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Cooling a mechanical resonator to the quantum regime by heating it
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We consider a mechanical resonator made of diamond, which contains a nitrogen-vacancy center (NV center)
locating at the end of the oscillator. A second-order magnetic gradient is applied and induces coupling between
mechanical modes and the NV center. By applying a proper external magnetic field, the energy difference between
NV center electron spin levels can be tuned to match the energy difference between two mechanical modes a and
b. A laser is used for continuously initializing the NV center electron spin. The mode a with lower frequency
is driven by a thermal bath. We find that the temperature of the mode b is significantly cooled when the heating
bath temperature is increased. We discuss the conditions that quantum regime cooling requires and confirm the
results by numerical simulation. Finally we give the intuitive physical explanation of this unusual effect.
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I. INTRODUCTION

Cooling and manipulating the motion of a mechanical
resonator are widely studied [1]. They have many applica-
tions in quantum information science [2–9], testing quantum
effects in macroscopic systems [10–20], ultrasensitive sensing
[21–26], etc. In order to a cool mechanical resonator, we
should couple it to other cold systems such as cavity mode
(optomechanics) [27–29], electronic spin (nitrogen-vacancy
[NV] centers) [30–32], etc. In optomechanics, laser cooling
of mechanical resonators is a typical method. Intuitively, this
is not hard to understand. A laser produces coherent light,
which is well ordered (cold), and will make the mechanical
system couple with a colder cavity bath [27,28]. However,
counterintuitively, recent research showed that a thermal light,
which is very hot, can also cool an optomechanical system
[33]. In this system, the mechanical resonator to be cooled is
coupled with two optical modes [34]. The low-frequency mode
is in contact with a hot thermal light while the high-frequency
mode is not, acting as an auxiliary part. After the system
reaches the equilibrium state, the thermal phonon number in
the mechanical mode will be smaller.

In a hybrid system that contains a NV center and a
mechanical resonator, a magnetic gradient is applied to
couple the NV center with the resonator. The NV center
is continuously initialized by a laser and could be used for
cooling the mechanical resonator to the ground state [30].
In previous literatures, the first-order magnetic gradient was
used for inducing coupling between the NV center and the
mechanical mode [30,35–40]. It is quite natural to ask whether
the higher order magnetic gradient could be useful for coupling
the NV center and the mechanical resonator and cooling it.

In this paper, we consider a system that contains a
mechanical cantilever and a NV center [40]. A second-order
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magnetic gradient is applied to induce the coupling between
the NV center and the two mechanical modes a and b. The
electron spin transition frequency of the NV center is tuned
to match the mechanical modes’ frequency difference. The
NV center is continuously reset to the ground state by a laser.
In this way, the NV center acts as an effective vacuum bath
to cool the mode b. An incoherent driving (thermal bath) is
applied on the lower frequency mode a, which results in a
higher temperature. The incoherent driving on mode a also
increases the effective coupling between mode b and the NV
center, and cools the mode b. We find that the quantum regime
cooling is possible under the current experimental conditions.

The paper is organized as follows. In Sec. II, we introduce
the scheme of the second-order magnetic field gradient induced
coupling between an NV center and mechanical modes. In
Sec. III, we derived the analytical solution for the system.
In Sec. IV, the analytical results are verified by numerical
simulation. In Sec. V, discussion and conclusion are given.

II. THE SCHEME

As shown in Fig. 1, we consider a diamond cantilever
resonator that contains a NV center at the end of it. Two
mechanical modes a and b are under consideration, with
frequencies ωa < ωb. Two spin states of the NV center electron
are relevant here, | − 1〉 and |0〉. By applying a proper magnetic
field, the energy split between the two states of the NV center,
ωz, is equal to the energy difference of the two mechanical
modes, � = ωb − ωa . Due to the second-order magnetic
gradient G2 = ∂2B/∂x2, the two mechanical modes a and
b both couple with the NV center.

Initially, both mechanical modes a and b are in the thermal
states with the average thermal phonon number n̄a and n̄b.
The mode a is driven by a thermal bath with average phonon
number much higher than its environment. The NV center
electron spin is initialized to the |0〉 state at the beginning.
The Hamiltonian of the whole system can be expressed as
H = H0 + H1, where H0 is the noninteraction part and H1
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FIG. 1. A nanodiamond is fabricated as a thin cantilever which
can oscillate along the x axis, while the defect of an NV center is at
the end. Two magnetic tips, which point along the x axis and generate
second-order magnetic gradient along the x axis, are placed below
the cantilever. The distance between the midpoint of the connection
lines of the tips and the NV center are around 50 nm. An external
static magnetic field Bext is added along the z axis to induce Zeeman
split in order to drive away the NV center spin |+1〉 state and keep
the |0〉 and |−1〉 state closer.

describes the interaction between the mechanical resonator
and the NV center electron spin:

H0 = ωz

2
σz + ωaa

†a + ωbb
†b,

H1 = [gaa
†a + gbb

†b + gab(a†b + ab†)]σx,

(1)

where ga = gsμBG2x
2
a , gb = gsμBG2x

2
b , and gab =

gsμBG2xaxb; xa = √
�/2maωa (xb = √

�/2mbωb) is the
zero-field fluctuation for the mechanical mode a (b); and ma

(mb) is the effective mass for mode a (b). Experimentally,
ωz ∼ 2π × 107 Hz, and ga,gb,gab ∼ 2π × 1 Hz can be
realized (see Appendix A).

Under the rotating wave approximation, which shifts the
energy zero point by ωa(a†a + b†b), we can change H0 into

H ′
0 = ωz

2
σz + �b†b. (2)

Unavoidably, the system will go through some intrinsic loss.
The mechanical decays γa and γb are of the order of 2π × 1 Hz
(see Appendix A). The intrinsic decay rate �0 for NV center
is much less than 1 Hz at low temperature. By adding an
initializing laser, the decay rate � for the NV center electron
spin would be much larger than the decay rates for the
mechanical modes γa and γb. The dephasing of NV center is
neglected, as it could be eliminated by continuous dynamical
decoupling [41]. However, as we will use the same model to
describe the decay of the spin and the vibration, here we should
make sure that �,γa,γb � ωz. As the evolution of the system
contains decay and damping, it is convenient to describe it
with a quantum master equation [42], which can be written
out explicitly as

ρ̇ = −i[H,ρ] + (La + Lb + Ls)ρ,

La = (1 + n̄a)γaDa + n̄aγaDa† ,

Lb = (1 + n̄b)γbDb + n̄bγbDb† ,

Ls = �Dσ− .

(3)

Dx refers to the notation in Lindblad form, which is Dx(ρ) =
2xρx† − x†xρ − ρx†x. Equation (3) will be solved in both
analytical and numerical methods. The results of the both
methods will be compared and discussed.

III. ANALYTICAL SOLUTION

As mentioned above, the phonon bath for mode a is very
large, so the average phonon number of mode a is almost
always equal to the average phonon number in the bath, that
is, 〈a†a〉 = n̄a . Moreover, as the phonon number of mode b is
much smaller than that of mode a, it is safe to drop the term b†b
in H1. If we denote δ = a†a − n̄a as the phonon occupation
number fluctuation of mode a, under the rotating wave picture,
H1 can be simplified to

H ′
1 = gaδ(σ+ + σ−) + gab(a†bσ+ + ab†σ−). (4)

For the convenience of the notation, here we rename H ′
0 →

H0, H ′
1 → H1.

Using the standard method of quantum master equation
[43], and after adiabatically eliminating the mode a [44,45],
we can get the reduced master equation for mode b and the
electron spin mode s (see Appendix B)

ρ̇b,s(t) = −i[H0,ρb,s(t)] + Lbρb,s(t) + Lsρb,s(t)

+L1ρb,s(t) + L2ρb,s(t), (5)

where we have introduced two Liouvillians for convenience:

L1 = g2
ab

γa + γb + �
[(1 + n̄a)Dbσ+ + n̄aDb†σ−]

L2 = (2γa + �)g2
a

(
n̄2

a + n̄a

)
ω2

z + (2γa + �)2
(Dσ+ + Dσ−). (6)

Equation (6) can be written in a more compact form if we
define the effective average excitation number of the NV center
electron spin as

n′
s = (2γa + �)g2

a

(
n̄2

a + n̄a

)
�

[
ω2

z + (2γa + �)2
] . (7)

In fact, n′
s is very close to zero because of the weak cou-

pling requirement (ga

√
n̄a,gb

√
n̄b,gab

√
n̄an̄b � ωz), in other

words, due to the large energy split ωz and the relative large
damping rate �. Then we can define an effective Liouvillian for
the spin as well L′

s = Ls + L2 = (1 + n′
s)�Dσ− + n′

s�Dσ+ .
Now the equation of motion for the reduced density matrix

ρb,s becomes

ρ̇b,s(t) = −i[H0,ρb,s(t)] + L1ρb,s(t) + Lbρb,s(t) + L′
sρb,s(t).

(8)

The corresponding adjoint equations for the phonon number
operator n̂b = b†b and excitation number operator n̂s = σ+σ−
can be developed then (see Appendix C );

d

dt
n̂s = 2g2

ab

γa + γb + �
[(−2n̄a−1)n̂bn̂s − n̄an̂s + (n̄a+1)n̂b]

+ 2�[(−2n′
s − 1)n̂s + n′

s],

d

dt
n̂b = 2g2

ab

γa + γb + �
[(2n̄a + 1)n̂bn̂s + n̄an̂s − (n̄a + 1)n̂b]

+ 2γb(n̄b − n̂b). (9)
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Taking the average on both sides with respect to the quan-
tum state of the system, and under average field approximation
which refers to 〈n̂bn̂s〉 = 〈n̂b〉〈n̂s〉, the stationary state for
the average phonon number of mode b can be solved from
the quadratic equation below after we drop the nonphysical
solution:

A〈n̂b〉2 + B〈n̂b〉 + C = 0, (10)

where

A = −γbg
2
ab(2n̄a + 1)

γa + γb + �
,

B = g2
ab

γa + γb + �
(2n̄an̄bγb + n̄bγb − n̄aγb

−�n̄a − �n
′
s − �) − γb�(2n′

s + 1),

C = g2
ab

γa + γb + �
n̄a(γbn̄b + �n′

s) + γbn̄b�(2n′
s + 1). (11)

In Fig. 2, the stationary phonon number of mode b is plotted
as a function of the average phonon number of mode a. Unlike
the previous Ref. [33], where there was an optimal heating bath
temperature, here increasing the heating bath temperature will
always cool the resonator, which is an outstanding property.
As environmental temperature increases, the quantum regime
cooling 〈n̂b〉 < 1 can be realized by increasing both the mode
a temperature and NV center decay �.

We can further look at how different values of � can change
the effect of cooling. The qualitative trend can be seen clearly
from Fig. 3. For a given value of n̄a , when � increases from a
small value to a relative large value, there exists a certain � for
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FIG. 2. 〈n̂b〉 as a function of n̄a . The parameters related to
frequency are ωz/2π = 2 × 107 Hz, ga/2π = 3 Hz, gb/2π = 1
Hz, gab/2π = √

3 Hz, and γa/2π = γb/2π = 1 Hz. (a) The initial
temperature of mode b is 10.8 mK. The average phonon number is

approximated by the Bose distribution n̄b = 1/(e
�ωb
kB T − 1) = 7. Three

values of �/2π = 10,30,50 Hz correspond to the blue dotted line,
black solid line, and red dashed line, respectively. �/2π = 30 Hz
and 50 Hz can reach ground-state cooling (〈n̂b〉 < 1) if n̄a > 160.
This corresponds to an effective temperature Ta = 77.1 mK. (b) The
initial temperature of mode b is T = 101.4 mK. The thermal phonon
number is n̄b = 70. The blue dotted, black solid, and red dashed lines
correspond to �/2π = 100,300,500 Hz, respectively. Ground-state
cooling can be reached if �/2π = 300 Hz and n̄a > 22 500 (Ta =
10.8 K), or �/2π = 500 Hz and n̄a > 19 700 (Ta = 9.5 K).
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FIG. 3. 〈n̂b〉 as a function of �/2π . Three values of n̄a , 50, 300,
and 10 000, correspond to the red dashed line, the blue dotted line,
and the black solid line. Black circles display Eq. (13) in the limit of
n̄a → ∞. The initial temperature of mode b is 10.8 mK so n̄b = 7.
Other parameters are the same as in Fig. 2.

which the cooling effect is the largest. Before the optimal
cooling point, � is not large compared with the effective
coupling (e.g., ga

√
n̄a), so increased � will benefit the cooling

process. However, after that, larger � will result in a smaller
cooling rate. When n̄a increases, the optimal � will increase,
too. In the limit of n̄a → ∞, we can get a simple expression
for 〈n̂b〉 under the weak coupling assumption

〈n̂b〉 = 1

2

⎡
⎣n̄b − γb + �

2γb

+
√(

n̄b − γb + �

2γb

)2

+ 2n̄b

⎤
⎦.

(12)
As shown in Fig. 3, such an approximation is quite reasonable.
In the limit of n̄a → ∞, the condition for quantum regime
cooling (〈n̂b〉 < 1) is

� > 3γb(n̄b − 1), (13)

which can be fulfilled by tuning � with laser. These analytical
results are based on the rotating wave approximation (RWA).
When thermal phonon number

√
n̄a ∼ �/gab, the RWA is

no longer valid. From the parameters used in Fig. 2, RWA
requires n̄ab < 1012, which is obviously fulfilled in Fig. 2 and
the following figures in this paper.

IV. NUMERICAL SIMULATION

Now we discuss the numerical simulation of the cooling
process, and compare the result with the analytical ones
above. The idea is simple. We expand the quantum operators
and quantum states in the uncoupled representation, that
is, the Kronecker tensor product of the occupation number
representations for the three modes involved. The matrix forms
of Eq. (3) can then be calculated step by step with the classical
four-order Runge-Kutta method. The average phonon number
for mode b is equal to tr(ρNb), where Nb is the phonon
number operator of mode b in the whole Hilbert space for the
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FIG. 4. Comparison of analytical and numerical results. Lines
(circles) represent analytical (numerical) results. We choose four
�/2π : 2, 15, 50, and 120 Hz, corresponding to the blue dotted line
(blue circles), black solid line (black circles), red dashed line (red
circles), and pink dash-dotted line (pink circles). The initial phonon
number for mode b is taken as n̄b = 1. Other parameters are the same
as in Fig. 2.

system, namely, Nb = Is ⊗ Ia ⊗ (b†b). It should be pointed
out, however, as the dimension of a matrix cannot be too large
for a numerical simulation, the requirement n̄a � n̄b is not
able to be satisfied here. As a result, H1 in Eq. (1) should be
inserted in the equation of motion Eq. (3) instead of H ′

1.
We present several numerical results of the stationary

phonon number 〈n̂b〉 with the results we get from Eq. (10),
which is plotted in Fig. 4. As can be seen from the figure,
when � � γa,γb is satisfied, the analytical results match the
numerical ones perfectly. But when γa and γb are comparable
with �, the two results no longer agree with each other
quantitatively. However, it is quite reasonable, because in this
case several approximations for the analytical results are not
valid any more. When � is not very large, the term Ls = �Dσ−
does not dominate over H in Eq. (3). As n̄a is also at the same
scale with n̄b in this case, now neglecting the back action on
mode a is not a good approximation. When mode b is being
cooled, mode a is being heated unavoidably, thus lowering the
effect of cooling. The analytical results which neglect the back
action thus exaggerate the cooling effect. This trend is shown
clearly from the figure. But the analytical conclusions are still
valid qualitatively. For instance, if we fix �, as n̄a is larger,
the cooling effect also will be larger. And if we fix n̄a , there
exists an n̄a-dependent value of � where the cooling effect is
maximum.

V. DISCUSSION AND CONCLUSION

From the above derivation and calculation, it is clear that the
higher frequency mechanical mode will be significantly cooled
by heating the lower frequency mechanical mode. In fact, this
trend can be seen directly from the Eq. (8), where L1 acts as
the cooling term. As the electron spin is much more likely
to be in the spin state |0〉 due to the continuous initialization,

the effect of σ+ should be much larger than that of σ−. So
Dbσ+ is the dominant operator for evolution, and the mode b

will be cooled. It can be understood that mode a facilitates
the energy transfer between mode b and the spin. Quantized
energy flows from the vibration mode to the NV center. Soon
after that the excitation in the NV center electron spin decays
into the environment through light. As this process is repeated,
the heat of the mechanical mode b is gradually removed.

In conclusion, we studied the second-order magnetic gradi-
ent induced coupling between NV center and the mechanical
modes. We proposed to drive one mechanical resonator mode
with a thermal bath to cool the other mode of the resonator.
We solved the motion of the system analytically under the
weak coupling assumption. It is found that under a rotating
wave approximation, the final thermal phonon number of
the resonator approaches a minimum as the thermal bath
temperature increases. The quantum regime cooling is feasible
under the current experimental conditions. We numerically
solved the equations, and found that the results fitted very well
with the analytic results. The cooling by heating phenomena
does not violate the laws of thermodynamics. This scheme can
be understood as a thermal machine or a heat engine [46–48].
The mode a acts as an engine, and the NV center electron spin
takes the role of a condenser. This work opens up the possibility
of cooling the mechanical mode in solid systems by injecting
the thermal phonon, which usually heats the system.
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APPENDIX A: EXPERIMENTALLY REALIZED
PARAMTERS

In this section we discuss the values of parameters ωz, ωa ,
ωb, ga , gb, gab, γa , γb, and � that can be realized in experiments.

As in former experiments (e.g., Ref. [30] for a Si cantilever),
the size of the resonator can be taken as around 3 × 0.05 ×
0.05 μm. Considering that the density of diamond is around 1.5
times the density of silicon [49], and the fact that the effective
mass of a solid and normally shaped oscillator doing simple
oscillation is of the same order as its mass, we can estimate
that ma = mb = 5 × 10−18 kg. The fundamental frequency of
such a mechanical resonator is around 10 MHz [30]. Although
the zero-field splitting of the NV center is around 2.88 GHz
[50], after an external magnetic field is exerted, the separation
between |0〉 and | − 1〉 states can be reduced to the order of
tens of MHz. As a result, it is possible to fulfill the requirement
ωb − ωa = ωz. Here we choose ωa/2π = 10 MHz, ωb/2π =
30 MHz for convenience. The quality factor of the resonator
can reach up to Q = 107 [49]. Second-order magnetic gradient
G2 can realize several times of 1013 T m−2 in experiments [51].
By using finite element simulation, we got that the maximum
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G2 could be around 5 × 1014 T m−2, if the distance between
the NV center and the magnetic particles is 50 nm.

If G2 is set to be 5 × 1014 T m−2, we will have ga/2π =
3 Hz, gb/2π = 1 Hz, and gab/2π = 1.73 Hz. The decay rates
of the mechanical resonator can be estimated by γa = γb =
ωa/Q = 2π × 1 Hz. We need to tune the decay rate of the
NV center to be much larger than the mechanical decay rate
to reach ground-state cooling; for instance, � can equal to
2π × 120 Hz.

APPENDIX B: DERIVATION OF THE REDUCED MASTER
EQUATION

Here we provide a derivation of the reduced master
equation, Eq. (5) in the main text. The reduced density matrix
of mode b and mode s after mode a is eliminated is

ρb,s = tra(ρ). (B1)

We can adiabatically eliminate mode a to get the evolution
equation for the reduced density matrix [43]

ρ̇b,s(t) = −i[H0,ρb,s(t)] + Lbρb,s(t) + Lsρb,s(t)

+ traLint

∫ ∞

0
dt

′
eLfreet

′
Lintρb,s(t − t

′
) ⊗ ρa

= −i[H0,ρb,s(t)] + Lbρb,s(t) + Lsρb,s(t)

− tra

[
H1,

∫ ∞

0
dt

′
eLfreet

′
[H1,ρb,s(t − t

′
) ⊗ ρa]

]
,

(B2)

where we denote

Lint = −i[H1,•],

Lfree = −i[H0,•] + La + Lb + Ls . (B3)

We expand ga , gb and gab to the second order and can get

ρ̇b,s(t) = − i[H0,ρb,s(t)] + Lbρb,s(t) + Lsρb,s(t)

− tra

[
H1,

∫ ∞

0
dt

′
[eL

†
freet

′
(H1),ρb,s(t) ⊗ ρa]

]
.

(B4)
Once we expand the commutation relations in Eq. (B4), we

can directly calculate it term by term:

ρ̇b,s(t) = −i[H0,ρb,s(t)] + Lbρb,s(t) + Lsρb,s(t)

− tra

{ ∫ ∞

0
dt

′
[H1e

L†
freet

′
(H1)ρb,s(t) ⊗ ρa

−H1ρb,s(t) ⊗ ρae
L†

freet
′
(H1)

− eL
†
freet

′
(H1)ρb,s(t) ⊗ ρaH1

+ ρb,s(t) ⊗ ρae
L†

freet
′
(H1)H1]

}
. (B5)

What we need first is the term eL
†
freet

′
(H1). It is easy to get

from direct calculation:

L†
free(a) = (1 + n̄a)γaD

†
a(a) + n̄aγaD

†
a†(a)

= (1 + n̄a)γa(2a†a2 − a†a2 − aa†a)
+ n̄aγa(2a2a† − aa†a − a2a†)

= −γaa. (B6)

Similarly, L†
free(a†) = −γaa

†. From these we have

eL
†
freet

′
a = e−γat

′
a, eL

†
freet

′
a† = e−γat

′
a†.

The following results are obtained using exactly the same
method:

eL
†
freet

′
δ = e−2γa t

′
δ, eL

†
freet

′
b = e−(γb+iωz)t

′
b,

eL
†
freet

′
b† = e−(γb−iωz)t

′
b, eL

†
freet

′
σ+ = e(iωz−�)t

′
σ+,

eL
†
freet

′
σ− = e(−iωz−�)t

′
σ−. (B7)

eL
†
freet

′
(H1) will then be calculated with the results above in

mind:

eL
†
freet

′
(H1) = ga[(eL

†
freet

′
δ)(eL

†
freet

′
σ+)+(eL

†
freet

′
δ)(eL

†
freet

′
σ−)]

+ gab[(eL
†
freet

′
a†)(eL

†
freet

′
b)(eL

†
freet

′
σ+)

+ (eL
†
freet

′
a)(eL

†
freet

′
b†)(eL

†
freet

′
σ−)]

= gaδe
−(2γa+�)t

′
(σ+eiωzt

′ + σ−e−iωzt
′
)

+ gabe
−(γa+γb+�)t

′
(a†bσ+ + ab†σ−). (B8)

It deserves notice that here we only keep the slow-time-
varying term, so we neglect a†2 and a2 above. Now we come
back to Eq. (B5), which can be simplified term by term. As tra
means taking the average on a, the trace of odd multiples of a

and a† equals to zero. Terms containing iωz are neglected here
because their effect is just changing the energy zero point:

tra

[ ∫ ∞

0
dt

′
H1e

L†
freet

′
(H1)ρb,s(t) ⊗ ρa

]

= g2
a(n̄2

a + n̄a)
2γa + �

ω2
z + (2γa + �)2

(σ+σ− + σ−σ+)ρb,s(t)

+ g2
ab

γa + γb + �
[(n̄a + 1)b†σ−bσ+ + n̄abσ+b†σ−]ρb,s(t),

(B9)

tra

[∫ ∞

0
dt

′
H1ρb,s(t) ⊗ ρae

L†
freet

′
(H1)

]
= g2

a

(
n̄2

a + n̄a

) 2γa + �

ω2
z + (2γa + �)2

[σ+ρb,s(t)σ− + σ−ρb,s(t)σ+]

+ g2
ab

γa + γb + �
[(n̄a + 1)bσ+ρb,s(t)b

†σ− + n̄ab
†σ−ρb,s(t)bσ+], (B10)
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tra

[∫ ∞

0
dt

′
eL

†
freet

′
(H1)ρb,s(t) ⊗ ρaH1

]
= g2

a

(
n̄2

a + n̄a

) 2γa + �

ω2
z + (2γa + �)2

[σ+ρb,s(t)σ− + σ−ρb,s(t)σ+]

+ g2
ab

γa + γb + �
[(n̄a + 1)bσ+ρb,s(t)b

†σ− + n̄ab
†σ−ρb,s(t)bσ+], (B11)

tra

[∫ ∞

0
dt

′
ρb,s(t) ⊗ ρae

L†
freet

′
(H1)H1

]
= g2

a

(
n̄2

a + n̄a

) 2γa + �

ω2
z + (2γa + �)2

ρb,s(t)(σ+σ− + σ−σ+)

+ g2
ab

γa + γb + �
ρb,s(t)[(n̄a + 1)b†σ−bσ+ + n̄abσ+b†σ−]. (B12)

After we insert Eqs. (B9)–(B12) into Eq. (B5), we will get Eq. (5) in the main text.

APPENDIX C: DERIVATION OF THE ADJOINT EQUATIONS FOR THE NUMBER OPERATORS

In this part, the equations of motion for the number operators n̂b and n̂s , Eq. (9) in the main text, is derived.
The adjoint equations for Eq. (9) in the main text are

d

dt
n̂s = (L†

1 + L′†
s )n̂s = g2

ab

γa + γb + �
[(1 + n̄a)D†

bσ+ + n̄aD
†
b†σ−

]n̂s + [(1 + n
′
s)�D†

σ− + n
′
s�D†

σ+]n̂s ,

d

dt
n̂b = (L†

1 + L†
b)n̂b = g2

ab

γa + γb + �
[(1 + n̄a)D†

bσ+ + n̄aD
†
b†σ−

]n̂b + [(1 + n̄b)γbD
†
b + n̄bγbD

†
b†

]n̂b. (C1)

From simple calculations, we have

D
†
bσ+(n̂s) = 2(1 − n̂s)n̂b, D

†
b†σ−

(n̂s) = −2n̂s(1 + n̂b),

D†
σ+(n̂s) = 2(1 − n̂s), D†

σ−(n̂s) = −2n̂s ,

D
†
bσ+(n̂b) = −2(1 − n̂s)n̂b, D

†
b†σ−

(n̂b) = 2n̂s(1 + n̂b),

D
†
b(n̂b) = −2n̂b, D

†
b†

(n̂b) = 2(1 + n̂b). (C2)

After Eq. (C2) is inserted into Eq. (C1), it will be simplified
to Eq. (9) in the main text.

APPENDIX D: DETAIL OF THE NUMERICAL
SIMULATION

In this section, we discuss in detail the numerical simula-
tion. For Fig. 4 in the main text, we control the accuracy so that
all numbers are accurate until the order of 0.001. The evolution
time is t = 3, after which the state is at the stationary state up
to the accuracy. As discussed in Appendix A, we can choose
the frequency parameters as gab/2π = √

3 Hz, ga/2π = 1 Hz,
gab/2π = 3 Hz, γa/2π = γb/2π = 1 Hz. As we want to cover
a wide range of results, four values �/2π are chosen: 2, 15,
50, and 120. Small values for the phonon numbers n̄a and n̄b

should be chosen due to the calculation cost.
Here we always choose n̄b = 1 as the initial condition. As to

n̄a , we choose n̄a = 1,2,3,4. The dimensions of the matrices
in the Hilbert space are chosen to balance the accuracy and
the cost of calculation resource. For the Hilbert space where
the initial phonon number equals 1, the dimension is chosen
as 15 × 15. For the Hilbert space where the initial phonon
number equals 2, the dimension is chosen as 27 × 27. For the
Hilbert space where the initial phonon number equals 3, the
dimension is chosen as 40 × 40. For the Hilbert space where
the initial phonon number equals 4, the dimension is chosen

as 60 × 60. Obviously, the dimension of the Hilbert space for
mode s is always 2 × 2. The step length for the Runge-Kutta
method is chosen to be 0.01/50.

Figure 4 in the main text shows the results of only the ωz =
500 case, even if for the example in Appendix A, ωz/2π should
be chosen as ωz/2π = 2 × 107. In fact, different ωz/2π will
not influence the result of cooling; e.g., ωz = 250, 500, 750
all give out same final phonon number for mode b. So we

t
0 0.5 1 1.5 2 2.5 3

n
b

0.75

0.8

0.85

0.9

0.95

1
analytical
numerical

FIG. 5. The time evolution of the phonon number of mode b.
Here �/2π = 50. Initial phonon numbers are n̄a = 4 and n̄b = 1.
The matrix dimension of the operators and states for mode a is taken
to be 60 × 60, and for mode b it is 15 × 15. Other parameters are
same as in Fig. 2 in the main text. For the analytical solution of the
differential equation, Eq. (9) in the main text, standard solver ode45
in MATLAB is used.
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are safe to use smaller ωz here, considering the stability of
the simulation. This deduction also agrees with the analytical
result because Eq. (10) in the main text does not contain ωz as
long as ωz is large enough for n

′
s ≈ 0.

The time evolution of one set of parameters from numerical
simulation is shown in Fig. 5. The phonon occupation number

〈n̂b〉 gradually goes down as the system evolves towards
the stationary state. The cooling effect indeed happens. Also
shown in the figure is the time evolution starting from the
analytical result, Eq. (9). The two lines are similar, with the
cooling effect of the analytical one a little bit more obvious,
which also supports our findings.
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