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Shortcuts to adiabaticity by counterdiabatic
driving for trapped-ion displacement in phase
space
Shuoming An1, Dingshun Lv1, Adolfo del Campo2 & Kihwan Kim1

The application of adiabatic protocols in quantum technologies is severely limited by

environmental sources of noise and decoherence. Shortcuts to adiabaticity by counterdiabatic

driving constitute a powerful alternative that speed up time-evolution while mimicking

adiabatic dynamics. Here we report the experimental implementation of counterdiabatic

driving in a continuous variable system, a shortcut to the adiabatic transport of a trapped ion

in phase space. The resulting dynamics is equivalent to a ‘fast-motion video’ of the adiabatic

trajectory. The robustness of this protocol is shown to surpass that of competing schemes

based on classical local controls and Fourier optimization methods. Our results demonstrate

that shortcuts to adiabaticity provide a robust speedup of quantum protocols of wide

applicability in quantum technologies.

DOI: 10.1038/ncomms12999 OPEN

1 Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China. 2 Department of
Physics, University of Massachusetts, Boston, Massachusetts 02125, USA. Correspondence and requests for materials should be addressed to S.A.
(email: asm12@mail.tsinghua.edu.cn) or to A.d.C. (email: adolfo.delcampo@umb.edu) or to K.K. (email: kimkihwan@mail.tsinghua.edu.cn).

NATURE COMMUNICATIONS | 7:12999 | DOI: 10.1038/ncomms12999 | www.nature.com/naturecommunications 1

mailto:asm12@mail.tsinghua.edu.cn
mailto:adolfo.delcampo@umb.edu
mailto:kimkihwan@mail.tsinghua.edu.cn
http://www.nature.com/naturecommunications


A
diabatic processes play an essential role in many aspects
of quantum technology1,2. Quantum adiabatic simulation
exploits adiabatic dynamics to track ground states of

complex Hamiltonians facilitating the study of quantum many-
body phenomena3,4. Schemes for scalable ion-trap quantum
computer resort to the adiabatic transfer of ions between different
trap zones5,6. Adiabatic dynamics plays as well a key role in
holonomic quantum computation7, and the design of the
geometric phase gate8 with its inherent robustness. Adiabatic
protocols are also essential in quantum thermodynamics whether
studying quantum fluctuations9 or the optimization of quantum
thermal machines10–13. These applications are however limited by
the requirement of slow driving that conflicts with the feebleness
of quantum coherence when the system of interest is embedded
in an environment.

According to the adiabatic theorem, a system prepared in a
non-degenerate eigenstate will remain in the instantaneous
eigenstate during its time evolution under the requirement of
slow driving. By contrast, the breakdown of adiabatic dynamics
under fast driving couples different energy modes and induces
diabatic transitions. Diabatic excitations can however be tailored
using shortcuts to adiabaticity (STA) to mimic adiabatic
dynamics. Among the available techniques to engineer STA14,
counterdiabatic driving (CD), relies on the use of an auxiliary
control ĤCD to explicitly suppress transitions between different
energy eigenstates and enforce parallel transport15,16.

The transport can be realized by applying a time dependent
force f(t) to a harmonic oscillator of mass m and frequency o,
which is described by

Ĥ0¼p̂2=2mþmo2x̂2=2þ f tð Þx̂: ð1Þ

If we increase the force from zero to f(t) slowly, we can transport
the ion over a distance q(t)¼ � f(t)/mo2. The excitations during
the nonadiabatic transport can be seen in the instantaneous frame
through the position-shift transformation eiq tð Þp̂, where we denote
:�1 throughout the manuscript. In the instantaneous frame, the
time-dependent potential minimum is located at x¼ 0 and the

state is governed by the Hamiltonian p̂2=2mþmo2x̂2=2þ _f tð Þ
mo2 p̂,

where a global phase term has been ignored. The first two terms
describe the harmonic motion around the potential minimum.
The last term is nonlocal in real space and induces diabatic
transitions, vanishing only in the adiabatic limit. The CD
suppresses these non-adiabatic transition without slowing down
the dynamics by adding the auxiliary term14,17

ĤCD¼�
_f tð Þ

mo2
p̂: ð2Þ

Because p̂ is invariant under the position-shift transformation,
diabatic transitions are completely suppressed in the
instantaneous reference frame under arbitrarily fast transport.

Here we experimentally realize the CD protocol for the
nonadiabatic control of a single 171Ybþ ion (refs 18,19) as it is
transported in phase space. We use a pair of Raman beams to
apply the force on the ion and achieve a precise and flexible
control of the quantum evolution that allows us to unveil the
superior performance of STA based on CD over alternative
schemes. Our experiment provides a faithful realization of various
STA protocols and is therefore complementary to previous
studies on ion transport with time dependent electric fields20–22.

Results
Physical model and quantum control. In the interaction picture
with respect to the harmonic oscillation, the force induced by the

lasers as configured in Fig. 1 is described by

Ĥeff¼f tð Þx0 âe� i otþfð Þ þ âyei otþfð Þ
� �

; ð3Þ

where x0¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2mo

p
, f(t)¼O(t)Dk/2, O(t) is proportional to the

intensity of both Raman beams, Dk is the projection of the
wave-vectors difference of the Raman beams on the motional axis
of the ion and f is the phase difference between those two laser
beams. Both laser beams are red detuned from the transition
between the ground state gj i¼ F¼0;mF¼0j i (2S1/2) and the
excited state ej i¼ F¼1;mF¼1j i (2P1/2). Due to the large detuning
DE2p� 14 THz, the excited state ej i is adiabatically eliminated.
The effective trap frequency o¼ 2p� 20 kHz in the interaction
frame comes from the difference between the beat-note
frequency of the laser beams d and the real trap frequency
n¼ 2p� 3.1 MHz. The effective mass is given by m¼ n

o MYb
(MYb: mass of 171Ybþ ). When the phase f¼ 0, the Hamiltonian
(3) describes a dragged harmonic oscillator, with the dragging
term f tð Þx̂. We can implement the CD term h tð Þp̂, where
h tð Þ¼� _f tð Þ

mo2, by setting f¼ � p/2 (Supplementary Note 1).

Counterdiabatic transport. In the experiment, after Doppler and
motional sideband cooling, gj i is prepared with 0.02±0.02
average phonon number. Because we cannot measure the phonon
distribution in the interaction picture directly, the STA perfor-
mance is probed with the quench echo method23 in which the ion
is first transported adiabatically and then brought back to the
initial location using the STA protocol. During the first adiabatic
process, we linearly increase the force f(t) from 0 to
fmax¼OmaxDk/2 within one period of the harmonic motion
T0¼ 2p/o¼ 50 ms, where Omax¼ 2p� 378 kHz corresponds to
the maximum value allowed by the laser. This linear ramp has
been well studied in experiments9,22,24, and can be regarded as
perfectly adiabatic. Following it, the force is linearly reduced from
fmax to 0 within a duration of sT0, where s is defined as the
shortcut ratio. The backward dynamics is assisted by turning on
the laser to implement the CD term h tð Þp̂ according to
equation (2). The relation between the strength of the CD term
and the shortcut ratio is given by h(t)�hmax/(2ps). Finally, we
apply blue sideband transitions to measure the phonon
distribution18. The time-dependent laser intensity profiles
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Figure 1 | The scheme of the dragged harmonic oscillator model realized

with a trapped 171Ybþ . A pair of sþ -polarized Raman laser beams with

beat note d counter propagate along the direction of the transversal motion

and the magnetic field B. They are far (DE2p� 14 THz) detuned from the

exited state |ei, which thus can be adiabatically eliminated. The moving

standing wave formed by the lasers shakes the ion with the frequency d,

which is smaller than the transversal trap frequency n¼ 2p� 3.1 MHz

by o¼ 2p� 20 kHz. In the rotational framework about the beat note

frequency, the ion is dragged by the laser-induced force with an equivalent

trap frequency o. By varying the intensity and the phase of the Raman

beams, we can control the direction and strength of the displacement of the

ion in the phase space (energy levels are not to scale).
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(waveforms) during the forward and backward transport stages
are shown in Fig. 2. We vary s from 0.95 to 0.15 with a step of 0.1
and obtain the final average phonon number 0.016±0.018, which
confirms that the CD protocol does not excite the motion after
the transport for any duration (Supplementary Notes 2 and 3).

We also measure phonon excitations in the instantaneous basis
during the transport in order to certify that the dynamics is
following the adiabatic ground state. During the forward linear
ramp and the backward CD transport, we stop at different instants
and add another CD transport with s¼ 0.15 to adiabatically change
back to the lab frame. As shown in Fig. 3a, we do not observe any
significant excitation during the transport, which confirms that the
CD is speeding up the adiabatic trajectory associated with Ĥ0 as in
a ‘fast motion video’. We also measure the excitation in the lab
framework (Supplementary Note 4).

Furthermore, the CD is shown to be robust against the trap
frequency drift error. We design STA’s waveforms with the
nominal trap frequency o¼ 2p� 20 kHz. In the first linear
adiabatic ramp, we keep the trap frequency o, but change the
effective trap frequency to o0 during the STA transport. Then we
measure the final average phonon excitation as a function of o0/o.
The result in Fig. 3b shows that the CD is extremely robust against
the drift of the trap frequency. This feature can be qualitatively
explained by the results shown in Fig. 3a, where almost no
excitation appears during the CD driving. Since the higher excited
states are more fragile to errors, the protocol with the smaller
excitations during the transport is surely more robust. The higher
robustness also results from the lower amplitude of the required
control field. In the experiment, for the shortcut ratio s¼ 0.4, the
CD protocol uses three times less intensity than the other protocols,
which naturally reduces the amount of noise proportionally.

Unitarily equivalent transport. The CD stands out among
STA protocols for its robustness and the adiabatic following
during the whole evolution. Yet, the realization of the auxiliary

control hðtÞp̂ is hardly feasible with classical electrical fields.
Many efforts have been devoted to identify alternative controls
requiring only local potentials14,17,25–27. To this end, we resort to
controls related to CD via its unitary equivalence (UE)14,17,25,28.
The exact solution to time-dependent Schrödinger equation
with Hamiltonian Ĥ¼Ĥ0þ ĤCD is given by the adiabatic
approximation c tð Þj i to the dynamics generated by Ĥ0. Under

a momentum-shift transformation Û tð Þ¼ exp � i _f tð Þx̂=o2
h i

, the

time evolving state becomes j tð Þj i¼Û tð Þ c tð Þj i, which is
governed by the Hamiltonian,

ĤU¼ÛĤÛy þ i _̂UÛy¼Ĥ0þ
€f tð Þ
o2

x̂; ð4Þ

where a global phase term has been gauged away. The auxiliary
control in the driving Hamiltonian ĤU can be realized with a
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Figure 2 | Time-dependent control fields for different STAs. To measure

the phonon excitation after a shortcut, we first use a linear ramp within one

period of the harmonic oscillation 2p/o¼ 50ms. Then we apply different

STA protocols to bring the ion back to its original location. The force f(t) is

increased or decreased by changing the intensity of Raman laser beams

with f¼0. The function h(t) represents the strength of the CD term

proportional to the momentum, which is implemented by applying the laser

beams with f¼ �p/2 during the backward transport. The fmax and hmax

are the maximum values allowed by the common maximum intensity of the

laser beams. The smallest shortcut ratio is limited by the maximum laser

intensity and we choose the value s¼0.4 for the CD and UE transport and

s¼ 1.5 for the Fourier optimization scheme of degree N¼ 3.
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Figure 3 | Phonon excitations in the instantaneous frame during different

STA protocols and the robustness against trap frequency errors. (a) To

measure nonadiabatic excitations during each STA, the shortcut waveform

stops at a specific time and the system is transported back adiabatically to

the initial position q¼0 (see section B of Supplementary Information). This

process brings phonon distributions back to the lab framework for the

measurement. Note that only the CD realizes the adiabatic following. (b) To

study the robustness of different STA protocols against the trap frequency

drift, we change the trap frequency o to o0 during the shortcut transports,

whose waveforms are still designed for the nominal trap frequency

o¼ 2p� 20 kHz. Finally we measure the average values of excited

phonons. For a fair comparison, we set s¼ 1.5 for all three STA protocols.

We also test the linear ramp method as reference. Finally the CD driving is

found to be the most robust. The lines in both figures correspond to the

numerical solution of the Lindblad master equation for the noise-average

dynamics. The error bars represent the s.d. of 200 measurements.
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local potential. As long as Û 0ð Þ¼Û tf
� �
¼I, the state

j tf
� ��� �

reproduces exactly the desired target state c tf
� ��� �

on
completion of the STA protocol. This suggests a route to design
the UE transport waveform. The boundary conditions f(0)¼ 0
and f(tf)¼ fmax define the transport problem. Vanishing first-
order derivatives _f 0ð Þ¼_f tf

� �
¼0 guarantee that Û 0ð Þ¼Û tf

� �
¼I.

Considering that generally we do not suddenly turn on or off
control fields, we further impose second-order boundary
conditions €f 0ð Þ¼€f tf

� �
¼0. These constraints are satisfied by a

polynomial waveform f(t)¼ 10(t/tf)2� 15(t/tf)3þ 6(t/tf)4

(refs 17,29). In the experiment, we apply the UE transport in
the backward process, as shown in Fig. 2.

For the UE transport, we measure the final average phonon
number 0.026±0.019 for various shortcut ratios s from 1 to 0.4
with a step of 0.1. As shown in Fig. 3a, we also examine the
process of the UE transport in the instantaneous basis and in the
lab framework (Supplementary Note 4). We observe large
excitations in the process, which shows the UE protocol does
not follow the adiabatic evolution, but succeeds in preparing the
adiabatic target state at the final stage. As shown in Fig. 3b, the
robustness against the drift of the trap frequency is below that of
the CD transport. Note that the f(t) used is not the only solution.
Simulation results (Supplementary Note 5) show that the
waveform will be more sensitive to the trap frequency error,
when higher order boundary conditions are considered. The
first-order polynomial waveform can also be used to mimnimize
the DC Stark shift during the transport with the electric fields30.

Fourier optimization transport. Finally, we implement the
Fourier optimization scheme as proposed in27. When the applied
force f(t) for transport satisfies the conditions f(0)¼ 0 and
_f 0ð Þ¼ _f tfð Þ¼0, the final excitation energy can be expressed as the
Fourier transform of the acceleration of the force at the trap
frequency. In principle, this method allows us to find a driving f(t)
that simultaneously minimizes the final excitation energy for an
ensemble of N different trap frequencies. When they are equalized,
the final excitation is set by (o02�o2)N, which enhances the
robustness with N. The cost of the enhanced robustness is the
increase of the amplitude of the control field with the order N. In
our experiment, we choose N¼ 3 that results in a oscillatory
waveform, shown in Fig. 2. The required amplitude of the control
field greatly surpasses fmax for a small shortcut ratio, thus we only
test the scheme for s¼ 1.5. The excitation in the instantaneous base
and its robustness are shown in Fig. 3a,b, respectively.

Discussion
We have provided a realization of shortcuts to adiabaticity based
on counterdiabatic driving in a continuous variable system. By
demonstrating the robust adiabatic following, we have shown that
the resulting time-evolution follows a ‘fast-motion video’ of the
adiabatic dynamics. This protocol is also known to be the optimal
solution of the quantum brachistochrone problem31. We have
further realized two competing STA protocols for the transport
problem: local UE driving and Fourier optimization methods.
In the UE scheme, while the auxiliary control field takes the
form of a time-dependent linear potential, its amplitude
scales as €f tð Þx̂=o2 / s� 2 surpassing the value required for
counterdiabatic driving, _f tð Þp̂=mo2 / s� 1. We note that by
further modulating the trap frequency during transport, these
shortcuts can still be accelerated within a maximum control field
with the ‘rapid scan method’, that has been realized for a two level
system28. The total duration can then be reduced to half for the
tested UE protocol reported here. As for the Fourier optimization
scheme, its robustness is reduced even with respect to the UE

scheme for a given amplitude of the control field, but could be
increased with the order N and a higher amplitude of the control
field (Supplementary Note 6).

In our experiment, we demonstrate that the challenging non-
local CD term can be generated in the interaction frame. Therefore,
our results will be directly influential and beneficial to the other
experimental works that require adiabatic evolution in short time
and are performed in the interaction picture including quantum
thermodynamics, quantum simulation and quantum computation.
The transport of a harmonic oscillator can be a test bath for
quantum thermodynamics9 or as part of a quantum engine11–13,
for which the CD protocol can be used to boost the performance.
For many quantum-simulation experiments, adiabatic evolution is
essential to prepare a complex ground state of non-trivial
Hamiltonian from a simple Hamiltonian whether or not in the
interaction frame. The non-trivial ground state of a bosonic
Hamiltonian or spin-boson Hamiltonian could be implemented via
the CD protocol, overcoming the limitation imposed by the
coherence time of the system. The CD protocol can also speed up
routines in holonomic quantum computation7,8,32–33, and enable
the implementation of topological quantum computation with
non-Abelian braiding operations34 that need not be adiabatic.

Methods
The dragged harmonic oscillator model. As mentioned in the main text, the
Hamiltonian of the dragged harmonic oscillator in the interaction picture about the
harmonic motion is equation (3). Here we apply a pair of Raman beams to the ion
with a beatnote, which is red detuned to the real trap frequency n with the nominal
trap frequency o to simulate this Hamiltonian. We can find the detail of the laser
ion interaction in the section A of the Supplementary Information. And the

interaction Hamiltonian is ODk
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1= 2MYbnð Þ

p
âe� i otþfð Þ þ âyei otþfð Þ
� �

, which

equals the equation (3) when f(t)¼O(t)Dk/2 and x0¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1= 2moð Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1= 2MYbnð Þ

p
,

where the effective mass m¼ n
o MYb.

Dynamics in the instantaneous basis. To study the STA dynamics we measure
phonon excitations in the instantaneous basis during the transport, and use a short
CD protocol to change to the lab frame, where the measurements can be made. To
choose the protocol for the frame change, we measure the fidelity of different STA
with various shortcut ratios (Supplementary Note 2) and find that the CD transport
with the smallest shortcut ratio s¼ 0.15 is optimal. In addition to its robustness
against the trap frequency error, its shortest duration protects the motion of the ion
from the heating effect.

Data availability. Raw data for any of the results reported in the text are available
from the authors on request.
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