would like to correct the leading order errors that
occur during amplitude damping. Similar as for the qubit
case [2, Section 8.7], in order to improve the fidelity of the
transmission through the AD channel Ξ or A from 1 − O(t)
to 1−O(t2), i.e., to correct a single error, it is sufficient to be
able to detect one A0 error and to correct one Aij error with
j = i + 1 for the channel Ξ (or to correct one Ai error with
i > 0 for the channel A).

Stabilizer codes are a large class of quantum codes which
contain many good quantum codes [1], [2]. A stabilizer code
with n qudits encoding k qudits has distance d if all errors of
weight at most d− 1 can be detected or have no effect on Q,
and we denote the parameters of Q by [[n, k, d]]q . Obviously
a stabilizer code of distance 3 corrects a single AD error as it
corrects an arbitrary single error.

Calderbank-Shor-Steane (CSS) codes [21], [22] are a sub-
class of the stabilizer codes. It has been shown that CSS codes
can be used to construct codes for the binary AD channel
[2, Section 8.7]. This has a direct generalization to the qudit
case [23]. For single-error correcting codes for qudit AD
channels, the following holds.

Theorem 1: An [[n, k]]q CSS code Q with pure X-distance
3 and Z-distance 2 corrects a single AD error.

Proof: The diagonal error operator A0 can be expanded in
terms of the error operators Zl

q , with the expansion coefficients
of the operators Zl

q , l > 0 being of first order in t. As the code
Q is has Z-distance 2, all diagonal Kraus operators acting on
a single qubit can be detected.

The diagonal of the other error operators Aij or Ai is zero.
They can be expanded in terms of operators Zl

qX
k
q , k ̸= 0,

with the expansion coefficients being of order
√
t. We have

to show that such an error can be corrected. Consider the
erroneous states Zl

(α)X
k
(α)|ψi⟩ and Zl′

(β)X
k′

(β)|ψj⟩, where M(α)

denotes an operator acting at position α. The inner product
between these two states is ⟨ψi|X−k

(α)Z
−l
(α)Z

l′

(β)X
k′

(β)|ψj⟩. For
α = β and k = k′, the X-parts cancel and we are left with a
single Z-error that can be detected. For l = l′, we have pure
X-errors of weight less than three, and Condition (5) holds
as well. What is more, the erroneous states are superpositions
of states from mutually orthogonal spaces. Hence (5) remains
zero when introducing additional Z-errors Zl

(α) and Zl′

(β).
Corollary 2: If there exists an [n, k + 1, 3]q linear code

C containing the all-one-vector 1 ∈ C, then there exists an
[[n, k]]q CSS code correcting a single AD error.
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IV. CLASSICAL ASYMMETRIC CODES

We construct quantum codes correcting a single AD error.
Codes for the qubit case have been presented in [13], [15].
Those codes are self-complementary, i.e., the basis states are
of the form |ψu⟩ = 1√

2
(|u⟩+ |ū⟩), where u is an n-bit string,

ū = 1⊕ u, and 1 is the all-one-string.
For the non-binary case with q > 2, we consider a similar

construction. Define X̄ = X⊗n
q , then the basis states are

chosen as

|ψu⟩ =
1
√
q

q−1∑
l=0

X̄ l|u⟩. (6)

For instance, for q = 3 and n = 3, we get |ψ0⟩ = 1√
3
(|000⟩+

|111⟩+ |222⟩).
The quantum code Q is then spanned by {|ψu⟩}, where

u ∈ C̃ is some length-n string (C̃ is a classical code of
length n). The advantage of this construction is that the
code automatically satisfies the error-detection condition for
a single Zl

q error (l = 1, 2, . . . , q − 1), as the code is
stabilized by X̄ . Now consider a classical code with codewords
C = {u+α1 : u ∈ C̃, α = 0, . . . , q−1} and the corresponding
quantum code spanned by {|ψu⟩ : u ∈ C̃}. The problem of
correcting a single error for the qudit AD channels can then
be reduced to finding certain classical codes.

The relevant classical channel is the classical asymmetric
channel [24]. Let the alphabet be Zq with the ordering 0 <
1 < 2 < · · · < q − 1. A channel is called asymmetric if any
transmitted symbol a is received as b ≤ a. The mostly studied
asymmetric channel dates back to Varshamov [25], which can
be described by the following asymmetric distance ∆(x,y).

Definition 3 (see [26]): Let B = {0, 1, . . . , q−1} ⊂ Z. For
x,y ∈ Bn, we define

1) w(x) :=
∑n

i=1 xi.
2) N(x,y) :=

∑n
i=1 max{yi − xi, 0}.

3) ∆(x,y) := max{N(x,y), N(y,x)}.
If x is sent and y is received, we say that w(x − y) errors
have occurred.

Theorem 4 (see [26]): A code C ∈ Bn corrects r errors of
the asymmetrical channel if and only if ∆(x,y) > r for all
x,y ∈ C, x ̸= y.

Our goal is to link these classical asymmetric codes to
quantum AD codes. As discussed above, we start from the
following definition.

Definition 5: A classical code C over the alphabet B is
called self-complementary if for any x ∈ C, 1⊕ x ∈ C.

For any self-complementary code C, there exists another
code C̃ such that C = {u+α1 : u ∈ C̃, α = 0, . . . q− 1} and
|C| = q|C̃|. We may, for example, chose C̃ such that u1 = 0
for u ∈ C̃. This then corresponds to the quantum code Q
spanned by {|ψu⟩ : u ∈ C̃} as given in Eq. (6). Our main
result is given by the following theorem.

Theorem 6: If C is a classical (linear or non-linear) self-
complementary code correcting a single error with respect to
Definition 3, then Q spanned by {|ψu⟩ : u ∈ C̃} is a single-
error-correcting code for the qudit AD channels Ξ and A.

Proof: Let Eij = |i⟩⟨j| with i, j ∈ {0, 1, . . . , q − 1} and
i < j. For a small decay time t, in order to improve the
fidelity of the transmission through the qudit AD channel A
given by Eq. (4) from 1−O(t) to 1−O(t2), it is sufficient to
correct a single Ei,i+1-error and detect one Zl

q-error for l =
1, 2, . . . , q−1. The self-complementary form of |ψu⟩ as given
in Eq. (6) implies that X̄|ψu⟩ = |ψu⟩. In turn, this implies
that ⟨ψv|Zl

q|ψu⟩ = 0 for any u,v and l = 1, 2, . . . , q−1, i.e.,
the error-detection condition for a single Zl

q error is fulfilled.
Next consider a single operator Ei,i+1. Every state of the

quantum code is a linear combination of states |c⟩ with c ∈ C.
Applying the operator Ei,i+1 to |c⟩ corresponds to a single
asymmetric error. As the classical code C corrects a single
asymmetric error, the distance between any two codewords is
at least two. Therefore, the supports (set of basis states with
non-zero coefficient in the superposition) of the states |ψu⟩
and E(α)

i,i+1|ψv⟩ are disjoint for all positions α, where E(α)
i,i+1

denotes the operator Ei,i+1 acting at position α. Hence those
states are mutually orthogonal. Finally note that for errors
Ei,i+1 acting on the same position, the operator E†

i,i+1Ei,i+1

is diagonal and hence in the span of the operators Zl
q , which

can be detected.
Corollary 7: If there exists an (n,K, 3)q self-complemen-

tary code C, then there exists an ((n,K/q))q quantum code
correcting a single AD error.

Such codes have, e.g., been studied in [27].

V. SINGLE-ERROR-CORRECTING AD CODES

We now use Theorem 6 to construct some families of
good single-error-correcting AD codes. For this, we need
to find some good self-complementary single-error-correcting
classical asymmetric codes.

We will use the idea of generalized concatenation, which
has been discussed in the context of constructing binary AD
codes in [15], and in the context of constructing (classical)
asymmetric codes in [28]. This method will allow us to
construct good self-complementary asymmetric linear codes
for the non-binary case, which will lead to good single-error-
correcting quantum codes for AD channels.

A. Qutrit Codes

First, we consider the case of q = 3. For the generalized
concatenation construction, we choose the outer code as some
ternary classical code over the alphabet {0̃, 1̃, 2̃}. The inner
codes are chosen as:

C0̃ = {00, 11, 22}, C1̃ = {01, 12, 20}, C2̃ = {02, 10, 21}.
(7)

Then we have the following construction.
Theorem 8: For n even, generalized concatenation with

an outer [n/2, k, 3]3 code results in an [n, n/2 + k]3 self-
complementary linear code C. This code leads to an [[n, n/2+
k − 1]]3 quantum stabilizer code Q, correcting a single error
for the channels Ξ and A.

Proof: Note that C0̃, C1̃, and C2̃ are all self-complemen-
tary codes correcting a single asymmetric error. Therefore, any
outer ternary code will lead to a self-complementary ternary
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code C, and hence a quantum code Q. A single amplitude
damping error induces only a single error with respect to 0̃,
1̃, 2̃. As the outer ternary code has distance 3, such an error
can be corrected.

Note that with respect to the symbols 0̃, 1̃, 2̃, the induced
channel R3 is nothing but the ternary symmetric channel
shown in FIG. 1.

0̃

1̃ 2̃�-�� ]̂
0̃

1̃ 2̃

3̃

-�

-�
6? 6?

0̃

1̃

2̃ 3̃

4̃

�-MN �

>= ~}

R3 R4 R5

Fig. 1. The induced channel R3 for q = 3 (which is just the ternary
symmetric channel), the induced channel R4 for q = 4, and the induced
channel R5 for q = 5. The arrows indicate the possible transitions between
symbols.

Example 9: For n = 6, take the outer code of length
n/2 = 3 as {0̃0̃0̃, 1̃1̃1̃, 2̃2̃2̃} with distance 3. Generalized
concatenation yields a self-complementary ternary linear code
of dimension 4. The corresponding quantum code Q encodes
6/2 + 1 − 1 = 3 qutrits. Both the best corresponding single-
error-correcting quantum code [[6, 2, 3]]3 as well as the best
possible asymmetric CSS code [[6, 2, {3, 2}]]3 (see Corollary
2) encode only 2 qutrits.

As shown in Table I, for many lengths, the construction
based on Theorem 8 outperforms both the quantum codes
with distance 3, and the CSS codes of Corollary 2 (cf. [27]).
The dimension of the asymmetric quantum codes (AQECC) is
taken from [27].

TABLE I
DIMENSION OF SINGLE-ERROR-CORRECTING QUANTUM AD CODES FROM

THE GF (32) CONSTRUCTION WITH DISTANCE 3, THE CSS
CONSTRUCTION, ASYMMETRIC QUANTUM CODES (AQECC), AND THE

GENERALIZED CONCATENATION CONSTRUCTION (GC).

n GF (32) CSS AQECC GC
4 30 30 1 –
6 32 32 11 33

8 34 34 84 35

10 36 36 36 36

12 37 38 38 38

14 39 39 39 310

16 311 311 311 312

B. The Case q > 3

For q = 4, we choose the inner codes as

C0̃ = {00, 11, 22, 33}, C1̃ = {01, 12, 23, 30},
C2̃ = {02, 13, 20, 31}, C3̃ = {03, 10, 21, 32}. (8)

Similar as in Theorem 8, an outer code with distance three
yields a self-complementary code from which a quantum
AD code can be derived. However, in this case, the induced
channel for the outer code is no longer symmetric. A single
damping error will, for example, never map a codeword of the
inner code C0̃ to a codeword of C2̃. So on the level of the outer
code, there are no transitions between 0̃ and 2̃, or between 1̃
and 3̃. The induced quaternary channel R4 is shown in FIG. 1,
where we see that errors only happen between ‘neighbors.’

The above constructions for q = 3, 4 have a direct gener-
alization to general q > 2. For a given q, choose the outer

code as some code over the alphabet {0̃, 1̃, . . . , q̃ − 1}. The q
inner codes C0̃, C1̃, . . . , Cq̃−1

are the double-repetition code
C0̃ = {00, 11, . . . , (q − 1)(q − 1)} and all its q − 1 cosets
Cĩ = C0̃ ⊕ (0i), i.e., we apply the rule that 0i ∈ Cĩ. It is
straightforward to check that each inner code has asymmetric
distance 2, hence corrects a single asymmetric error. Similar
as in the case of q = 4, a single damping error will only
drive transitions between ĩ, j̃ for ĩ = j̃ ± 1̃. For instance, for
q = 5, the induced channel R5 is shown in FIG. 1. In general,
we will write the induced channel as Rq for outer codes over
{0̃, 1̃, . . . , q̃ − 1}.

Similar as Theorem 8, in general we have the following
theorem.

Theorem 10: For n even, an outer [n/2, k]q code correcting
a single error for the channel Rq leads to an [n, n/2+k]q self-
complementary linear code C and hence an [[n, n/2+ k− 1]]q
quantum code Q, correcting a single error for the qudit AD
channels Ξ and A.

Note that the channel Rq is no longer a symmetric channel,
so outer codes of Hamming distance 3 are no longer expected
to give the best codes. It turns out, however, that single-
error-correcting codes for the channel Rq are equivalent to
single-symmetric-error correcting codes in Lee metric [29]
(see also [30]), for which optimal linear codes are known (for
more detailed discussion, see [28]).

VI. THE CASE OF ODD LENGTHS

The construction of AD codes for even lengths given
in Sec. V based on generalized concatenation is relatively
straightforward. The inner codes are just 1-codes of length
2 with q codewords and their cosets. In [28], codes of odd
length were obtained using a mixed-alphabet code, treating
one position differently. This does not directly translate to the
situation considered here, as the resulting code has to be self-
complementary.

Instead, we can directly search for q mutually disjoint inner
codes of length 3 which are 1-codes.

For q = 4, consider the following Z4-linear code C0′ of
length 3 generated by {111, 002, 020}:

000 111 222 333 002 113 220 331

020 131 202 313 200 311 022 133. (9)

The code C0′ has asymmetric distance 2, as well as the
three cosets C1′ = C0′ + 001, C2′ = C0′ + 010, and
C3′ = C0′ + 100. Applying generalized concatenation to
the outer code {0̃0̃0′, 1̃1̃1′, 2̃2̃2′, 3̃3̃3′} and the inner codes
of length 2 and 3 for the first two and the third position,
respectively, yields a self-complementary 1-code [7, 5]4. The
corresponding quantum code has parameters [[7, 4]]4.

Note that the induced channel on the alphabet {0′, 1′, 2′, 3′}
is no longer R4, but the symmetric channel over Z4. Therefore
we have the following theorem for q = 4.

Theorem 11: For n odd, an outer [(n − 1)/2, k, 3]4 code
leads to an [n, (n + 1)/2 + k]4 self-complementary linear1-
code C. The resulting quantum code Q = [[n, (n−1)/2+k]]4
corrects a single error for the qudit AD channels Ξ and A.
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Proof: The inner codes Cĩ of length two as well as the in-
ner codes Ci′ of length three are self-complementary 1-codes.
Distance 3 of the outer code ensures that a single error mixing
the inner codes can be corrected. For the outer code, we always
take the last coordinate to be of type s′, and all the other
coordinates to be of type s̃, for s = 0, . . . , 3. Therefore, for an
outer [(n− 1)/2, k, 3]4 linear code, generalized concatenation
yields an [n, (n+1)/2+k]4 self-complementary linear 1-code
C, corresponding to an [[n, (n− 1)/2+ k]]4 quantum code.

We emphasize that the construction related to Theorem 11
is valid only for q = 4. For q > 5, however, the Zq-linear
code C0 generated by {111, 013} and its q cosets are all self-
complementary codes with asymmetric distance 2. For this,
note that ∆(x,y) = 1 if and only if, up to permutation,
x − y ∈ {(1, 0, 0), (1,−1, 0)}. For q > 5, the code C0

does not contain such a vector. Hence we obtain the analogue
result as in Theorem 11 for q > 5. For q = 3 and q = 5,
however, we cannot partition the trivial code [3, 3]q into q
self-complementary codes [3, 2]q with asymmetric distance 2.

VII. DISCUSSION

For correcting a single AD error, we use the error correction
criteria that it is sufficient to detect one A0 error and to correct
one Aij error with j = i + 1 for the channel Ξ (or one Ai

error for the channel A). Although this follows quite naturally
from the analogy to the qubit case and can be generalized to
correcting multiple AD errors, we leave the derivation of the
more general criteria to the journal version of this paper.

For the decay process of multi-level atoms, we only con-
sidered the cascade structure Ξ, but there are other cases. For
three-level atoms, for instance, the other two important types
of AD channels are V -type and Λ-type [17], [18]. Although
the code construction discussed for the AD channel Ξ does
not directly apply to these other types of AD channels, the
self-complementary construction helps to reduce the problem
to finding some classical asymmetric codes.

It remains open how to construct good single-error-correct-
ing AD codes based on generalized concatenation (or some
other methods) for odd lengths when q = 3 or q = 5. It is
also desired to find AD codes correcting multiple errors. These
questions will be addressed in the journal version of this paper.
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