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Abstract. We consider the stochastic geometry model where the
location of each node is a random point in a given metric space,
or the existence of each node is uncertain. We study the problem-
s of computing the expected lengths of several combinatorial or
geometric optimization problems over stochastic points, including
closest pair, minimum spanning tree, k-clustering, minimum perfect
matching, and minimum cycle cover. We also consider the problem
of estimating the probability that the length of closest pair, or
the diameter, is at most, or at least, a given threshold. Most of
the above problems are known to be #P-hard. We obtain FPRAS
(Fully Polynomial Randomized Approximation Scheme) for most
of them in both the existential and locational uncertainty models.
Our result for stochastic minimum spanning trees in the location-
al uncertain model improves upon the previously known constant
factor approximation algorithm. Our results for other problems are
the first known to the best of our knowledge.

1 Introduction

Background: Uncertain or imprecise data are pervasive in applications like
sensor monitoring, location based services, data collection and integration [12, 14,
33]. Consider a sensor network deployed in the wild to monitor the living habits
or migration of certain animals [28, 35]. Since sensing instruments are not perfect,
the data collected are often contaminated with a significant amount of noise [13,
35]. For another example, the locational data collected by the Global-Positioning
Systems (GPS) often contains measurement errors [29]. Moreover, many machine
learning and prediction algorithms also produce a variety of stochastic models
and a large volume of probabilistic data. Thus, managing, analyzing and solving
optimization problems over stochastic models and data have recently attracted
significant attentions in several research communities (see e.g., [30, 33, 34]).
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In this paper, we study two stochastic geometry models, the locational un-
certainty model and the existential uncertainty model, both of which have been
studied extensively in recent years (see e.g., [2–4, 7, 20, 21, 24–26],some of which
will be discussed in the related work section). In fact, a special case of the lo-
cational uncertainty model where all points follow the same distribution is a
classic topic in stochastic geometry literature (see e.g., [8–10, 22, 31]). The main
interest there has been to derive asymptotics for the expected values of certain
combinatorial problems (e.g., minimum spanning tree). The stochastic geometry
model is also of fundamental interest in the area of wireless networks. In many
applications, we only have some prior information about the locations of the
transmission nodes (e.g., some sensors that will be deployed randomly in a des-
ignated area by an aircraft). Such a stochastic wireless network can be captured
precisely by this model. See the recent survey [19] and more references therein.

Stochastic Geometry Models: In this paper, we focus on two stochastic
geometry models, the locational uncertainty model and existential uncertainty
model.

1. (Locational Uncertainty Model) We are given a metric space P. The location
of each node v ∈ V is a random point in the metric space P and the proba-
bility distribution is given as the input. Formally, we use the term nodes to
refer to the vertices of the graph, points to describe the locations of the nodes
in the metric space. We denote the set of nodes as V = {v1, . . . , vn} and the
set of points as P = {s1, . . . , sm}, where n = |V| and m = |P|. A realization
r can be represented by an n-dimensional vector (r1, . . . , rn) ∈ Pn where
point ri is the location of node vi for 1 ≤ i ≤ n. Let R denote the set of
all possible realizations. We assume that the distributions of the locations of
nodes in the metric space P are independent, thus r occurs with probability
Pr[r] =

∏
i∈[n] pviri , where pvs represents the probability that the location of

node v is point s ∈ P. The model is also termed as the locational uncertainty
model in [20].

2. (Existential Uncertainty Model) A closely related model is the existential
uncertainty model where the location of a node is a fixed point in the given
metric space, but the existence of the node is probabilistic. In this model,
we use pi to denote the probability that node vi exists (if exists, its location
is si). A realization r can be represented by a subset S ⊂ P and Pr[r] =∏
si∈S pi

∏
si /∈S(1− pi).

Problem Formulation: We are interested in following natural problem in the
above models: estimating the expected values of certain statistics of combinato-
rial objects. In this paper, we study several combinatorial or geometry problems
in these two models: the closest pair problem, minimum spanning tree, minimum
perfect matching (assuming an even number of nodes), k-clustering and mini-
mum cycle cover. We take the minimum spanning tree problem for example. Let
MST be the length of the minimum spanning tree (which is a random variable)
and MST(r) be the length of the minimum spanning tree spanning all points in
the realization r. We would like to estimate the following quantity:

E[MST] =
∑
r∈R

Pr[r] ·MST(r).



However, the above formula does not give us an efficient way to estimate the
expectation since it involves an exponential number of terms. In fact, comput-
ing the exact expected value (for the problems considered in this paper) are
either NP-hard or #P-hard. Following many of the theoretical computer science
literatures on approximate counting and estimation, our goal is to obtain ful-
ly polynomial randomized approximation schemes for computing the expected
values.

1.1 Our Contributions

We recall that a fully polynomial randomized approximation scheme (FPRAS)
for a problem f is a randomized algorithm A that takes an input instance x, a real
number ε > 0, returns A(x) such that Pr[(1− ε)f(x) ≤ A(x) ≤ (1 + ε)f(x)] ≥ 3

4
and its running time is polynomial in both the size of the input n and 1/ε. Our
main contributions can be summarized in Table 1. We need to explain some
entries in the table in more details.

Problems Existential Locational

Closest Pair (§2)
E[C] FPRAS FPRAS

Pr[C ≤ 1] FPRAS FPRAS
Pr[C ≥ 1] Inapprox Inapprox

Diameter (§2)
E[D] FPRAS FPRAS

Pr[D ≤ 1] Inapprox Inapprox
Pr[D ≥ 1] FPRAS FPRAS

Minimum Spanning Tree (§3) E[MST] FPRAS[20] FPRAS
k-Clustering E[kCL] FPRAS Open

Perfect Matching (§4) E[PM] N.A. FPRAS
kth Closest Pair E[kC] FPRAS Open

Cycle Cover E[CC] FPRAS FPRAS
kth Longest m-Nearest Neighbor E[kmNN] FPRAS Open

Table 1. Our results for some problems in different stochastic models.

1. Closest Pair: We use C to denote the minimum distance of any pair of t-
wo nodes. If a realization has less than two nodes, C is zero. Computing
Pr[C ≤ 1] exactly in the existential model is known to be #P-hard even in
an Euclidean plane [21], but no nontrivial algorithmic result is known before.
So is computing Pr[C ≥ 1]. In fact, it is not hard to show that computing
Pr[C ≥ 1] is imapproximable within any factor in a metric space.
We also consider the problem of computing expected distance E[C] between
the closest pair in the same model. We prove that the problem is #P-hard
and give the first known FPRAS in Section 2. Note that an FPRAS for
computing Pr[C ≤ 1] does not imply an FPRAS for computing E[C] 1.

2. Diameter: The problem of computing the expected length of the diameter can
be reduced to the closest pair problem as follows. Assume that the longest
distance between two points in P is W . We construct the new instance P ′
as follows: for any two points u, v ∈ P, let their distance be 2W − d(u, v) in

1 To the contrary, an FPRAS for computing Pr[C ≥ 1] or Pr[C = 1] would imply
an FPRAS for computing E[C] since E[C] =

∑
(si,sj)

Pr[C = d(si, sj)]d(si, sj) =∫
Pr[C ≥ t]dt =

∑
(si,sj)

Pr[C ≥ d(si, sj)](d(si, sj)− d(s′i, s
′
j)).



P ′. The new instance is still a metric. The sum of the distance of closest pair
in P and the diameter in P ′ is exactly 2W (if there are at least two realized
points). Hence, the answer for the diameter can be easily derived from the
answer for closest pair in P ′.

3. Minimum Spanning Tree: Computing E[MST] exactly in both uncertainty
models is known to be #P-hard [20]. Kamousi, Chan, and Suri [20] developed
an FPRAS for estimating E[MST] in the existential uncertainty model and a
constant factor approximation algorithm in the locational uncertainty model.
Estimating E[MST] is amendable to several techniques. We obtain an FPRAS
for estimating E[MST] in the locational uncertainty model using the stoch-
core techinque in Section 3. In fact, the idea in [20] can also be extended to
give an alternative FPRAS. It is not clear how to extend their idea to other
problems.

4. Clustering (k-clustering): In the deterministic k-clustering problem, we want
to partition all points into k disjoint subsets such that the spacing of the
partition is maximized, where the spacing is defined to be the minimum
of any d(u, v) with u, v in different subsets [23]. In fact, the optimal cost
of the problem is the length of the (k − 1)th most expensive edge in the
minimum spanning tree [23]. We show how to estimate E[kCL] using the
HPF (hierarchical partition family) technique.

5. Perfect Matching: We assume that there are even number of nodes to ensure
that a perfect matching always exists. Therefore, only the locational uncer-
tainty model is relevant here. We give the first FPRAS for approximating
the expected length of minimum perfect matching in Section 4 using a more
complicated stoch-core technique.

All of our algorithms run in polynomial time. However, we have not attempted
to optimize the exact running time.

Our techniques: Perhaps the simplest and the most commonly used technique
for estimating the expectation of a random variable is the Monte Carlo method,
that is to use the sample average as the estimate. However, the method is only
efficient (i.e., runs in polynomial time) if the variance of the random variable is
small (See Lemma 1). To circumvent the difficulty caused by the high variance,
a general methodology is to decompose the expectation of the random variable
into a convex combination of conditional expectations using the law of total
expectation: E[X] = EY

[
E[X | Y ]

]
=
∑
y Pr[Y = y]E[X | Y = y]. Hopefully,

Pr[Y = y] can be estimated (or calculated exactly) efficiently, and the random
variable X conditioning on each event y has a low variance. However, choosing
the events Y to condition on can be tricky.

We develop two new techniques for choosing such events, each being capable
of solving a subset of aforementioned problems. In the first technique, we first
identify a set H of points, called the stoch-core of the problem, such that (1):
with high probability, all nodes realize in H and (2): conditioning on event (1),
the variance is small. Then, we choose Y to be the number of nodes realized to
points not in H. We compute the (1 ± ε)-estimates for Y = 0, 1 using Monte
Carlo by (1) and (2). The problematic part is when Y is large, i.e., many nodes
realize to points outside H. Even though the probability of such events is very
small, the value of X under such events may be considerably large, thus con-



tributing nontrivially. However, we can show that the contribution of such events
is dominated by the first few events and thus can be safely ignored. Choosing
appropriate stoch-core is easy for some problems, such as closest pair and mini-
mum spanning tree, while it may require additional idea for other problems such
as minimum perfect matching.

Our second technique utilizes a notion called Hierarchical Partition Family
(HPF). The HPF has m levels, each representing a clustering of all points. For
a combinatorial problem, for which the solution is a set of edges, we define Y
to be the highest level such that some edge in the solution is an inter-cluster
edge. Informally, conditioning on the information of Y , we can essentially bound
the variance of X (hence use the Monte Carlo method). To implement Monte
Carlo, we need to be able to take samples efficiently conditioning on Y . We
show that such sampling problems can be reduced to, or have connections to,
classical approximate counting and sampling problems, such as approximating
permanent, counting knapsack.

Due to space constraints, we omit many details, which can be found in the
full version of this paper. 2

1.2 Related Work

Several geometric properties of stochastic points have been studied extensively
in the literature under the term stochastic geometry. For instance, Bearwood et
al. [8] shows that if there are n points uniformly and independently distributed
in [0, 1]2, the minimal traveling salesman tour visiting them has an expected
length Ω(

√
n). Asymptotic results for minimum spanning trees and minimum

matchings on n points uniformly distributed in unit balls are established by
Bertsimas and van Ryzin [10]. Similar results can be found in e.g., [9, 22, 31].
Compared with above results, ours focus on the efficient computation of the
statistics, instead of providing explicit mathematical formulas.

Recently, a number of researchers have begun to explore geometric computing
under uncertainty and many classical computational geometry problems have
been studied in different stochastic/uncertainty models. Agarwal, Cheng, Tao
and Yi [4] studied the problem of indexing probabilistic points with continuous
distributions for range queries on a line. Agarwal, Efrat, Sankararaman, and
Zhang [5] also studied the same problem in the locational uncertainty model
under Euclidean metric. The most probable k-nearest neighbor problem and
its variants have attracted a lot of attentions in the database community (See
e.g., [11]). Several other problems have also been considered recently, such as
computing the expected volume of a set of probabilistic rectangles in a Euclidean
space [36], convex hulls [2], skylines (Pareto curves) over probabilistic points [1,
7], and shape fitting [27].

Kamousi, Chan and Suri [20] initiated the study of estimating the expected
length of combinatorial objects in this model. They showed that computing the
expected length of the nearest neighbor (NN) graph, the Gabriel graph (GG), the
relative neighborhood graph (RNG), and the Delaunay triangulation (DT) can
be solved exactly in polynomial time, while computing E[MST] is #P-hard and

2 http://arxiv.org/abs/1209.5828



there exists a simple FPRAS for approximating E[MST] in the existential model.
They also gave a deterministic PTAS for approximating E[MST] in an Euclidean
plane. In another paper [21], they studied the closest pair and (approximate)
nearest neighbor problems (i.e., finding the point with the smallest expected
distance from the query point) in the same model.

The randomly weighted graph model where the edge weights are independent
nonnegative variables has also been studied extensively. Frieze [16] and Steele [32]
showed that the expected value of the minimum spanning tree on such a graph
with identically and independently distributed edges is ζ(3)/D where ζ(3) =∑∞
j=1 1/j3 and D is the derivative of the distribution at 0. Alexopoulos and

Jacobson [6] developed algorithms that compute the distribution of MST and
the probability that a particular edge belongs to MST when edge lengths follow
discrete distributions. However, the running times of their algorithms may be
exponential in the worst cases. Recently, Emek, Korman and Shavitt [15] showed
that computing the kth moment of a class of properties, including the diameter,
radius and minimum spanning tree, admits an FPRAS for each fixed k. Our
model differs from their model in that the edge lengths are not independent.

The computational/algorithmic aspects of stochastic geometry have also gained
a lot of attention in recent years from the area of wireless networking. In many
application scenarios, it is common to assume that the nodes (e.g., sensors) are
deployed randomly across a certain area, thereby forming a stochastic network.
It is of central importance to study various properties in this network, such
as connectivity [17], transmission capacity [18]. We refer interested reader to a
recent survey [19] for more references.

1.3 Preliminaries

Before describing our main results, we first consider the straightforward Monte
Carlo strategy, which is an important building block in our later developments.
Suppose we want to estimate E[X]. In each Monte Carlo iteration, we take a
sample (a realization of all nodes), and compute the value of X for the sample. At
the end, we output the average over all samples. The number of samples required
by this algorithm is suggested by the following standard Chernoff bound.

Lemma 1. (Chernoff Bound) Let random variables X1, X2, . . . , XN be indepen-

dent random variables taking on values between 0 and U . Let X = 1
N

∑N
i=1Xi

and µ be the expectation of X, for any ε > 0,

Pr [X ∈ [(1− ε)µ, (1 + ε)µ]] ≥ 1− 2e−N
µ
U ε

2/4.

Therefore, for any ε > 0, in order to get an (1±ε)-approximation with probability
1 − 1

poly(n) , the number of samples needs to be O( U
µε2 log n). If U

µ , the ratio

between the maximum possible value of X and the expected value E[X], is
bounded by poly(m,n, 1ε ), we can use the above Monte Carlo method to estimate
E[X] with a polynomial number of samples. Since we use this condition often,
we devote a separate definition to it.

Definition 1. We call a random variable X poly-bounded if the ratio between
the maximum possible value of X and the expected value E[X] is bounded by
poly(m,n, 1ε ).



2 The Closest Pair Problem

2.1 Estimating Pr[C ≤ 1]

As a warmup, we first demonstrate how to use the stoch-core technique for the
closest pair problem in the existential uncertainty model. Given a set of points
P = {s1, . . . , sm} in the metric space, where each point si ∈ P is present with
probability pi. We use C to denote the distance between the closest pair of
vertices in the realized graph. If the realized graph has less than two points, C
is zero. The goal is to compute the probability Pr[C ≤ 1].

For a set H of points and a subset S ⊆ H, we use H〈S〉 to denote the
event that among all points in H, all and only points in S are present. For any
nonnegative integer i, let H〈i〉 denote the event

∨
S⊆H:|S|=iH〈S〉, i.e., the event

that exactly i points are present in H.
The stoch-core of the closest pair problem is simply defined to be H ={

si | pi ≥ ε
m2

}
. Let F = P \ H. We consider the decomposition

Pr[C ≤ 1] =

|F|∑
i=0

Pr[F〈i〉 ∧ C ≤ 1] =

|F|∑
i=0

Pr[F〈i〉] · Pr[C ≤ 1 | F〈i〉].

Our algorithm is very simple: estimate the first three terms (i.e., i = 0, 1, 2) and
use their sum as our final answer.

We can see that H satisfies the two properties of a stoch-core mentioned in
the introduction:

1. The probability that all nodes are realized in H, i.e., Pr[F〈0〉], is at least
1−m · ε

m2 = 1− ε
m ;

2. If there exist two points si, sj ∈ H such that d(si, sj) ≤ 1, we have Pr[C ≤
1 | F〈0〉 ] ≥ ε2

m4 ; otherwise, Pr[C ≤ 1 | F〈0〉] = Pr[H〈0〉 | F〈0〉] + Pr[H〈1〉 |
F〈0〉]. Note that we can compute Pr[H〈0〉 | F〈0〉] and Pr[H〈1〉 | F〈0〉] in
polynomial time. We do not consider this case in the following analysis.

Both properties guarantee that the random variable I(C ≤ 1), conditioned on
F〈0〉, is poly-bounded, hence we can easily get a (1±ε)-estimation for Pr[F〈0〉∧
C ≤ 1] with polynomial many samples with high probability. Similarly, Pr[F〈i〉∧
C ≤ 1] can also be estimated with polynomial number of samples for i = 1, 2.
The algorithm can be found in Algorithm 1.

Lemma 2. Steps 1,2,3 in Algorithm 1 provide (1±ε)-approximations for Pr[F〈i〉∧
C ≤ 1] for i = 0, 1, 2 respectively, with high probability.

Theorem 1. There is an FPRAS for estimating the probability of the distance
between the closest pair of nodes is at most 1 in the existential uncertainty model.

Proof. We only need to show that the contribution from the rest of terms (where
more than two points outside stoch-core H are present) is negligible compared
to the third term. Suppose S is the set of all present points such that C ≤ 1
and there are at least 3 points not in H. Suppose si, sj are the closest pair



Algorithm 1: Estimating Pr[C ≤ 1]

Estimate Pr[F〈0〉 ∧ C ≤ 1]: Take N0 = O
(
(m/ε)4 lnm

)
independent samples.1

Suppose M0 is the number of samples satisfying C ≤ 1 and F〈0〉. T0 ← M0
N0

.

Estimate Pr[F〈1〉 ∧ C ≤ 1]: For each point si ∈ F , take N1 = O((m/ε)4 lnm)2

independent samples conditioning on the event F〈{si}〉. Suppose there are Mi

samples satisfying C ≤ 1. T1 ←
∑
si∈F piMi/N1.

Estimate Pr[F〈2〉 ∧ C ≤ 1]: For each point pair si, sj ∈ F , take3

N2 = O((m/ε)4 lnm) independent samples conditioning on the event
F〈{si, sj}〉. Suppose there are Mij samples satisfying C ≤ 1.
T2 ←

∑
si,sj∈F pipjMij/N2.

Output: T0 + T1 + T24

in S. We associate S with a smaller set S′ ⊂ S by making 1 present point in
(S ∩ F) \ {si, sj} absent (if there are several such S′, we choose an arbitrary
one). We denote it as S ∼ S′. We use the notation S ∈ Fi to denote that the
realization S satisfies (F〈i〉 ∧ C ≤ 1). Then, we can see that for i ≥ 3,

Pr[F〈i〉 ∧ C ≤ 1] =
∑

S:S∈Fi

Pr[S] ≤
∑

S′:S′∈Fi−1

∑
S:S∼S′

Pr[S].

For a fixed S′, there are at most m different sets S such that S ∼ S′ and
Pr[S] ≤ 2ε

m2 Pr[S′] for any such S. Hence, we have that
∑
S:S∼S′ Pr[S] ≤ 2ε

mPr[S′].
Therefore,

Pr[F〈i〉 ∧ C ≤ 1] ≤ 2ε

m
·

∑
S′:S′∈Fi−1

Pr[S′] =
2ε

m
· Pr[F〈i− 1〉 ∧ C ≤ 1].

Hence, overall we have
∑
i≥3 Pr[F〈i〉 ∧C ≤ 1] ≤ εPr[F〈2〉 ∧C ≤ 1]. This finishes

the analysis.
ut

2.2 Estimating E[C]

In this section, we consider the problem of estimating E[C], where C is the
distance of the closest pair of present points, in the existential uncertainty model.
Now, we introduce our second main technique, the hierarchical partition family
(HPF) technique, to solve this problem. An HPF is a family Ψ of partitions of
P, formally defined as follows.

Definition 2. (Hierarchical Partition Family (HPF)) Let T be any minimum s-
panning tree spanning all points of P. Suppose that the edges of T are e1, . . . , em−1
with d(e1) ≥ d(e2) ≥ . . . ≥ d(em−1). Let Ei = {ei, ei+1, . . . , em−1}. The HPF
Ψ(P) consists of m partitions Γ1, . . . , Γm. Γ1 is the entire point set P. Γi con-
sists of i disjoint subsets of P, each corresponding to a connected component of
Gi = G(P, Ei). Γm consists of all singleton points in P. It is easy to see that
Γj is a refinement of Γi for j > i. Consider two consecutive partitions Γi and



Γi+1. Note that Gi contains exactly one more edge (i.e., ei) than Gi+1. Let µ′i+1

and µ′′i+1 be the two components (called the split components) in Γi+1, each con-
taining an endpoint of ei. Let νi ∈ Γi be the connected component of Gi that
contains ei. We call νi the special component in Γi. Let Γ ′i = Γi \ νi.

We observe two properties of Ψ(P) that are useful later.

P1. Consider a component C ∈ Γi. Let s1, s2 be two arbitrary points in C. Then
d(s1, s2) ≤ (m− 1)d(ei) (this is because s1 and s2 are connected in Gi, and
ei is the longest edge in Gi).

P2. Consider two different components C1 and C2 in Γi. Let s1 ∈ C1 and s2 ∈
C2 be two arbitrary points. Then d(s1, s2) ≥ d(ei−1) (this is because the
minimum inter-component distance is d(ei−1) in Gi).

Let the random variable Y be smallest integer i such that there is at most one
present point in each component of Γi+1. Note that if Y = i then each component
of Γi contains at most one point, except that the special component νi contains
exactly two present points. The following lemma is a simple consequence of P1
and P2.

Lemma 3. Conditioning on Y = i, it holds that d(ei) ≤ C ≤ md(ei) (hence, C
is poly-bounded).

Consider the following expansion of E[C]: E[C] =
∑m−1
i=1 Pr[Y = i]E[C | Y =

i]. For a fixed i, Pr[Y = i] can be estimated as follows: For a component C ⊂ P,
we use C〈j〉 to denote the event that exactly j points in C are present, C〈s〉
the event that only s is present in C and C〈≤ j〉 the event that no more than j
points in C are present. Let µ′i and µ′′i be the two split components in Γi. Note
that

Pr[Y = i] = Pr[µ′i+1〈1〉] · Pr[µ′′i+1〈1〉] ·
∏
C∈Γ ′i

Pr[C〈≤ 1〉].

The remaining is to show how to estimate E[C | Y = i]. Since C is poly-bounded,
it suffices to give an efficient algorithm to take samples conditioning on Y = i.
This is again not difficult: We take exactly one point s ∈ µ′i+1 with probability
Pr[µ′i+1〈s〉]/Pr[µ′i+1〈1〉]. Same for µ′′i+1. For each C ∈ Γ ′i , take no point from
C with probability Pr[C〈0〉]/Pr[C〈≤ 1〉]; otherwise, take exactly one point s ∈
C with probability Pr[C〈s〉]/Pr[C〈≤ 1〉]. This finishes the description of the
FPRAS in the existential uncertainty model.

Theorem 2. There is an FPRAS for estimating the expected distance between
the closest pair of nodes in the existential uncertainty models.

3 Minimum Spanning Trees

We consider the problem of estimating the expected size of minimum spanning
tree in the locational uncertainty model. In this section, we briefly sketch how
to solve it using our stoch-core method. Recall that the term nodes refers to the
vertices V of the spanning tree and points describes the locations in P. For ease



of exposition, we assume that for each point, there is only one node that may
realize at this point.

Recall that we use the notation v � s to denote the event that node v is
present at point s. Let pvs = Pr[v � s]. Since node v is realized with certainty,
we have

∑
s∈P pvs = 1. For each point s ∈ P, we let p(s) denote the probability

that point s is present. For a set H of points, let p(H) =
∑
s∈H p(s), i.e., the

expected number of points present in H. For a set H of points and a set S of
nodes, we use H〈S〉 to denote the event that all and only nodes in S are realized
to some points in H. If S only contains one node, say v, we use the notation
H〈v〉 as the shorthand for H〈{v}〉. Let H〈i〉 denote the event

∨
S:|S|=iH〈S〉, i.e.,

the event that exactly i nodes are in H. We use diam(H), called the diameter of
H, to denote maxs,t∈H d(s, t). Let d(p,H) be the closest distance between point
p and any point in H.

Finding stoch-core: We find the stoch-core H ← B(s,d(s, t)) = {s′ ∈ P |
d(s′, s) ≤ d(s, t)}, where points s and t are the furthest two points among all
points r with p(r) ≥ ε

16m .

Lemma 4. The stoch-core H satisfies the following properties:

Q1. p(H) ≥ n− ε
16 = n−O(ε)

Q2. E[MST | H〈n〉 ] = Ω
(

diam(H) ε
2

m2

)
.

Furthermore, the algorithm runs in linear time.

Estimating E[MST]: Let F = P \ H. By the law of total expectation, the
expected length of the minimum spanning tree can be expanded as follows:
E[MST] =

∑
i≥0 E[MST | F〈i〉 ] · Pr[F〈i〉]. We only estimate the first two terms

E[MST | F〈0〉 ] ·Pr[F〈0〉] and E[MST | F〈1〉 ] ·Pr[F〈1〉] and use their sum as our
final estimation. Using Properties Q1 and Q2, we can estimate the two terms in
polynomial time.
Theorem 3. There is an FPRAS for estimating the expected length of the min-
imum spanning tree in the locational uncertainty model.

4 Minimum Perfect Matchings

In this section, we consider the minimum perfect matching (PM) problem. We
use the stoch-core method.
Finding stoch-core: First, we show how to find in poly-time the stoch-core H.
See the Pseudo-code in Algorithm 2 for details.
Estimating E[PM]: We use H〈n〉 to denote the event that for each node v,
v � H(v). We denote the event that there are exactly i nodes which are realized
out of their stoch-cores by F〈i〉. Again, we only need to estimate two terms:
E[PM | F〈0〉]] · Pr[F〈0〉] and E[PM | F〈1〉] · Pr[F〈1〉]. Using Properties Q1 and
Q2, we can estimate these terms in polynomial time. Our final estimation is
simply the sum of the first two terms.

Theorem 4. Assuming the locational uncertainty model and that the number
of nodes is even, there is an FPRAS for estimating the expected length of the
minimum perfect matching.



Algorithm 2: Constructing stoch-core H for Estimating E[PM]

Initially, t← 0 and each point s ∈ P is a component H{s} = B(s, t) by itself.1

Gradually increase t; If two different components HS1 and HS2 intersect (where2

HS := ∪s∈SB(s, t)); Merge them into a new component HS1∪S2 .
Stop increasing t while the first time the following two conditions are satisfied3

by components at t:

Q1. For each node v, there is a unique component Hj such that
pv(Hj) ≥ 1−O( ε

nm3 ). We call Hj the stoch-core of node v, denoted as H(v).
Q2. For all j, |{v ∈ V | H(v) = Hj}| is even.

Output the stopping time T and the components H1, . . . ,Hk.4
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