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Quantum network of superconducting qubits through an optomechanical interface
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We propose a scheme to realize quantum networking of superconducting qubits based on the optomechanical
interface. The superconducting qubits interact with the microwave photons, which then couple to the optical
photons through the optomechanical interface. The interface generates a quantum link between superconducting
qubits and optical flying qubits with tunable pulse shapes and carrier frequencies, enabling transmission of
quantum information to other superconducting or atomic qubits. We show that the scheme works under realistic
experimental conditions and it also provides a way for fast initialization of the superconducting qubits under 1 K
instead of an operation temperature of 20 mK.
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I. INTRODUCTION

Superconducting qubits (SQs) constitute one of the leading
candidate systems for realization of quantum computation
[1]. Through the circuit resonators, SQs have strong coupling
to the microwave photons [1], which can be used for qubit
interaction, state engineering of the photonic modes, and
nondestructive readout of the qubits [2,3]. Universal quantum
logic gates have been realized for SQs in circuit QED (CQED)
systems with high fidelity and speed [4]. Through the use
of the noise insensitive qubits, the coherent time of the SQs
has been increased by several orders of magnitude in recent
years and pushed to the 100-μs region [5,6]. In a single circuit
resonator, the number of SQs is still limited. Further scaling up
the number of qubits requires linking distant CQED systems
to form a quantum network. Microwave photons are sensitive
to thermal noise and their quantum states only survive under
cryogenic temperature. So it is hard to use them to link SQs
in two different setups. Optical photons, on the other hand,
are robust information carriers at room temperature and serve
as ideal flying qubits for long-distance communication. They
can carry quantum information to distant locations through an
optical fiber.

In this paper we propose a scheme to realize a quantum
network of SQs through an optomechanical interface that
couples optical photons in a cavity to microwave photons and
SQs in a circuit resonator. The interface generates entangled
states between SQs and photonic pulses with tunable pulse
shape and carrier frequency. The photons then make a quantum
link between distant SQs through either a measurement-based
entangling protocol or a deterministic state mapping. Because
of the tunability of shape and frequency of the emitted photon,
the same scheme can also be used to realize a hybrid network
between SQs and other matter qubits such as atomic ions
[7], quantum dots [8], or defect spins in solids [9]. A hybrid
network may allow combination of advantages of different
kinds of qubits. For instance, SQs may be good for fast
information processing while atomic qubits are ideal for
quantum memory. Our scheme is based on the recent advance
on the microwave-optical interface: There have been several

proposals to realize this interface with ions [10,11], cold atoms
[12], or a hybrid optomechanical system with superconducting
resonators [13–19] or with a flux qubit [20]. In particular, a
recent experiment has demonstrated the transducer between
microwave and optical photons using the optomechanical
system at a temperature of 4.5 K [21]. One hassle for an
interface between SQs and optical photons is that thermal
initialization of the SQs requires an operating temperature
around 20 mK in a dilution fringe, while an interface to photons
requires an optical window, which introduces heating due to
blackbody radiation and may significantly increase the system
temperature. We circumvent this problem by showing that our
proposed scheme can achieve fast initialization of the SQs
at 1 K through optical sideband cooling by use of the same
optomechanical interface.

II. MODEL

As show in Fig. 1, the system we consider contains
an optical cavity (OC) and a microwave superconducting
resonator (SR) [22,23], which share an interface that can
vibrate and forms a mechanical oscillator (MO) [24,25]. The
shared vibrating interface between the OC and the SR has
been proposed in several schemes [13–17] and realized very
recently in experiments [21,26]. For this system, the MO mode
am of frequency ωm couples simultaneously to the optical mode
a1 of frequency ω1 and the microwave mode a2 of frequency
ω2. We have assumed that the coupling rate is much less than
the mode spacing of either of these oscillators so that only
one mode is relevant respectively for the OC, the MO, and
the SR. The optical and the microwave modes a1 and a2 are
driven at the red sideband with frequencies ωL1 = ω1 − �1

and ωL2 = ω2 − �2, respectively. We set �1 = �2 = ωm.
Inside the SR, there are nonlinear Josephson junctions, with the
lowest three anharmonic levels shown in Fig. 1(b). The levels
|g〉 and |s〉 make a SQ, with coupling mediated by the middle
level |e〉 with a coupling rate gc for the |g〉 → |e〉 transition
and a Rabi frequency � (t) (driven by a microwave field with
tunable shape) for the |e〉 → |s〉 transition.
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FIG. 1. (Color online) (a) Schematic diagram of the optomechan-
ical quantum interface. The SQ couples with the microwave mode a2

in a superconducting resonator (SR). The mechanical oscillator (MO)
mode am for vibration of the interface couples simultaneously to the
mode a2 of the SR and the mode a1 of the optical cavity (OC). Both
modes a2 and a1 are driven by coherent classical fields on the red
sideband. (b) Energy levels of the superconducting junction, where
|g〉 is the ground state, |e〉 is the first excited state, and |s〉 is the
second excited state. The transition |g〉 to |e〉 couples to the mode
a2 with coupling rate gc, while transition |e〉 to |s〉 is driven by a
microwave field with Rabi frequency � (t).

The Hamiltonian of the system has the form H = H0 +
HI + Hd , where

H0 =
∑
i=1,2

ωia
†
i ai + ωma†

mam + ωeσee,

HI =
∑
i=1,2

gia
†
i ai(am + a†

m) + gc(σeg + σge)(a2 + a
†
2),

and

Hd =
∑
i=1,2

(
�i

2
e−iωLi t + H.c.

)
(ai + a

†
i )

+
(

�′

2
e−iωL2 t + H.c.

)
(σge + σeg).

We have set � = 1 and taken the definition σμν = |μ〉〈ν|
(μ,ν = g,e,s). The SQ and SR drive pulses are generated
by two phase-locked microwave generators. The flux control
pulses are used to tune the SQ to be resonant with the
SR with ω2 = ωe [23]. The optomechanical coupling rates
gi (i = 1,2) are typically small, but their effect can be
enhanced through the driving field �i . Under the driving,
the steady-state amplitude of the mode ai is given by αi ≈
�i/2�i . We take the driving strength �′∗ = gc�2/ωm. The
optomechanical coupling terms can be expanded with ai − αi

and the effective coupling Hamiltonian takes the form (see
details in Appendix A) [15,16,27]

Hom = ∑
i=1,2 [ωma

†
i ai + Gi(a

†
i + ai)(am + a

†
m)]

+ωma
†
mam + (gca2σeg + H.c.), (1)

where Gi = αigi . Under the rotating-wave approximation
(ωm � Gi,gc), the whole Hamiltonian in the interaction
picture is given by

HI = (G1a
†
1 + G2a

†
2)am + gcσega2 + H.c. (2)

The corresponding Langevin equations for the aj (j = 1,2,m)
modes and the SQ take the form

ȧj = −i[aj ,HI ] − κj

2
+ √

κja
in
j ,

σ̇ge = −i[σge,HI ],−γ

2
σge + √

γ σza
in
s ,

(3)

where σz = σee − σgg , γ is the decay rate of the level |e〉, and
κj is the decay rate of the mode aj .

III. SUPERCONDUCTING QUBIT INITIALIZATION AND
SQ-PHOTON QUANTUM INTERFACE

Without loss of generality, we take G1 = G2 = G for
simplicity of notation. We may define the normal modes b and
b± with a1 = (b+ + b− − √

2b)/2, a2 = (b+ + b− + √
2b)/2,

and am = (b+ − b−)/
√

2, which diagonalize the optomechan-
ical coupling Hamiltonian [28]. The SQ only resonantly
couples with normal mode b. The normal mode b decays
through two channels aout

1 and aout
2 . The decay of b mode

is denoted by κ = (κ1 + κ2)/2. Typically, we have κ1 � κ2,
so the photons go out dominantly through the aout

1 channel,
which is a vacuum. As the SQ only strongly couples with the
normal mode b, the steady state of SQ will approach the ground
state |g〉. If the SQ is initially in a mixture of |g〉 and |e〉
states, we can cool it to the ground state |g〉 by driving the red
sideband of the optical cavity [29–33]. If the initial state of the
SQ involves mixture of other states, these other states can be
first driven to the state |e〉 through a microwave filed and then
decay to the ground state |g〉 by the optomechanical sideband
cooling. The working temperature for both initialization and
interface can be much higher than tens of mK.

In order to couple the SQ to an output optical photon with
controllable pulse shape, we prepare the SQ initially on the
level |s〉 and drive the transition |s〉 to |e〉 by a microwave field
with Rabi frequency �(t) and pulse duration TD . The total
Hamiltonian of the system is Ht = HI + �(t)σse + H.c. In the
limit T −1

D 
 G,g,κ1, the modes b± are not populated and can
be adiabatically eliminated. The effective Hamiltonian is sim-
plified to Ht = �(t)σse +

√
2

2 gcbσeg + H.c. The Hamiltonian

Ht has a dark state |D〉 = [|s〉|0〉 − r(t)|g〉|1〉]/
√

1 + |r(t)|2,
where r(t) = √

2�(t)/gc and |0〉,|1〉 represent the Fock states
of the mode b. To solve the output pulse shape, we rewrite
the dark state as |D〉 = cos θ |s〉|0〉 − sin θ |g〉|1〉, with cos θ =
1/

√
1 + |r|2, and define an orthogonal bright state |B〉 =

sin θ |s〉|0〉 + cos θ |g〉|1〉. The wave function of the whole
system can be expanded as |�〉 = (cd |D〉 + cb|B〉 + ce|e〉) ⊗
|vac〉 + |g〉|0〉 ⊗ |ϕ〉, where |vac〉 is the vacuum state of output
field and |ϕ〉 = ∫ +ωc

−ωc
dω cωa

†
out(ω)|vac〉 denotes the single-

photon state of the output field with frequency spectrum cω.
The dynamics of the system is determined by the Schrödinger
equation i∂t |�〉 = Ht |�〉, where Ht is the total Hamiltonian
that includes the input-output coupling terms [34]. Using the
method in Ref. [34], the output pulse shape f (t), given by
the Fourier transform of cω, can be solved analytically in the
adiabatic limit, with

f (t) = √
κ sin θ exp

(
−κ

2

∫ t

0
sin2 θ (τ )dτ

)
. (4)

The pulse shape f (t) is fully determined by θ (t).
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FIG. 2. (Color online) (a) Shape of the output single-photon
pulse |f (t)|. We take g = G = 3κ and the pulse duration TD = 20/κ .
The driving pulse �(t) = ge−(t−TD/2)2/2t2

w is assumed to be a Gaussian
shape with the peak at t = TD/2 and a width tw = TD/5. The solid,
dashed, and dash-dotted curves represent the analytic pulse shape
in Eq. (4) derived in the adiabatic limit, the numerical result that
includes the contribution of the bright state |B〉, and the exact result
that includes contributions of all the modes b,b±, respectively. The
shape function is normalized according to

∫ |f (t)|2dt = 1 for the
convenience of comparison. The overlap between the exact shape
(dash-dotted curve) and the adiabatic shape (solid curve) is about
99%. (b) Same as (a) but with the pulse duration TD = 5/κ . The
adiabatic approximation is not well satisfied in this case and the
shape overlap is reduced to 80%. (c) Same as (a) but with the driving
Rabi frequency �(t) = (gc/

√
2)eκ(t−TD/2)/2, which gives a symmetric

output pulse shape [34]. In the adiabatic limit, the shape (solid curve)
is given by the analytic form f (t) = √

κ/4sech[κ(t − TD/2)/2],
which has an overlap of 99.7% with the exact shape. (d) Same as
(c) but with the pulse duration TD = 5/κ .

To check whether the pulse shape of Eq. (4) derived
under the adiabatic limit holds under typical experimental
parameters, we compare in Fig. 2 the pulse shapes obtained
from the analytic formula and from the exact numerical
simulation. In numerical simulation, we solve the exact system
dynamics by including the contribution of populations either
in the bright state |B〉 or of all three modes b and b±. As
one can see from Fig. 2, if the pulse duration TD � 20/κ ,
the pulse shape from the analytic formula (4) overlaps very
well with the exact result, with the mismatching error less
than 1%. However, for a short pulse with TD ∼ 5/κ , there
is a significant shape mismatching error and one should
use the exact result instead of the approximate analytic
formula. The exact result shows some oscillations in the pulse
shape for a short driving field, resulting from the popul-
ation oscillation in different modes b and b± when the
condition of adiabatic elimination T −1

D 
 G,g,κ1 is not well
satisfied.

IV. QUANTUM NETWORKING OF SQS

In the above we have shown how to couple a SQ to a single
optical output photon with a controllable pulse shape. This
ability is critical for building up a quantum network of SQs
or a hybrid network between SQs and other matter qubits.
Here we mention two complementary schemes for quantum
networking of SQs, requiring different kinds of pulse shape
control.

The key requirement of quantum networking is to generate
entanglement between remote SQs. The first scheme for
entanglement generation is based on a deterministic quantum
state transfer between SQs in two remote cavities [35]. As
absorption is the time reversal of the emission process, it has
been shown in Ref. [35] that an emitted single-photon pulse
can be completely absorbed by a matter qubit in a cavity if
we simultaneously reverse the temporal shape of the photon
pulse and the driving filed �(t). As shown in Fig. 2, with an
appropriate control of the driving microwave field �(t), we can
transfer a quantum state from a SQ to a single-photon pulse
with a symmetric temporal shape. This single-photon pulse,
after propagation in an optical fiber, can then be absorbed
by a SQ in another remote cavity, if the driving �′(t) of the
second SQ is the time reversal of �(t). The shape control of the
driving microwave pulse �(t) or �′(t) can be easily achieved
through modulation by an arbitrary wave form generator. If
we make a half transfer of the population from the first SQ
to the photonic pulse, the generated state between the SQ and
the output photon p has the form (|s〉1|0〉p + |g〉1|1〉p)/

√
2.

Then, after absorption of the photon by the second SQ, we
generate an entangled state (|s〉1|g〉2 + |g〉1|s〉2)/

√
2 between

two remote SQs, as required for quantum networking.
The entanglement between remote SQs can also be gener-

ated in a probabilistic fashion through detection of interference
of the emitted photon(s) [34,36,37]. For instance, as shown
in Fig. 4(a), we have SQs in two remote cavities, each
emitting a single-photon pulse with a small probability p0 =
1 − exp[−κ

∫ TD

0 sin2 θ (τ )dτ ] through an incomplete adiabatic
passage from the state |s〉 to |g〉. The emitted pulses, after
propagation in optical channels, interfere at a 50%-50% beam
splitter, with outputs detected by single-photon counters.
If we register only one photon from these detectors, the
two SQs are projected to an entangled state (|s〉1|g〉2 +
eiϕ |g〉1|s〉p)/

√
2 with a success probability proportional to

p0 
 1. The unknown relative phase ϕ can be canceled
during the detection process [38] or through the second round
of entanglement generation by applying the same protocol
again [39]. Compared with the deterministic scheme [35], this
probabilistic scheme has a lower efficiency as the protocol
needs to be repeated until one successfully registers a photon
count, however, it is more robust to noise as the photon loss
in the optical channels does not influence the fidelity of this
scheme.

A major challenge for quantum networking based on the
photonic connection is to achieve the spectrum (shape) and fre-
quency matching of the emitted photon pulses from different
matter qubits. For solid-state qubits in particular, the coupling
parameters usually vary for different systems and it is hard to
get identical qubits or coupling rates. A remarkable advantage
of the scheme based on the optomechanical interface is that
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FIG. 3. (Color online) (a) Schematic to generate entanglement
between remote SQs. Two SQs are located in distant cavities A and
B. The SQs with dashed boxes represent the same structure as the
orange part (SQ) in Fig. 1(a), capacitively coupled to the SRs. The
SQs couple to the output photons through optomechanical interfaces.
The output photons, after propagation, interfere at a beam splitter and
then are detected by single-photon counters. Registration of a photon
count generates entanglement between the remote SQs. (b) The same
setup can be used to entangle SQs with other kinds of matter qubits,
such as trapped ions. The carrier frequency and shape of the photon
from the SQ is tuned by the optomechanical interface to match with
the photon pulse from other matter qubits.

all the mismatches in frequencies or pulse shapes can be
easily compensated through the driving fields. For instance, the
scheme works perfectly well if the coupling or decay rates are
different for different systems. As the pulse shape only depends
on θ (t) from Eq. (4), we can always get identical shapes as
difference in the coupling rates can be easily compensated by
the microwave driving amplitude �(t). Furthermore, the output
optical frequency is purely determined by the eigenmode
structure of the optical cavity and not limited by the qubit
parameters. So, depending on the frequency and shape of the
driving field, we can have a quantum interface between the SQ
and the optical photon with widely tunable carrier frequency
and shape, which can then interfere with the photons emitted
by other kinds of matter qubits, such as trapped ions [40],
quantum dots [8,41], or diamond nitrogen vacancy centers [9].
The SQ-optomechanical interface therefore can work as a
quantum transducer to generate entanglement links between
different types of matter qubits. This leads to a hybrid quantum
network, with an example illustrated in Fig. 3(b), which has
the important advantage to combine the particular strength of
each kind of matter qubits.

V. SUPERCONDUCTING QUBIT INITIALIZATION
FIDELITY AND INTERFACE EFFICIENCY

In the above analysis we assume that the SQ couples
dominantly to the output field of the optical cavity and neglect
other dissipation channels. Now we take into account all
the other dissipation processes and calculate their effects on
the fidelity of quantum interface. Under the condition that the
pulse duration T −1

D 
 G,g,κ1, we can adiabatically eliminate
all the modes aj (j = 1,2,m) in the Langevin equations (3)
and arrive at the following decay equation for the SQ (see
details in Appendix B):

σ̇ge = −γeff

2
σge + √

γeffσza
in
eff, (5)

where

γeff = γ + κ̃1 + κ̃2 + κ̃m,

ain
eff = [−i

√
κ̃1a

in
1 + i

√
κ̃2a

in
2 + √

γ ain
s + √

κ̃main
m

]
/
√

γeff,

κ̃1 = 4g2κ1

(κ1 + κ2 + κ1κ2κm/4G2)2
,

κ̃2 = (2 + κ1κm/2G2)2g2κ2

(κ1 + κ2 + κ1κ2κm/4G2)2
,

and

κ̃m = g2κ2
1 κm/G2

(κ1 + κ2 + κ1κ2κm/4G2)2
.

The physical meaning of Eq. (5) is clear: The SQ couples
to four decay channels: the optical channel ain

1 with decay
rate κ̃1, the microwave channel ain

2 with decay rate κ̃2, the
mechanical channel ain

m with decay rate κ̃m, and the intrinsic
channel ain

s with decay rate γ . For each decay channel,
the effective dissipation rate is given by (n̄j + 1)κ̃j , where
n̄j = 1/[exp(�ωj/kBT ) − 1] is the mean thermal photon (or
phonon) number and T denotes temperature of the system. The
initialization of the SQ is described by the Langevin equation
(5) and the final probability Pg for the SQ in the state |g〉 is
determined by the stationary state under Eq. (5) (after a decay
time of the order of 1/κ̃1 ∼ 10 ns) with

Pg = κ̃1 + (n2 + 1)κ̃2 + (nm + 1)κ̃m

κ̃1 + (2n2 + 1)(γ + κ̃2) + (2nm + 1)κ̃m

. (6)

For the experimental parameters listed in the caption of Fig. 4
and a system temperature of 1 K, the fidelity Pg for state
initialization is larger than 99% (we assume temperature T =
1 K with n̄2 = 1.62 and n̄m = 2.08 × 103).

For quantum networking of SQs through the optical decay
channel, all the other dissipation channels contribute to noise
and the fidelity F of the quantum interface can be estimated by
the relative ratio of the optical decay rate to the total dissipation
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FIG. 4. (Color online) (a) Temperature dependence of the fidelity
F (solid curve) of quantum interface and the fidelity Pg (dashed curve)
for state initialization. The dash-dotted curve shows the probability
in the ground state without optomechanical sideband cooling. The
parameters are taken as ω1/2π = 200 THz, ω2/2π = 10 GHz,
ωm/2π = 10 MHz [24,25,42], κ1/2π = 10 MHz, κ2/2π = 1 kHz,
κm/2π = 10 Hz [43], γ /2π = 5 kHz [44,45], G/2π = 1 MHz, and
gc/2π = 1 MHz. (b) Dependence of the fidelity F (solid curve) and
Pg (dashed curve) on the optical cavity decay rate κ1 at a temperature
of 1 K. The other parameters are the same as in (a).
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rate

F = κ̃1

κ̃1 + (n̄2 + 1)κ̃2 + (n̄m + 1)κ̃m + (n̄2 + 1)γ
, (7)

where we have taken n̄1 ≈ 0 at the optical frequency. The ex-
perimental parameters typically satisfy G ∼ κ1 � κ2,κm,γ . In
this case, κ̃1 ≈ 4g2/κ1, κ̃2 ≈ 4g2κ2/κ

2
1 , and κ̃m ≈ g2κm/G2.

In Fig. 4 we show the fidelity as a function of the system
temperature and the decay rate of the optical cavity. It is
found that the fidelity is around 99% for typical values of
the experimental parameters as listed in the figure caption.

Typically the SQ system is operated at a temperature around
20 mK, where the ground-state cooling is achieved directly
through thermal equilibrium. However, with an optomechan-
ical interface, the system temperature may increase due to
heating by the blackbody radiation from the optical window.
Here we show that even under a temperature of 1 K, the state
can still be initialized through the optomechanical sideband
cooling. Another requirement for the system temperature is
that the quasiparticle density in the superconducting circuit
should be small; otherwise it will induce dissipation of the SQ.
The quasiparticle density is proportional to e−1.76Tc/T , where
Tc is the critical temperature of the superconductor [46]. For
niobium, the critical temperature Tc is about 9.3 K, for which
the quasiparticle density is negligible at a temperature of 1 K.
For aluminum, the Tc is about 1.2 K, where the quasiparticles
can be neglected only at temperature on the order of 0.1 K.

VI. CONCLUSION

We have proposed a scheme to realize a quantum network
of SQs based on the optomechanical quantum interface.
The interface can couple the SQs to optical photons with
widely tunable carrier frequencies and pulse shapes. The same
interface can also be used for fast initialization of the SQs at a
temperature of 1 K through optomechanical sideband cooling.
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APPENDIX A: EFFECTIVE LINEAR HAMILTONIAN

The Hamiltonian of the system takes the form H = H0 +
HI + Hd , where

H0 =
∑
i=1,2

ωia
†
i ai + ωma†

mam + ωeσee,

HI =
∑
i=1,2

gia
†
i ai(am + a†

m) + gc(σeg + σge)(a2 + a
†
2),

and

Hd =
∑
i=1,2

(
�i

2
e−iωLi t + H.c.

)
(ai + a

†
i )

+
(

�′

2
e−iωL2 t + H.c.

)
(σge + σeg).

The SQ is assumed to couple resonantly with the SR with ω2 =
ωe. The detuning �i = ωi − ωLi

= ωm. Under the condition
that �i < 4ωi , the Hamiltonian Hd can be approximated as

H ′
d =

∑
i=1,2

(
�i

2
aie

−iωLi t + H.c.

)

+
(

�′

2
e−iωL2 t + H.c.

)
(σge + σeg).

We take the rotating-wave frame that H ′
0 = H0 − ωm(a†

1a1 +
a
†
2a2). The Hamiltonian in the rotating-wave frame reads

HR = ωm

∑
p=1,2,m

a†
pap +

∑
i=1,2

[
gia

†
i ai(am + a†

m)

+
(

�i

2
ai + H.c.

)]
+ ωeσee

+
(

gca2e
−iωL2 t + �′

2
e−iωL2 t + H.c.

)
(σge + σeg).

(A1)

We assume that the decay rates κi for mode ai (i = 1,2)
are much less than the driving detuning � = ωm. Under the
driving, the steady-state amplitude of the mode ai is given by
αi  �i/2ωm. In order to compensate the effect of classical
driving on SQ, we set �′∗ = 2α2gc = �2gc/ωm. In the limit
that αi � 1, the Hamiltonian (A1) can be expanded with
ai − αi ,

Hom =
∑
i=1,2

[ωma
†
i ai + Gi(a

†
i + ai)(am + a†

m)] + ωeσee

+ωma†
mam + (gca2e

−ωL2 t + H.c.)(σeg + σge).

(A2)

Under the rotating-wave approximation (ωm � Gi,gc), the
whole Hamiltonian in the interaction picture is given by

HI = (G1a
†
1 + G2a

†
2)am + gcσega2 + H.c. (A3)

Here we take the parameters we used in Fig. 4 as an example
to make sure that the rotating-wave approximation is valid. In
experiments, the typical parameters are as follows: ω1/2π =
200 THz, ω2/2π = 10 GHz, ωm/2π = 10 MHz [24,25,42],
κ1/2π = 10 MHz, κ2/2π = 1 kHz, κm/2π = 10 Hz, γ /2π =
5 kHz [44,45], g/2π = 1 kHz, and gc/2π = 1 MHz. The
microwave driving strengths are assumed to be �2 = 20 GHz.
The steady-state amplitude α = 1000 and �′ = �∗

2g
∗
c /ωm =

2 GHz. The effective coupling between a2 and am is G2 =
α2g2 = 1 MHz. With proper driving of optical cavity mode a1,
we can also get the effective coupling strength G1 = 1 MHz.
Therefore, the rotating-wave-approximation condition ωm �
Gi,g2 is fulfilled.
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APPENDIX B: EFFECTIVE LANGEVIN EQUATION
FOR THE SQ

In order to derive the effective Langevin equation for the
SQ, we write down the Langevin equations of the systems

ȧ1 = −iGam − κ1

2
a1 + √

κ1a
in
1 , (B1)

ȧ2 = −iGam + igσge − κ2

2
a2 +

√
k2a

in
2 , (B2)

ȧm = −iG(a1 + a2) − γm

2
am + √

κmain
m, (B3)

σ̇ge = igσza2 − γ

2
σge + √

γ σzσ
in
ge. (B4)

In the limit that G � g,κ1,κ2,κm, we can adiabatically
eliminate modes am and a1,2. Let us solve am from Eq. (B1) in
terms of a1,

am = 1

iG

(
−κ1

2
a1 + √

κ1a
in
1

)
, (B5)

Then we can solve the a2 from Eq. (B2) in terms of a1,

a2 = κ1

κ2
a1 − 2

κ2

√
κ1a

in
1 + 2igσge

κ2
+ 2√

κ2
ain

2 .

Let us solve a1 from Eq. (B3) and get the expression of a2,

a1 = 1

i(G + γm/κ14G)

(
−iGa2 + iγm

2G

√
κ1a

in
1 + √

γmain
m

)
.

Inserting a1 into the expression of a2, we get that

a2 = −8G2√κ1

κ2(4G2 + κmκ1)
ain

1 − 4iGκ1
√

κm

κ2(4G2 + κmκ1)
ain

m

+ 2igσge

κ2
+ 2√

κ2
ain

2 . (B6)

We get that

a2 = 1

4G2(κ1 + κ2) + γmκ1κ2

[−8G2√κ1a
in
1 − 4iGκ1

√
κmain

m

+ (8G2 + 2κmκ1)
√

κ2a
in
2 + i(8G2 + 2κmκ1)gσge

]
.

(B7)

Finally, we get that the effective Langevin equation for σge is

σ̇ge = −
(

2g2 + g2κmκ1/2G2

(κ1 + κ2) + κmκ1κ2/4G2
+ γ

2

)
σge

+ −2ig
√

κ1σz

(κ1 + κ2) + κmκ1κ2/4G2
ain

1

+ i(2 + κmκ1/2G2)g
√

κ2σz

(κ1 + κ2) + κmκ1κ2/4G2
ain

2

+ gκ1
√

κm/G

(κ1 + κ2) + κmκ1κ2/4G2
σza

in
m + √

γ σzσ
in
ge. (B8)

It is easy to verify that the effective Langevin equation (B8) ful-
fills the Einstein relation. The effective Langevin equation (B8)
for σge can be rewritten as

σ̇ge = −γeff

2
σge + √

γeffσza
in
eff, (B9)

where γeff and ain
eff are defined as

γeff = γ + 16G2g2 + 4g2κmκ2
1

4G2(κ1 + κ2) + κmκ1κ2

and

ain
eff =

( −2ig
√

κ1

(κ1 + κ2) + κmκ1κ2/4G2
ain

1

+ i(2 + κmκ1/2G2)g
√

κ2

(κ1 + κ2) + κmκ1κ2/4G2
ain

2

+ gκ1
√

κm/G

(κ1 + κ2) + κmκ1κ2/4G2
ain

m + √
γ ain

2

)/√
γeff .

(B10)
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