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Abstract. Miller, Teng, Thurston, and Vavasis proved that every k-
nearest neighbor graph (k-NNG) in R

d has a balanced vertex separator
of size O(n1−1/dk1/d). Later, Spielman and Teng proved that the Fiedler
value — the second smallest eigenvalue of the graph — of the Laplacian
matrix of a k-NNG in R

d is at O( 1
n2/d ). In this paper, we extend these

two results to nearest neighbor graphs in a metric space with doubling
dimension γ and in nearly-Euclidean spaces. We prove that for every
l > 0, each k-NNG in a metric space with doubling dimension γ has
a vertex separator of size O(k2l(32l + 8)2γ log2 L

S
log n + n

l
), where L

and S are respectively the maximum and minimum distances between
any two points in P , and P is the point set that constitutes the metric
space. We show how to use the singular value decomposition method
to approximate a k-NNG in a nearly-Euclidean space by an Euclidean
k-NNG. This approximation enables us to obtain an upper bound on the
Fiedler value of the k-NNG in a nearly-Euclidean space.

Keywords: Doubling dimension, shallow minor, neighborhood system,
metric embedding, Fiedler value.

1 Introduction

Graph partitioning is an important combinatorial optimization problem that is
widely used in applications that include parallel processing, VLSI design, and
data mining. There are several versions of this problem. Perhaps the simplest
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version is to divide a graph into two equal-sized clusters and minimize the number
of edges between these two clusters. In general, we may want to divide a graph
into multiple clusters and minimize some objective functions such as the total
number of inter-cluster edges or the maximum among the ratios defined by the
number of edges leaving a cluster to the number of vertices in that cluster [9,10].
Graph partitioning is usually a hard problem if an optimal solution is desired [5].
But, because of its importance in practice, various partitioning heuristics and
approximation algorithms are designed and implemented. The spectral method,
which uses the eigenvectors of a graph matrix, has been among the most popular
ones used in practice [1,12].

In this paper, we study combinatorial and spectral aspects relating with par-
titioning nearest neighbor graphs defined in Euclidean-like metric spaces. Our
study is inspired by two early work on Euclidean nearest neighbor graphs. The
first one is by Miller et al [11] who shows that every k nearest neighbor graph
(k-NNG) of n points in R

d has a vertex separator of size O(n1−1/dk1/d) that
1/(d + 2) splits the graph. Here, for a parameter f : 0 < f < 1, a vertex sepa-
rator that f -splits a graph is a subset of its vertices whose removal divides the
rest of the graph into at least two disconnected components such that the sizes
of all components are no more than f · n. If f is a constant, independent of n,
then we refer to the vertex separator that f -splits as a balanced separator. The
second one is by Spielman and Teng [17]. It shows that the Fiedler value — the
second smallest eigenvalue of the graph — of the Laplacian matrix of a k-NNG
in R

d is at O( 1
n2/d ).

We first consider the k-NNG for points in a metric space of a finite doubling
dimension. This family of metric spaces (see Section 2 for a formal definition)
is introduced by Karger and Ruhl [8] with the motivation to extend efficient
nearest-neighbor-search data structures from Euclidean spaces to other growth-
constrained metric spaces arising in internet applications.

As one of the main results of this paper, we prove that for every l > 0, each
k-NNG in a metric space with doubling dimension γ has a balanced vertex sepa-
rator of size O(k2l(32l +24)2γ log2 L

S · log n+ n
l ), where L and S are respectively

the maximum and minimum distances between any two points in P . By choosing
l = n1/(2γ+2)(k2 log2 L

S · log n)−1/(2γ+2), we prove that every k-nearest neighbor
graph of n points in a metric space with doubling dimension γ has a balanced
vertex separator of size

O
(
n1−1/(2γ+2)k1/(γ+1) log1/(γ+1)(L/S) · log1/(2γ+2) n

)

We can also show that the maximum degree of these k-NNG is at most
O(k log(L/S)). Thus, this separator bound also implies that the Fiedler value of
a k-nearest neighbor graph of n points in a metric space with doubling dimension
γ is at most

O

(
n

−1
2γ+2 k1+ 1

γ+1 log
1

2γ+2 (L/S)log
1

2γ+2 n

1 − 2n
−1

2γ+2 k
1

γ+1 log
1

γ+1 (L/S)log
2

γ+1 n + n
−1

γ+1 k
2

γ+1 log
2

γ+1 (L/S)log
1

γ+1 n

)
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Key to our proof, we characterize the family of minors excluded by these
nearest neighbor graphs: For any given depth t, we show that these graphs can
not contain a minor of size O(ktγ log(L/S)). With this graph-theoretic property,
we can use the separator theorem of Plotkin, Rao, and Smith [13] to prove our
separator bound.

For each k-NNG in nearly Euclidean spaces (see Section 4 for formal defi-
nition), we can apply the singular value decomposition method to find an ap-
proximate Euclidean k-NNG. This approximation enables us to obtain a better
separator and Fiedler value bound than those that can be derived from doubling-
dimensional framework.

We organize our paper as following. In Section 2, we introduce the notation
and definitions which will be used in the paper. In particular, we will introduce
doubling dimensional spaces, nearest neighbor graphs, the Fiedler value of a
graph, and Singular Value Decomposition. We will prove the separator theorem
for k-NNG in a finite doubling dimensional space in Section 3. For the k-nearest
neighbor graphs in nearly-Euclidean space, we discuss their spectra in section 4.
Finally, we conclude our work in Section 5.

2 Graphs and Geometry

In this paper, we consider graphs that are geometric defined. We first introduce
some notation and definitions that will be used later. Given a graph G = (V, E),
we assume V is the point set from a metric space.

2.1 Metric Spaces and Doubling Dimension

Given a set X of points and a distance function d which is defined as d: X×X −→
[0, ∞), we call the pair (X, d) a metric space if it satisfies the following axioms.

– ∀x, y ∈ X , d(x, y) = 0 iff x = y.
– ∀x, y ∈ X , d(x, y) = d(y, x).
– ∀x, y, z ∈ X , d(x, y) + d(y, z) ≥ d(x, z).

If (X, d) only satisfies the last two axioms and d(x, x) = 0 for all x ∈ X instead
of the first item, we call it a semimetric (or pseudometric).

There are various metric spaces with different dimensions, for example, the
Euclidean space and the Hamming space. Not all the problems in practice can be
modeled as graphs in an Euclidean space or a Hamming space. Although these
metric spaces are simple and more familiar to us, practical problems may not
satisfy all those geometric terms. The doubling dimensional space, which has less
constraints, is introduced by Karger and Ruhl [8] and becomes useful in several
research areas, such as graph partitioning and network routing. One objective
of this paper is to design efficient algorithms for graphs in a metric space with
finite doubling dimension.

Denote the space within a distance r to a point v ∈ X as a ball Br(v) where
r is the radius and v is the center. The metric (X, d) has a doubling dimension
γ if any ball of radius r could be covered by 2γ balls of radius r

2 . Euclidean
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space could be considered as a special doubling dimension space. Different from
general Euclidean spaces, doubling dimensional space has no such definitions as
volume and parallelization. However, for those continuous doubling dimensional
spaces, they could also have some useful properties, such as segment property
as follows.

Definition 1. A metric doubling dimension space (X, d) has segment property
if for each pair of points x, y ∈ X, there exists a continuous curve γ = γ(t)
connecting x and y such that d(γ(t), γ(s)) = |t − s| for all t and s.

Segment property appears naturally in many applications and in this paper, we
will mainly focus on those instances where segment property holds. For more
details about segment property, please refer to [14]. We will give more properties
in Section 3.

2.2 Nearest Neighbor Graphs

Let P = {p1, . . . , pn} be a set of n points in a metric space. For each pi ∈ P ,
let Nk(pi) be the set of k points closest to pi in P (if there are ties, break them
arbitrarily). Let R(pi) be the distance between pi and its k-th closest neighbor,
hence ∀pi, pj , if pi ∈ Nk(pj) then ‖pipj‖ ≤ R(pj). Let BR(pi) be the ball centered
at pi with radius R, and we denote αBR(pi) to be the ball centered at pi with
radius αR. With BR(pi), we can define k-ply systems, k-nearest neighbor graphs
and intersection graphs in general metric spaces.

Definition 2. Let P = {p1, . . . , pn} be points in a metric space, then a k-ply
neighborhood system for P is a set of closed balls, B = {B1, . . . , Bn}, such that
Bi centers at pi and no point p in this metric space is contained in the interior
of more than k balls from B.

Definition 3. A k-Nearest Neighbor Graph (k-NNG) of a set of n vertices is a
graph with vertex set P = {p1, . . . , pn} and edge set E = {(pi, pj): pi ∈ Nk(pj)
or pj ∈ Nk(pi)}, where Nk(pi) represents the set of k points closest to pi in V .
We denote the k-Nearest neighbor Graph of P as Nk(P ).

Definition 4. Given a set S, and a family of nonempty subsets of S, the corre-
sponding intersection graph has a vertex for each subset, and a connecting edge
whenever two subsets intersect.

Definition 5. Given a k-ply neighborhood system Γ = {B1, B2, . . . , Bn}. The
intersection graph of Γ is the undirected graph with vertices V = {1, . . . , n} and
edges E = {(Bi, Bj) : (Bi ∩ Bj 
= ∅)}.
Definition 6. Given a k-ply neighborhood system Γ = {B1, B2, . . . , Bn} and
α ≥ 1. The α-overlap graph of Γ is the undirected graph with vertices V =
{1, . . . , n} and edges E = {(Bi, Bj) : (Bi ∩ α · Bj 
= ∅) and (Bj ∩ α · Bi 
= ∅)}.
In this paper, the subsets are balls in some metric space. Therefore, we can let
the vertex for each subset be the corresponding center of the ball. In this way, we
can bound the degree of the intersection graph with the help of the ply bound
in the original ball system.
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2.3 Graph Partitioning and Vertex Separators

A partition of a graph G = (V, E) is a division of its vertices into several specified
number of subsets. Generally we focus on two objectives when we use graph
partitioning : one objective is to minimize the number of the edges cut by the
partition; the other one is to balance the computational load, i.e, to limit the size
of each subset to within a tolerance. We call Es, a subset of E, the edge separator
of G, if removing Es from E leaves two or more disconnected components of V .
We call Vs, a subset of V , the vertex separator of G, if removing Vs and all
incident edges leaves two or more disconnected components of V .

2.4 Laplacian and the Fiedler Value

Suppose G = (V, E) is an undirected, connected graph, then its adjacent matrix
A(G) = (aij)n×n, where

aij =
{

1 if (i, j) ∈ E
0 otherwise

Let D(G) = (dij)n×n be a diagonal matrix where dii is the degree of the vertex vi

in the graph G. The Laplacian matrix of G is denoted as L(G) = D(G)−A(G) =
(lij)n×n. Hence

lij =

⎧⎨
⎩

−1 if i 
= j and (i, j) ∈ E
0 if i 
= j and (i, j) /∈ E
degree(vi) if i=j

Because L(G) is real and symmetric, its eigenvalues are all non-negative and its
smallest eigenvalue is zero, with (1, . . . , 1)T being its corresponding eigenvector.
Fiedler [6] associated the second smallest eigenvalue of the Laplacian matrix of
the graph with its connectivity. Thus, we call the second smallest eigenvalue of
L(G) the Fiedler value and call the corresponding eigenvector the Fiedler vector.
Because G is connected, we know that the Fiedler value is non-zero and can be
expressed as following.

λ2 = min
x⊥(1,...,1)T

xT L(G)x
xT x

= min
x⊥(1,...,1)T

∑
(i,j)∈E (xi − xj)2∑n

i=1 x2
i

From the definition, we can get the following property.

Corollary 1. The Fiedler value of the edge subgraph is no more than the Fiedler
value of the original graph.

2.5 Singular Value Decomposition

To learn more about Laplacian matrix and its Fiedler value, we review a useful
technique called singular value decomposition (SVD). We give its formal defini-
tion below.
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Definition 7. A singular value decomposition of an m×n matrix A with m ≥ n
is any factorization of the form

A = UDV T =
[
u1, u2, . . . , un

]
⎛
⎜⎜⎜⎝

σ1
σ2

. . .
σn

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

vT
1

vT
2
...

vT
n

⎞
⎟⎟⎟⎠ (1)

where U is an m × n orthogonal matrix, V is an n × n orthogonal matrix, and
D is an n × n diagonal matrix with sij = 0 if i 
= j and sii = σi ≥ 0.

In SVD, the quantity σi is a singular value of A. Without loss of generality, we
assume that σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0 in this paper. We usually use two norms
to describe the matrix. Given a matrix A = (aij)m×n, the Frobenius norm (F
norm) of A is defined as

‖A‖F =

√√√√
m∑

i=1

n∑
j=1

aij
2 =

√√√√
n∑

i=1

σ2
i

while the Euclidean norm (2-norm) of A is defined as

‖A‖2 = sup
x �=0

‖Ax‖2

‖x‖2
= max

‖x‖2=1
‖Ax‖2

where x is an n dimensional vector and ‖x‖2 = (xT x)
1
2 =

√
x2

1 + x2
2 + . . . + x2

n.
In 1907, Erhard Schmidt [15] introduced the infinite dimensional analogue

of the singular value decomposition. Eckart and Young [3,4] showed that if we
replace the smallest m − s singular values with zeros in D, then the new mul-
tiplication of UDV T is the least square approximation in s dimensions of the
original matrix A.

Theorem 1 (Eckart-Young). Let the SVD of A given by (1) with rank r =
rank(A) ≤ p = min {m, n} and define

Ak = UkDkV T
k =

k∑
i=1

σiuiv
T
i

then Ak is the optimal approximation of A in the view of

min
rank(B)=k

‖A − B‖F = ‖A − Ak‖F =

√√√√
p∑

i=k+1

σ2
i

min
rank(B)=k

‖A − B‖2 = ‖A − Ak‖2 = σk+1

Hence we can find a proper low-rank matrix Ak to approximate the original
graph and Eckart-Young Theorem guarantees that this approximation will not
cause much difference. For more properties of SVD, please refer to [2] and [7].
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3 A Separator Theorem for Doubling Dimensional Spaces

In this section we prove a separator theorem for k-NNG in a metric space with
finite doubling dimension.

Theorem 2. For every l > 0, each k-NNG in a metric space with doubling
dimension γ, we can find a separator of size O(k2l(32l + 8)2γ log2 L

S log n + n
l ),

where L and S are respectively the maximum and minimum distances between
any two points in P .

We start with the following lemma that will be useful to obtain a degree bound
for k-NNG in a doubling dimensional metric space.

Lemma 1. For any ball of radius r in metric space with doubling dimension γ,
it contains at most 2γ disjoint balls of radius r

2 .

Similarly, we can get the following corollary.

Corollary 2. For any ball of radius r in a metric space with doubling dimension
γ, it contains at most 2tγ disjoint balls of radius r

2t .

In this section, we will show an extended version of separator theorem in doubling
dimensional spaces.

3.1 Shallow Minors

Key to our analysis is to show that k-NNG in finite doubling dimensional metric
space excludes certain type of minors.

Definition 8. A minor of a graph G is a graph obtained from G by a series of
edge contractions and edge deletions.

Teng [18] showed that for those balls in k-ply neighborhood system in Euclidean
space, there could not be too many balls of large radius intersecting the same
ball. We can get a similar result for graphs in doubling dimensional space, i.e,
for any ball of radius r, there could not exist many balls of radius at least βr
which intersect it.

Lemma 2. Suppose {B1, . . . , Bn} is a k-ply neighborhood system in a metric
space with doubling dimension γ. For each ball B with radius r, for all constant
β > 0, we have

|{i : Bi ∩ B 
= φ and ri ≥ βr}| ≤ k

(
2(1 + 2β)

β

)γ

where ri is the radius of Bi.

Although there is no such definition as volume in Euclidean space, the doubling
dimensional space does have similar shallow minor properties. We’ll show that
the intersection graph of a k-ply neighborhood system in doubling dimensional
space does exclude shallow minors of a certain size.

Because there are not many intersecting balls, the intersection graph of k-ply
neighborhood system does not have a large minor either.



Combinatorial and Spectral Aspects of Nearest Neighbor Graphs 561

Theorem 3. Suppose Γ is a k-ply neighborhood system in a metric space with
doubling dimension γ and G is the intersection graph of Γ . Then ∀l, G excludes
Kh as a depth1 l minor for h ≥ k(8l + 2)γ .

Proof. Suppose G has a Kh minor of depth l. We claim that there must exist h
sets of balls, Γ1, . . . , Γh ⊂ Γ , such that:

– The intersection graph of each Γi is connected with diameter at most l.
– For each pair i, j ∈ {1, . . . , h}, there’s a ball in Γi that intersects a ball in

Γj .

Let Bi be the ball of the largest radius in Γi. Without loss of generality, as-
suming that B1 is the ball of the smallest radius among {B1, . . . , Bh} and its
radius is r. Hence, all the balls in Γ1 are contained in a ball B′ = (2l + 1)B1,
because the intersection graph of Γ1 is connected. According to the second con-
dition, ∀i > 1, there is a ball from Γi that intersects B′.

We claim that for each i > 1, there is a ball in Γi of radius at least r that
intersects the ball (4l − 1)B1.

As we know, the diameter of the intersection graph of Γi is at most l and there
is a ball from Γi that intersects B′. If that intersecting ball has radius at least
r, then we are done with Γi. If not, we can enlarge the radius of B′ by 2r, at
that time, the enlarged B′ will completely contain the intersecting ball in Γi and
meet other balls in Γi because of the connectivity of Γi. Then we judge whether
one of the intersecting balls has radius at least r. If not, we repeat the augment
process above. Because B1 is the ball of the smallest radius among {B1, . . . , Bh},
the process will surely terminate. This process is like a breadth-first-search. The
number of iterations is less than l − 1, since we will surely meet either Bi (the
maximum-radius ball in Γi, whose radius is at least r) or some other balls in Γi

that has radius at least r.
Namely, the ball B∗ of radius R = (4l − 1)r intersects h balls of radius at

least βR where β = 1/(4l − 1). Applying Lemma 2, we have h ≤ k(8l + 2)γ . �

Theorem 4. Suppose Γ is a k-ply neighborhood system in a metric space with
doubling dimension γ and G is the α-overlap graph of Γ . Then ∀l, G excludes
Kh as a depth l minor for h ≥ k(8αl + 2)γ .

3.2 Proof of Theorem 2

In this subsection, we give the proof of Theorem 2. First, let’s bound the max
degree of nearest neighbor graphs and the ply of neighborhood system in metric
spaces with doubling dimension γ.

Lemma 3. Let P = {p1, . . . , pn} be a point set in a metric space with doubling
dimension γ. Then the ply of Nk(P ) is bounded by k4γ log 3

2

2L
S , where L is the

maximum distance between any two points in P , and S is the smallest one.

1 The maximum number of edges in each simple path.
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The k-nearest neighbor graph has no more ply than Nk(P ), therefore we can
bound the ply of k-NNG in doubling dimension space.

Corollary 3. The ply for any k nearest neighbor graph in a metric space with
doubling dimension γ is at most k4γ log3/2

2L
S , where L is the longest distance

in the graph and S is the shortest.

Plotkin, Rao and Smith [13] gave the following theorem and showed that we can
find a small size separator for the graph which excludes shallow minors.

Theorem 5. For any graph that excludes Kh as a depth l minor, we can find
a separator of size O(lh2 log n + n/l), where n is the number of vertices of the
graph.

Because every k-NNG in a metric space with doubling dimension γ has ply
bound of k4γ log3/2

2L
S and it excludes Kh minor with depth l, where h >

k4γ log3/2
2L
S (8l + 2)γ = k(32l + 8)γ log 3

2
(2L

S ). Applying Theorem 5 gives the
separator bound of k-NNG in a metric space with doubling dimension γ. There-
fore, Theorem 2 holds.

To minimize the separator size, we choose l=n1/(2γ+2)(k2 log2 L
S ·log n)−1/(2γ+2)

such that the two terms are equal and get that every k-nearest neighbor graph
of n points in a metric space with doubling dimension γ has a balanced vertex
separator of size

O(n1−1/(2γ+2)k1/(γ+1) log1/(γ+1)(L/S) · log1/(2γ+2) n)

Since we have showed that the maximum degree of these k-NNG is at most
O(k log(L/S)), the above separator bound could also give an upper bound of
the Fiedler value of a k-nearest neighbor graph of n points in a metric space
with doubling dimension γ. Assign 1 to each vertex in the vertex separator
and |separator|/(|separator| − n) to the remaining vertices, then we have the
following inequality.

λ2 ≤
∑

cut edge(i,j)(xi − xj)2∑
∀i x2

i

≤
( n
|separator|−n )2 × |separator| × |max degree|

n

=O(
n

−1
2γ+2 k1+ 1

γ+1 log
1

2γ+2 (L/S)log
1

2γ+2 n

1 − 2n
−1

2γ+2 k
1

γ+1 log
1

γ+1 (L/S)log
2

γ+1 n + n
−1

γ+1 k
2

γ+1 log
2

γ+1 (L/S)log
1

γ+1 n
)

4 A Spectral Theorem for Nearly-Euclidean Spaces

Since Fiedler [6] discovered that the second smallest eigenvalue is closely related
to the connectivity of the graph, a large amount of work has been done on
spectra analysis of graphs. In 1996, Spielman and Teng [17] proved that the
Fiedler value of a k-nearest neighbor graph with n vertices in R

d is bounded by
O(k1+2/d/n2/d).
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In this session, we consider a point set P of n vertices in R
m space. P =

{p1, . . . , pn}⊆R
m. We can get an m×n matrix P with column vectors (p1, . . . ,pn).

An upper bound of Fiedler value of the Laplacian matrix L(P), given by Spiel-
man and Teng, is as following.

Theorem 6. (Spielman-Teng) If G is a subgraph of an α-overlap graph of
a k-ply neighborhood system in R

m and the maximum degree of G is Δ, then
the Fiedler value of L(G) is bounded by γmΔα2( k

n )2/m, where γm = 2(π + 1 +
π
α )2(Am+1

Vm
)2/m.

Am is the surface volume of a unit m-dimensional ball, and Vm is the volume of a
unit m-dimensional ball. In general case, the numbers k and α are two constants,
and the item γm can be considered as a constant if the dimension m is fixed.
Therefore, the bound can be expressed by O( 1

n2/m ), which is dependant on the
dimension of the space.

If we change the base carefully, the dimension could be changed as well. Hence
we can consider the Laplacian matrix of a k-NNG and find a low-rank approx-
imation matrix which can be contained in a lower dimension space so that the
dimension of the new space is smaller. The changing of basis could make the
problem easier, and we call the new space nearly-Euclidean space.

As we mentioned in Section 2, SVD could help us get a low-rank approxima-
tion matrix Q whose rank is d with d < m. Suppose the column vectors of Q is
(q1, . . . , qn) and these n points form a new point set Q. Suppose that G′ is the
(1 + 7δ

s )-overlap graph of the k-NNG of Q, the maximum degree of G′ is Δ, s is
the length of the shortest edge in G′, δ is the maximum distance between each
pi and qi for any i ∈ {1, . . . , n}, we can prove the following theorem and get a
more accurate bound for L(P).

Theorem 7. If G is the k-NNG of the point set P in R
m space, then using

SVD, we can find an approximate point set Q with rank(Q) = d < m, and
the Fiedler value of L(P) can be bounded by (1 + 7δ

s )2γdΔτdk/n)
2
d where γd =

2(π + 1 + π
α )2(Ad+1

Vd
)2/d.

Here Ad is the surface volume of a unit d-dimensional ball, and Vd is the volume
of a unit d-dimensional ball. To make the idea look clearer, let’s consider a simple
example in R

2 space. Q = {q1, . . . , qn} is a set of n points in R
2 space. We perturb

these n points in the direction perpendicular to the original plane and get a new
set of n points, denoted by P = {p1, . . . , pn}, in R

3 space. Assuming that the
smallest distance between any two points of Q is s, and the perturbation distance
is at most δ. If s ≥ δ, we can get the following inequalities.

‖pi − pj‖ ≤
√

(2δ)2 + ‖qi − qj‖2 ≤
√

5‖qi − qj‖

If ri is the k-NNG radius for qi, and Ri is the k-NNG radius for pi, then we
can see that Ri ≤

√
5ri for all i ∈ {1, . . . , n}. Therefore, we can use

√
5-overlap

graph G′ of Q to approximate the k-NNG G of P . And the Fiedler value of
L(G′) can also be bounded by the Fiedler value of L(G). In fact, we can think
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that all those n points of P in R
3 are perturbed perpendicularly to the same

plane and the new point set on the plane is Q.
To prove Theorem 7, let’s get some preparations.

Lemma 4. ∀pi ∈ P , its k-NNG radius Ri is no more than ri + 2δ, where ri is
the k-NNG radius of the corresponding point qi in Q.

Lemma 5. The 1-overlap graph of k-NNG of P in R
m is isomorphic to a sub-

graph of the (1 + 7δ/s)-overlap graph of k-NNG of Q in R
d.

Lemma 6. The k-NNG is a subgraph of its 1-overlap graph.

Proof. Suppose G is a k-NNG, G′ is the 1-overlap graph of G and (pi, pj) is an
arbitrary edge of G. Then we can see that ‖pi − pj‖ ≤ ri or ‖pi − pj‖ ≤ rj . In
addition, ‖pi − pj‖ ≤ ri + rj . Hence (pi, pj) must exists in the graph G′. From
the generality of (pi, pj), we can see that the k-NNG graph is a subgraph of its
1-overlap graph. �

Combining Lemma 4, 5 and 6, we can derive the following corollary.

Corollary 4. The k-NNG of P in R
m is isomorphic to a subgraph of the (1 +

7δ/s)-overlap graph of a k-NNG of Q in R
d, where δ = max ‖pi − qi‖ and s =

min ‖qi − qj‖.

In [11] it is shown that any k-NNG is a subgraph of a kτd-ply neighborhood
system where τd is the kissing number in dimension d. If G is an α-overlap
graph of a k-NNG in R

d then G is a subgraph of an α-overlap graph of a kτd-
neighborhood system in R

d. Suppose that the maximum degree of G is Δ, we
can apply Theorem 6 and get the following corollary directly.

Corollary 5. If G is a subgraph of the α-overlap graph of k-NNG in R
d with

maximum degree Δ, then the Fiedler value of L(G) is bounded by γdΔα2(τdk/n)2/d,
where γd = 2(π + 1 + π/α)2(Ad+1/Vd)2/d.

Finally, we give the proof of Theorem 7.

Proof of Theorem 7. The k-NNG of P in R
m is isomorphic to a subgraph of

the (1+7δ/s)-overlap graph of k-NNG of Q in R
d, according to Corollary 6. The

isomorphic graph has the same Fiedler value as the original graph because they
have the same Laplacian matrices. Hence the k-NNG of P in R

m has no larger
Fiedler value than the (1 + 7δ/s)-overlap graph of k-NNG of Q in R

d according
to Corollary 1.Due to Corollary 5, we know that the Fiedler value of k-NNG in
R

m is bounded by (1 + 7δ
s )2γdΔτdk/n)

2
d where γd = 2(π + 1 + π

α )2(Ad+1
Vd

)2/d. �

5 Conclusion

In this paper, we concentrate on the combinatorial and spectral aspects of near-
est neighbor graphs in doubling dimensional metric spaces and nearly-Euclidean
spaces. For those k-nearest neighbor graphs in metric spaces with doubling
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dimension γ, we give the ply bound and degree bound, where there are no defi-
nitions like volume or parallel. We analyze the shallow minor excluded property
and bound the separator size. For those graphs in Euclidean spaces with high
dimension, we prove that the k-nearest neighbor graphs could have better spec-
tral properties using SVD. If the number k is a constant, then we can show
that its Fiedler value can be bounded by O(Δ(1 + 7δ/s)2n−2/d) where Δ is the
maximum degree of the approximation graph.
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