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a b s t r a c t

We study the precision limits of detecting a linear magnetic-field gradient by using W-states in the
presence of different types of noises. We consider to use an atomic spin chain for probing the magnetic-
field gradient, where a W-state is prepared. We compare this method with the measurement of using
two uncorrelated atoms. For pure states, W-states can provide an improvement over uncorrelated states
in determining the magnetic-field gradient up to four particles. We examine the effects of local
dephasing and dissipations on the performances of detections. In the presence of dephasing, the
uncorrelated atoms can give a higher precision than using W-states. But W-states provide a better
performance in the presence of dissipation for a few particles. We briefly discuss the implementation of
the detection methods with cold atoms and trapped ions.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Measurement of magnetic-field gradient is important in mag-
netic resonance imaging (MRI) [1] and quantum control [2]. For
example, MRI relies on the principle of nuclear magnetic reso-
nance [3]. The information of an image can be encoded via the
magnetic-field gradient [1]. The quality of imaging can be
improved by reducing the signal-to-noise ratio of the magnetic-
field gradient. Therefore, the methods for the reduction of signal-
to-noise ratio may advance the technology of MRI.

Precision measurements of magnetic-field gradient [4–6],
which use the different physical systems and entangled states,
have recently been proposed. In this paper, we propose to detect
the magnetic-field gradient by using an atomic spin chain. Indeed,
neutral atoms [7,8] and trapped ions [9] can be used to accurately
determine the frequency standard which are important in science
and engineering. Entangled states are useful to enhance the
precision of measurements. In addition, the two classes of multi-
partite entangled states, such as GHZ [10] and W-states [11], have
been demonstrated using trapped ions. For example, a W-state has
been produced by using a string of 8 trapped ions [11]. More
recently, a W-state of a few tens of cold atoms have also been
produced in an optical fiber cavity [12].

In realistic situations, the atoms are inevitable to be coupled to the
environment. This greatly limits the performance of measurement.
For example, GHZ states can only give the same uncertainty of
uncorrelated states in detecting the transition frequencies in the
presence of dephasing [13]. Recently, the bounds of the measurement

errors have been provided [14,15] in the presence of the different
types of noises. In the limit of large number of atoms, the precision
limit can be improved by a constant factor in comparison with
uncorrelated states irrespective of the initial state and measurement
scheme. Therefore, it is important to study the precision limits of the
different input states in the presence of different types of noises.

In this paper, we propose a method to detect the magnetic-field
gradient by using a chain of atoms, where the atoms are prepared
in a W-state. W-states are genuine multipartite entangled states
[16] and are robust against noises and particle losses [11]. We
show that the magnetic-field gradient can be encoded onto the
coherence of an atomic spin chain. Therefore, it can be used for
measuring the magnetic-field gradient. Also, we compare this
method with another detection method by using two uncorrelated
atoms.

In fact, the precision limits of detecting the magnetic-field
gradient by using uncorrelated states and W-states are both
inversely proportional to the size of the system. To compare the
two methods with the same size, the distance between two
separate uncorrelated atoms is equal to the length of a chain of
atoms which are prepared in a W-state. We show that W-states
can provide an improvement over the method by using uncorre-
lated states up to four particles.

We investigate the effects of local dephasing and dissipations on
these two detection methods. In contrast to the cases of pure states,
their performances are different in the presence of the different
types of noises. We find that uncorrelated states are able to give
better performance than W-states when the dephasing noise is
present. However, W-states provide a higher precision than uncor-
related states for a few particles in the presence of dissipation.

This paper is organized as follows: in Section 2, we introduce
the system of an atomic spin chain and discuss the coupling of
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atoms to a linear gradient magnetic-field. In Section 3, we study
the precision limits of using an atomic spin chain for measuring
the magnetic-field gradient, where the atoms are in prepared in a
W-state. We compare this method with the measurement by using
two uncorrelated atoms. In Section 4, we investigate the effects of
local dephasing and dissipation on the performances of the two
different detection methods. In Section 5, we briefly discuss the
physical realization of a spin chain by using cold atoms and
trapped ions. We provide a summary in Section 6. We give out
the details of calculations in appendices.

2. Detection of magnetic-field gradient

2.1. System

We consider an atom to have two hyperfine spin states. When
an atom is coupled to a magnetic field, the energy splitting
between two hyperfine states is changed due to the Zeeman effect
[3]. By measuring the difference of the transition frequencies of
two atoms at the two different locations, the magnetic-field
gradient can be determined. In general, an atomic spin chain can
be used for detecting the magnetic-field gradient as shown in
Fig. 1, where each atom is equally spaced with a distance d. We
assume that the magnetic field BðxjÞ linearly varies with the
position xj as

BðxjÞ ¼ B1þGxj; ð1Þ
where B1 is the reference magnetic field and G is the magnetic-
field gradient. The Hamiltonian, which describes the coupling
between atom and the magnetic field, is

H¼ ℏ ∑
N

j ¼ 1
ωjσ

j
z; ð2Þ

where ωj and σjz are the energy frequency and Pauli operator of
atom j, respectively. The total number of atoms in the chain is N.
The transition frequency ωj depends on the magnitude of the
magnetic field BðxjÞ as
ωj ¼ω0þγBðxjÞ; ð3Þ
where ω0 is the transition frequency of the two hyperfine spin
states without the external magnetic-field and γ is the gyromag-
netic ratio of an atom.

2.2. Using W-states

We study the detection method by using W-states. Initially, the
system is prepared in a W-state which is written as

jW〉¼ 1ffiffiffiffi
N

p ðj100…0〉þj010…0〉þ⋯þj000…1〉Þ;

¼ 1ffiffiffiffi
N

p ∑
N

j ¼ 1
jwj〉; ð4Þ

where jwj〉¼ j1〉j∏j0 j0〉j0 and j0a j. When the atomic chain is
coupled to the magnetic-field gradient for a time t, the state

becomes

jψ ðtÞ〉¼ 1ffiffiffiffi
N

p ∑
N

j ¼ 1
e�2ijθ1t jwj〉; ð5Þ

where θ1 ¼ Gγd. The global phase factor has been omitted here.
The magnetic-field gradient can be encoded onto the quantum

coherence of the state. The quantum coherence factor C1 can be
defined as

C1 ¼NjW〉〈W j� ∑
N

j ¼ 1
jwj〉〈wjj: ð6Þ

Now 〈C1〉 can be expressed as

〈C1〉¼ �1þ 1
N

sin 2ðNθ1tÞ
sin 2ðθ1tÞ

: ð7Þ

The quantity 〈C1〉 is a function of the parameter θ1 which is
proportional to the gradient G. Therefore, the magnetic-field
gradient can be determined from the coherence 〈C1〉. The details
of the derivation of Eq. (7) are provided in Appendix A. In fact,
the quantity 〈C1〉 can be obtained by averaging the terms
〈∏ka i;jj0〉kk〈0j〉〈σi

�σ
j
þ þσj

�σ
i
þ 〉 which can be experimentally

measured.
In Fig. 2, we plot the coherence 〈C1〉 versus time, for the

different number of atoms N. The small oscillations are observed
when 〈C1〉 is about �1. The peaks occur when the dimensionless
time θ1t is a multiple of π. The maximum of peaks can attain N�1.

The magnetic-field gradient can be determined from the
coherence 〈C1〉. The uncertainty δΘ1 of the measurement is

δΘ1 ¼
ΔC1

∂〈C1〉

∂Θ1

���� ;
����

ð8Þ

¼ ½N2 sin 2 Θ1� sin 2ðNΘ1Þ�1=2j sin ðNΘ1Þj
jN sin ð2NΘ1Þ�2 cotΘ1 sin 2ðNΘ1Þj

: ð9Þ

where Θ1 ¼ θ1t and ΔC1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〈C2

1〉� 〈C1〉2
q

.
The minimum of uncertainty δΘmin is obtained

δΘmin
1 ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

N2�1

s
; ð10Þ

when Θ1 ¼ nπ and n is an integer. The minimum uncertainty is
proportional to N�1 for large N. The minimum uncertainty in Eq.
(10) can be intuitively understood from the time-energy uncer-
tainty relation [17]. The minimum uncertainty δΘmin occurs when
the energy fluctuation of the state is maximum. The bound in Eq.
(10) can be derived from the time-energy uncertainty which is
given in Appendix B.

Fig. 1. An atomic spin chain is coupled to a linear magnetic-field gradient in the x-
direction. Each atom is separated with a distance d.

Fig. 2. 〈C1〉 versus time θ1t, for the different number of atoms N. The different
number of atoms N are denoted by the different lines: N¼3 (red-dotted), N¼5
(blue-dashed) and N¼10 (black-solid). (For interpretation of the references to color
in this figure caption, the reader is referred to the web version of this article.)
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2.3. Using two uncorrelated atoms

We study the measurement of magnetic-field gradient by using
two uncorrelated atoms which are separated with a distance D as
shown in Fig. 3. We will compare the precision limits of using two
uncorrelated atoms and an atomic chain with the same system's
size D. To facilitate our subsequent discussion, we set D¼ ðN�1Þd,
where N is the number of atoms in the chain.

The magnetic-field gradient can be determined by individually
measuring two atoms at the two different positions. The magnetic-
field gradient is

G¼ B2�B1

D
; ð11Þ

where B2 and B1 are the magnetic fields at the two different
positions.

Now, we briefly describe the procedures of measurement.
Initially, the atoms are prepared in the equally weighted super-
positions as

jΨ ð0Þ〉j ¼
1ffiffiffi
2

p ðj0〉jþj1〉jÞ; ð12Þ

where j¼1 and 2. Then, let the system freely evolve for a time t.
The state becomes

jΨ ðtÞ〉j ¼
1ffiffiffi
2

p ðeiωj t j0〉jþe� iωj t j1〉jÞ: ð13Þ

By applying a π=2�pulse to the atom, the state can be written as

jΨ 0ðtÞ〉j ¼ 1
2 eiωj t ½ð1�e2iωj tÞj0〉þð1þe�2iωj tÞj1〉�: ð14Þ

The frequency ωj can be determined by measuring the probability
Pj of the state j1〉j which is given by

Pj ¼ 1
2 ð1þ cos 2ωjtÞ: ð15Þ

The uncertainty δωj is given by [13]

δωj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pjð1�PjÞ

q dP
dωj

�1;
������ ð16Þ

¼ 1
2t

1� cos 2ð2ωjtÞ
sin 2ð2ωjtÞ

" #1=2
: ð17Þ

When t ¼mπ=ω0
j, the minimum uncertainty can be obtained,

where m is an odd integer. The minimum uncertainty δωmin
j is

δωmin
j ¼ 1

2t
: ð18Þ

The uncertainty of the gradient is proportional to the sum of
δω1 and δω2,

δG¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δω2

2þδω2
1

q
γD

; ð19Þ

where δωj ¼ γδBj. We can express the uncertainty δθ2 as

δθ2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δω2

2þδω2
1

q
N�1

; ð20Þ

where θ2 ¼ γGd and D¼ ðN�1Þd. From Eqs. (18) and (20), the
minimum uncertainty δΘmin

2 is

δΘmin
2 ¼ 1ffiffiffi

2
p

ðN�1Þ
; ð21Þ

where Θ2 ¼ θ2t.

2.4. Comparison of two methods

Now we compare the performances of these two methods. In
Fig. 4, we plot the minimum uncertainties of uncorrelated states
with the two different methods. Although the uncertainties of the
two methods both scale with N�1 if N is large. W-states can
provide a higher precision than using uncorrelated atoms up to
4 particles.

In addition, it should be noted that the improving factor N�1

comes from the gradient field which gives rise to the energy
fluctuation of the state of order of N. The uncorrelated states can
also provide the scaling N�1. Therefore, in this sense, the scaling of
N�1 is different to the usual Heisenberg-limited measurement [18].

3. Effects of dephasing and dissipation

Now we study the effects of local dephasing and dissipation of
atoms on measurements. We consider each atom to be independently
coupled to the bath. We have assumed that the Markovian approx-
imation is valid. The master equation of atom j, which describes
dissipation and dephasing at low temperature, is written as [19]

_ρðjÞ ¼ i½ρðjÞ;H�þΓpðσj
zρðjÞσj

z�ρÞþΓd

2
ð2σj

�ρ
ðjÞσj

þ

�σj
þσ

j
�ρ

ðjÞ �ρðjÞσj
þσ

j
� Þ; ð22Þ

Fig. 3. Two uncorrelated atoms are separate with a distance D for measuring the
magnetic-field gradient. The two different magnetic fields are independently
measured.

Fig. 4. Log–log plot of δΘmin versus N. The W-states and uncorrelated states are
denoted with black solid and blue dashed lines, respectively. (For interpretation of
the references to color in this figure caption, the reader is referred to the web
version of this article.)
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where Γp and Γd are the dephasing and dissipation rates, respectively.

The dissipative dynamics can be solved as: ρðjÞ
11 ¼ e�ΓdtρðjÞ

11ð0Þ,
ρðjÞ
00 ¼ 1�e�ΓdtρðjÞ

11ð0Þ and ρðjÞ
01 ¼ e�ðΓd=2Þt�Γptþ2iωj tρðjÞ

01ð0Þ.
The system becomes incoherent and the dynamics is no longer

periodic. Therefore, the precision limits are limited due to noises.
For W-states, we can obtain the analytical expression of the
uncertainty of the parameter θ1 in the presence of dissipation
and dephasing, It is given by

δθ1 ¼
½g1ðtÞ sin 4Θ1þg2ðtÞ sin 2 Θ1 sin 2ðNΘ1Þ� sin 4ðNΘ1Þ�1=2

tjN sin ð2NΘ1Þ�2 cotΘ1 sin 2ðNΘ1Þj
;

ð23Þ

where g1ðtÞ ¼N2½ðN�1Þeð2Γ�ΓdÞt�ðN�2ÞeΓt�1�, g2ðtÞ ¼ ½NðN�2Þ
þ2Ne�Γt �eΓt and Γ ¼Γdþ2Γp.

For uncorrelated atoms, the uncertainty is given by

δθ2 ¼
1

tðN�1Þ ∑
2

j ¼ 1

1�e�Γt cos 2ð2ωjtÞ
4e�Γt sin 2ð2ωjtÞ

" #1=2
; ð24Þ

where Γ ¼Γdþ2Γp. From Eq. (24), the minimum uncertainty
occurs when t ¼Γ�1 and ωjt ¼ nπ=2, where n is odd. It is given by

δθmin
2 ¼ 1

N�1

ffiffiffiffiffiffiffiffiffi
Γ2e
2

s
: ð25Þ

We numerically search the local minimum of the uncertainties
in Eq. (23) within the dimensionless time interval, θΔt, between

0 and π, where the smallest time step is up to 10�7. There exists a
minimum point around θ1t ¼ π but the time interval is shorter
than 10�7. We have abandoned those points which are
unstable (the first derivative of those points varies rapidly instead
of being zeros).

We compare the performance of using uncorrelated states and
W-states in Fig. 5. We plot δθmin versus N on a logarithmic scale,
for the different dephasing and dissipation rates in Fig. 5(a) and
(b), respectively. If the dephasing and dissipation rates are much
smaller than the parameter of magnetic-field gradient, then
ln δϕmin of W-states is proportional to ln N and the slope is about
�1. The uncertainty is proportional to N�1.

For pure states, W-states can provide a higher precision than
uncorrelated states up to 4 particles. In Fig. 5(a), the uncorrelated
states can do better than W-states in the presence of dephasing. In
Fig. 5(b), the precision limits of W-states and uncorrelated states
in the presence of dissipations are plotted. W-states can provide a
higher precision than uncorrelated states for a few particles. This
result shows that the different precision limits of W-states and
uncorrelated states can be obtained in the presence of the
different types of noises.

4. Discussion

Let us briefly discuss the methods of realizations of a spin chain
using cold atoms and trapped ions. An atomic spin chain can be
realized by using ultracold atoms in an optical lattice [23]. Indeed,
an atomic spin chain has recently been shown by using a bosonic
Mott insulator. In principle, an order of hundred of atoms can be
confined in a 1D lattice. However, this may be difficult to load
exactly one atom into every lattice site. To produce a W-state in an
optical lattice, nonlocal interactions between the atoms are neces-
sary. This can be made by coupling the atoms to a cavity mode
[12]. In fact, the atoms, strongly coupling to a cavity mode, have
been demonstrated in experiments [12,24,25]. Also, the W-states
can be generated in a spin chain with ferromagnetic interaction
[26]. The specific spin–spin interactions can be engineered in
optical lattices.

Alternatively, a spin chain can be implemented by using
trapped ions. In fact, a W-state has been created in a string of
trapped ions [11] which can be used for detecting the magnetic-
field gradient. An order of several tens of ions [27] can be realized
in the near future. However, the distance between ions is not
equally spaced. Also, micromotions of ions may introduce an
additional noise to the measurements. This may be resolved by
either using an anharmonic linear trap [28] or combining an
additional optical lattice [29] to adjust the position of ions.

Next, we discuss the measurements of estimators by using the
two different methods. In the uncorrelated case, it is necessary to
perform two independent measurements at the two ends for the
gradient-field measurement. By using a W-state, the magnetic-
field gradient can be determined by just measuring the coherence
factor. To facilitate our discussion, we write a collection of qubits in
terms of angular momentum operators ðJx; Jy; JzÞ. It is easy to show
that the coherence factor C1 can be related to J2x plus a constant,
where Jx ¼∑iσi

x. To probe the variance J2x, all qubits can be coupled
to a polarized light. The correlation information can be mapped
onto the output field. Thus, the variance J2x can be determined by a
collective quantum-nondemolition measurement. This detection
method has been proposed [30]. In this way, the effort of
measurement on the qubits can be much reduced. Bearing in
mind that the generation of W-states in a cavity can also benefit
from collective measurements in [12]. This method may offer the
advantages by using advanced experimental techniques in

Fig. 5. Log–log plot of δθmin versus N. The dimensionless time θt is used. The cases
of dephasing and dissipation are shown in (a) and (b), respectively. The different
dephasing (Γp) and dissipation (Γd) rates, using W-states, are denoted by the
different symbols: 0.05θ (black circle), 0.1θ (blue square) and 0.15θ (red triangle).
The measurements, using uncorrelated atoms, are denoted by the different lines:
0.05θ (black solid), 0.1θ (blue dashed) and 0.15θ (red dotted). (For interpretation of
the references to color in this figure caption, the reader is referred to the web
version of this article.)
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quantum optics such as collective quantum-nondemolition mea-
surements [30] and cavity enhanced interactions [12].

In addition, this scheme can be generalized to detect the
nonlinear gradient field. For example, the magnetic field B(x) is
proportional to xα , where x is the position and α is the power. The
uncertainty of magnetic-field gradient is proportional to 1=Nα . It is
because the uncertainty of the parameter is proportional to the
energy fluctuation of the gradient field. This is similar to the
discussion for a linear field in the Appendix.

5. Conclusion

In summary, we have studied and compared the two differ-
ent methods on measurement of magnetic-field gradient by
using cold atoms. We investigate an atomic chain, which is
prepared in a W-state, for detection of the magnetic-field
gradient. We also study the detection method by using two
uncorrelated atoms. For pure states, W-states can provide a
higher precision than uncorrelated states. In addition, we have
studied the effect of local dephasing and dissipations on the
performances of the two different detection methods. In con-
trast to the cases of pure states, we find that uncorrelated atoms
can provide a better performance than using W-states in the
presence of dephasing. But W-states can provide a higher
precision than uncorrelated states for a few particles if the
dissipation is present. This result shows that the precision limits
are greatly changed due to the different types of noises. Finally,
we have briefly discussed the methods of realizations using cold
atoms and trapped ions.
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Appendix A. Derivation of expectation value and variance
of the coherence

We provide a closed form for the summation of cosine func-
tions [31]. We write

∑
N�1

j0 ¼ 1
∑
N

j ¼ j0 þ1
cos ½2ðj0 � jÞθ1t� ¼ ∑

N�1

j0 ¼ 1
∑
j0

j ¼ 1
cos ð2jθ1tÞ ðA:1Þ

From the Dirichlet kernel, we have

1þ2 ∑
j0

j ¼ 1
cos ð2jθ1tÞ ¼

sin ½ð2j0 þ1Þθ1t�
sin ðθ1tÞ

; ðA:2Þ

∑
j0

j ¼ 1
cos ð2jθ1tÞ ¼

1
2

sin ½ð2j0 þ1Þθ1t�
sin ðθ1tÞ

�1
� �

: ðA:3Þ

Thus,

∑
N�1

j0 ¼ 1
∑
j0

j ¼ 1
cos ð2jθ1tÞ

¼ �N�1
2

þ 1
2 sin ðθ1tÞ

∑
N�1

j0 ¼ 1
sin ½ð2j0 þ1Þθ1t�: ðA:4Þ

Also, from the identity,

∑
N

j0 ¼ 1
sin ½ð2j0 �1Þθ1t� ¼ cscðθ1tÞ sin 2ðNθ1tÞ; ðA:5Þ

and therefore

∑
N�1

j0 ¼ 1
sin ½ð2j0 þ1Þθ1t� ¼ ∑

N

j0 ¼ 1
sin ½ð2j0 �1Þθ1t�� sin ðθ1tÞ; ðA:6Þ

¼ cscðθ1tÞ sin 2ðNθ1tÞ� sin ðθ1tÞ: ðA:7Þ
Substitute Eq. (A.7) into Eq. (A.4), we obtain

∑
N�1

j0 ¼ 1
∑
j0

j ¼ 1
cos ð2jθ1tÞ ¼ �N

2
þ sin 2ðNθ1tÞ
2 sin 2ðθ1tÞ

: ðA:8Þ

From Eq. (A.8), 〈C1〉 is given by

〈C1〉¼
2
N

∑
N�1

j ¼ 1
∑
N

j0 ¼ jþ1
cos ½2ðj0 � jÞθ1t�; ðA:9Þ

¼ �1þ 1
N

sin 2ðNθ1tÞ
sin 2ðθ1tÞ

; ðA:10Þ

and 〈C2
1〉 is

〈C2
1〉¼N�1þ2ðN�2Þ

N
∑

N�1

j0 ¼ 1
∑
j0

j ¼ 1
cos ð2jθ1tÞ; ðA:11Þ

¼N�1þ2ðN�2Þ
N

�N
2
þ sin 2ðNθ1tÞ
2 sin 2ðθ1tÞ

" #
; ðA:12Þ

¼ 1þðN�2Þ
N

sin 2ðNθ1tÞ
sin 2ðθ1tÞ

: ðA:13Þ

The derivative of 〈C1〉, with respect to θ1, is

∂
∂θ1

〈C1〉¼
t

N sin 2ðθ1tÞ
½N sin 2Nθ1t�2 cotðθ1tÞ sin 2ðNθ1tÞ�:

ðA:14Þ

Appendix B. Bound of uncertainty from time-energy
uncertainty relation

We can obtain the bound of uncertainty δΘ from the time-
energy uncertainty relation [17]:

δφδEr 1
2
ffiffiffiffiffi
M

p ; ðB:1Þ

where δφ and δE are the uncertainties of the time φ and energy of
the input state, respectively, and M is the number of times for
repeating the experiments.

We calculate the variance of the energy Hamiltonian in Eq. (2).
The expectation values 〈H〉 and 〈H2〉 are given by

〈H〉¼ 〈W jHjW〉; ðB:2Þ

¼ ℏ
N
ð2�NÞ∑

j
ωj; ðB:3Þ

〈H2〉¼ 〈WjH2jW〉; ðB:4Þ

ℏ2

N
4∑

j
ω2

j þðN�4Þ ∑
j
ωj

 !2
2
4

3
5; ðB:5Þ

where ωj ¼ω0þγðj�1Þd. The summations of ωj and ω2
j are

∑
j
ωj ¼ω0Nþγd

2
NðN�1Þ; ðB:6Þ
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∑
j
ω2

j ¼ω2
0Nþγ dω0 NðN�1ÞþðγdÞ2 1

6
NðNþ1Þð2N�5ÞþN

� �
: ðB:7Þ

By using Eqs. (B.3)–(B.7), the variance δE¼ΔH is given by

ΔH ¼ ðℏγdÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2�1

3

s
: ðB:8Þ

From Eq. (B.8), we can obtain the bound of δΘ¼ γdδφ=ℏ as

δΘmin ¼
ℏ

2ΔH
; ðB:9Þ

¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

N2�1

s
: ðB:10Þ

We find that this expression in Eq. (B.10) coincides the bound in
Eq. (10). This means that the estimator C1 in Eq. (6) can give out
the best precision.

Appendix C. Expectation values and variances in the presence
of dephasing and dissipation

The expression of 〈C1〉, 〈C
2
1〉 and ð∂=∂θ1Þ〈C1〉, in the presence of

dephasing and dissipation, is given by

〈C1〉¼
2
N

∑
N�1

j ¼ 1
∑
N

j0 ¼ jþ1
cos ½2ðj0 � jÞθ1t�e�Γt ; ðC:1Þ

¼ �1þ 1
N

sin 2ðNθ1tÞ
sin 2ðθ1tÞ

" #
e�Γt : ðC:2Þ

〈C2
1〉¼

2ðN�2Þ
N

∑
N�1

j ¼ 1
∑
N

j0 ¼ jþ1
cos ½2ðj0 � jÞθ1t�e�ΓtþðN�1Þe�Γdt ; ðC:3Þ

¼ ðN�1Þe�Γdtþ 1þN�2
N

sin 2ðNθ1tÞ
sin 2ðθ1tÞ

" #
e�Γt ; ðC:4Þ

∂
∂θ1

〈C1〉

¼ te�Γt

N sin 2ðθ1tÞ
½N sin ð2Nθ1tÞ�2 cotðθ1tÞ sin 2ðNθ1tÞ�; ðC:5Þ

where Γ ¼Γdþ2Γp.
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