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Quantum-limited measurement of magnetic-field gradient with entangled atoms
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We propose a method to detect the amplitude gradient of a microwave field by using a pair of entangled
two-component Bose-Einstein condensates. We consider the two spatially separated condensates to be coupled to
the two different magnetic fields. The magnetic-field gradient can be determined by measuring the variances of
population differences and relative phases between the two-component condensates in two wells. The precision
of measurement can reach the Heisenberg limit. We study the effects of one-body and two-body atom losses on
the detection. We find that the entangled atoms can outperform the uncorrelated atoms in probing the magnetic
fields in the presence of atom losses. The effect of atom-atom interactions is also discussed.
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I. INTRODUCTION

Probing the magnetic field [1] is important in different areas
of science, such as physical science [2], biomedical science [3],
etc. Recently, ultracold atoms have been used for detecting
magnetic field [4–6] due to long coherence times [7,8] and
negligible Doppler broadening. In addition, coherent collisions
between atoms lead to nonlinear interactions which can be used
to generate quantum entanglement [9]. In fact, entanglement
is a useful resource [10] for enhancing the accuracy of pre-
cision measurements. The measurements beyond the standard
quantum limit have been recently demonstrated [11,12] using
entangled atomic Bose-Einstein condensates (BECs).

In this paper, we propose a method to detect the microwave
magnetic-field gradient by using two spatially separated
condensates of 87Rb atoms, as shown in Fig. 1. Here we
consider the two hyperfine spin states of atoms to be coupled to
the magnetic fields via their magnetic dipoles [6,13]. Recently,
a BEC has been shown to be transported a distance of about
1 mm by using a conveyor belt [14]. Therefore, the two
separate condensates can be used for measuring the differences
between two magnetic fields at the two different locations. The
magnetic-field gradient can be determined by measuring the
variances of the population differences and the relative phases
between the two-component condensates in the two different
wells.

The sensitivity of the detection can be enhanced by using
entangled atoms [11,12,15]. Singlet states [16], which are
multiparticle entangled states, have been found to be useful
for detecting the magnetic-field gradient [17]. The accuracy
of measurement can attain the Heisenberg limit [16,17]. In
this paper, we discuss how to produce the singlet state of two
spatially separated BECs by using entangled tunneling [18]
and appropriately applying the relative phase shifts between
the atoms. It is necessary to manipulate the tunneling couplings
and atom-atom interactions of the condensates in a double well.
These have been shown in recent experiments [19–21].

However, the performance of detection can be affected
by the atom losses of the condensates [22–24]. In fact, the
two-body atom losses [25] are dominant in two-component
condensates. We study the effects of one-body and two-body
losses on the measurements. We find that the entangled atoms
can give better performances than using uncorrelated atoms in

detecting the magnetic fields if the loss rates of atoms are much
weaker than the coupling strength of the field gradient. Apart
from atom losses, the effect of atom-atom interactions on the
performance of this detection is also important [26,27]. Here
we show that the magnetic-field gradient can be estimated if the
nonlinear interactions are sufficiently weak. The accuracy of
the detection will be reduced when the strength of nonlinear
interactions becomes strong. But this can be minimized by
using either Feshbach resonance [11] or a state-dependent
trap [12].

II. SYSTEM

We consider two spatially separated BECs of 87Rb atoms,
where each atom has two hyperfine levels |e〉 = |F = 2,m′

F 〉
and |g〉 = |F = 1,mF = −1〉 [6]. Here the magnetic number
m′

F of the upper hyperfine level can be −2, −1, or 0. This upper
state |e〉 can be carefully chosen for which the polarization
of the magnetic field is to be detected [6]. The two BECs
are placed above a surface which generates a magnetic-field
gradient, as shown in Fig. 1. The two condensates are coupled
to the two different magnetic fields via their magnetic dipoles
[6,13].

We adopt the two-mode approximation [28] to describe the
atoms in deep potential wells. The Hamiltonian H0 can be
written as [18]

H0 = −h̄

2

(
Ee

J e
†
LeR + E

g

J g
†
LgR + H.c.

)
+ h̄

∑
α=L,R

(
Ueen

2
eα

+ 2Uegneα
ngα

+ Uggn
2
gα

)
, (1)

where eα (gα) and neα
(ngα

) are the annihilation and number
operators of the atoms in state |e〉 (|g〉) in the left and right
potential wells, respectively. The parameters Ee

J (Eg

J ) and Uee

(Ugg) are the tunneling strength between the two wells and the
atom-atom interaction strength for state |e〉 (|g〉), and Ueg is
the interaction strength between the atoms in the two different
components.

We consider the atoms to be resonantly coupled to the
microwave magnetic fields. The transition frequencies of
hyperfine states can be tuned by a static magnetic field [6].
Here the other hyperfine transitions can be ignored due to
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FIG. 1. (Color online) Schematic of two atomic condensates
being placed above a surface which produces a magnetic-field
gradient. The two trapped condensates are separated by a distance d .
The atoms are coupled to the magnetic fields through their magnetic
dipoles.

large detuning [6]. The Hamiltonian HI describes the internal
states and their interactions between the magnetic fields and is
given by [6]

HI = h̄
∑

α=L,R

[
ωeneα + ωgngα + �α

2
(eiωt e†αgα + H.c.)

]
,

(2)

where ωe and ωg are the frequencies of the atoms in states |e〉
and |g〉, respectively, and ω is the frequency of the magnetic
field. The parameter �L (�R) is the coupling strength between
the atoms and magnetic field BL (BR) in the left (right)
potential well.

We work in the interaction picture by performing the unitary
transformation as

U (t) = exp

[
−it

∑
α=L,R

(ωneα + ωgngα)

]
. (3)

The transformed Hamiltonian becomes

HI = h̄
∑

α=L,R

[
�neα + �α

2
(e†αgα + H.c.)

]
, (4)

where � = ωe − ω is the detuning between the atoms and the
magnetic field.

If the two wells are separated by a large distance, then
the tunneling strengths are effectively turned off, i.e., Ee

J =
E

g

J = 0. Here we consider the number of atoms in each trap
to be equal to N/2, where N is the total number of atoms. For
convenience, the system can be expressed in terms of angular
momentum operators as [29]

Jαx = 1

2
(e†αgα + g†

αeα), (5)

Jαy = 1

2i
(e†αgα − g†

αeα), (6)

Jαz = 1

2
(e†αeα − g†

αgα), (7)

where α = L,R. The Hamiltonians H0 and HI are rewritten
as

H0 = h̄
∑

α=L,R

[1

2
(Uee − Ugg)NJαz + χJ 2

αz

]
, (8)

HI = h̄
∑

α=L,R

(�Jαz + �αJαx), (9)

where χ = Uee + Ugg − 2Ueg . We have omitted a constant
term h̄(UeeN

2 + UggN
2 + 2UegN

2 + 4�N )/8.

III. DETECTION OF MAGNETIC-FIELD GRADIENT

We present a scheme for detecting the magnetic-field
gradient by using a pair of entangled BECs. First, it is necessary
to generate the entanglement between two spatially separated
condensates. Then, one of the condensates can be brought to
another place for detection, and the atoms are coupled to the
magnetic fields. The magnetic-field gradient can be estimated
by measuring the variances of the population differences and
relative phases between the condensates in the two internal
states. The procedure of this detection scheme is described in
the following subsections.

A. Generation of entangled states

To enhance the sensitivity of detection, it is necessary
to generate the entanglement between the two separate
condensates. We consider the condensates to be prepared in an
entangled state, which is given by [16]

|�in〉 = 1√
2j + 1

∑
m

(−1)m|j,m〉L|j,−m〉R, (10)

where |j,m〉α is an eigenstate of angular momentum operator
Jαz for α = L,R, and j = N/4. The spin states of the two
condensates are anticorrelated [18].

Now we discuss how to generate the entangled state |�in〉
in Eq. (10). Initially, the atoms in the two different internal
states |e〉 and |g〉 are confined in the different potential
wells, where each condensate has an equal number of atoms,
N/2. The initial Fock state can be prepared by appropriately
controlling the strengths of atom-atom interactions and the
tunneling strengths [21,30–32]. The intra- and intercomponent
interaction strengths are tuned to be the same, i.e., U ≈
Uee ≈Ugg ≈Ueg . The tunneling strengths EJ ≈Ee

J ≈E
g

J are
much weaker than the atomic interaction strengths U . The
entanglement between the atoms in the two components can
be dynamically produced via the process of tunneling [18]. In
this process, the atoms in the two different internal states can
tunnel as a pair due to the strong atom-atom interactions. The
entangled state can then be generated as [18]

|�(t∗)〉 ≈
∑

n

cn|n〉gL
|N/2 − n〉gR

|N/2 − n〉eL
|n〉eR

, (11)

where cn is the probability amplitude. When the population
difference between the wells for each component condensate
is about zero at time t∗, the probability amplitude cn is
approximately equal to 1/

√
N/2 + 1. Then, the tunneling can

be effectively switched off by adiabatically separating the two
wells. Since the number of atoms in each well is equal, the
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FIG. 2. (Color online) (a) Time evolution of the population
difference between two wells vs time for the atoms in state |g〉.
(b) Fidelity between the input state |�in〉 and state |ψ(t)〉 vs time.
The red circle denotes the zero-population difference between the
two wells at time t∗. The following parameters are used: N = 4,
U = 10EJ , δL = δ, and δR = 0.

two-component condensate in each trap can be effectively
described by an angular momentum system. Therefore, state
|�(t∗)〉 can be rewritten as [18]

|�(t∗)〉≈ 1√
2j + 1

∑
m

|n〉gL
|N/2 − n〉eL

|N/2 − n〉gR
|n〉eR

≈ 1√
2j + 1

∑
m

|j,m〉L|j,−m〉R, (12)

where |j,m〉L = |n〉gL
|N/2 − n〉eL

and |j,−m〉R = |N/2 −
n〉gR

|n〉eR
are the eigenstates of JLz and JRz, respectively.

In Fig. 2(a), we plot the population difference between the
two wells versus time, where the atoms are in |g〉. A red circle
denotes the time t∗ at which the population difference is equal
to zero. The atoms in |g〉 can tunnel to the other well even if
the interaction strengths U are much stronger than EJ .

The entangled state |�(t∗)〉 in Eq. (12) differs from the
entangled state |�in〉 in Eq. (10) in the relative phases between
the atoms. A relative phase shift can be accumulated by turning
on the interaction, which can be described by the Hamiltonian
Hrp as

Hrp = h̄(δLJLz + δRJRz), (13)

where δL is not equal to δR . State |ψ(t)〉 can be produced as

|ψ(t)〉 = exp

(
− i

h̄
Hrpt

)
|�(t∗)〉. (14)

This interaction can be made by controlling the strength Uee

and Ugg in Eq. (8) in one of the potential wells. Note that this
interaction will not change the population difference between
the two-component condensates. Therefore, the quantum num-
bers m in Eq. (12) remain unchanged during the interaction.

FIG. 3. (Color online) Fidelity between the input state |�in〉 and
the entangled state |�̃〉 vs the total number N of atoms. The fidelities
are shown with different parameters for generating |�̃〉: U = 5EJ

(red crosses), 10EJ (blue pluses), and 50EJ (black circles).

After turning on the interaction for a specific time, the required
entangled state |�̃〉 can then be produced, where |�̃〉 is the
state which has the maximum fidelity [33] between |�in〉 and
|ψ(t)〉.

We then study the fidelity between states |�in〉 and |ψ(t)〉.
In Fig. 2(b), we plot the fidelity |〈�in|ψ(t)〉|2 versus the time,
where δL = δ and δR = 0. The fidelity varies with time t , as
shown in Fig. 2(b). The highest fidelity can exceed 0.9.

In addition, we examine the fidelity between states |�in〉
and |�̃〉 for different numbers N of atoms in Fig. 3. As N

increases, the fidelities decrease. However, a higher fidelity
can be obtained with a higher ratio of U to EJ .

B. Coupling to the magnetic field

We consider the atoms to be coupled to the magnetic field at
resonance, i.e., � = 0 and setting Uee = Ugg . Here we assume
that the strengths of atom-atom interactions are much weaker
than the coupling strengths �L and �R , and therefore they are
ignored here. The effect of the atom-atom interactions will be
discussed later. The Hamiltonian HI reads

HI = h̄(�LJLx + �RJRx). (15)

The magnetic coupling strengths �L and �R are different
from each other. Let us write �L = � + �D/2 and �R =
� − �D/2. The Hamiltonian HI can be written as

H1 = h̄�(JLx + JRx) + h̄�D

2
(JLx − JRx). (16)

This small parameter �D is to be determined.

C. Readout process

The magnetic-field gradient can be estimated by measuring
the variance 〈J̃ 2

yz〉 = 〈J 2
y− − J 2

z+〉, where Jy− = JLy − JRy

and Jz+ = JLz + JRz. Physically speaking, 〈Jαy〉 and 〈Jαz〉 are
the expectation values of the relative phase and population dif-
ference between the two-component condensates in potential
well α, for α = L,R. The variance 〈J̃ 2

yz〉 is given by

〈
J̃ 2

yz(φD)
〉 = N (N + 4)

12
cos (φD), (17)
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FIG. 4. (Color online) The variances 〈J̃ 2
yz〉 are plotted vs time for

N = 4 and �D = 0.05 �. The black solid and blue dotted lines show
the two different initial states, |�in〉 and |�̃〉, respectively, where
U = 10EJ is used to produce |�̃〉.

where φD = �Dt . Here 〈Jy−〉 and 〈Jz+〉 are equal to zero
for the input state |�in〉 in Eq. (10). The expectation value
〈J̃ 2

yz(φD)〉 is a function of the parameter φD . Therefore,
this quantity can be used for determining the magnetic-field
gradient �D . In Fig. 4, we plot the variance 〈J̃ 2

yz〉 versus
the time for two different initial states, |�in〉 and |�̃〉. The
variances 〈J̃ 2

yz〉 oscillate with the frequency φD for these
two initial states. But the variance 〈J̃ 2

yz〉 shows some small-
amplitude fluctuations in the oscillations if the initial state |�̃〉
is used.

D. Sensitivity of detection

The magnetic-field gradient can be estimated from the
variance 〈J̃ 2

yz〉. The uncertainty of the parameter φD is given
by

δφD = �J̃ 2
yz

|∂〈J̃ 2
yz〉/∂φD| , (18)

where �J̃ 2
yz =

√
〈J̃ 4

yz〉 − 〈J̃ 2
yz〉2. The uncertainty δφD can be

found as

δφD =
√

15 sin2(φD) + (N − 2)(N + 6) cos2(φD)

5N (N + 4) sin2(φD)
. (19)

At time t = π/2�D , the minimum uncertainty δφmin
D is

δφmin
D =

√
3

N (N + 4)
. (20)

The uncertainty scales with 1/N for large N . Thus, the
accuracy of the measurement can reach the Heisenberg limit
[10].

In Fig. 5, we plot the minimum uncertainties δφmin
D versus

the total number of atom, for the two different initial states
|�in〉 and |�̃〉, respectively. The measurement using the two
different initial states can give the similar values of δφmin

D .
Therefore, the entangled state |�̃〉 can provide a similar
accuracy of the case using the input state |�in〉 in Eq. (10).

FIG. 5. (Color online) The minimum of the uncertainties δφmin
D vs

the total number N of atoms for �D = 0.05 �. The empty circles and
blue crosses denote the system with the two different initial states,
|�in〉 and |�̃〉, respectively, where U = 10EJ is used to produce state
|�̃〉.

IV. EFFECT OF ATOM LOSSES

Now we study the sensitivity of the detection in the presence
of one-body and two-body atom losses.

A. One-body atom loss

Here we study the one-body atom losses by using the phe-
nomenological master equation [22,23]. The master equation
describes one-body atom losses and can be written as [22,23]

ρ̇ = i[ρ,H ] +
∑
α,β

γ o
β

2
(2βαρβ†

α − β†
αβαρ − ρβ†

αβα), (21)

where γ o
β is the damping rate of one-body atom loss and α =

L,R and β = e,g.
We compare the two estimators 〈J̃ 2

yz〉 and 〈J 2
z 〉 for determin-

ing the parameter φD in the presence of one-body atom loss,
where Jz = JLz + JRz is the sum of the population difference
between the two hyperfine spin states of condensates in the
two wells. In Fig. 6(a), we plot the variance 〈J̃ 2

yz〉 versus time
for the different damping rates γ o = γ o

e = γ o
g .

The initial state is |�in〉 in Eq. (10). We can see that the
variances 〈J̃ 2

yz〉 intersect at the same point at time t = nπ/2�D ,
where n is an odd number. The parameter �D can be estimated
in the vicinity of these intersection points. In fact, the minimum
uncertainty of the parameter �D can be obtained at the first
intersection point, i.e., t = π/2�D .

In Fig. 6(b), the variances 〈J 2
z 〉 are plotted versus time for

the different damping rates γ o. For γ o = 0, the variance 〈J 2
z 〉

can be used to determine the parameter �D [17]. However,
the estimators 〈J 2

z 〉 do not intersect at the same point for the
different damping rates γ o. Further, the atom losses cause the
shifts of the oscillations. This means that 〈J 2

z 〉 is not a faithful
estimator for determining the parameter �D in the presence of
atom losses.

In Fig. 7, we plot the minimum uncertainties δφmin
D versus

the total number N of atoms, where N is up to 10. Here the
minimum uncertainties δφmin

D are obtained at time t = π/2�D .
For comparison, the case using uncorrelated atoms without any
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FIG. 6. (Color online) (a) Variances 〈J̃ 2
yz〉 vs time. (b) Variances

〈J 2
z 〉 vs time. The initial state is the entangled state |�in〉 in

Eq. (10). The following parameters are used: �D = 0.05 � and
N = 2. Different damping rates are shown: γ o = 0 (black solid line),
0.0025 � (blue dotted line), 0.005 � (red dashed line), 0.0075 �

(green dot-dashed line) and 0.01 � (cyan solid line), respectively.
The red circles denote the intersection points at 〈J̃ 2

yz〉 = 0.

atom loss is also shown (green diamonds in Fig. 7), where the
uncertainty is equal to 1/

√
N [10]. In Fig. 7, the entangled

atoms can give a better performance than the uncorrelated
atoms in the detection if the damping rate γ o is much smaller
than �D = 0.05 �. When γ o = 0.01 � becomes comparable
to �D , the accuracy of the detection is similar to the case using
uncorrelated atoms, as shown in Fig. 7.

FIG. 7. (Color online) The minimum uncertainties δφmin
D plotted

vs N for �D = 0.05 �. Different damping rates are shown: γ o = 0
(black circles), 0.005 � (blue pluses), and 0.01 � (red crosses). The
green diamonds (dashed line) denote the case using uncorrelated
atoms with the uncertainty 1/

√
N for γ o = 0.

B. Two-body atom loss

The phenomenological master equation describes two-body
atom losses and can be written as [24]

ρ̇ = i[ρ,H ] + γ t
ee

2

∑
α=L,R

(
2e2

αρe†2
α − e†2

α e2
αρ − ρe†2

α e2
α

)

+ γ t
eg

2

∑
α=L,R

(2eαgαρe†αg†
α − e†αeαg†

αgαρ − ρe†αeαg†
αgα),

(22)

where the parameters γ t
ee and γ t

eg are the damping rates of
two-body atom losses for the condensates in the upper internal
state |e〉 and the atoms in the two different components and
α = L,R.

We plot the estimators 〈J̃ 2
yz〉 versus time for different

damping rates γ t
eg of two-body atom losses and γ t

ee = 0 in
Fig. 8(a) and γ t

ee = 1.5γ t
eg [25] in Fig. 8(b). Both results

show that 〈J̃ 2
yz〉 intersect at times nπ/2�D , where n is an

odd number. Therefore, the parameter �D can be estimated at
times nπ/2�D in the presence of two-body atom losses.

In Fig. 9, we plot the minimum uncertainties δφmin
D versus

N , where the minimum uncertainties are taken at time
t = π/2�D . The uncertainties from the measurement with
uncorrelated atoms are shown with green diamonds, where

FIG. 8. (Color online) Variances 〈J̃ 2
yz〉 vs time. (a) Different

damping rates are shown: γ t
eg = 0 (black solid line), 0.005 � (blue

dotted line), and 0.01 � (red dashed line), with γ t
ee = 0. (b) Different

damping rates are shown: γ t
eg = 0 (black solid line), 0.001 � (blue

dotted line), and 0.002 � (red dashed line), with γ t
ee = 1.5γ t

eg . The
initial state is the input state |�in〉. The following parameters are used:
�D = 0.05 � and N = 4. The red circles denote the intersection
points at 〈J̃ 2

yz〉 = 0.
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FIG. 9. (Color online) The minimum uncertainties δφmin
D vs N for

�D = 0.05�. Different damping rates γ t
eg are shown: γ t

eg = 0 (black
circles), 0.0025� (blue plus), 0.005� (red crosses), 0.0075� (yellow
squares), and 0.01� (cyan stars). The green diamonds (dashed line)
denote the uncertainty 1/

√
N by using uncorrelated atoms without

any atom loss.

γ t
eg = γ t

ee = 0. The parameters δφmin
D have different scalings

with N for different rates γ t
eg and γ t

ee = 0. For small γ t
eg , the

entangled atoms can outperform the uncorrelated atoms for
detection. When γ t

eg � 0.0075 � and N � 8, the uncertainty
δφmin

D does not decrease with N . To obtain good performance
of the measurements, the damping rates γ t

eg have to be
much smaller than the coupling strength of the magnetic-field
gradient.

Next, we study the sensitivity of the detection by including
the two-body atom loss for the atoms in the excited states in
|e〉 [25]. In Fig. 10, we plot the minimum uncertainty δφmin

D

versus N , where the minimum uncertainties are taken at time
t = π/2 �D . Here we set γ t

ee = 1.5γ t
eg [25]. The minimum

uncertainty exceeds the case of using uncorrelated atoms when
γ t

eg is equal to 0.002 �. In this case, the two-body atom losses
become more detrimental to the performance of the detection.

V. EFFECT OF ATOM-ATOM INTERACTIONS

We investigate the effect of the atom-atom interactions on
the detection of magnetic-field gradient. In Fig. 11, we plot the

FIG. 10. (Color online) The minimum uncertainties δφmin
D vs N

for �D = 0.05 �. Different damping rates are shown: γ t
eg = 0 (black

circles), γ t
eg = 0.001 � (blue crosses), and γ t

eg = 0.002 � (red pluses)
for γ t

ee = 1.5 γ t
eg . The green diamonds (dashed line) denote the case

of using uncorrelated atoms with the uncertainty 1/
√

N .

FIG. 11. (Color online) Time evolution of variances 〈J̃ 2
yz〉 for

different strengths of atom-atom interactions: χ = 0 (black solid
line), 10−4 � (blue dotted line), 5 × 10−4 � (red dashed line), and
0.001 � (green dot-dashed line). The following parameters are used:
N = 50 and �D = 0.05 �. The red circles denote the intersection
points at 〈J̃ 2

yz〉 = 0.

variances 〈J̃ 2
yz〉 versus time for different nonlinear interaction

strengths χ . When χN � �D , 〈J̃ 2
yz(t)〉 are close to each other

for different strengths χ . If the nonlinear interaction strength
χ increases, then the amplitude of oscillations decreases,
as shown in Fig. 11. In addition, the variances 〈J̃ 2

yz(t)〉, for
χN � �D , almost meet at the same points 〈J̃ 2

yz〉 = 0 at times
t = nπ/2�D , where n is an odd number. At times nπ/2�D ,
these give the minimum uncertainty of the parameter φD .

Next, we investigate the uncertainty δφ∗
D at time t =

π/2�D . In Fig. 12, we plot the uncertainties δφ∗
D versus N

for different nonlinear interaction strengths χ . The uncertainty
δφ∗

D is close to the minimum uncertainty δφmin
D for χN � �D .

When χ increases, the uncertainty δφ∗
D does not decrease for

larger N , as shown in Fig. 12. Therefore the strong nonlinear
interactions limit the performance of detection.

In fact, the effects of nonlinear interactions can be
minimized by setting χN � �D . The nonlinear interaction
strength can be appropriately adjusted by using Feshbach
resonance [11] and a state-dependent trap [12].

FIG. 12. (Color online) The uncertainties δφ∗
D are plotted vs N

for δ�D = 0.05 �. Different strengths of atom-atom interactions are
shown: χ = 0 (black circles), 10−4 � (blue crosses), 5 × 10−4 � (red
squares), and 0.001 � (green pluses).
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VI. DISCUSSION

Let us make some remarks on our method for detecting the
magnetic-field gradient by using 87Rb atoms. The transition
frequency of 87Rb atoms can be tuned by using an external
static magnetic field [6]; the range of the frequencies of the de-
tected magnetic field is about a few gigahertz to 10 GHz [6,34].

Next, we roughly estimate the magnitude of the magnetic-
field gradient, which can be probed by using the condensates.
Indeed, the measurement is mainly limited by the atom loss
rate of the condensates. The main source comes from two-body
atom losses [25]. The two-body loss rate is (γ t

eg + γ t
ee)N/V ,

where γ t
eg (γ t

ee) ∼ 10−13 cm3 s−1 [25] and V is the volume
of the condensate. The rates of two-body atom losses depend
on the density of the atomic gases. We assume that V is about
(1 μm)3. The rates of two-body atom loss range from 1 to 10 Hz
for N = 10 to 100. To obtain good performance, the coupling
strength of the magnetic-field gradient �D must be much larger
than the two-body atom loss rates. The coupling strength �L(R)

between the two states is about μBBL(R)/h̄ [6], where μB is
the Bohr magneton. Thus, the minimum value of the magnetic
field can be detected in the range of 10−10 to 10−9 T for N = 10
to 100 and V = (1 μm)3. The minimum value of the detectable
magnetic-field gradient is about 10−9–10−10 T.

VII. CONCLUSION

In summary, we have proposed a method to detect the
magnetic-field gradient by using entangled condensates. We
have described how to generate entangled states of two
spatially separated condensates. The magnetic-field gradient
can be determined by measuring the variances of relative
phases and population differences between the two-component
condensates in the two wells. The uncertainty of the parameter
scales with 1/N . We have also numerically studied the effects
of one-body and two-body atom losses on the detection. We
show that the entangled atoms can outperform the uncorrelated
atoms in detecting the magnetic fields for a few atoms. The
effect of atom-atom interactions on this method has also been
discussed.
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