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Braiding of Majorana fermions gives accurate topological quantum operations that are intrinsi-
cally robust to noise and imperfection, providing a natural method to realize fault-tolerant quan-
tum information processing. Unfortunately, it is known that braiding of Majorana fermions is not
sufficient for implementation of universal quantum computation. Here we show that topological
manipulation of Majorana fermions provides the full set of operations required to generate random
numbers by way of quantum mechanics and to certify its genuine randomness through violation of
a multipartite Bell inequality. The result opens a new perspective to apply Majorana fermions for
robust generation of certified random numbers, which has important applications in cryptography
and other related areas.
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The complex-valued solutions to the Dirac equation
predict that every elementary particle should have a com-
plex conjugate counterpart, namely an antiparticle. For
example, an electron has a positron as its antiparticle.
However, in 1937 Ettore Majorana [1] showed that the
complex Dirac equation can be modified to permit real
wave-functions, leading to the possible existence of the
so called “Majorana fermions” which are their own an-
tiparticles [2]. In condensed matter physics, Majorana
fermions may appear as elementary qusi-particle excita-
tions. To search for Majorana fermions, several propos-
als have been made in recent years, including ν = 5/2
fractional quantum Hall system [3, 4], topological insu-
lator (TI)—superconductor (SC) interface [5], interact-
ing quantum spins [6], chiral p-wave superconductors [7],
spin-orbit coupled semiconductor thin film [8] or quan-
tum nanowire [9, 10] in the proximity of an external s-
wave superconductor. Based on these proposals, exper-
imentalists have made great progress recently. For in-
stance, Ref. [11] reported an experimental observation of
coexistence of the superconducting gap and the topologi-
cal surface state in the Bi2Se3 thin film as a step towards
realization of Majorana fermions. More recently, sig-
nature of Majorana fermions in hybrid superconductor-
semiconductor nanowire device has been reported [12],
which has raised strong interest in the community.

Majorana fermions are exotic particles classified as
non-abelian anyons with fractional statistics, and braid-
ing between them gives nontrivial quantum operations
that are topological in nature. These topological quan-
tum operations are intrinsically robust to noise and ex-
perimental imperfection, so they provide a natural so-
lution to realization of fault-tolerant quantum gates.
Application of Majorana fermions in implementation
of fault-tolerant quantum computation has raised great
interest [4, 6]. Unfortunately, braiding of Majorana
fermions are not sufficient yet for realization of univer-
sal quantum computation [4], and we need assistance

from additional non-topological quantum gates which are
prone to influence of noise.

In this Letter, we show that topological manipulation
of Majorana fermions alone can be used to realize a quan-
tum random number generator in a fault tolerant fashion
and to certifies its genuine randomness through viola-
tion of the Mermin-Ardehali-Belinskii-Klyshko (MABK)
inequality [13–15]. Random numbers have tremendous
applications in science and engineering [16–18]. How-
ever, generation of genuine random numbers is a chal-
lenging task [19]. Any classical device does not gener-
ate genuine randomness as it allows a deterministic de-
scription in principle. Quantum mechanics is intrinsi-
cally random, and one can explore this feature to gen-
erate random numbers [20–23]. However, in real exper-
iments, the intrinsic randomness of quantum mechanics
is always mixed-up with an apparent randomness due to
noise or imperfect control of the experiment [19]. The
latter can be exploited by an adversary opponent and
leads to security loopholes in various applications of ran-
domness. Recently, a nice idea has been put forward to
certify genuine randomness generated by a quantum de-
vice through test of violation of the Bell-CHSH (Clauser-
Horn- Shimony-Holt [24]) inequality [19, 25], and the idea
has been demonstrated in a proof-of-principle experiment
using remote entangled ions [19]. This implementation is
not fault-tolerant yet as the remote entanglement is sen-
sitive to noise and the quantum gates have limited pre-
cision which can all lead to security loopholes. We show
here that all the operations for generation and certifica-
tion of genuine randomness can be realized through topo-
logical manipulation of Majorana fermions. This imple-
mentation is inherently fault-tolerant and automatically
closes security loopholes caused by influence of noise.

The implementation of certification of a quantum ran-
dom number generator with Majorana fermions is tricky.
First of all, one can not use the Bell-CHSH inequality
anymore as proposed in Ref. [19], since it is impossible
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to violate this inequality through topological manipula-
tion of Majorana fermions alone [26]. In fact, to observe
violations of the CHSH inequality, measurements in the
non-Clifford bases are required. However, topological op-
erations on Majorana fermions can only give gates in the
Clifford group, and thus not able to achieve the mea-
surements required for the CHSH inequality violation for
randomness certification. Consequently, we have to con-
sider certification of randomness based on extension of
the Bell inequalities in the multi-qubit case. For simplic-
ity, here we use the MABK inequality for three logical
qubits [13–15]. We show that first, this inequality can be
used to certify randomness, and second, the inequality
can be tested with topological manipulation of Majorana
fermions alone. For the MABK inequality, we consider
three qubits, each with two measurement settings. We
denote the measurement settings for each qubit by the
binary variables x, y, z, and the corresponding measure-
ment outcomes by a, b, c, where x, y, z, a, b, c = 0, 1. The
MABK inequality can be rewritten as [13–15]

L ≡
∑

(x,y,z)∈S

τ(x, y, z)[P (even|xyz)− P (odd|xyz)] ≤ 2,

(1)
where S = {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)} and
τ(x, y, z) is a sign function defined by τ(x, y, z) =
(−1)(x+y+z)/2; P (even|xyz) (P (even|xyz)) is the prob-
ability that a + b + c is an even (odd) number when
settings (x, y, z) are chosen. The inequality (1) is sat-
isfied by all local hidden variable models. However, in
quantum mechanics certain measurements performed on
entangled states can violate this inequality. Experimen-
tally, we can repeat the experiment k times in succession
to estimate the violation. For each trial, the measure-
ment choices (x, y, z) are generated by an independent
identical probability distribution P (xyz). Denote the in-
put string as I = (x1, y1, z1; · · · ;xk, yk, zk) and the corre-
sponding output string as O = (a1, b1, c1; · · · ; ak, bk, ck).
The estimated violation of the MABK inequality can be
obtained from the observed data as

L̂ =
1

k

∑
(x,y,z)∈S

τ(x, y, z)

P (xyz)
[N(even|xyz)−N(odd|xyz)],

(2)
where N(even|xyz) (N(odd|xyz)) denotes the number of
trials that we get an even (odd) outcome a+ b+ c after
k times of measurements with the measurement setting
(x, y, z).

We need to show that the output string O from the
measurement outcomes contains genuine randomness by
proving that it has a nonzero entropy. Let {Lm : 0 ≤ m ≤
mmax} be a series of violation thresholds with L0 = 2
and Lmmax = 4, corresponding respectively to the clas-
sical and quantum bound. Denote by D(m) the proba-
bility that the observed violation L̂ lies in the interval
[Lm,Lm+1). We can use the min-entropy to quantify

randomness of the output string O [19, 27, 28]:

E∞(O|I, E ,m)D ≡ −log2
∑
I,E

[max
O
D(O, I, E|m)], (3)

where E represents the knowledge that a possible adver-
sary has on the state of the device and the maximum
is taken over all possible values of the output string O.
The probability distribution D(O, I, E|m) is defined in
the Supplemental Material. Based on a similar proce-
dure as in Ref. [19], we can prove that if D(m) > δ, the
min-entropy of the output string conditional on the input
string and the adversary’s information has a lower bound
(see derivation in the supplement), given by

E∞(O|I, E ,m)D ≥ kf(Lm − ε)− log2 (1/δ) , (4)

where the parameter ε ≡
√
−2(1 + 4r)2(ln ε′2) with r =

minP (xyz), the smallest probability of the input pairs,
and ε′ is a given parameter that characterizes the close-
ness between the target distribution D(O, I, E) and the
real distribution after k successive measurements (see the
supplement for an explicit definition). The function f(L̂)
can be obtained through numerical calculation based on
semi-definite programming (SDP) [29] and is shown in
Fig. 1. The minimum-entropy bound kf(Lm−ε)− log2

1
δ

and the net entropy versus the number of trials k are
plotted in the insets (a) and (b) of Fig. 1. Any ob-
served quantum violation with L̂ > 2 leads to a positive
lower bound of the min-entropy, and a positive mini-
entropy guarantees that genuine random numbers can
be extracted from the string O of the measurement out-
comes through the standard protocol of random number
extractors [30]. As some amount of randomness needs to
be consumed to prepare the input string according to the
probability distribution P (xyz), the scheme here actually
realizes a randomness expansion device [19, 25]. Similar
to Ref. [19], we can show that under a biased distribution
P (xyz) as shown in Fig. 1 we generate a much longer ran-
dom output string of length O(k) from a relatively small
amount of random seeds of length O(

√
k log2

√
k) when

k is large.
We now show how to generate and certify random num-

bers using Majorana fermions. The key step is to gener-
ate a three-qubit entangled state and find suitable mea-
surements that lead to violation of the MABK inequality.
Majorana fermions are non-Abelian anyons, and their
braiding gives nontrivial quantum operations. However,
this set of operations are very restricted. First, all the
gates generated by topological manipulation of Majorana
fermions belong to the Clifford group, and it is impossi-
ble to use such operations alone to violate the CHSH
inequality [26]. We have to consider instead the multi-
qubit MABK inequality. Second, it is not obvious that
one can violate the MABK inequality as well using only
topological operations. There are two ways to encode a
qubit using Majorana fermions, using either two quasi-
particles (Majorana fermions) or four quasiparticles (see
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FIG. 1: (Color online) Plot of the function f(L̂) versus vi-

olation L̂ of the MABK inequality. The function is calcu-
lated through optimization based on the semi-definite pro-
gramming with the details shown in the Supplemental Mate-
rial. The inset (a) shows the lower bound of the min-entropy
kf(Lm − ε) − log2

1
δ

versus the number of trials k. Here we
assume an observed MABK violation lies within the inter-
val 3.9 = Lm ≤ L̂ < Lmax = 4 with probability δ. The
parameters are chosen as δ = 0.001 and ε′ = 0.01. The
bound kf(Lm − ε) depends on the input probability distri-
bution P (xyz) through the parameter r = minxyz P (xyz).
The blue-square line represents the bound under a uniform
distribution (P (xyz) = 1/4 for all (x, y, z) ∈ S), while the
red-dotted line shows the bound under a biased probability
distribution with P (011) = P (101) = P (110) = αk−1/2 and

P (000) = 1 − 3αk−1/2 with α = 10. It consumes less ran-
domness to generate a biased distribution for the input bits,
so the net amount of randomness, defined as the number of
output random bits minus that of the input, becomes posi-
tive when k is large (typically k needs to be of the order 105).
The inset (b) plots the net amount of randomness generated
after k trails under a biased distribution of the inputs. The
parameters are the same as those in the inset (a).

the details in the supplement). In the two-quasiparticle
encoding scheme, although the braiding gates exhaust
the entire two-qubit Clifford group, they cannot span the
whole Clifford group for more than two qubits [31]. Fur-
thermore, braiding Majorana fermions within each qubit
cannot change the topological charge of this qubit which
fixes the measurement basis. Thus, no violation of the
MABK inequality can be achieved using the topologi-
cal operations alone in the two-quasiparticle encoding
scheme. In the four-qusiparticle encoding scheme, it is
not straightforward either as braidings in this scheme
only allows certain single-qubit rotations and no entan-
glement can be obtained due to the no-entanglement rule
proved already for this encoding scheme [32].

Fortunately, we can overcome this difficulty by tak-
ing advantage of the non-destructive measurement of the
anyon fusion, which can induce qubit entanglement [33].
In a real physical device, the anyon fusion can be read out
non-destructively through the anyon interferometry [34].
In the four-qusiparticle encoding scheme: each qubit is
encoded by four Majorana fermions, with the total topo-
logical charge 0. The qubit basis-states are represented
by |0〉 ≡ |((•, •)I, (•, •)I)I〉 and |1〉 ≡ |((•, •)ψ, (•, •)ψ)I〉.
Here, each • represents a Majorana fermion; I and ψ rep-
resent the two possible fusion channels of a pair of Ma-
jorana fermions, with I standing for the vacuum state
and ψ denoting a normal fermion. As explained in the
Supplemental Material, a topologically protected two-
qubit CNOT gate can be implemented using braidings
together with non-destructive measurements of the anyon
fusion [33]. To certify randomness through the MABK
inequality, we need to prepare a three-qubit entangled
state. For this purpose, we need in total fourteen Ma-
jorana fermions, where twelve of them are used to en-
code three qubits and another ancillary pair is required
for implementation of the effective CNOT gates through
measurement of the anyon fusion. Initially, the logical
state is |Φ〉i = |000〉. We apply first a Hadamard gate
on the qubit 1, which can be implemented through a se-
ries of anyon braiding as shown in Fig. 2b, and then two
effective CNOT gates on the logical qubits 1, 2, and 2,
3. The final state is the standard three-qubit maximally
entangled state |Ψ〉f = (|000〉+ |111〉)/

√
2. After |Ψ〉f is

generated, the three qubits can be separated and we need
only local braiding and fusion of anyons within each qubit
to perform the measurements in the appropriate bases to
generate random numbers and certify them through test
of the MABK inequality.

To perform the measurements, we read out each qubit
according to the input string I through nondestructive
detection of the anyon fusion. If the input is 0, we first
braid the Majorana fermions to implement a Hadamard
gate H on this qubit (as shown in Fig. 2b), and then mea-
sure the fusion of the first two Majorana fermions within
each qubit. The measurement outcome is 0 (1) if the fu-
sion result is I (ψ). If the input is 1, we first braid the
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FIG. 2: (Color online) Illustration of the encoding scheme for
a logic qubit using Majorana fermions and two single-qubit
operations that can be implemented through anyon braid-
ing. Each qubit is encoded by four Majorana fermions. (a)A
counterclockwise braiding of Majorana fermions 2 and 3 im-
plements a unitary gate B23 on the corresponding qubit. (b)
Implementation of the Hadamard gate through composition
of anyon braiding. In both (a) and (b), time flows from left
to right and ' means equal up to an irrelevant overall phase.

Majorana fermions to implement a B23 gate (see Fig. 2a)
on this qubit before the same readout measurement. For
instance, with the the input (x, y, z) = (0, 1, 1), we ap-
ply a Hadamard gate to the first qubit and B23 gates to
the second and the third qubits, followed by the nonde-
structive measurement of fusion of the first two Majorana
fermions in each qubit. Under the state |Ψ〉f , the condi-
tional probability of the measurement outcomes (a, b, c)
under the measurement setting (x, y, z) for these three
qubits is give by

P (abc|xyz) = |〈abc|(UxUyUz)|Ψ〉f |2 , (5)

where U0 = H and U1 = B23. With this conditional prob-
ability, we find the expected value of L̂ defined in Eqs.
(1,2) is L̂ = 4, achieving the maximum quantum violation
of the MABK inequality. All the steps for measurements
and state preparation are based on the topologically pro-
tected operations such as anyon braiding or nondestruc-
tive detection of the anyon fusion, so the scheme here
is intrinsically fault-tolerant and we should get the ideal
value of L̂ = 4 if the Majorana fermions can be manipu-
lated at will in experiments. Such a large violation per-
fectly certifies genuine randomness of the measurement
outcomes.

In summary, we have shown that genuine number num-
bers can be generated and certified through topologically
manipulation of Majorana fermions, a kind of anyonic
excitations in engineered materials. Such a protocol is
intrinsically fault-tolerant. Given the rapid experimental
progress on realization of Majorana fermions in real ma-
terials [11, 12], this protocol offers a promising prospec-
tive for application of these topological particles in an
important direction of cryptography with broad implica-
tions in science and engineering.

We thank Y. H. Chan, J. X. Gong, and E. Lichko for
discussions. This work was supported by the NBRPC
(973 Program) 2011CBA00300 (2011CBA00302), the
IARPA MUSIQC program, the ARO and the AFOSR
MURI program.

SUPPLEMENTARY INFORMATION: FAULT TOLERANT QUANTUM RANDOM NUMBER
GENERATOR CERTIFIED BY MAJORANA FERMIONS

This supplementary information gives more details about realization of fault-tolerant quantum random number
generator through topological manipulation of Majorana fermions. In Sec. I, we give the detailed proof on how to
certify genuine randomness through observation of violation of the MABK inequality. In Sec. II, we summarize the
topological properties of Majorana fermions and show the implementation of the necessary topological quantum gates
on the logic qubits encoded with these Majorana fermions.

Randomness certified by observation of violation of the MABK inequality

In this section, we establish a link between randomness of the measurement outputs of a quantum system and
violation of the MABK inequality. A link between randomness and violation of the Bell-CHSH inequality has been
established in Ref. [19, 35]. Here, we generalize the result from the two-qubit CHSH inequality to the three-qubit
MABK inequality. Consider a quantum nonlocality test on three qubits. Each qubit has two settings of two-outcome
measurements, denoted by {x, y, z}, respectively for the three qubits. The measurement outputs {a, b, c} of this
quantum system are characterized by the joint probability distribution P = {P (abc|xyz)}. Randomness of the
outputs {a, b, c} are quantified by the min-entropy, defined as E∞(ABC|XY Z) = −log2[maxabc P (abc|xyz)]. With

an experimental observation of violation L̂ of the MABK inequality, our aim is to find a lower bound on the min-
entropy

E∞(ABC|XY Z) ≥ f(L̂). (6)
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This is equivalent to solving of the following optimization problem [19]:

P ∗(abc|xyz) = max P (abc|xyz)
subject to L = L̂ (7)

P (abc|xyz) = Tr(ρMa
x ⊗M b

y ⊗M c
z )

where L is defined in Eq.(2) of the main text and (ρ,Ma
x ,M

b
y ,M

c
z ) constitutes a quantum realization of the Bell

scenario [36]. Thus, the minimal value of E∞(ABC|XY Z) compatible with the MABK violation L̂ and quantum
theory is given by E∞(ABC|XY Z) = −log2[maxabc P

∗(abc|xyz)]. Consequently, to obtain f(L̂) we only need to solve
(7) for all possible input and output triplets (x, y, z) and (a, b, c). This can be effectively done by casting it to a semi-
definite program (SDP) [29]. An infinite hierarchy of conditions that need to be satisfied by all quantum correlations
are introduced in Ref. [37–39]. All these conditions can be transformed to a SDP problem and the hierarchy is
complete in the asymptotic limit, i.e., it guarantees existence of a quantum realization if all the conditions in the
hierarchy are satisfied. Generally, conditions higher in the hierarchy are more constraining and thus better reflect the
constraints in (7) and give a tighter lower bound. To obtain a lower bound of the min-entropy for a given MABK
violation L̂, we use the matlab toolbox SeDuMi [40] and solve the SDP corresponding to the certificates between
order 1 and order 2 [37]. The result is plotted in Fig.1 in the main text. From the figure, f(L̂) equals zero at the
classical point L̂ = 2 and increases monotonously as the MABK violation L̂ increases. For the maximal violation
L̂ = 4, P ∗ ≈ 0.5003, corresponding to f(L̂) ' 0.9991 bits.

Equation (4) in the main text can be derived using arguments similar to those in Ref. [19, 28]. The difference is
that the Bell scenario in Refs. [19] is based on the two-qubit CHSH inequality, which needs to be extended in our
scheme with the three-qubit MABK inequality. Suppose we run the experiments k times and denote the input and
output string as I = (x1, y1, z1; · · · ;xk, yk, zk) and O = (a1, b1, c1; · · · ; ak, bk, ck), respectively. As in the main text,
let {Lm : 0 ≤ m ≤ mmax} be a series of MABK violation thresholds, and denote D(m) the probability that the
observed KCBS violation L̂ lies in the interval [Lm,Lm+1). Denote by E the possible classical side information an
adversary may have. To derive Eq. (4) in the main text, let us first introduce the following theorem:

Theorem 1. Suppose the experiments are carried out k times and each triplet of inputs (xi, yi, zi) is generated
independently with probability P (xyz). Let δ, ε′ > 0 be two arbitrary parameters and r = min{P (xyz))}, then the
distribution P (OIE) characterizing k successive use of the devices is ε′-close to a distribution D such that, either
D(m) ≤ δ or

E∞(O|I, E ,m)D ≥ kf(Lm − ε) + log2 δ, (8)

where ε = (4 + 1/r)
√
−2 ln ε′/k.

Equation (8) is equivalent to Eq. (4) in the main text. Theorem 1 tells us that the distribution P , which characterizes
the output O of the device and its correlation with the input I and the adversary’s classical side information E , is
basically indistinguishable from a distribution D that will be defined below [28]. If we find that the observed MABK
violation L̂ lies in [Lm,Lm+1) with a non-negligible probability, i.e., D(m) > δ, the entropy of the outputs O is
guaranteed to have a positive lower bound kf(Lm − ε)− log2

1
δ , that is, the randomness of the outputs is guaranteed

to be larger than kf(Lm) up to epsilonic correction.
Proof. We use a procedure similar to those in Ref. [28] to prove the above theorem. Let us define a function

G(L) = 2−f(L), which is concave and monotonically decreasing given by the solution of the optimization problem in
Eq. (7) (shown in Fig. 1 of the main text). Denote by On = (ai, bi, ci; · · · ; an, bn, cn) (n ≤ k) the string of outputs
before the (n + 1)th round of experiment (similarly, In denotes the string of inputs). We introduce an indicator
function χ(e) as: χ(e) = 1 if the event e happens and χ(e) = 0 otherwise. Consider the following random variable

L̂i =
∑

abc;(x,y,z)∈S

τ(x, y, z)Λ(a, b, c)
χ(ai = a, bi = b, ci = c;xi = x, yi = y, zi = z)

P (xyz)
, (9)

where S and τ(x, y, z) are defined in the main text, and Λ(a, b, c) = 1 if a+b+c is even and Λ(a, b, c) = −1 if a+b+c
is odd. It is easy to check that Eq.(9) reduces to the MABK expression (2) in the main text and the expectation value
of L̂i conditional on the past W i is equal to L(W i), i.e., E(L̂i|W i) = L(W i). We use Wi ≡ (Oi−1Ii−1E) to denote all
the events before the ith round of experiment and the possible adversary’s classical side information. The estimator
of the MABK violation can be defined as: L̂ = 1

k

∑k
i=1 L̂i. With these notations, first we introduce two lemmas for

proof of the main theorem.
Lemma 1. For any given parameter ε′ > 0, let ε = (4 + 1/r)

√
−2 ln ε′/k and Sε = {(O, I, E)| 1k

∑k
i=1 E(L̂i|W i) ≥

L̂(O, I)− ε}, then we have:
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(i) for any (O, I, E) ∈ Sε,

P (O|IE) ≤ Gk(L̂(O, I)− ε). (10)

(ii)

Pr(Sε) =
∑

(O,I,E)∈Sε

P (O, I, E) ≥ 1− ε′. (11)

Proof. According to the Bayes’ rule and the fact that the response of a system does not depend on the future inputs
and outputs, we have:

P (O|IE) =

k∏
i=1

P (aibici|Oi−1IiE)

=

k∏
i=1

P (aibici|xiyiziWi) (12)

From the solution to the optimization problem in Eq. (7), the probability P (aibici|xiyiziWi) is bounded by a function
of the MABK violation L(W i): P (aibici|xiyiziWi) ≤ G(L(W i)). Thus, we have:

P (O|IE) ≤
k∏
i=1

G(L(W i))

≤ Gk(
1

k
E(L̂i|W i))

≤ Gk(L̂(O, I)− ε). (13)

Here, to obtain the second inequality, we have used the equality E(L̂i|W i) = L(W i) and the fact that G is logarith-
mically concave and monotonically decreasing. The third inequality is obtained from the definition of Sε and the
fact that G is decreasing. To get Eq. (11), we can define another random variable Mq =

∑q
i=1(L̂i − E(L̂i|W i)).

Then it is easy to verify that (i) |Mq| ≤ 2q/r < ∞, (ii) |L̂i − L(W i)| ≤ |L̂i| + |L(W i)| ≤ 1
r + 4, and (iii)

E(Mq+1|W q) = Mq. Thus, the sequence {Mq : q ≥ 1} is a martingale process [41]. Applying the Azuma-Hoeffding

inequality P (Mq ≥ kε) ≤ exp(− (kε)2

2k(1/r+4)2 ) [41–43], we have

P

(
1

k

k∑
i=1

E(L̂|W i) ≤ 1

k

k∑
i=1

L̂i − ε

)
≤ ε′, (14)

where ε = (4 + 1/r)
√
−2 ln ε′/k. Equation (14) combined with the definition of Sε gives Eq. (11). Lemma 1 is thus

proved.
In the above proof, we only considered the case that the random variable sequence O takes values in the output

space Sk = {−1, 1}k. As in Ref. [28], we can extend the range of O to include “abort-output” ⊥, and view O as an
element of Sk ∪⊥ with P (O|IE) = 0 if O = ⊥. The physical meaning of ⊥ is that when ⊥ is produced by the device,
then no MABK violation has been obtained and no randomness is certified.

Lemma 2. There exists a probability distribution D = {D(O, I, E)}, which is ε′-close to P = {P (O, I, E)}, i.e.,
d(D, P ) = 1

2

∑
O,I,E |P (O, I, E)−D(O, I, E)| ≤ ε′, and satisfies the following condition

D(O|I, E) ≤ Gk(L̂(O, I)− ε), (15)

for all (O, I, E) such that O 6= ⊥.
Proof. We show how to construct a probability distribution satisfying the above two conditions. To this end, we

introduce D(O, I, E) = P (I)P (E)D(O|I, E). D(O|I, E) is defined as:

D(O|I, E) =


P (O|I, E), if (O, I, E) ∈ Sε

0, if O 6= ⊥ and (O, I, E) /∈ Sε
1−

∑
(O,I,E)/∈Sε P (O|I, E) otherwise

(16)



7

Then by Lemma 1, it is straightforward to get that the distribution D satisfies Eq. (15) for all (O, I, E) with O 6= ⊥.
The distance between P and D can be calculated as:

d(D, P ) =
1

2

∑
O,I,E

|P (O, I, E)−D(O, I, E)|

=
1

2

∑
I,E

P (I, E)
∑
O
|P (O|I, E)−D(O|I, E)|

=
1

2
[

∑
(O,I,E)/∈Tε

P (O, I, E) + 1−
∑

(O,I,E)∈Tε

P (O, I, E)] (17)

≤ ε′.

This proves Lemma 2.
With Lemma 2, now the proof of Theorem 1 becomes straightforward. Define a subset of the outputs as Xm =

{O|O 6= ⊥ and Lm ≤ L̂ < Lm+1} and let D(O, I, E|m) denote the distribution of O, I, E conditioned on a particular
value of m, then we have:

E∞(O|I, E ,m)D ≡ −log2
∑
I,E

[max
O
D(O, I, E|m)]

= −log2
∑
I,E
D(I, E|m)[max

O
D(O|I, E ,m)]

= −log2
∑
I,E
D(I, E|m)

1

D(m|I, E)
max
O∈Xm

D(O|I, E)

≥ −log2
∑
I,E
D(I, E|m)

Gk(Lm − ε)
D(m|I, E)

(18)

= −log2
∑
I,E

D(I, E)

D(m)
Gk(Lm − ε)

= kf(Lm − ε)− log2

1

D(m)
.

Here we have used the Bayes’ rule in the first, second and the fourth equalities and Eq. (15) from Lemma 2 in the
third inequality; for the last equality, the equation f = − log2 G is used. The last equality immediately leads to the
claim in Theorem 1. This concludes the proof.

It is worthwhile to clarify that in deriving Eq. (8) we have made the following four assumptions [19, 28]: (i) the
system can be described by quantum theory; (ii) the inputs at the jth trial (xj , yj , zj) are chosen randomly and
their values are revealed to the systems only at step j; (iii) the three qubits are separated and non-interacting during
each measurement step. (iv) the possible adversary has only classical side information. There are no constraints
on the states, measurements, or the Hilbert space. Moreover, there is even no requirement that the system behaves
identically and independently for each trial. In particular, the system could have an internal memory (classical or
quantum) so that the results of the jth trial depend on the previous j − 1 trials.

We also note that there is a significant difference between the two-qubit scenario in Ref. [19] and our three-qubit
scenario here. In the two-qubit case, the randomness can be certified by the no-signalling conditions as well without
the assumption of quantum mechanics. However, in our three-qubit scenario, the no-signalling conditions are not
sufficient to certify randomness. Actually, we have numerically checked that even for the maximal possible MABK
violation L̂max = 4, P ∗(abc|xyz) can be equal to the unity for certain (a, b, c) and (x, y, z) if only the no-signalling
conditions are imposed, which cannot certify any randomness. A possible reason for this difference is that the MABK
inequality only contains four out of eight possible correlations. In other words, the input choices S is only a subset of
{(x, y, z)|x, y, z = 0, 1}. As a result, the no-signalling constraints become less effective.

Encoding and operation of qubits by topological manipulation of Majorana fermions

In this section, we discuss in detail how to control the logical qubits encoded with Majorana fermions. The fusion
rule of Majorana fermions is of the Ising type: τ × τ ∼ I + ψ, where τ , I, and ψ stand for a Majorana fermion,
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the vacuum state, and a normal fermion, respectively. Generally, there are two encoding schemes. The first scheme
encodes each logical qubit into a pair of Majorana fermions (two-quasiparticle encoding). When the pair fuse to a
vacuum state I, we say that the qubit is in state |0〉; and when they fuse to ψ, the state is |1〉. There is also an
ancillary pair, which soak up the extra ψ if necessary to maintain the constraint that the total topological charge
must be 0 for the entire system [31, 44]. In this encoding scheme, braiding operations of Majorana fermions exhaust
the entire two-qubit Clifford group. However, for three or more qubits, not all Clifford gates could be implemented by
braiding. The embedding of the two-qubit SWAP gate into a n-qubit system cannot be implemented by braiding [31].
In the two-quasiparticle encoding scheme, no violation of the MABK inequality can be obtained as we cannot change
the measurement basis through local braiding of Majorana fermions within each logic qubit.

As we mentioned in the main text, we use the four-quasiparticle encoding scheme where the qubit basis-states
are represented by |0〉 = |((•, •)I, (•, •)I)I〉 and |1〉 = |((•, •)ψ, (•, •)ψ)I〉. Let us first consider braiding operations
of Majorana fermions within each logic qubit. Consider four Majorana operators ci (i = 1, 2, 3, 4) in one logic

qubit, which satisfy c†i = ci, c
2
i = 1 and the anti-commutation relation {ci, cj} = 2δij . The Pauli operators in the

computational basis can be expressed as [34]:

σx = −ic2c3, σy = −ic1c3, σz = −ic1c2. (19)

Unitary operations can be implemented by counterclockwise exchange of two Majorana fermions j < j′:

Bjj′ = e(iπ/4)(icjcj′ ). (20)

Specifically, we can write down the three basic braiding operators in the computational basis:

B12 = B34 '
(

1 0
0 i

)
, B23 '

1√
2

(
1 −i
−i 1

)
, (21)

where ' means that we ignore an unimportant overall phase. Using these basic braiding operators, a single-qubit

Hadamard gate can be implemented as H = 1√
2

(
1 1
1 −1

)
' B223B

−1
12 B23B

−1
12 B

2
23. The corresponding braidings are shown

in Fig.2 of the main text. Note that the set of operations implemented through composition of B12 and B23 are still
very limited, however, it is fortunate that B23 and H give all the gates that we need for change of the measurement
bases in test of the MABK inequality. As shown in the main text, we actually get maximum quantum violation of
the MABK inequality by randomly choosing either a B23 or an H gate on each logic qubit before measurement of the
anyon fusion.

With only braiding operations of Majorana fermions, no entangling gate can be achieved for logic qubits in the
four-quasiparticle encoding scheme due to the no-entanglement rule proved in Ref. [32]. In order to overcome this
problem, we need assistance from another kind of topological manipulation: nondestructive measurement of the anyon
fusion, which can be implemented through the anyon interferometry as proposed in Ref. [34]. Suppose that we have
eight Majorana modes c1, c2, . . . , c8, where the first (last) four modes encode the control (target) qubit, respectively.
As shown in Ref. [33, 45], a two-qubit controlled phase flip gate Λ(σz) can be implemented through the following
identity:

Λ(σz) = e−(π/4)c3c4e−(π/4)c5c6e(iπ/4)c4c3c5c6eiπ/4. (22)

Note that the first two operations in Eq. (22) can be directly implemented by braiding operations. The key step is
to implement the operation e(iπ/4)c4c3c5c6 . To this end, we use another ancillary pair of Majorana fermions c9 and
c10. We measure fusion of the four Majorana modes c4c3c6c9. The outcome is ±1, corresponding to either a vacuum

state (+1) or a normal fermion (−1) . The corresponding projector is given by Π
(4)
± = 1

2 (1 ± c4c3c6c9). Then, we

similarly measure fusion of the Majorana modes (operator) −ic5c9, with the project denoted by Π
(2)
± = 1

2 (1∓ ic5c9)
corresponding to the measurement outcomes ±1. We have the following relation [33, 45]:

e(iπ/4)c4c3c5c6 = 2
∑
η,ζ=±

UηζΠ
(2)
η Π

(4)
ζ , (23)

where U++ = e(π/4)c5c10 , U+− = ie(π/2)c4c3e(π/2)c5c6e(π/4)c5c10 , U−+ = ie(π/2)c4c3e(π/2)c5c6e−(π/4)c5c10 , and U−− =
e−(π/4)c5c10 . All the gates Uηζ can be implemented through one or several braiding operations of Majorana fermions.
So this identity shows that an effective controlled phase flip gate can be implemented on logic qubits through a
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combination of anyon braiding and measurement of anyon fusion. Depending on the measurement outcomes (ζ, η)
of c4c3c6c9 and −ic5c9, one can always apply a suitable correction operator Uηζ to obtain the desired operation
e(iπ/4)c4c3c5c6 . With controlled phase flip gates, one can easily realize quantum controlled-NOT (CNOT) gate with
assistance from the Hadamard operations that can be implemented through the anyon braiding. With CNOT and
Hadamard gates, we can then prepare the maximally entangled three-qubit state as required for test of quantum
violation of the MABK inequality.
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