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Efficient spin squeezing with optimized pulse sequences

C. Shen* and L.-M. Duan
Department of Physics, University of Michigan, Ann Arbor, Michigan 48103, USA and

Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, China
(Received 12 April 2013; published 14 May 2013)

Spin squeezed states are a class of entangled states of spins that have practical applications to precision
measurements. In recent years spin squeezing with one-axis twisting (OAT) has been demonstrated experimentally
with spinor Bose-Einstein condensates (BECs) with more than 103 atoms. Although the noise is below the standard
quantum limit, the OAT scheme cannot reduce the noise down to the ultimate Heisenberg limit. Here we propose
an experimentally feasible scheme based on optimized quantum control to greatly enhance the performance of
OAT to approach the Heisenberg limit, requiring only an OAT Hamiltonian and the use of several coherent driving
pulses. The scheme is robust against technical noise and can be readily implemented for spinor BECs or trapped
ions with current technology.
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Spin squeezed states [1] have attracted a lot of interest due
to both their role in the fundamental study of many-particle
entanglement and their practical application to precision
measurements with Ramsey interferometers [2–6]. In recent
years, much progress has been made on the experimental
squeezing of a large number (103 ∼ 106) of ultracold atoms
[7–11]. Many of these experiments follow the so-called one-
axis twisting (OAT) scheme, which is known to reduce the
noise-to-signal ratio from the classical case by an amount
that scales as N−2/3 with the particle number N [1]. This
reduction is not optimal yet and still above the so-called
Heisenberg limit which scales as N−1. There have been several
theoretical proposals to enhance the OAT scheme [12,13].
For example, one of the approaches [13] involves inducing a
better squeezing Hamiltonian, the so-called two-axis twisting
(TAT) Hamiltonian, with Raman assisted coupling for trapped
spinor Bose-Einstein condensates (BECs). This is hardware
level engineering, requiring modification of a particular ex-
perimental setup and does not apply to other physical systems.
Another approach [12] employs a digital quantum simulation
technique to convert an OAT Hamiltonian to an effective TAT
Hamiltonian by stroboscopically applying a large number of
pulses. This software level solution is universal but sensitive
to the accumulation of control errors. None of these proposals
have been experimentally tested yet due to various difficulties.

Inspired by the idea of optimized quantum control, we
propose an experimentally feasible scheme to greatly improve
the performance of OAT, requiring only two or three additional
coherent driving pulses to carry out collective spin rotations,
which is a routine technique with the current technology. The
scheme is shown to be robust to noise and imperfection in
control pulses. Using this scheme, it is possible to generate
more spin squeezing and detect a significantly larger entangle-
ment depth for the many-particle atomic ensemble [5]. This
scheme enhances the OAT squeezing on the software level and
therefore can be applied to any physical system that is endowed
with these operations. The idea of optimized squeezing may
also be easily transferred to cases where the interaction term
deviates from the OAT Hamiltonian.
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We consider the general scenario of one-axis twisting
independent of the underlying physical system with the Hamil-
tonian H = χS2

z (Sz = ∑N
i si

z) (setting h̄ = 1). The system
starts from a collective spin coherent state polarized along the x

axis. As time goes on the initially homogenous spin fluctuation
gets distorted and redistributed among different directions,
and the direction along which spin fluctuation gets suppressed
gradually changes over time. The squeezing is measured by
the parameter ξ 2, defined as ξ 2 = N〈S2

�n〉/ |〈Sx〉|2, where �n is
the direction along which spin fluctuation is minimized. The
decreasing rate of ξ 2 slows down with time, and after the
optimal squeezing point, ξ 2 increases again. Aside from the
initial state, which is rotationally symmetric about the x axis,
all the subsequent states breaks this symmetry and pick out a
special direction, i.e., the direction along which fluctuation
is minimized. It is well known that the TAT Hamiltonian
H2 = χ2(S2

x − S2
y ) can produce better squeezing [1], which,

after doing the Trotter decomposition with an infinitesimal
time interval, could be seen as switching the squeezing axis
back and forth very fast between two orthogonal directions
[12]. To avoid the noise accumulation from a large number of
switching pulses inherent in the Trotter expansion scheme, we
take an alternative approach based on optimization of a few
control pulses to maximize the squeezing of the final state. We
consider an n-step squeezing protocol (where n is typically
2 or 3 for a practical scheme) defined as follows: at step j

(j = 1,2, . . . ,n), we first apply an instantaneous collective
spin rotation around the x axis, U (αi) = exp(−i Sxαi), and
then let the state evolve under the OAT Hamiltonian H = χS2

z

for a duration Ti . Effectively, we squeeze the state along a
different axis lying in the y-z plane in each step, so the effective
evolution operator can be written as

U (θi, Ti) =
1∏

i=n

exp
( − i χS2

θi
Ti

)
, (1)

where Sθj
≡ cos θjSz + sin θjSy and the factors are arranged

from right to left with increase of j . This evolution operator
coincides with that of a quantum kicked-top model with n
kicks. Since the initial state is assumed to be polarized along
the x direction, which is symmetric around the x axis, θ1
is irrelevant and can be chosen to be 0 (so no control pulse is
needed for step 1). Therefore, for an n-step squeezing protocol,
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FIG. 1. (Color online) Squeezing − log(ξ 2) as a function of the
control parameters θ2 and T2 for a typical value of T1, calculated with
N = 2000 spin-1/2 particles. See Eq. (1) and text for definition of θi

and Ti . The cross symbol marks the point of optimal squeezing. The
horizontal line θ2 = 0 corresponds to the case of the OAT scheme.

there are (2n − 1) tunable parameters: Ti and θi (excluding θ1).
The final squeezing parameter is thus a multivariable function
ξ 2(Ti, θi). Note that as n becomes very large, our protocol
includes the proposed sequence in [12] as a special case and
so in principle our protocol can approach the Heisenberg limit
as n grows. Our purpose is to find the best available squeezing
ξ 2(Ti, θi) with a minimum number n of the time steps.

In the case of n = 2 or 3, the landscape of ξ 2(Ti,θi) in the
parameter space is quite simple and well behaved. Take the
n = 2 case as an example. For a typical value of T1 smaller than
the optimal OAT squeezing time, − log(ξ 2) as a function of θ2

and T2 is shown in Fig 1. The optimal squeezing point marked
by the cross lies way off the OAT trajectory, the horizontal line
with θ2 = 0. For the n = 3 case, with θ2 and T2 fixed near the
optimal values of the n = 2 case, − log(ξ 2) as a function of
θ3 and T3 shows a similar landscape. These solutions already
exceed that of the OAT scheme by a large margin. The results
indicate that the optimization technique with n as small as 2
or 3 suffices to significantly improve over the OAT scheme.

Next, we investigate performance of the optimized squeez-
ing scheme, focusing on the scaling of the squeezing ξ 2(Ti,θi)
as a function of the total particle number N . For a given set
of parameters, we can numerically calculate the evolution
operator in Eq. (1) by exactly diagonalizing the effective
Hamiltonians S2

θi
and then obtain the squeezing parameter

ξ 2. To account for the fact that in reality the coherent spin
rotations cannot be generated instantaneously, in the numerical
simulation we actually keep the OAT Hamiltonian on all the
time, even during the spin rotations. However, we do assume
the effective magnetic field B effecting the spin rotation to
be much stronger than the squeezing Hamiltonian, B � Nχ ,
as is the case in experiments. We randomly sample from
the parameter space for a large number of times, use these
random samples as initial guesses to start unconstrained local
optimization of the squeezing parameter, and pick the best one
as our solution. Repeating this procedure for every system size
N is extremely resource intensive especially when N gets as
large as 105. Taking advantage of the fact that adding several
more to 103 particles should not change the solution much, we
can feed the previously found nonlocal optimal solution as an
initial guess to the local optimizer of a larger system and obtain
a near optimal solution quickly. In this way we managed to
obtain (near) optimal solutions for systems all the way up to
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FIG. 2. (Color online) Scaling of the squeezing parameter ξ 2 with
the number of qubits. Curves from top to bottom are for OAT, two-step
optimized squeezing, TAT, and three-step optimized squeezing. Inset
shows the same curves in log-log scale.

N = 105 particles, with only a cost of classical computing time
on the order of tens of hours on a typical multicore computer.
As shown in Fig 2, with n = 2, the squeezing parameter ξ 2 gets
reduced by a significant amount already compared with the
OAT scheme, and with n = 3, ξ 2 decreases further. The scaling
of ξ 2 with the number of particles shows a clear power law
ξ 2 ∼ 1/Nβ . A simple OAT scheme gives β = 2/3 and the TAT
scheme gives β = 1 [1]. The Heisenberg limit of noise gives a
bound β � 1 for the scaling, and this bound is saturated by the
TAT scheme. Remarkably we observe that the optimized n =
2,3 protocols can give β = 0.92 and 0.98, respectively, very
close to the ultimate Heisenberg limit. Moreover, the n = 3 op-
timized scheme has a smaller multiplicative constant compared
with the TAT scheme, so in the realistic range of particle num-
ber N � 106, it actually outperforms the TAT scheme. This
shows that a moderate alternation of the OAT scheme through
optimization can significantly increase the spin squeezing.

We have demonstrated a significant improvement over the
conventional OAT by applying very few optimized control
pulses. A cost of the proposed scheme is that it takes longer
evolution time to achieve the optimal squeezing. A typical
evolution of ξ 2 with time t is shown in Fig. 3. We notice
that in general the (i + 1)th squeezing step takes longer time
than the ith step. Since the time cost in the first step is on
the order of the optimal OAT duration, the overall duration of
the proposed protocol is usually longer than that of the OAT
scheme. An excessively long duration would be an obstacle
in systems with short coherence time. The two relevant time
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FIG. 3. (Color online) Evolution of the squeezing parameter ξ 2

with time, calculated with N = 2000 spin-1/2 particles. The dash-dot
line is for OAT, the dashed line for the two-step optimized squeezing
scheme, and the solid line for the three-step optimized squeezing.
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FIG. 4. (Color online) Constrained optimization of ξ 2 with the
total time duration as a cost function. We take 1/χ as the time unit.
Achievable squeezing ξ 2 as a function of the total duration is shown,
together with OAT, calculated with N = 2000 spin-1/2 particles.
OPT-2 (3) stands for optimized squeezing sequence with n = 2 (3)
segments. Horizontal and vertical dashed lines are guides to the eye.

scales here are the coherence time τ and the inverse of
interaction strength 1/χ . The time cost of the proposed scheme
is around 0.01/χ ∼ 0.1/χ . If τ � 0.1/χ this scheme can be
implemented without compromise. On the other hand, if that
is not the case, decoherence effect would play a role and our
unconstrained optimization no longer yields the best result.
However, we can work around this problem by performing an
optimization with the total duration added as a cost function
and get a compromised optimal pulse sequence. By tuning
the weight of the cost function we could obtain a continuous
series of compromised optimal solutions as shown in Fig. 4.
These solutions of two- and three-step schemes form two line
segments, continuously connecting the optimal OAT squeezing
protocol to that of the unconstrained optima, offering a tradeoff
between the protocol duration and the squeezing magnitude.
For each real experimental setup, one could correspondingly
pick up the best point in accordance with the coherence time
of the system. How much one can gain over the OAT scheme
depends on how long the coherence time can reach.

Next we test noise resistance of the proposed scheme. There
are only 3 (5) control parameters in the n = 2 (3) scheme, mak-
ing the accumulation of control noise negligible. We have done
numerical simulation of our scheme adding random pulse area
and timing noise and confirmed the robustness of the squeezing
parameter ξ 2 as shown in Fig. 5. This contrasts to the proposals
[12,14] requiring a large number of coherent rotation pulses
where control errors accumulate and significantly degrade the
performance. Thus our proposed scheme offers a useful alter-
native to the previous works. Another practical issue related
to control noise is the uncertainty in the number of particles in
a real experiment. Our pulse scheme depends on the number
of particles N while in experiments such as ultracold gas we
do not typically know the number N exactly. Fortunately we
notice that the control parameters vary slowly with N , e.g., in
going from N = 1900 to N = 2100, the control parameters
only vary by 1%–5%. So a ±5% uncertainty in N at N = 2000
is equivalent to an extra noise below 5% in the control parame-
ters, to which ξ 2 is not so sensitive, as we have shown in Fig. 5.

Finally we discuss possible physical realizations of the
scheme proposed here. The scheme only requires two ingre-
dients: the nonlinear collective spin interaction S2

z and the
ability to rotate the collective spin around an orthogonal axis,
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FIG. 5. (Color online) Optimized squeezing in the presence of
control noise. We use the three-step optimization scheme as an
example and assume all five control parameters in this scheme have
the same magnitude of relative errors as specified in this figure.
The dashed line is for the ideal case with no error in the control
parameters, the solid line denotes the average of many random
trajectories (50 random trials), and the shaded area marks the range
of those trajectories. In the left panel, the shaded region is too small
to be distinguished from the ideal case.

say x. Several experimental systems meet these requirements,
e.g., trapped ions and spinor BECs. In trapped ion systems,
depending on the ion species, one can use bichromatic lasers
or two pairs of Raman laser beams (the Mølmer-Sørensen
scheme) to induce the S2

z or S2
x type of interaction. The strength

of this interaction χ can reach kHz scale, giving 1/χ ∼ ms.
The coherence time usually exceeds 1/χ and our scheme
can apply without compromise. Collective spin rotation can
be simply done by shining a laser on all the ions driving
the corresponding single-qubit σx/y or rotation. The rotation
pulses have durations much shorter than 1/χ . While linear
Paul traps [15] can now coherently control only about a
dozen ions, too few for the purpose of spin squeezing, planar
Penning traps can manipulate more than 200 ions [16]. For
the purpose of precision measurement, 200 ions may seem
less impressive than 105 particles, but we show that using
our scheme we can create genuine multiparticle entangled
states with a significantly larger entanglement depth. The
entanglement depth, defined in [5], is a way to measure how
many particles within the whole sample have been prepared
in a genuine entangled state. Our result is shown in Fig. 6. In
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FIG. 6. (Color online) Entanglement depth achievable with dif-
ferent approaches for 200 spin-1/2 particles. The solid lines from
top to bottom correspond respectively to the OAT scheme, the
two-step optimized squeezing, the TAT, and the three-step optimized
squeezing. The dashed lines from top to bottom correspond to the
optimal squeezing for 50, 100, and 200 particles, respectively. Lying
below the curve of optimal squeezing for n particles is a certificate of
genuine n-particle entanglement.
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this figure, a point lying below the optimal squeezing curve
of n particles corresponds to a state that contains genuine
n-particle entanglement. Our scheme produces states that lie
below the OAT states in a large range of 〈Sx〉 values, which
means that experimentally one can achieve a significantly
larger entanglement depth by this optimization technique.

Another class of physical systems is a spinor Bose-Einstein
condensate of atoms with two chosen internal states mimicking
spin-1/2 particles [8,9]. The desired S2

z interaction is induced
by spin-dependent s-wave scattering as proposed in [4].
Coherent laser pulses illuminating the whole condensate can
implement spin rotations similar to the trapped ion case.
However, the strength of the S2

z interaction is much smaller
than in the trapped ion case, χ = 0.3 ∼ 0.5 Hz as reported
in [8,9]. The coherence time for the spinor BEC is also shorter.
Hence we typically need to apply the compromised scheme,
using the actual coherence time and interaction strength of the
system as input parameters.

In summary, we have proposed a method based on
optimization to significantly enhance spin squeezing using
the one-axis twisting Hamiltonian. To achieve significant
improvement in spin squeezing, we need to apply only one
or two global rotation pulses at an appropriate evolution
time and with optimized rotation angles. Using two pulses,
the final squeezing is very close to the Heisenberg limit

already. Compared to the previous proposal [12], apart from
requiring a simpler pulse sequence, the major advantage of
this method is the robustness to control noise due to the very
small number of coherent pulses used. A scheme involving
a large number of pulses usually suffers the accumulation
and amplification of control errors in each pulse and tolerates
only a very small technical noise. The major drawback that
limits the applicability of our proposal is the longer evolution
time compared to that in [12], although still being faster than
adiabatic preparation. We believe this proposal can be readily
applied in certain experimental systems where coherence time
is not the bottleneck, without significant modification of the
setup. Combining our proposal with a continuous-wave form
optimization and extending our results to larger spin particles
may be interesting future directions.

Note added. Recently, we became aware of a previous work
[17] where a similar Hamiltonian was considered and optimal
control techniques were used to obtain a continuous-wave form
of effective magnetic field for squeezing a collection of F = 3
spins.
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