
ShapeExplorer:
Querying and Exploring Shapes using Visual Knowledge

Tong Ge1, Yafang Wang1∗, Gerard de Melo2, Zengguang Hao1, Andrei Sharf3, Baoquan Chen1

1Shandong University, China; 2Tsinghua University, China; 3Ben-Gurion University, Israel

ABSTRACT
With unprecedented amounts of multimodal data on the
Internet, there is an increasing demand for systems with a
more fine-grained understanding of visual data. ShapeEx-
plorer is an interactive software tool based on a detailed
analysis of images in terms of object shapes and parts. For
instance, given an image of a donkey, the system may rely
on previously acquired knowledge about zebras and dogs
to automatically locate and label the head, legs, tail, and
so on. Based on such semantic models, ShapeExplorer can
then generate morphing animations, synthesize new shape
contours, and support object part-based queries as well as
clipart-based image retrieval.

Keywords
Shape Knowledge Harvesting, Shape Matching, Shape Seg-
mentation, Shape Synthesis

1. INTRODUCTION
In recent years, we have seen an explosion in the availability

of multimodal data on the Internet, driven mostly by the
ubiquity of mobile devices and online sharing platforms.
Despite great advances in tasks such as object detection and
tracking and multimedia retrieval, we still lack systems that
provide more fine-grained semantic analyses of visual data.

In their widely noted work, Deng et al. [4] introduced
ImageNet, a hierarchical organization of visual knowledge in
raw images, according to semantic categories and relations.
We take a further step in this direction and utilize the se-
mantics of individual parts, subparts, and their shapes to
facilitate their interpretation and manipulation. We present
ShapeExplorer, an interactive software tool that analyzes
images of objects and locates and labels specific object parts.
For instance, given an image of a donkey, it can draw on
previously analyzed images of related objects, e.g. of zebras
or even just of dogs, to infer the location and labels of likely
parts such as the head, legs, tail, and so on. An analysis in
terms of parts is motivated by extant evidence from cognitive
research on human vision showing that shape parts play an

∗Corresponding author: yafang.wang@sdu.edu.cn

c© 2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 – Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-BY-NC-ND 4.0.

important role in the lower stages of object recognition [9].
Seeing a small part of an object often suffices for a human
to be able to recognize the object, provided that the part
is sufficiently unique [3, 2]. Still, fine-grained shape under-
standing remains a challenging problem in computer vision.
It appears that richer data is necessary so that systems can
be equipped with the required background knowledge.

Independently from the developments in computer vision,
there has been considerable progress on automatically con-
structing knowledge bases (KB), utilizing textual information
to extract relational facts and attributes. Examples include
YAGO [10, 12], DBpedia [1], Freebase (www.freebase.com),
ConceptNet [7], and WebChild [11]. Often, the backbone
of such KBs is a taxonomy of entity types or of part-whole
relationships (e.g., Head isPartOf Horse).

In our work, we have constructed a visual knowledge base
called PartNet, for object parts and their shapes. Part-
Net semantically describes objects in terms of their classes,
parts, and visual appearance. Unlike regular KBs, it gathers
examples of the shape contours of objects and object parts.

Based on this, ShapeExplorer provides several higher-level
operations, including (partial) shape querying, semantic mor-
phing, shape synthesis, and part-based image retrieval using
cliparts.

2. FRAMEWORK

Figure 1: Flow diagram

Hierarchical Part Exploration. Figure 1 provides an
overview of ShapeExplorer’s operational flow. The system is
based on the PartNet knowledge repository, which users can
explore hierarchically. This knowledge is also used in several
applications such as morphing and querying.

PartNet is organized according to taxonomic categories
(animals, dinosaurs, home appliances, etc.), sub-categories

 

 

648 10.5441/002/edbt.2016.70

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.70


(mammals, brontosauruses, chairs, etc.), and their part de-
compositions. At each level, the system presents correspond-
ing shapes that the user may select and analyze. Internally,
these are stored as subject-predicate-object triples, similar
to regular knowledge bases, but including multimodal items.

There are two main user interfaces. Figure 3 presents a
screenshot of the primary control center for part knowledge
exploration. On the left side, the user can explore the knowl-
edge in a convenient hierarchical tree based on categories
(animals, home appliances, etc.), sub-categories (mammals,
chairs, etc.), and their part decompositions. The right side of
the screen serves as a working area. The users drags shapes
into the bottom part of that area and can then select from
several operations. These include an image analysis to infer
the segmentation and labeling, which we describe below, as
well as higher-level applications such as querying, morph-
ing, and automated synthesis and completion (described in
Section 3). Another user interface, shown in Figure 4, is
used for part-based image retrieval. Users may compose a
clipart-style query based on object parts and the system
retrieves matching images from the database (see Section 3).

Image Analysis. ShapeExplorer’s image analysis is based
on a joint inference procedure for joint classification, seg-
mentation, and labeling, leveraging visual knowledge from
previously analyzed images. In order to bootstrap this pro-
cess in a particular domain, a small number of manually
annotated seed images need to have been fed to the system
initially. For those initial seeds, the user manually provides
an image label, a segmentation, and part labels for the seg-
ments. The labels are chosen from the WordNet taxonomy
[5]. For instance, the user could mark the image as portray-
ing an elephant, and then the individual segments can be
annotated with part labels such as head, tail, etc.

Figure 2: ShapeExplorer’s hierarchical organization

After that, one can progressively augment ShapeExplorer’s
collected knowledge by adding new images, which the system
analyzes using a transfer learning strategy. The system first
generates a raw set of segmentation candidates, considering
merely the image geometry using the short cut strategy
[8]. It then matches the image with similar, previously
seen ones using the inner-distance method [6], described in
more detail later on in Section 3. From the top-3 matching
images, we transfer additional candidate segmentations based
on the contour alignments. The resulting set of candidate
segmentations is pruned using semantic constraints.

Next, we determine label hypotheses for the image and
for the parts based on the top-5 matching images in terms
of the inner-distance method. For each cut/label candidate,
we compute a confidence score based on the probability of
the label within the top-5 matches and based on the cost

of the contour point alignment. Finally, we perform a joint
optimization step, relying on an Integer Linear Program to
maximize the sum of confidence scores for the chosen candi-
dates subject to compatibility and cardinality constraints.

In Figure 2, we illustrate the kind of knowledge that Shape-
Explorer collects. The general taxonomy comes from Word-
Net, while image representations are derived from the seeds
and the subsequent joint inference procedure for new images.

Implementation Details. ShapeExplorer is implemented
as a web application with a JavaScript-driven browser in-
terface that users can access via their web browsers. The
back-end is implemented in Java and includes the powerful
PartNet shape part knowledge base as well as images indexed
using Lire1.

3. APPLICATIONS
Based on the core framework, ShapeExplorer implements

algorithms for several higher-level applications.

3.1 (Partial) Shape Queries
Users may provide an input image with an unknown shape

and then ShapeExplorer attempts to match it against known
shapes, retrieving top-k matches from the repository. The
input image may be partial (i.e., with occlusions or miss-
ing parts). Thus, Alg. 1 considers subsets of the parts
of every shape class as possible candidates. This is re-
stricted to parts that are adjacent and sufficiently large,
in order to avoid a combinatorial explosion. We use the
inner-distance method [6] for similarity computation, which
we found to be efficient, rotation-invariant, and robust. Given
two shapes A and B, described by their contour point se-
quences p1, p2, . . . , pn and q1, q2, . . . , qm, respectively, we use
χ2 statistics to compare point histograms, resulting in a
cost value c(pi, qj). Then we solve for the optimal matching
between A and B, denoted as π : (pi, qπ(i)) using dynamic
programming. We compute the minimum cost value as
C(π) =

∑n
i=1 c(i, π(i)) and the number of matching points

as M(π) =
∑n
i=1 δ(i), where δ(i) = 1 if π(i) 6= ∅, and 0

otherwise. Finally, given a best matching shape, we define a
segment cut, denoted as cutA(pi, pj), as the 2D line connect-
ing contour points pi,pj in A. We use the computed shape
matching π to map cutA(pi, pj) onto the input shape B as
cutB(qπ(i), qπ(j)). Thus knowledge from existing images is
transferred onto new ones to classify them and annotate their
parts.

Algorithm 1 (Partial) Shape Querying

Input: connected input part and shape database, candidate object
classes C = {c0, c1, . . . , cnC},number of results k
Output: top-k matching shapes

1: for each class ci ∈ C do
2: for each part pj of ci do
3: partialShape[]← set of relevant combinations of parts of pj
4: for each part psz ∈ partialShape[] do
5: cost[psz ]← matching cost C(π(part, psz))
6: shape[]← ranking of shapes in cost[] according to cost values
7: return top-k entries in shape[]

In Figure 3, the user selects an elephant head (blue) and
a horse body (green) and synthesizes them together in the
bottom right input region. This new shape is converted
into a simple contour and given as input to ShapeExplorer.

1http://www.lire-project.net/

649



Figure 3: Screenshot for part knowledge exploration

Figure 4: Screenshot for part-based clipart image retrieval

In partial query mode, the top-5 most similar results with
respect to their partial similarity are shown in the top row on
the right. These can be used to retrieve images with objects
showing similar shapes.

3.2 Semantic Morphing
Given two images, ShapeExplorer can automatically per-

form a semantic form of morphing by classifying and per-
forming a conformal joint segmentation of the two images.
Alg. 2 first produces a segmentation of the two images into
the same meaningful parts. This task is accomplished by
searching for the lowest common cuts in the part hierarchies
(e.g., a joint segmentation of a horse and elephant will return
heads without the unique trunk of the elephant).

Algorithm 2 Part Based Morphing

Input: shape1 and shape2, part labels L = {l0, l1, ..., ln}
Output: morphing animation sequence

1: part1[]← shapeSegmentation(shape1)
2: part2[]← shapeSegmentation(shape2)
3: align part2[] to part1[] using common parts
4: for each label li ∈ L do
5: point1[li][]← samplePoints(part1[li])
6: point2[li][]← samplePoints(part2[li])
7: return morphing(shape1, shape2, point1[][], point2[][])

Having a full part correspondence between the two shapes,
our system generates a morphing sequence which gradually
interpolates from one to the other. See the morphing se-
quence in Figure 1 for an example of morphing from elephant
to horse. This is accomplished by performing a per-part
morphing while maintaining connectivity between adjacent
parts during the deformation.

The morphing algorithm generates animations by smoothly
interpolating transitions between corresponding parts in each
shape (see morphing sequence in Figure 1). During the ani-
mation, users may pause and resume it to review intermediate
frames, which can also serve as new inputs for querying and
synthesis operations. Additionally, the user may select the
intermediate frames as new inputs, which may further be
queried, synthesized, and used to retrieve images.

3.3 Shape Synthesis and Completion
In shape synthesis mode, ShapeExplorer starts with a new

user-provided partial shape and then uses best matching
shapes from the repository to synthesize the missing parts
so as to obtain a complete image.

Given an unknown shape, Alg. 3 first finds the top-1 best
matching shape in the repository using the (Partial) Shape
Query method. The segmentation and labels of the matching

650



shape are transferred to the input image. Then, missing
parts in the input shape with respect to the matched shape
are detected. We synthesize the missing parts by transfer-
ring them from the matched shape onto the input image.
Specifically, we subtract from the retrieved shape the parts
in common with the input one and gracefully translate, scale,
and rotate the shape and its parts so that they fit to their
adjacent ones in the unknown one. Please note that body
might have many part-cut labels, such as head, leg and tail.
Therefore, line 6 means whether pi and pj have matching
part-cut labels. For example, head can match body.

Algorithm 3 Shape Synthesis
Input: query shape, shape database
Output: new shape

1: rParts[]← parts of top-1 partial query result for shape (Alg. 1)
2: parts[]← labeled segmentation of shape via Alg. 1
3: mParts[]← rParts[]− parts[]
4: for each part pi ∈ mParts[] do
5: for each part pj ∈ parts[] do
6: if label(pi) matches label(pj) then
7: transfer from pi to pj in shape
8: return shape

In Figure 3, the user selects an elephant head (blue) and
a horse body (green) and synthesizes them together in the
bottom right input region. Synthesis results are displayed in
the second row of the results region in the work area. These
results can be used for retrieving similar images.

3.4 Clipart-based Image Retrieval
Another option is to perform image retrieval from a large

image repository by composing a clipart-like query using
parts or sketches. Our multimodal retrieval interface is com-
posed of four components (see Figure 4): a control panel on
the left, a text query field on the top, the working canvas in
the middle, and the retrieval results on the right. Figure 5
illustrates the workflow of the part-based clipart image re-
trieval system. Users can issue textual queries to retrieve
parts of interest from the PartNet knowledge repository.
They can explore the results and drag parts of interest into
the working area so as to craft a query image. This query
image may be composed of parts stemming from different
objects in the repository. Users also are able to modify the
composition by drawing sketches using a pencil tool in con-
junction with a color selection interface. This can be used to
add additional items to the image, or to modify the original
colors and textures of the parts coming from PartNet. An
eraser tool is also provided for cleaning.

Figure 5: Part-based clipart image retrieval

Finally, the query image is used to retrieve similar images
from the database. In the example in Figure 4, the user
seeks to find images of cups with cat tails as handles. With
standard image retrieval tools, it is hard to find such images
unless they have sufficient textual metadata. With Shape-
Explorer, the user can first issue a query for the word “cup”
to find the cup body in the PartNet repository. This is then

dragged from the results area onto the canvas. Similarly, the
user finds the body and legs of a cat in PartNet and incor-
porates them into the query canvas. In order to ensure that
the handle looks like a cat tail, the user can pick the color
brown via the color selection interface and use the pencil tool
to sketch a brown handle. This results in a sort of clipart
image that can be used to retrieve matching real images from
the database. For image matching, ShapeExplorer relies on
a set of image features, combining JCD (Joint Composite
Descriptor) and edge histograms. Thus, we can find cups
with cat-like handles. Figure 4 shows the top-3 results, and
the user may scroll to obtain further images.

4. CONCLUSION
In this paper, we have presented ShapeExplorer, a system

aimed at fine-grained analyses of images in terms of object
parts that captures multimodal knowledge in more detail than
previous work. We see that explicit semantic representations
of the parts enable several novel applications, including novel
forms of querying, semantics-driven morphing, and synthesis.

Acknowledgments
We thank the anonymous reviewers for their valuable com-
ments, and Kang Feng and Wei Wu et al. for their hard work
preparing the dataset. This project was sponsored by Na-
tional Natural Science Foundation of China (No. 61503217),
Shandong Provincial Natural Science Foundation of China
(No. ZR2014FP002), and The Fundamental Research Funds
of Shandong University (No. 2014TB005, 2014JC001).

5. REFERENCES
[1] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, and

Z. Ives. DBpedia: A nucleus for a web of open data. In
Proc. ISWC, 2007.

[2] I. Biederman. Recognition-by-components: A theory of
human image understanding. Psychological Review,
94:115–147, 1987.

[3] T. O. Binford. In Proc. IEEE Conf. Systems & Control.

[4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and
L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Image
Database. In Proc. CVPR., 2009.

[5] C. Fellbaum. WordNet: An Electronic Lexical Database.
MIT Press, 1998.

[6] H. Ling and D. Jacobs. Shape classification using the
inner-distance. IEEE PAMI, 2007.

[7] H. Liu and P. Singh. ConceptNet: A practical
commonsense reasoning toolkit, 2004.

[8] L. Luo, C. Shen, X. Liu, and C. Zhang. A
computational model of the short-cut rule for 2D shape
decomposition. CoRR, abs/1409.2104, 2014.

[9] D. Marr. Early processing of visual information.
Philosophical Transactions of the Royal Society of
London B: Biological Sciences, 275(942):483–519, 1976.

[10] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: A
Core of Semantic Knowledge. In Proc. WWW, 2007.

[11] N. Tandon, G. de Melo, F. Suchanek, and G. Weikum.
WebChild: Harvesting and organizing commonsense
knowledge from the web. In Proc. ACM WSDM, 2014.

[12] Y. Wang, B. Yang, L. Qu, M. Spaniol, and G. Weikum.
Harvesting facts from textual web sources by
constrained label propagation. In Proc. CIKM, 2011.

651


