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Abstract—Electric vehicles (EVs) are likely to become very pop-
ular worldwide within the next few years.With possibly millions of
such vehicles operating across the country, one can establish a dis-
tributed electricity storage system that comprises of the EVs’ bat-
teries with a huge total storage capacity. This can help the power
grid by providing various ancillary services, once an effective ve-
hicle-to-grid (V2G)market is established. In this paper, we propose
a new game-theoretic model to understand the interactions among
EVs and aggregators in a V2G market, where EVs participate in
providing frequency regulation service to the grid. We develop a
smart pricing policy and design a mechanism to achieve optimal
frequency regulation performance in a distributed fashion. Simu-
lation results show that our proposed pricing model and designed
mechanism work well and can benefit both EVs (in terms of ob-
taining additional income) and the grid (in terms of achieving the
frequency regulation command signal).

Index Terms—Aggregator, electric vehicle, frequency regulation,
game theory, Nash equilibrium, optimization, smart grid.

I. INTRODUCTION

A. Background

R ECENT studies have shown that about 70% of the
total oil extracted worldwide is consumed in various

transportation systems [1]. With rising oil prices, the United
States and many other countries have set long-term plans to
electrify the transportation sector and manufacture electric
vehicles (EVs) to reduce oil consumption. It is predicted in
[1] that by 2013, approximately 700 000 grid-enabled electric
vehicles will be on the road in the United States. Such plans will
provide great opportunities for the power grid, as the batteries
of millions of EVs can be used to boost distributed electricity
storage. Currently, the only noticeable electricity storage units
in most power grids are the pumped storage systems which
may store only around 2.2% of the total generated power [2].
The fast development of the vehicle-to-grid (V2G) systems can
significantly increase the capacity of distributed storage.
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Electric storage can help both consumers and power grid. At
a consumer’s side, distributed storage can help residential con-
sumers to store electricity at off-peak hours and consume it at
peak hours to reduce energy cost (e.g., [3]–[7]). This may also
bring some additional income. For example, it is estimated that
an EV owner may obtain approximately 2500 to 3000 dollars
each year by participating in V2G systems [8]. At the grid’s
side, distributed storage can provide various ancillary services
(e.g., [9], [10]). In particular, V2G systems (e.g., [11], [12]) can
contribute in frequency regulation to fine-tune the frequency
and voltage of the grid by matching generation to load demand
[13], [14]. Currently, frequency regulation is achieved mainly
by turning large generators on and off [12], which is signifi-
cantly costly. Alternatively, if several EVs are connected to the
grid, frequency regulation can be done by charging the EVs’ bat-
teries when generation exceeds load demand and by discharging
them when load demand exceeds generation.
A key challenge in distributed EV-assisted frequency regula-

tion systems is to provide incentives for the EVs to participate
in such programs. Tackling this challenge is the focus of our
paper. Although we only address frequency regulation, the so-
lutions can be generalized to facilitate other ancillary services
that can be provided by a large number of EVs.

B. Related Work

Most related literature on V2G systems have only appeared
in the last few years. In [12], Kempton et al. studied the eco-
nomic and social advantages of V2G systems and markets. Con-
sidering the distributed storage capacity of V2G systems, Han
et al. designed an optimal centralized control strategy for fre-
quency regulation in presence of aggregators in [15], [16]. De-
ployment of aggregators, which act as interfaces between the
grid and a group of EVs, was also addressed in [17]–[19]. In
[20], Kamboj et al. employed a multiagent system approach
to explain how a coalition of several EVs can better represent
them in V2G systems. However, the work in [20] did not take
into account the impact of price variations on EVs’ behavior or
the potential for the EVs to sell electricity back to the grid. Pe-
terson et al. examined the economic implications of distributed
storage systems in [21]. Sortomme et al. demonstrated an op-
timal charging strategy for unidirectional V2G systems in [22].
In [23], the authors analyzed how to charge the EVs in the V2G
market to minimize the power losses in distribution lines. To
the best of our knowledge, our work is the first to consider EVs
as active players in V2G markets and design a mechanism to
encourage EVs’ participation in frequency regulation through
smart pricing.
Another body of related literature focus on game theoretical

analysis of power grid networks. Mohsenian-Rad et al. used
game theory to address demand response management via
price predication and optimal energy consumption scheduling
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in [3]–[6]. Ibars et al. proposed a distributed load management
scheme to control the power demand at peak hours by modeling
the system as a congestion game in [24]. Ma et al. intro-
duced the Nash Certainty Equivalence principle to “valley-fill”
charging control in [25]. Vytelingum et al. introduced an agent
based approach for micro-storage management in [26]. Wei et
al. extended this approach to a learning agent based model in
[27]. Different from the work in [3]–[6], [24]–[27], here, we use
game theory to analyze a V2G market through understanding
the vehicle-to-aggregator interactions to provide frequency
regulation service to power grids.

C. Our Contributions

In this paper, we consider a realistic scenario where each EV
is controlled by a software agent representing the interests of
the EV owner (e.g., as in [3], [5]). An aggregator [9], [17]–[19],
[28] coordinates a large number of EVs to take part in frequency
regulation service to the grid. We want to answer the following
key question: How should an aggregator and its corresponding
EVs interact in order to achieve optimal frequency regulation
performance across the grid?
The contributions in this paper are summarized as follows.
• Vehicle-to-Aggregator Interaction Model: We propose a
new game theoretical model to characterize the interac-
tions among EVs and the aggregator in a V2G system.

• Smart Pricing:We introduce a new pricing policy that en-
courages EVs to participate in frequency regulation.

• Theoretical Performance Guarantee: By analyzing the
Nash equilibrium in vehicle-to-aggregator interaction
games, we show that our proposed decentralized mecha-
nism is guaranteed to achieve the optimal performance,
i.e., same as in a centralized controlled system.

• Benefiting Both Consumers and the Grid: Simulation re-
sults show that ourmechanismworks well over a long-term
period and benefits both consumers and power grids. The
consumer will obtain additional income by providing reg-
ulation services, and the power grid will achieve the fre-
quency regulation and save on the infrastructural cost.

The rest of this paper is organized as follows. We introduce
the system model in Section II. Section III demonstrates an op-
timal centralized design. The vehicle-to-aggregator interaction
game model is developed in Section IV. We analyze the theo-
retical properties of the game in Section V. Simulation results
are presented and assessed in Section VI. The future work and
concluding remarks are discussed in Section VII.

II. SYSTEM MODEL

Consider a V2G system as shown in Fig. 1. We can identify
three main components in this system: power grid, several ag-
gregators, and several EVs. Each aggregator serves as an inter-
face between the grid and a group of EVs. As demonstrated in
Fig. 1, the communications among EVs, aggregators, and grid
can go through a two-way digital communications (wired or
wireless) infrastructure, which is foreseen to be available in the
future smart grid (cf. [29]–[32]). We assume that a large number
of EVs in the system are interested in participating in frequency
regulation by charging or discharging their batteries. To facil-
itate EVs’ participation, each aggregator signs a contract with

Fig. 1. The vehicle-to-grid system model considered in this paper.

the grid based on the expected storage capacity of its associated
EVs. Frequency regulation is formally defined as follows [33]:
Definition 1: Frequency regulation is used to maintain con-

tinuous balancing between power generation and power load
within the grid during normal operating conditions.
Frequency regulation needs to be done frequently, e.g., once

every few seconds [13], [14]. Thus, we can divide the daily oper-
ation of the grid into several time slots, each one corresponding
to one frequency regulation attempt. At each time slot, the grid
informs each aggregator with the amount of frequency regula-
tion it expects the aggregator to provide. The total frequency
regulation provided by all aggregators should match the fre-
quency regulation needed in the system. As one approach, the
grid can distribute the frequency regulation job among aggrega-
tors based on the number of EVs of each aggregator. There can
be many other distribution possibilities as well, but detailed are
out of the scope of this paper.
Consider one of the aggregators in the system, and let de-

note the frequency regulation command signal that this aggre-
gator receives at the current time slot. Note that can be either
positive or negative. If is negative, the grid needs the aggre-
gator to inject some power into the grid. If is positive, the
grid needs the aggregator to consume some power. Such power
exchange is expected to be provided by discharging or charging
the batteries of the EVs’ connected to the aggregator.
Let denote the set of EVs associated with the aggregator

at this time slot. We define three subsets of :
• : EVs that choose to charge their batteries.
• : EVs that choose to discharge their batteries.
• : EVs that choose to remain idle.

Here, and , where
, and are the cardinalities of sets , and . Let
denote the rate at which an EV is charged or discharged. The
total discharged power by the EVs in set is . Similarly,
the total charged power by the EVs in set is . Without
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loss of generality, for the rest of this paper, we assume that the
charging/discharging rate is normalized to .
In order for the aggregator to reach the frequency regulation

command signal requested by the grid, it is needed to have

(1)

That is, the total power discharged by EVs’ batteries in set
minus the total power charged by the EVs’ batteries in set
should match the total charging or discharging level requested
by the power grid to achieve frequency regulation. However,
equality (1) may not hold in every time slot if the EVs do not
cooperate with the aggregator or if there are not enough EVs
available to participate in frequency regulation.
To overcome this problem, we assume that each aggregator is

equipped with a backup battery bank (BBB) to assure achieving
frequency regulation target for those cases where (1) does
not hold. For example, if is very large such that there are
not enough EVs to discharge their batteries, then the aggregator
needs to discharge BBB to satisfy . Thus, at each time slot the
net change in the aggregator’s BBB’s energy level is obtained
as

(2)

Of course, can take both positive and negative values.
Let denote the current energy level in the aggre-

gator’s BBB at the beginning of a time slot. Also let de-
note the resulting energy level in the aggregator’s BBB by the
end of the time slot. Clearly, we have

(3)

In fact, depending on the value of and the number of EVs
that charge or discharge their batteries, the energy level at the
aggregator’s BBB may change to different values at different
time slots during the daily operation of the system.
Given the system model explained above, the design objec-

tive for an aggregator is to achieve the frequency regulation
command signal while minimizing the usage of its own BBB.
Clearly, if frequency regulation always requires charging or
discharging the aggregator’s BBB (instead of using EVs’ bat-
teries), then there will be no advantage in having a V2G-based
storage infrastructure. Note that BBB is usually expensive
and is intended to be used rarely. Next, in Sections III and
IV, we explain how such design objective can be achieved in
centralized and decentralized fashions, respectively.

III. CENTRALIZED DESIGN

As a benchmark case, we consider a centralized control
system where the aggregator aims to schedule charging and
discharging of its associated EVs’ batteries in order to solve
the following optimization problem:

(4)

From (2) and (3), the objective function in optimization problem
(4) is to minimize , where is the en-
ergy level that the aggregator wants to constantly maintain in its
BBB. For example, can be equal to half of the BBB’s
total storage capacity. The first constraint in (4) indicates that
the total number of EVs that perform charging and discharging
should not exceed the total number of EVs. The second con-
straint indicates that charging and discharging should not be
performed simultaneously. Otherwise the EVs cancel out each
other’s efforts in terms of frequency regulation.
Assuming that the aggregator has full control over EVs’

charging and discharging, it can solve problem (4) and decide
on how many EVs should charge their batteries or how many
EVs should discharge their batteries. However, in practice, the
aggregator does not have any direct control on EVs as they are
owned by individual consumers. Therefore, there is a need for
a decentralized control mechanism as we will explain next.

IV. DECENTRALIZED DESIGN USING GAME THEORY

We would like to design a decentralized mechanism in the
described V2G system, such that we can achieve the same op-
timal performance as the centralized mechanism introduced in
Section III. Our mechanism considers the fact that the EVs are
independent decision makers. Therefore, it encourages efficient
resource management through pricing.

A. Smart Pricing Policy

At each time slot, the aggregator determines two prices
and , which indicate how much the aggregator pays to an EV
for the EV’s participation in frequency regulation by charging
or discharging their batteries, respectively. Each of these prices
can take either positive or negative values. We have

(5)

(6)

where and are design parameters with
the following physical meanings: and are the base prices
and and affect how much the prices would vary based
on different values of , as well as EVs’
behavior such as and . The intuition behind the proposed
pricing models in (5) and (6) is as follows.
• If EVs’ collective decisions of charging or discharging
their batteries lead to an energy level in BBB that exceeds
the desired level , i.e.,

, then the charging price is larger than the
base price and the discharging price is smaller than
the base price (and may eventually become negative).
This encourages EVs to charge their batteries, helping to
reduce the BBB’s energy level back to .

• If EVs’ collective decisions lead to an energy level in BBB
less than the desired level , i.e.,

, then the pricing mechanism encourages
EVs to discharge their batteries, helping to increase the
BBB’s energy level back to .
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B. EVs’ Payoff Functions

For each EV , let denote its decision, where
indicates discharging, indicates charging, and
indicates remaining idle. EV ’s payoff function is

(7)

where denotes the strategies of all EVs other than EV . EV
’s payoff is the payment it receives from the aggregator due to
participation in frequency regulation. Note that prices and
are given in (5) and (6), which depend on all EVs’ behaviors

as well as parameters and .

C. Vehicle-to-Aggregator Interaction Game

We can now formally define a vehicle-to-aggregator interac-
tion game in a V2G frequency regulation system as follows:
• Players: The set of all EVs.
• Strategies: For each EV, choosing to charge or discharge
battery or to remain idle in the current time slot.

• Payoffs: EV receives payment as in (7).
Note that the above game is played among the EVs. The ag-

gregator is not a player and simply coordinates the game. That
is, given the number of EVs that decide to charge or discharge
their batteries or remain idle, the aggregator sets the prices
and based on the model in (5) and (6).

V. ANALYTICAL PERFORMANCE EVALUATION

In this section, we explain how the vehicle-to-aggregator in-
teraction game is played and what is the frequency regulation
performance at the equilibrium of such game in a V2G system.

A. Best Response and Nash Equilibrium

We first consider the concept of best response strategy, which
is an EV’s best choice to maximize its own payoff function as-
suming that other EVs’ strategies are fixed. For EV , its
best response strategy is defined as1

(8)

Next, we consider the solution concept of Nash equilibrium,
which is a vector of all players’ strategies such that no player
has an incentive to deviate unilaterally. For our game, a Nash
equilibrium is defined as follows.
Definition 2: A Nash equilibrium of a vehicle-to-aggregator

game is a strategy profile where

A Nash equilibrium is also a fixed point of all players’ best
responses, i.e., for all . It represents a
stable solution of the game. In the vehicle-to-aggregator interac-
tion game, we want to develop a mechanism such that the Nash
equilibrium of this game has an optimal frequency regulation
performance, i.e., it solves Problem (4).

1For simplicity, we assume that there is a unique maximizer in (8), which
is true for our problem. In general, best response can be a set.

B. Pricing Parameters

Recall that for the price models in (5) and (6), the values
of parameters , and need to be selected. In this
section, we consider a simple model where the charging price
and discharging price follow a linear relationship

(9)

with . Note that the two prices take opposite signs.
When and , the aggregator encourages the EVs
to discharge their batteries, and penalizes EVs for charging their
batteries. When and , EVs are encouraged to
charge and penalized for discharging. For the rest of this section,
we only focus on designing the discharging price . Then,
is obtained from using (9).
As an illustrating example, consider a case where there are

only EVs connected to an aggregator. We can calculate
EVs’ payoffs under different choices of strategies. The payoff
matrix for such 2-player game is shown in Table I. In this table,
different rows indicate various choices of the first EV, i.e.,

, and different columns indicate choices of the second
EV, i.e., . Note that we have defined a new
parameter to make the table more compact

(10)

Since there are only 2 EVs in the system, the maximum power
that they can provide by discharging their batteries or the max-
imum power they can consume by charging their batteries at
each time slot has an absolute value of 2, which may not al-
ways be enough to balance the BBB’s energy level. Next, we
will discuss different possible scenarios based on a newly de-
fined parameter , where

(11)

From (10) and (11), . Note that indicates
the amount of charging/discharging needed from the EVs’
batteries such that the energy level at the aggregator’s BBB
reaches while the frequency regulation command
signal is also satisfied. If we normalize ,
and such that they only take integer values, the
term in (11) will also always take an integer value, i.e.,

. We are now ready to
choose pricing parameters and to achieve an optimal
performance based on different amounts of parameter :
• If , then we want both EVs to discharge
their batteries. Thus, the Nash equilibrium should be

. To achieve this, we need to set . This
can be derived directly from Definition 2. That is

for .
Therefore, from Table I, we have

(12)

Moreover, we expect that the EVs receive positive pay-
ments in response to their contribution in providing fre-
quency regulation. Thus, we should also have

(13)

From (12) and (13), we can conclude that to achieve a de-
sirable behavior by the EVs at Nash equilibrium in this sce-
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TABLE I
PAYOFF MATRIX FOR THE GAME WITH ONLY TWO EVS

nario, we need to set the pricing parameter . The
other four scenarios below can be analyzed similarly.

• If , then we want only one EV to discharge its battery
while the other EV remains idle. The desirable Nash equi-
librium is either or . To
achieve this, we set and .

• If , then we want both EVs remain idle. The desirable
Nash equilibrium is . To achieve this, we
set and .

• If , then we want only one EV to charge its battery
while the other EV remains idle. The desirable Nash equi-
librium is either or .
To achieve this, we set .

• If , then we want both EVs to charge
their batteries. The desirable Nash equilibrium is

. To achieve this, we set .

The above analysis provides a system of inequalities that can
be solved to obtain the following choices of pricing parameter
to achieve an optimal performance in all five scenarios:

(14)

where , and

(15)

Based on (14), the optimal discharging and charging prices are

(16)

and

(17)

Clearly, more than one value for and can assure optimal
frequency regulation performance at Nash equilibrium.
We next generalize the discussions of the two-player game,

and prove the existence and optimality of Nash equilibria in a
system with EVs under such a pricing policy.

C. Characterizing Nash Equilibria

Consider the vehicle-to-aggregator interaction game in
Section IV-C. For a Nash equilibrium , we define

(18)

(19)

The cardinalities of the above sets are defined as and ,
respectively. We want to show that and form an op-
timal solution for problem (4). To prove this, the first step is to

characterize all Nash equilibria of the vehicle-to-aggregator in-
teraction game for different values of in (11).
Theorem 3: We can show that:
• If , then the Nash equilibrium of the vehicle-to-
aggregator interaction game satisfies:

(20)

• If , then all Nash equilibria of the vehicle-to-aggre-
gator interaction game satisfy:

(21)

• If , then all Nash equilibria of the vehicle-to-aggre-
gator interaction game satisfy:

(22)

The proof for Theorem 3 is given in Appendix A. Theorem 3
can easily be generalized to the case where only a subset of EVs
are capable of charging and another subset may only discharge
their batteries. This can be the case when some EVs’ batteries
are below certain energy level or well charged. We skip the de-
tails for the general case due to space limitation.

D. Optimality

We are now ready to provide the key optimal result.
Theorem 4: The Nash equilibria of the vehicle-to-aggregator

interaction game using the pricing model in (16) and (17) coin-
cide with the optimal solutions of problem (4).
The proof for Theorem 4 is given in Appendix B. The idea

is to show that and in (20)–(22) minimize the objective
function in problem (4) for every possible value of .

E. Choice of Nash Equilibrium

Depending on system parameters, there can be multiple op-
timal solutions for optimization problem (4), and thus multiple
Nash equilibria for the vehicle-to-aggregator interaction game.
These multiple Nash equilibria achieve the same frequency reg-
ulation performance within the time slot under consideration.
However, different Nash equilibria may result in different long-
term performance over several time slots. For example, assume
that at a time slot, the optimal solution of problem (4) indicates
that five out of ten EVs should discharge their batteries. But as
far as solving the one-time slot optimization problem (4) is con-
cerned, it does not matter which five EVs discharge. However,
different selections of the EVs may affect the number of EVs to
be available for discharging in the next time slot, depending on
the battery levels of different EVs.
It will be interesting to extend our design to consider a long-

time horizon (where each time slot corresponds to one instance
of the game studied in this section) when formulating optimiza-
tion problem (4) and the vehicle-to-aggregator interaction game.
In that case, the choice of equilibrium in each time slot may
become important. A precise analysis of this dynamic game
involves the theory of competitive Markov decision processes
[34], and is out of the scope of this paper. Nevertheless, our
simulations in Section VI show that our proposed per-time slot
pricing policy can still achieve a good frequency regulation per-
formance over a long period of time.
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Fig. 2. Simulation results for a vehicle-to-grid system with an aggregator and EVs. (a) The frequency regulation command signal . (b) The aggre-
gator’s backup battery bank’s energy level where frequency regulation involves EVs using the proposed smart pricing policy. (c) The aggregator’s backup battery
bank’s energy level without involving EVs in frequency regulation. (d) The aggregator’s backup battery bank’s energy level based on Model Predictive Control.
(e) A sample path of the strategy for one of the EVs in the vehicles-to-aggregator interaction game.

VI. SIMULATION RESULTS

We describe the message passing mechanism in the formu-
lated game model at a particular time slot as follows:
• The aggregator receives the frequency regulation com-
mand signal , and announces it to all EVs.

• The aggregator computes all possible Nash equilibria of
the game (in closed-form) based on Theorem 3. It then
selects one Nash equilibrium randomly2 and announces its
choice to all EVs in the system. Since the announcement is
a Nash equilibrium, EVs will simply follow it.3

• The aggregator collects EVs’ responses and satisfies the
grid’s frequency regulation command signal using the
backup battery bank based on the difference . It also
records EVs’ profits given the price values and metering.

The signalling and information exchanged among aggregator
and EVs is handled using the available V2G communications
infrastructure. An overview on different wired and wireless
technologies for V2G communications and corresponding data
transmission protocols can be found in [36].

2We consider a complete information game scenario [35], where the aggre-
gator and all EVs know everyone’s payoff function. Thus the aggregator as well
as each EV can directly compute the Nash equilbria at each time slot. We plan
to study the game with incomplete information in the future.
3The aggregator serves as a nonenforcing coordinator and the equilibrium

achieved is related to the concept of correlated equilibrium, which is a general-
ization of Nash equilibrium in advanced game theory [35]. The discussions on
correlated equilibrium is beyond the scope of this paper.

Simulation results for a vehicle-to-aggregator system with
EVs are shown in Fig. 2. For each EV, we con-

sider the normalized maximum charging/discharging rate to be
7.68 kW which is compatible with Level 2 charging standard in
North America [37]. As a result, the maximum power that can
be provided by all 1000 EVs at each time is up to 7.68 MW. For
the aggregator of interest, the maximum capacity of the internal
BBB is assumed to be 20 kWh. Therefore, we set
kWh. The initial energy level of the BBB is set to be .
The frequency regulation command signal follows a shifted
binomial distribution4 with parameters and . The
value of is updated by the grid every 10 s using the avail-
able V2G communications infrastructure. Its trend is shown in
Fig. 2(a).
The trend of the energy level in the aggregator’s BBB when

users’ participation in frequency regulation is facilitated by the
proposed smart pricing policy is shown in Fig. 2(b). We can see
that the energy level in the BBB rarely deviates from ,
and the amount of deviation is at most 5 kWh. That is, almost
all charging and discharging needed to support frequency regu-
lation are provided by the EVs once the proposed pricing policy
is used. The energy level in the BBB without utilizing any EVs
is shown in Fig. 2(c), where the deviation from can be
as high as 150 kWh. In this case, we need a BBBwith maximum
capacity of 300 kWh.

4Binomial distribution is a good approximation for Gaussian distribution in
a discrete case. A shifted binomial distribution has zero mean.
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The energy level in the BBB based on Model Predictive Con-
trol (MPC) [38] is shown in Fig. 2(d).We assume perfect predic-
tion for command signal such that the aggregator can accu-
rately predict the grid’s frequency regulation needs. We define
an MPC multiple-horizon cost function as

(23)

To obtain the MPC solution, we minimize the cost function
subject to EV charging/discharging constraints: EVs with empty
batteries cannot discharge their batteries to inject power into
the grid; EVs with full batteries cannot charge provide power
to consume power from the grid; and the number of EVs par-
ticipating in frequency regulation cannot exceed the amount of
available EVs in the system. The prediction with perfect infor-
mation guarantees the best performance of MPC. Nevertheless,
as shown Fig. 2(d), in order to minimize the command signal
cost function , this MPC method still needs a slightly larger
capacity BBB compared with our proposed policy. In addition,
an MPC-based approach would essentially be centralized dif-
ferent from our proposed decentralized solution that can better
encourage user participation.
Finally, Fig. 2(e) shows one (out of a thousand) EV’s

charging/discharging strategy during the 6 hours of partici-
pating in frequency regulation under the smart pricing policy.
The total payment to each user is obtained as around 1000
for 6 hours, which for a proper choice of will become

comparable with the expected 2500 to 3000 dollars annual
profit for user participation in frequency regulation [8].

VII. FUTURE WORK AND CONCLUSIONS

This paper considers the problem of providing frequency
regulation ancillary service to power grid using several electric
vehicles’ batteries as distributed power storage system. We pro-
pose a vehicle-to-aggregator interaction game, where vehicles
are independent players making charging/discharging deci-
sions, and the aggregator serves as a coordinator. By adopting
a smart pricing policy as part of the game, we showed that the
distributed behaviors of self-interested electric vehicles can
achieve the same optimal performance as if they are in a cen-
trally controlled system. Moreover, our design provided a new
model explaining how a backup battery bank can be deployed
in an aggregator to maintain a stable regulation capacity.
This paper can be extended in various directions. For ex-

ample, one can design an optimal frequency regulation duty dis-
tribution method among different aggregators. In addition, we
can incorporate EVs’ own charging targets, e.g., reaching 80%
of its full battery level when leaving the power grid, into the for-
mulated game model. Note that we did not consider this issue
explicitly; instead, we simply assumed that an automated de-
mand side management technique, e.g., [3], [6], can separately
coordinate achieving the EVs’ charging needs.

APPENDIX

A. Proof of Theorem 3

Here, we only provide the detailed proof for the case where
. The proofs for the cases where and are

similar. Since , we have . Therefore, the
pricing policy in (16) can be simplified as

(24)

where is defined in (11). Next, in addition to sets and
which are already defined in (18) and (19), we also define

(25)

The proof includes two steps. First, we show that strategy pro-
files where and are Nash equilibria.
Then, we show that they cover all the Nash equilibria of this
game, i.e., there is no other Nash equilibrium.
To prove the first step, we will show the following cases ac-

cording to the definition of Nash equilibrium in Definition 2.
• Case 1.1: No EV in will switch to be idle.
• Case 1.2: No EV in will switch to charge its battery.
• Case 1.3: No EV in will switch to charge its battery.
• Case 1.4:No EV in will switch to discharge its battery.
Case 1.1:We want to show that no EV in set will switch

to be idle. By Definition 2, it is sufficient to show that the current
payoff function of an EV , i.e., , is no
worse than its payoff function after switching to be idle, i.e.,

. Mathematically,

where the first inequality is due to , and the
second inequality is due to the fact that and .
Case 1.2: We show that no EV in set will choose to

charge. That is, the current payoff of an EV , i.e.,
, is no worse than its payoff if it chooses to

charge its battery, i.e., . Let us denote the
strategy profile after the change as . We have

The inequality in the fourth line is because and
; thus, .

Case 1.3:We show that no EV in will choose to charge its
battery. Note that if , then set is empty. Therefore,
this case may occur only if . Next, we show that
the current payoff function of an EV , i.e.,

is no worse than its payoff function after changing to
charge, i.e., . Denote the strategy profile after
the change to be . We have



WU et al.: VEHICLE-TO-AGGREGATOR INTERACTION GAME 441

The inequality in the fourth line is because and
, thus .

Case 1.4:We show that no EV in will choose to discharge
its battery. That is, the current payoff function of an EV ,
i.e., is no worse than its payoff function after
changing to discharge, i.e., . Denote the strategy
profile after the change to be as before. Then, we
can show that

The equality in the fourth line is because
and .

Combining the above results, the the first step is proved.
To prove the second step, we show that any strategy profile

is not a Nash equilibrium. We will dis-
cuss three cases depending on the value of and .
• Case 2.1:Any strategy profile where
is not a Nash equilibrium.

• Case 2.2:Any strategy profile where
is not a Nash equilibrium.

• Case 2.3:Any strategy profile where
and is not a Nash equilibrium.

Case 2.1:Any strategy profile where is
not a Nash equilibrium. We want to show that any EV in can
simply choose to be idle for a better payoff. Mathematically, we
have

where the first inequality is due to and
, which implies . Since and
, we have . Thus ,

which implies .
Case 2.2: Any strategy profile where

is not a Nash equilibrium. If , then for any EV ,
we can show that it can choose to be idle for a better payoff.
Mathematically, we have

If , since , we have . We want
to show that an EV in can choose to discharge for a better
payoff. Mathematically, we have

where the second inequality is due to and are integers,
hence implies .
Case 2.3: Any strategy profile where

and is not a Nash equilibrium. We want to show that
any EV in can simply choose to be idle for a better payoff.
Mathematically, we have

B. Proof of Theorem 4

With , we can first simplify the objective function of the
optimization problem (4)

(26)

If , a Nash equilibrium of the game has the form of
. We want to prove that a Nash

equilibrium with such a form achieves the optimal objective
value of the optimization problem.
Case I: If , then and . We have

(27)

Case II: If , then and . Noting
, we have

(28)

Thus, we have proved when , every Nash equilibrium
of the game achieves the optimization problem. Cases of
and can be proved similarly.
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