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Abstract—The broadcast is a fundamental operation in com-
puter and communication networks. We study broadcast in
multiradio multichannel multi-hop wireless networks. Suppose
through configuration, each node is already assigned with a
transmission power level and a set of radio channels for receiving
and forwarding data. Our problem is to select a forward scheme
for broadcasting from a given source node and to minimize
total energy consumption. This is a known NP-hard minimization
problem. In this paper, we construct a polynomial-time (1.35 +
ε)(1+ln(n−1))-approximation algorithm where n is the number
of nodes in given network and ε is any positive constant. We also
show that there is no polynomial-time (ρ ln n)-approximation for
0 < ρ < 1 unless NP ⊆ DTIME(nO(log log n)).

I. INTRODUCTION

During the last decade, wireless communication has been
growing rapidly. Its applications have been found in military
operation, traffic control, healthcare, weather forecasting, etc.
Especially, it has changed people’s life style. Nowaday, almost
everybody carries a wireless communication device, such as
mobile phone, iPad and iPhone, etc. Those devices are usually
equipped with batteries and hence their energy supply is lim-
ited. This fact makes energy efficiency become an important
issue in study of wireless networks.

There are two types of energy saving techniques in the
literature. The first type is to adjust transmission power level
to minimize the total energy consumption [1], [2], [3]. The
second type is to keep transmission power at a certain level at
each node and to schedule wireless nodes into sleep or active
state in order to minimize the total energy consumption [4],
[5], [6] or to maximize the lifetime of network system [7],
[8]. Our work in this paper belongs to the second type.

Consider a multi-radio multi-channel multi-hop wireless
network (MR-MC network). We assume that there are totally
C non-overlapping orthogonal frequency channels in the net-
work and denote the C channels by 1, 2, ..., C. Each node v is
equipped with some omni-directional radio interfaces. Suppose

there is already a channel assignment on the node set V , i.e.,
each node v is assigned with a channel subset B(v). This
means that each node v can receive messages through any
channel in subset B(v) and can also forward messages using
any channel in subset B(v).

Suppose that at each node v, the transmission power is
fixed at a certain level p(v). Compared with transmission
power, energy spending for receiving data at each node can
be ignored. Thus, energy consumption at each node v is p(v)
multiplying the number of forward channels, i.e., channels
used for sending messages.

Our problem is to find a forward scheme, i.e., for each node
v, find a channel subset F (v) ⊆ B(v) such that data can be
broadcasted from a given source node to all wireless nodes
and the total energy consumption is minimized.

This problem has been proved to be NP-hard [9]. We are
going to design a polynomial-time algorithm which produces
an approximation solution within a factor of (1.35 + ε)(1 +
ln(n − 1)) from optimal, where n is the number of wireless
nodes in the input network and ε is any positive number. We
will also show that this is almost the best possible result and
indeed, for any 0 < ρ < 1, there is no polynomial-time
(ρ lnn)-approximation for this problem.

II. RELATED WORK

Broadcast is a fundamental operation in communication
networks. Many research efforts have been made on study of
broadcast in various networks. Wan et al. [3] minimized the to-
tal energy consumption of broadcast by adjusting transmission
power at each node in static wireless ad hoc networks. Before
their work, there are several broadcast routing algorithms
already proposed in the literature, such as the Broadcast
Incremental Power (BIP) algorithm, the Shortest Path Tree
(SPT) and the Minimum Spanning Tree (MST) algorithm
[1], [2]. However, those algorithms were evaluated through
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simulations. Wan et al. [3] provided the first theoretical
analysis for those algorithms and showed that all of them
produce approximation solutions within a factor of 12 from
optimal. So far, a sequence of following-up efforts [10], [11],
[12], [13], [14] have improved this factor from 12 to 6.

Li et al. [6], Cagalj et al.[5] and Liang [4] also minimized
the total energy consumption of broadcast with a different
approach in static wireless ad hoc networks. They noted that in
real systems, after network is configured, each node is assigned
with a transmission power level which would not be changed
for any broadcast request. Therefore, their minimization of
total energy consumption is under the assumption that the
transmission power level at each node is given. Liang [4]
presented an algorithm evaluated through simulations. Ca-
galj et al.[5] gave a O(log3 n)-approximation. Li et al. [6]
obtained an approximation algorithm with performance ratio
(1 + 2 ln(n − 1)).

Agarwal et al. [15] studied energy efficient broadcast in
wireless ad hoc network with hitch-hiking. Nava [16] con-
sidered the broadcast problem in 3-dimensional networks.
Dai and Wu [17], Li et al. [18], [19], and Guo and Yang
[20] minimized the total energy consumption of broadcast
in wireless networks with directional antennas or adaptive
antennas. Ghosh [21] designed distributed algorithm and Wu
and Dai [22] designed an broadcast algorithm with self-
pruning technique. Ni et al. [23] considered the broadcast
storm problem.

In this paper, we study energy efficient broadcast in multi-
radio multichannel wireless networks. We also assume that
at each node transmission power has been configured at a
certain level. Therefore, our work is closely related to that
in [6]. Indeed, the wireless ad hoc network is a special
case of multiradio multichannel wireless networks when only
one radio (and one channel) is available. We will design an
(1.35 + ε)(1 + ln(n − 1))-approximation algorithm for the
latter problem, which is an improvement of result in [6]. The
technique used in this design is initiated in [24].

III. NETWORK MODEL AND PROBLEM FORMULATION

Denote by r(v) the communication radius determined by
p(v) with relation

p(v) = c · r(v)α

where c and α are two constants with 2 ≤ α ≤ 6. We use
a directed graph G = (V, E) to model the MR-MC network
topology, where V represents the wireless nodes set in the
network. An arc (u, v) ∈ E if and only if B(u) ∩ B(v) �= ∅
and d(u, v) ≤ r(u), where d(u, v) is the Euclidean distance
between u and v.

In the MR-MC network, some nodes are selected as forward
nodes to relay the packet. We define the forward scheme, F , as
a function on V , where F (v) is the set of forward channels at
node v, i. e., those channels that node v uses to relay broadcast
packets. For any two nodes u, v ∈ V , we say v is reachable
directly from u under forward scheme F , if u = v or (u, v) ∈

E and F (u) ∩ B(v) �= ∅. The energy cost of the forward
scheme is defined as follows:

W (F ) =
∑

v∈F

|F (v)| · p(v).

Given a source node s, we need to find a forward scheme
such that there is a broadcast tree under the forward scheme
and the energy cost of the forward scheme is minimized. Note
that in a broadcast tree, the forward set of any leaf node must
be empty set. Therefore, our problem can be formally stated
as the follows:

BROADCAST IN MR-MC NETWORK: Consider a
graph G = (V, E) and a source node s. Each node v
is associated with a set B(v) of radio channels and
a weight p(v). The problem is to assign each node v
with a subset F (v) of B(v) such that there exists a
broadcast tree T from source s satisfying condition
that for each edge (u, v) ∈ T, F (u) ∩ B(v) �= ∅,
and W (T ) =

∑
v∈NL(T ) |F (v)| ·p(v) is minimized,

where NL(T ) is the set of internal nodes of T .

IV. TRANSFORMATION

Our problem can be transformed into the following weighted
arborescence problem.

MIN NODE-WEIGHT ARBORESCENCE: Given a
node-weighted directed graph and a source node,
find an arborescence rooted at the source node and
to minimize the total weight of internal nodes other
than the source node.

Let us describe the transformation. Construct an auxiliary
graph Gaux = (Vaux, Eaux) based on the input directed
graph G = (V, E) of BROADCAST IN MR-MC NETWORK
as follows.

(1) Create a source node s∗ with weight p(s∗) = 0.
(2) For each node v, create |B(v)| nodes (v, i) with weight

p(v, i) = p(v) for i ∈ B(v).
(3) Connect s∗ to every (s, i) where s is the input source

node of BROADCAST IN MR-MC NETWORK.
(4) For each (u, v) ∈ E, add arcs ((u, i), (v, j)) for i ∈

B(u), j ∈ B(v) and i ∈ B(v), i.e., for any (u, v) ∈ E and
i ∈ B(u) ∩ B(v), we add arcs from (u, i) to any (v, j) for
j ∈ B(v).

That is:
Vaux = {s∗} ∪ ∪v∈V {(v, j) | j ∈ B(v)} with p(s∗) = 0,

and p((v, j)) = p(v) for j ∈ B(v).
Eaux = {(s∗, (s, i))|i ∈ B(s)} ∪ ∪(u,v)∈E

{((u, i), (v, j))|(u, v) ∈ E, i ∈ B(u) ∩ B(v), j ∈ B(v)}.
There is an example for the transformation shown in Fig.

1. Fig. 1(a) shows input graph of BROADCAST IN MR-MC
NETWORK. Fig. 1(b) shows the corresponding transformed
graph of MIN NODE-WEIGHT ARBORESCENCE.

In the following, we will prove that BROADCAST IN MR-
MC NETWORK is equivalent to MIN NODE-WEIGHT AR-
BORESCENCE with input directed graph Gaux = (Vaux, Eaux)
with weight p(v, i) = p(v) and p(s∗) = 0.
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Fig. 1. An example of transformation

Lemma 4.1: There exists a forward scheme F with cost at
most W containing a broadcast tree from node s if and only if
Gaux contains an arborescence with weight at most W from
node s∗.

Proof: First, suppose forward scheme F contains a broad-
cast tree T . We construct an arborescence Taux for Gaux as
follows:

Initially, Set Taux = ∅.
(1) For each i ∈ B(s), add arc (s∗, (s, i)) to Taux.
(2) For each arc (u, v) in T , choose a channel i from F (u)∩

B(v) and add arcs ((u, i), (v, j)) to Taux for every j ∈ B(v).
From the construction above, it is easy to see that for any

path from s to a node v, Taux contains a path from s∗ to
node (v, j) for any j ∈ B(v). Therefore, Taux being an
arborescence follows from T being a broadcast tree. Moreover,
only in the case that arc (u, v) exists (i.e., u is an internal node
of T ) and i ∈ F (u), (u, i) can be an internal node of Taux.
Therefore, the total weight of internal nodes other than s∗ in
Taux is at most

∑
u∈NL(T ) |F (u)| · p(u) ≤ W .

Next, suppose Gaux contains an arborescence Taux with
weight at most W . For each u ∈ V , define

F (u) = {i | ((u, i), (v, j)) in Taux}.

We show that there exists a broadcast tree T such that for any
arc (u, v) in T , F (u) ∩ B(v) �= ∅. To do so, let T consist of
arcs

{(u, v) | ((u, i), (v, j)) in Taux}.

By definition of Gaux, we know i ∈ F (u) ∩ B(v) and hence
F (u) ∩ B(v) �= ∅. We claim that T is a broadcast tree. In
fact, for each node v ∈ V , Taux contains a path from s∗ to
(v, j) for any j ∈ B(v) since Taux is an arborescence. This
path would induce a path from s to v. Finally, we note that
i ∈ F (u) if and only if (u, i) is an internal nodes of Taux.
Therefore, W (F ) ≤ ∑

(u,i)∈NL(Taux) p(u) ≤ W .
Lemma 4.2: The minimum weight for a forward scheme F

to contain a broadcast tree is opt if and only if the minimum
cost of an arborescence in Gaux is opt.

Proof: It follows immediately from Lemma 4.1.
Lemma 4.3: There is a polynomial-time ρ-approximation

for BROADCAST IN MR-MC NETWORK if and only if there is
a polynomial-time ρ-approximation for MIN NODE-WEIGHT
ARBORESCENCE on input Gaux with weight p(u, i) = p(u).

Proof: Let opt be the minimum cost of forward scheme
to contain a broadcast tree. By Lemma 4.2, opt is also the the
minimum cost of an arborescence in Gaux.

Suppose an arborescence Taux with cost at most ρ · opt
for Gaux can be computed in polynomial-time. Then from
the Proof of Lemma 4.1, we know that a forward scheme F ,
which contains a broadcast tree and has cost at most ρ·opt, can
be constructed in polynomial-time. This means that if there is
a polynomial-time ρ-approximation for MIN NODE-WEIGHT
ARBORESCENCE on input Gaux with weight p(u, i) = p(u),
then there is a polynomial-time ρ-approximation for BROAD-
CAST IN MR-MC NETWORK.

Conversely, suppose a forward scheme F contains a broad-
cast tree T , then we claim that such a T can be constructed
in polynomial-time from F . After T is constructed, we can
construct Taux in the way as shown in the proof of Lemma 4.1.
This means that if there is a polynomial-time ρ-approximation
for BROADCAST IN MR-MC NETWORKon input instance G,
then there is a polynomial-time ρ-approximation for MIN
NODE-WEIGHT ARBORESCENCE on input Gaux.

Now, we show how to construct a broadcast tree T from
forward scheme F . Consider the following algorithm:

Y ← {s};
Z ← V − {s};
T ← ∅;
while Z �= ∅ do begin

choose u ∈ Y ;
Y ← Y − {u};
for every v ∈ Z do

if F (u) ∩ B(v) �= ∅
then Y ← Y ∪ {v}

T ← T ∪ (u, v) and
Z ← Z − {v};

end-while;
output T .

Since F contains a broadcast tree, for each node v there
is a path from s to v such that every arc (u,w) on the path
satisfies condition F (u)∩B(w) �= ∅. Therefore, every node v
in this algorithm would be eventually removed from Z, that
is, the algorithm will end in polynomial-time with Z = ∅, and
output a broadcast tree T .

V. APPROXIMATION ALGORITHM

Let G = (V, E) be a directed graph with nonnegative weight
function p on V . Node v ∈ V is called a sink node if its out-
degree is zero, and an internal node otherwise. Suppose H is
a subgraph of G. The set of internal nodes in H is denoted
by I(H). H is said to be an arborescence rooted at a node
s(or a s-arborescence) if the in-degree of s is zero, and the in-
degree of other node is exactly one. H is said to be a spanning
subgraph of G if the node set of H is exactly V . For any subset
U ⊂ V , GU denotes the subgraph induced by U .

Li et al. [25] gave a 1.5 ln(n)-approximation algorithm
for unweighted case of MIN NODE-WEIGHT ARBORES-
CENCE. In this section we are going to present a (1.35 ln n)-
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approximation algorithm for MIN NODE-WEIGHT ARBORES-
CENCE. First we introduce some notations and terminologies.

Let s be the source node. For any subset S ⊂ V containing
source node s, let G̃S = (V, ẼS) be the spanning subgraph of
G, where an arc (u, v) ∈ E is an arc in ẼS if and only if u is
in S. A strongly connected component O of G̃S is said to be
an orphan with respect to S if the following two conditions
are satisfied: O does not contain the source node s; and for
any arc (u, v) in G̃S , if v is in O, then u is also in O, i.e.
G̃S does not contain incoming arc toward O. We use O(S)
to denote the set of orphans with respect to S. It is easy to
check that G̃S contains a spanning s-arborescence if and only
if O(S) = ∅.

Note that in the following discussion when we say “orphan”,
it is always related to some node set S.

Definition 5.1: For some node set S, an arborescence T
rooted at a node u �= s is said to be an (m− 1)-arborescence
w.r.t. S, if it intersects with exactly m − 1 orphans. An
arborescence T is called a legal m+ arborescence w.r.t. S
if it only contains i-arborescence with i < m as its subtree,
and either it is rooted at s or it is intersecting with at least m
orphans w.r.t. S.

For a legal m+ arborescence T w.r.t. S, define the quotient
cost w.r.t. S as follows:

cS(T ) =

∑
v∈{I(T )\{S}} p(v)

Norphans
,

where Norphans represents the number of orphans w.r.t. S
that T intersects with.

Lemma 5.1: For any B, suppose |O(B)| ≥ m at some
point, then any spanning s-arborescence can be decomposed
into node disjoint legal m+ arborescences w.r.t B.

Proof: This lemma can be proved by induction on the
number of orphans.

Consider a spanning s-arborescence T . T is a tree intersect-
ing with all the orphans. The depth of a node is the distance
of the node from s. Choose a node v of maximum depth,
such that the subtree rooted at v intersects with at least m
orphans in O(B). Note that no subtree rooted at a proper
descendant of v intersects with m orphans, hence the subtree
rooted at v is indeed a legal m+ arborescence w.r.t B. Delete
the subtree rooted at v, and delete the orphans intersecting with
it from O(B). The remaining part is also a s-arborescence. If
it still intersects with at least m orphans, then by the induction
hypothesis we can find a decomposition of the remaining
arborescence into legal m+ arborescence w.r.t. B and we are
done. If there are at most m − 1 orphans left in O(B), then
the remaining part which contains s is the last arborescence
rooted at s. This concludes the proof.

According to Lemma 5.1, the optimal solution OPT can be
decomposed into node-disjoint arborescences. Thus we can
get an approximate solution by adding arborescence of low
weight iteratively. This process is informally described as in
Algorithm 1.

We have the following result.

Algorithm 1 Greedy Algorithm
1: B ← {s};
2: O(B) ← {{v}|v ∈ V \ {s}};
3: while O(B) �= do
4: Selecting a legal m+ arborescence T w.r.t. B with

minimum quotient cost cB(T );
5: B = B ∪ I(T );
6: Update O(B);
7: end while
8: Return an s-arborescence in G̃B .

Lemma 5.2: Let OPT be the optimal solution, i.e. OPT
is an arborescence with minimum weight ω(OPT ). Suppose
that |O(B)| > 0, then there exists a legal m+ arborescence
T w.r.t. B such that

cB(T ) ≤ ω(OPT )
|O(B)| .

Proof: Since OPT is a spanning s-arborescence, it can
be decomposed into legal m+ arborescences according to
Lemma 5.1. Denote the arborescences in this decomposition
by {T ∗

1 , T ∗
2 , ..., T ∗

k }, and denote the number of orphans inter-
secting T ∗

i by ni. Clearly we have that
∑k

i=1 ni = |O(B)|.
Let T be the legal m+ arborescence with minimum quotient
cost, i.e. T is what the algorithm selects at this step then

cB(T ) ≤ cB(T ∗
i ) ≤

∑
v∈{I(T∗

i )\{B}} p(v)

ni
, i = 1, 2, ..., k,

so
nicB(T ) ≤

∑

v∈{I(T∗
i )\{B}}

p(v), i = 1, 2, ..., k.

Summing these inequalities up we get

(
∑k

i=1 ni)cB(T ) ≤ ∑k
i=1

∑
v∈{I(T∗

i )\{B}} p(v)
≤ ∑

v∈{I(
⋃k

j=1 T∗
j )\{B}} p(v)

≤ ω(OPT ).

Thus,

cB(T ) ≤ ω(OPT )
∑k

i=1 ni

≤ ω(OPT )
|O(B)| .

Theorem 5.3: If the best ratio legal 4+ arborescence can be
computed in polynomial time, then Algorithm 1 has approxi-
mation ratio m

m−1H(n − 1).
Proof: Suppose the algorithm runs for k iterations. At the

beginning of iteration i, the set of internal nodes is denoted by
Bi, and the legal m+ arborescence selected in that iteration
is denoted by Ti. Also for convenience sake let B0 be the
empty set and O(B0) = V \ {s}. Let li be the number of
orphans w.r.t Bi intersecting with Ti in iteration i, and ωBi

(Ti)
be

∑
v∈{I(Ti)\{B}} p(v). By Lemma 5.2, we have for each

1 ≤ i ≤ k,
ωBi

(Ti)
li

≤ ω(OPT )
|O(Bi)| .
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Since the iteration k is the last iteration, |O(Bk)| = 0,
|O(Bk−1)| = lk−1, so we have,

ωBi(Ti) ≤ ω(OPT ).

At iteration i, the arborescence Ti rooted at ui is selected.
Any orphan intersecting with Ti either still survives as a
connected component in G̃Bi

⋃
I(Ti) but is not an orphan any-

more, or get merged into some new connected components of
G̃Bi

⋃
I(Ti). Furthermore, each new component of G̃Bi

⋃
I(Ti)

which does not contain ui can not be an orphan.
So, if u �= s, we have

|O(Bi+1)| ≤ |O(Bi)| − (li − 1),

consequently

|O(Bi)| − |O(Bi+1)| ≥ (li − 1) ≥ m − 1
m

li.

If u = s, then the component of G̃Bi

⋃
I(Ti) containing u is

not an orphan, and

|O(Bi)| − |O(Bi+1)| = li ≥ m − 1
m

li.

Combine the previous discussions together, we have,

ωBi
(Ti) ≤ li

|O(Bi)|ω(OPT )

≤ m/(m−1)(|O(Bi)|−|O(Bi+1)|)
|O(Bi)| ω(OPT ).

Sum these inequalities up over all i we get the cost of the
solution outputted by the algorithm is:
∑k−1

i=0 ωBi
(Ti) ≤ m

m−1ω(OPT )
∑k

i=0
|O(Bi)|−|O(Bi+1|

|O(Bi)|
≤ m

m−1ω(OPT )
∑|V |−1

j=1
1
j

= m
m−1H(n − 1)|OPT |.

So the problem is how to find the optimal m+ arborescence
at each step. For m = 2, Li et al. [25] present an algorithm to
find such a structure and they show that for m = 3 there also
exists a polynomial time algorithm [6]. However we do not
know how to find a m+ arborescence optimally when m ≥ 4.
For the case where m = 4, we can have an algorithm to
approximate this structure, which gives an algorithm with ratio
(1.35 + ε) ln(n) using the greedy scheme described above.

Thus the complete algorithm is presented in Algorithm 2. In
this algorithm to work, ω(OPT ) is the weight of an optimal
solution. However we do not know the exact value, but only an
upper bound instead, so we have to guess the optimal weight
approximately and run Algorithm 2 for each possible value.

Suppose Bi is the set of internal nodes at the start of
iteration i and Ti is the legal 4+ arborescence selected at
iteration i w.r.t. Bi. For convenience let B0 = ∅, which means
that O(B0) = V \ {s}. Let ωBi(Ti) =

∑
v∈{I(Ti)\{B}} p(v),

and li be the number of orphans intersecting with Ti. Then
we can prove the following result.

Theorem 5.4: At iteration i,

ωBi
(Ti) ≤ δ

1 + ε

1 − ε
· |O(Bi)| − |O(Bi+1)|

|O(Bi)| · ω(OPT ),

Algorithm 2 (1.35 + ε′′)(1 + ln(n − 1))-Algorithm
1: INPUT: ε > 0;
2: OUTPUT: An arborescence with approximation ratio

(1.35 + ε′′)(1 + ln(n − 1)).
3: δ = 1.35, Q = 1/ε;
4: B ← {s};
5: O(B) ← {{v}|v ∈ V \ {s}};
6: while There are more than 3Q orphans left do
7: ω = ω(OPT )

|O(B)| ;
8: (Step 1)Compute the 2+ arborescence T (1) with mini-

mum quotient cost ρ1;
9: (Step 2)Compute the 3+ arborescence T (2) with mini-

mum quotient cost ρ2;
10: for j = 0 to Q do
11: Compute the best ratio legal 4+ arborescence T

(3)
j

with exactly j 3-arborescence attached to it; {This
can be done by enumerating all possible j sets of 3
orphans because Q is a fixed value.}

12: end for
13: (Step 3)Denote the arborescence with the smallest quo-

tient cost among all T
(3)
j by T (3), and let the quotient

cost be ρ3;
14: Compute the approximation of the best ratio legal 4+

arborescence that intersects with at least Q orphans as
follows:

15: Set A = ∅; {A stores all the legal 4+ arborescence that
intersects with at least Q orphans to be constructed}

16: for each vertex v do
17: fix v as the root;
18: while The number of marked orphan is less than Q

do
19: Pick the lightest 3-arborescence with no marked

orphans, and mark the three orphans;
20: end while
21: Add the arborescence constructed to set A;
22: end for
23: (Step 4)Denote best ratio arborescence in A by T (4),

and let the quotient cost be ρ4;
24: (Step 5)If 2ρ1 ≤ δω(1.5ρ2 ≤ δω) then let T0 =

T (1)(T0 = T (2)). Else let T0 be T (3) or T (4), whichever
achieves the minimum in min(δρ3, ρ4);

25: B = B ∪ I(T0), calculate O(B);
26: end while
27: Connect the remaining orphans optimally;
28: Let B be the set of internal nodes selected by this

algorithm and T be an s-arborescence.
29: Return T ;
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for any ε > 0.
Proof: We divide the proof into two parts.

Lemma 5.5: If Ti is selected in Step 1 or Step 2, then

ωBi
(Ti) ≤ δ · |O(Bi)| − |O(Bi+1)|

|O(Bi)| · ω(OPT ).

Proof: Assume Ti is generated in Step 1. In this case,
li ≥ 2, so we have |O(Bi)| − |O(Bi+1)| ≥ li/2. From the
condition in step 5 we know that

2ρ1 ≤ δω,

which is

ωBi
(Ti)

|O(Bi)| − |O(Bi+1)| ≤ 2
ωBi

(Ti)
li

≤ δ
ω(OPT )
|O(Bi)| .

Simplifying we have

ωBi
(Ti) ≤ δ · |O(Bi)| − |O(Bi+1)|

|O(Bi)| · ω(OPT ).

Now suppose Ti is generated in Step 2. In this case, li ≥ 3,
so we have |O(Bi)|− |O(Bi+1)| ≥ 2/3li. From the condition
in step 5 we know that

1.5ρ2 ≤ δω,

which is

ωBi
(Ti)

|O(Bi)| − |O(Bi+1)| ≤ 1.5
ωBi

(Ti)
li

≤ δ
ω(OPT )
|O(Bi)| .

Simplifying we have

ωBi(Ti) ≤ δ · |O(Bi)| − |O(Bi+1)|
|O(Bi)| · ω(OPT ).

Lemma 5.6: If the first two conditions in Step 5 are not
met, i.e., Ti is generated in Step 3 or Step 4, and the best
ratio legal 4+ arborescence has more than Q 3-arborescences,
then

ρ4 ≤ δ(1 + ε)ω.

Proof: Suppose that T ∗
i is a best ratio legal 4+ ar-

borescence at iteration i, and T ∗
i contains more than Q 3-

arborescences. Let ω3(n3) be the total weight of internal nodes
of the 3-arborescences (number of 3-arborescence), and ω2(n2)
be the total weight of internal nodes of the 2-arborescences
(number of 2-arborescence). Note that single branch can be
paired up and treated as a 2-arborescence. Let ω1 be the total
weight of internal nodes of the single branch (if one exists).
Since the quotient cost is at most ω, we have

ω3 + ω2 + ω1 ≤ (3n3 + 2n2 + 1)ω. (1)

We can view a 3-arborescence as a 2-arborescence by
dropping an orphan. This makes it a legal 3+ arborescence. If
the quotient of the legal 3+ arborescence is at most δω, then
we can simply use this legal 3+ arborescence with quotient
cost ρ4 ≤ δω. The difficult case is when after converting to a

legal 3+ arborescence, the quotient cost is at least δω. Thus
we can assume that

ω3 + ω2 + ω1 ≥ (2n3 + 2n2 + 1)δω. (2)

Combine these two inequalities together, we get

(3 − 2δ)n3 − 2(δ − 1)n2 − (δ − 1) ≥ 0. (3)

By taking three 2-arborescences of T ∗
i and duplicating the

paths to the orphans in the cheapest 2-arborescence, we can
convert them into two 3-arborescences. This increases the total
weight by a factor of at most 4/3. Now we have at least n3 +
2/3n2 3-arborescences.

Now the algorithm greedily picks 3-arborescence. We can
pick at least n3 + 2/3n2 orphans in this manner, and this
can be a candidate. Since each time we greedily pick a 3-
arborescence that belong to three distinct 3-arborescence in
the best ratio legal 4+ arborescence, therefore we might pick
one orphan from each of the n3 + 2/3n2 3-arborescences(the
n3 +2/3n2 3-arborescences contains 3(n3 +2/3n2) and have
weight at most ω3+ 4ω2

3 ). Because n3+2/3n2 > Q, we derive
an upper bound on the weight of 4+ arborescence generated
at this step.

Thus the legal 4+ arborescence Ti has weight at most

1
3
(ω3+

4ω2

3
)+ω1 ≤ 1

3
(ω3+ω2+ω1)+

1
9
(ω2+ω1)+

5
9
ω1. (4)

And since the first two conditions of Step 5 are not satisfied,
which means that ω2/(2n2) ≥ δω/2, and ω3/(3n3) ≥ 2δω/3.
Substituting ω2 and ω3 in Equation 4 we get

1
3 (ω3 + 4ω2

3 ) + ω1

≤ 1
3 (3n3 + 2n2 + 1)ω
+ 1

9 ((3n3 + 2n2 + 1)ω − 2n3δω)
+ 5

9 ((3n3 + 2n2 + 1)ω − 2n3δω − n2δω)
≤ ω(3n3 + 2n2 − 4δ

3 n3 − 5δ
9 n2 + 1).

(5)

Multiplying Equation 3 by ω/2 and adding to Equation 5, we
get that the total weight is at most

ω((
9
2
− 7δ

3
)(n3 +

2
3
n2) +

3
2
− δ). (6)

Also since n3 + 2
3n2 ≤ li and n3 > Q = 1/ε, we have

ρ4 ≤ ω(( 9
2− 7δ

3 )(n3+
2
3 n2)+

3
2−δ)

li

≤ ω(( 9
2− 7δ

3 )(n3+
2
3 n2)+

3
2−δ)

n3+
2
3 n2

≤ ω(( 9
2 − 7δ

3 ) + ( 3
2−δ)

n3
)

≤ ω(( 9
2 − 7δ

3 ) + ( 3
2 − δ)ε)

(7)

Set δ = 1.35, we have the following result

ρ4 ≤ δ(1 + ε)ω.

Now we come back to the proof of Theorem 5.4. If Ti is
selected from Step 1 or Step 2, we can use Lemma 5.5 to
prove this claim. Otherwise, we consider the following two
cases.

1) Suppose T ∗
i contains no more than Q 3-arborescences,
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• δρ3 ≤ ρ4, then Ti is from Step 3 which is a
legal 4+ arborescence with minimum quotient cost.
Therefore ρ3 ≤ ω. Since li ≥ 4, we can get that

ωBi(Ti) ≤ li · ω(OPT )
|O(Bi)|

≤ 4
3 · |O(Bi)|−|O(Bi+1)|

|O(Bi)| · ω(OPT ).
(8)

• ρ4 ≤ δρ3(≤ δω), then Ti is from Step 4 in which
case li ≥ Q. So we can get that

ωBi(Ti) ≤ δ · li · ω(OPT )
|O(Bi)|

≤ δ
1−ε · |O(Bi)|−|O(Bi+1)|

|O(Bi)| · ω(OPT ).
(9)

2) Suppose T ∗
i contains more than Q 3-arborescences,

• δρ3 ≤ ρ4. By Lemma 5.6 we know that δρ3 ≤ ρ4 ≤
δ(1 + ε)ω. So we have

ωBi
(Ti) ≤ (1 + ε) · li · ω(OPT )

|O(Bi)|
≤ 4

3 (1 + ε) · |O(Bi)|−|O(Bi+1)|
|O(Bi)| · ω(OPT ).

(10)
• ρ4 ≤ δρ3, then Ti is from Step 4 in which case li ≥

Q. By Lemma 5.6 we know that ρ4 ≤ δ(1 + ε)ω.
So we have

ωBi(Ti) ≤ δ(1 + ε) · li · ω(OPT )
|O(Bi)|

≤ δ 1+ε
1−ε · |O(Bi)|−|O(Bi+1)|

|O(Bi)| · ω(OPT ).
(11)

This concludes the proof of Theorem 5.4.
Theorem 5.7: BROADCAST IN MR-MC NETWORK can be

approximated within (1.35 + ε′′)(1 + ln(n − 1)), for ε′′ > 0.
Proof: The total number of internal nodes output by the

algorithm is to sum up all the ωBi
(Ti), which is δ 1+ε

1−ε ·H(|V |−
1) ·ω(OPT ). Set ε = ε′

2+ε′ , then 1+ε
1−ε = 1 + ε′. Also note that

δ = 1.35, so δ 1+ε
1−ε ·H(|V |−1) = 1.35(1+ ε′)H(n−1). Since

1.35(1 + ε′)H(n − 1) ≤ (1.35 + ε′′)(1 + ln(n − 1)), so we
obtain an approximation algorithm with approximation ratio
(1.35 + ε′′)(1 + ln(n − 1)), where ε′′ > 0.

VI. IMAPPROXIMABILITY

Let us first consider the following problem:
SET-COVER: Given a finite set X and a collection
C of subsets of X , find a minimum set cover where
a set cover is a subcollection A ⊆ C such that
∪A∈AA = X .

About SET-COVER, Feige [26] showed the following result
on imapproximability.

Lemma 6.1: SET-COVER has no polynomial-time ρ lnn-
approximation for 0 < ρ < 1 unless NP ⊆
DTIME(nO(log log n)) where n = |X|.

In this section, we will show the following result for
BROADCAST IN MR-MC NETWORK.

Theorem 6.2: BROADCAST IN MR-MC NETWORK has no
polynomial-time ρ lnn-approximation for 0 < ρ < 1 unless
NP ⊆ DTIME(nO(log log n)).
Proof. Consider an instance of SET-COVER, a finite set X and
a collection C of subsets of X . We construct an instance of

s({0})

1
U ({0,1})

(b)

2
U ({0,2})

3
U ({0,3})

1
V ({1 2})�

2
V ({1 2 3})�� 3

V ({2 3})�
4

V ({3})

Fig. 2. An example of transformation

BROADCAST IN MR-MC NETWORK with p(v) = 1 for every
node v as follows:

Let V = {s} ∪ {Ui | Si ∈ C} ∪ {Vx | x ∈ X} and E =
{(s, Ui) | Si ∈ C} ∪ {(Ui, Vx) | x ∈ A} (Fig. 2). Suppose
C = {S1, S2, ..., Sm}. Define a node label assignment A :
V → 2Z+

by setting

A(s) = {0},
A(Ui) = {0, i} for Si ∈ C,

A(Vx) = {i | x ∈ Si} for x ∈ X.

Suppose BROADCAST IN MR-MC NETWORK has a
polynomial-time (ρ lnn)-approximation for some 0 < ρ < 1.
Let F : V → 2Z+

be such an approximation solution on the
instance constructed as above. Define A = {Si | i ∈ F (Ui)}.
Since each Vx can only be reached from some Ui with x ∈ Si,
there must exist Si 
 x such that i ∈ F (Ui). This means that
A is a set cover. Suppose A∗ is a minimum set cover. Define
F ′ : V → 2Z+

by setting

F ′(s) = {0},
F ′(Ui) = {i} if Si ∈ A∗,
F ′(Ui) = ∅ if Si �∈ A∗,
F ′(Vx) = ∅ for all x ∈ X.

Clearly, F ′ is a solution of B-DM and hence |F | ≤
(ρ lnn)|F ′|. Therefore,

|A| ≤ |F | − 1
≤ (ρ lnn)|F ′| − 1
= (ρ lnn)(|A∗| + 1) − 1
≤ (ρ′ lnn)|A∗|.

for any 0 < ρ′ < ρ < 1 and sufficiently large |A∗|. Therefore,
SET-COVER has polynomial-time (ρ′ lnn)-approximation.
Hence, NP ⊆ DTIME(nO(log log n)). �

VII. SIMULATIONS

In this section, we compare our Algorithm 2(denote
by BMMN for short) with the Multi-channel Self-pruning
(MCSP) [9]. We want to know the relationship between the
number of forward channels and the number of nodes in
the network(N ), as well as the transmission radius(R). The
multiradio multichannel wireless network in the simulation is
generated by randomly deploying N(30 ≤ N ≤ 60) nodes in
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Fig. 3. Varying the number of nodes

a 100× 100 area. Each node is equipped with m radios and p
channels, where m and p are random numbers between 1 and
5 respectively. The transmission radius of each node varies
from 35 to 65. We run the algorithms for different N and R.

In our simulation, we set the transmission power level of
each node to be some fixed value. Thus, the transmission range
of each node is the same, which is a disk with radius R. In
this case, total energy consumption in BROADCAST IN MR-
MC NETWORKS can be measured by the number of forward
channels over all forward nodes (for simplicity, we will call
it the number of forward channels).

Fig. 3 presents the comparison of BMMN and MCSP in
generated number of forward channels and generated number
of forward nodes when varying the number of sensors N .
The transmission range R is set to be 40, We can see that
as the number of sensors increases, the number of forward
channels and the number of forward nodes increase, and
BMMN requires much less number of forward channels and
the number of forward nodes than MCSP respectively.

To examine the influence of transmission range R, we first
fix the number of sensors N to be 100. The results are shown
in Fig. 4. We can see that as the transmission range increases,
the number of forward channels and the number of forward
nodes decrease, and BMMN requires much less number of
forward channels and the number of forward nodes than MCSP
respectively.

The above simulations show our algorithm is better than the
algorithm in [9].

VIII. CONCLUSION

We showed that two problems BROADCAST IN MR-MC
NETWORKS and MIN NODE-WEIGHT ARBORESCENCE are
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Fig. 4. Varying R

equivalent, and we also designed polynomial-time (1.35 +
ε)(1+ln(n−1))-approximation for them. Using the approach
in [25], it is easy to see that above result also implies
a polynomial-time (2.7 + ε)(1 + ln(n − 1))-approximation
for minimum strongly connected dominating set in directed
graphs, which is better than 3(1 + lnn)-approximation in
[25]. We also showed that for 0 < ρ < 1, there is no
polynomial-time (ρ lnn)-approximation for BROADCAST IN
MR-MC NETWORKS.
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