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We propose a potentially practical scheme to simulate artificial Abelian gauge field for polaritons using a hybrid
quantum system consisting of nitrogen-vacancy center ensembles (NVEs) and superconducting transmission
line resonators (TLR). In our case, the collective excitations of NVEs play the role of bosonic particles,
and our multiport device tends to circulate polaritons in a behavior like a charged particle in an external
magnetic field. We discuss the possibility of identifying signatures of the Hofstadter butterfly in the optical
spectra of the resonators and analyze the ground state crossover for different gauge fields. Our work opens new
perspectives in quantum simulation of condensed matter and many-body physics using a hybrid spin-ensemble
circuit quantum electrodynamics system. The experimental feasibility and challenge are justified using currently

available technology.
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I. INTRODUCTION

Gauge field theory [1], which was developed for describing
the subatomic interaction, has deepened our understanding of
a wide range of physical phenomena: quantum magnetoresis-
tance oscillations, superconducting vortices, quantum Hall ef-
fects (QHE), Hofstadter butterfly (HB) [2], etc. However, these
phenomena associated with the gauge field are very difficult
to be directly observed in ordinary solid-state systems due to
the requirement of extremely high field. Recently, following
the idea of quantum simulation [3], several theoretical schemes
have been proposed to generate artificial gauge field in atomic,
molecular, and optical systems. The first route is taken in cold
atomic systems. The gauge field can be generated by rotating
the trap or lattice [4,5], by introducing appropriate phase fac-
tors for hopping amplitudes through combining Raman-laser-
assisted tunneling and lattice acceleration methods [6—10],
or by tailoring orthogonal laser-beam coupled to the atomic
degenerate internal states [11,12], or by simply using the
ordinary tunneling in an optical lattice [13]. The second route
is based on cavity quantum electrodynamics (QED) systems,
where the gauge field can also appear through manipulating
the phase factors of the hopping term, in circuit QED cavity
arrays [14], in confined ions in microtrap array [15], in coupled
resonator optical waveguides [16], and in solid-state photonic
structures [17]. In addition, the fractional quantum Hall effect
(FQHE) can also be simulated in optical-cavity arrays by
trapping three-level atoms and using elaborated laser driving
[18]. However, due to the required rigorous conditions, up
to now only few pioneering experiments have successfully
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mimicked the effect of a light-induced artificial magnetic field
in an optical lattice [19], and in a synthetic electric field of
Bose-Einstein condensates [20] by using a Raman-assisted
tunneling method [9] and an effective time-dependent vector
potential, respectively.

In this paper we propose an alternative theoretical approach
for quantum simulating an effective gauge potential in a hybrid
solid-state system. We consider NVEs [21-27], which are
confined in 2D square lattices of superconducting microwave
TLR [28]. The NVEs are driven by a series of microwave
sources with different phases at different sites. We carefully
tune the frequencies of the cavity modes, the driving strength
and the phase of microwave sources, in order to induce
the nonzero tunneling phases around a closed loop in real
space and to generate a nonvanishing artificial gauge field
experienced by the orbital motion of the polaritons in NVEs.
Our approach utilizes a space-dependent coupling between
internal ground states of the NVEs, which yields crucial phases
to create considerable synthetic gauge fields. This intriguing
behavior is indeed the analog of the motion of charged particle
in an real magnetic field.

The main merits of the present system include the in
situ tunability of the parameters of the circuit elements [29],
individual addressing, the peculiar characteristics of the NVE
[30] (e.g., long coherence time at room-temperature), and
the scalability of cavity resonator arrays [14,31,32]. Very
recently, Underwood et al. experimentally demonstrated 25
arrays of 12 capacitively coupled TLRs and accessed the
feasibility of quantum simulation in cavity QED systems [33].
It implies that the polariton-polariton interaction between
distant NVEs can be effectively tuned in a controllable way,
which renders our scheme to be more practical. By combining
the related spectroscopic circuit QED technique for readout
of the quantum states of individual constituent elements, we
could probe the properties of the system by independently
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FIG. 1. (Color online) Schematic circuit for the resonator array,
where the NVEs are magnetically coupled to the quantized field of the
TLR, and the circles denote the central coupler. Microwave photons
can tunnel between adjacent resonators via capacitive coupling. The
lattice sites are represented by a(pX + ¢g¥) with a the spacing of the
lattices, where the dotted grid denotes the “vertical” and “horizontal”
directions.

detecting the correlation between distant sites or output fields
of the TLRs, which provides the feasibility of observing the
strong gauge field effects, such as HB spectrum, in a realistic
hybrid solid-state system.

The paper is organized as follows: We first derive the
effective Hamiltonian of the collective excitations of NVEs
(the polaritons) in Sec. II. Then in Sec. III we study the physical
consequences of noninteracting polaritons on a finite-size
2D square lattice in the effective Abelian gauge field under
tight-binding limit. The the relevant experimental parameters
are analyzed in Sec. IV. Finally, We draw the conclusion in
Sec. V.

II. MODEL AND HAMILTONIAN

As illustrated in Fig. 1, the system we study is a 2D
square lattice, where the basic unit consists of a NVE confined
in a microwave-driven two-mode TLR with the length L,
the inductance F;, and the capacitance C;, a narrow center
conductor and two nearby lateral ground planes. Each NVE has
the average NV center density 1 x 10" cm—3 [34], where each
NV center is negatively charged with two unpaired electrons
located at the vacancy, which can be modeled as a two-level
system in the ground-state subspaces as shown in Fig. 2. For
clarity of description, we adopt the following denotations:
PA,m; =0) = |g) and |*A,m; = +1) = |e) (we distinguish
the degenerate sublevels |*A,m, = £1) by appropriate exter-
nal magnetic field or polarized irradiation). In our system,
microwave-photons can tunnel between adjacent TLRs via
capacitive coupling by connecting TLRs via a central coupler,
which serves as individual tunable quantum transducers to
transfer photonic states between the resonators.

The overall system is governed by the Hamiltonian

Hy = Z [Hép,q) + H;réq) + H}(Vp‘,/q) + H;p,q)]’ (1)
P-q
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FIG. 2. (Color online) Level structure of a NVE, where the
electronic ground state is an electron spin triplet state (S = 1), and
D, /2m = 2.87 GHz is the zero-field splitting between the m; =0
sublevel and the m; = *1 sublevels in the absence of external
magnetic field. The degeneracy between states m; = +1 is lifted
by applying a static magnetic field with 40 mT parallel to the chip
and along the [111] crystalline axis within a few degrees. With this
orientation, the four equivalent NV center crystalline orientations
(111) all make approximately the same angle 55° with the magnetic
field so that their resonance frequencies are approximately equal. The
transition between |g) and |e) with Larmor frequency w, is coupled to
the two-mode TLR, with the coupling rates g, (g,) and detunings A,
(A, ), and is also driven by a classical field with the Rabi frequency
2 and the related phase 6.

where HY? = Y _ fioech gcp.q is for the (p,g)th TLR’s

mode with c}L,,q (cp,q) the creation (annihilation) operators
of the full-wave mode of the resonator and w. = 1/(/ F;C;)
the corresponding eigenfrequency. The collectively magnetic
coupling between NVE and all the microwave modes can be
modeled as

(p.q)
Hc

= Z Z h(gic?.,q S;r,qcl’ﬂ + Qp,qei(wlt+9”'q)5;q + H.C.),

p.q c=a,b
2)

where g, . is the single NV center’s vacuum Rabi frequency
in the (p,q)th resonator for mode ¢, and wj is the frequency
of the external driving laser with the Rabi frequency €2, , and
the phase 6, ,. The collective transition operators of NVE are
defined as

Np’q . .
Syg =D 10Vhghg sl 3)
=1
and
Npgq
Syg =D 18Y 0 el. @)
=1

with N, , the number of the NV centers in a NVE inside the
(p,q)th resonator.
The Hamiltonian of a NVE reads
h
(p.9)

Hy" = Ewesz,q, 4)
with w, the energy-level spacing of the states |e) and |g). All
the spins in NVE interact symmetrically with a single mode
of electromagnetic field by magnetic-dipole coupling because

the mode wavelength is larger than the spatial dimension of
the NVE if the spin ensemble is placed near the TLR’s field
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antinode. We suppose that the mode a,, couples with the
vertical adjacent sites, and b, ; couples with the horizontal
adjacent sites. So the tunneling between adjacent sites can be
governed by the Hamiltonian

(p.q)
Hqu = —n(T, a; g+19p.q + T, a; ¢%p.q+1

+ Tbb[,+1 qb + Tbbp qprr] q) (6)

Here the intercavity photonic tunneling rates 7, (7} ) are tunable
experimental parameters due to the flexibility of the central
coupler. The central coupler may be conceived as a current-
biased Josephson junction phase qubit [35], or Josephson ring
circuit [14], or a capacitive coupling element [36], or an active
nonreciprocal device as proposed in Ref. [37].

Under the strong driving case 2,4 > Te, /Npq8) 4
we define the new energy levels as |+),, = = (e rale)pq +
18)p.g)/~/2 and |=), , = (—€'%4le), , + |8) p.g)/~/2. Intro-
ducing A, = o, — w,and &, , = A, — 2, ,, the Hamiltonian

P
of the site (p,q) under the new basis is

Hpg= ) Acc)Cpy

c=a,b
& (190.4]
p,q j j
# 30 (B2 1) 1 = 10l
j=1
Npq
1
+§ [gpqcpqe M(H_)Pqpq
j=1c=a,b
x (=] = =) b, (+]) + He]. 7)

Here we neglect the energy shift induced by the cavity
mode. Suppose A, >~ |2, .|, Ay = —|2, 4], and A, 2, , >
VNp48), > We can obtain the effective Hamiltonian under the
rotating wave approximation,

eﬁ __ga
H apq P9

| Vo
+3 ngqapqe MH')pqpq( |

ap.q +8ququ

— gp’qb; “Oral )] he(—IFHC] ©®)

where 8% = A, —Qp, and &) = Ab—i-qu Let’s de-

fine §F =3 " ra ! |4)5.q(—| and Spq Py M —)paq(+| for
(p,g)th site. We denote the effective Hamlltonlan of the
coupling between mode a and NVE in lattice site (p,q) as

a T 1 a —if R
=89 ,ab apq + <§gp,qe riay Sy, + H.c.), ©)

On the other hand, the effective Hamiltonian describing the
mode b is

—3”b by,

P9~ p.q

1 —1
<§g’;,q 9Mb,gq5;q+Hc>. (10)

For simplicity, we suppose 8}, , =8, T. =T,and g, , = ¢
for all p,q,c. We diagonalize the Hamlltoman Eq. (6) w1th the

—i2mk, q/N
Fourier transformation ay, , = Jﬁ Zq:l e «1/Ng, . and
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— 1L N —i2nk,p/N .
bi,.q = N Dop=ti€ rPINp, 4 into the form

2w N
Z Z I, blt,,,qbkpﬁq

k,=27/N g=1

2 N
Z Z Tkpalip,pakp,l” (11)

kp,=2m/N p=1

where Ty, = 2T, cos(2rk,/N) and Ty = 2T, cosQmk,/N).
We define F,;, = e~ #™P/N and F, ;= e "2mhd/N,

It is found that the coupling between vertical sites and
between horizonal sites can be calculated independently. In the
limitof 6 > T, g, we can adiabatically eliminate the photonic
modes and get the effective Hamiltonian of the system for the
vertical line ¢

N 2 2 F. F* 1
eff _ & i, Yo+ a— Tk Tk,
Hv —248 Pa~ Pququq Z N 5+Tk.
14 kp=27/N P
(12)
In the limit of §> 7, we get 1/(3+T)~3—
T/‘p

s ka y = N(Spp 5 and Zk ka pF Tk =
T(8 o+l + 8 L p ) Neglecting the Stark shift terms we get
the effective Hamiltonian as

N
T
Hveffzz 4;’2 e Org=0r )T+ 8= L Heo o (13)

p+L.q~p.q
p.p

Similarly, we can calculate the effective Hamiltonian for
the horizontal line p by adiabatically eliminating the cavity
modes:

N

7g — +
ff i(0p,g—0p.q+1) T
H; = 2 e'\ra "’HS Pog+1

9.9

S, +He (14

Combining the horizonal and vertical Hamiltonians, we obtain
the effective Hamiltonian for the whole system as

‘ {Oprg—Op11.0) S+ 3
Hey = —J (Zel( POt St Spig

p.q

e Ot =IO FE S, i1 + H.c.) , (15)

where J' = T(g/28)>.
Using the Holstein-Primakoff transformation [38]

l
\/ pa — BpgBpg = Pquq’

By yBpg = /NypyBpy,
85, = (Bl Bpy— Npy/2),

where the operator B,T,,q (B,,) fulfills the bosonic commutation

relation [B, 4,B,, /]  8pq,prq in the case of low number of
NVE excitations, we can map the collective raising (lowering)

operators S 1. of the (p,g)th NVE into the bosonic operators

B;,q and B, ;. These transformations change the Hamiltonian
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H.¢ into a concise form as

HB — _J|:Zei(gp'q_epﬂ‘q)B;’qBp+1,q
p.q

+ ei(ep,q-H 79’)’q)B;,qu,q+l + H.C.} 5 (16)

where J =N, ,J = T (gerr/28)? and the collective coupling
rates gefr = VN g between NVE and TLR in each lattice site
are supposed to be equal in our case.

III. QUANTUM SIMULATION OF ABELIAN GAUGE FIELD

Because of the spatial variation of the tunneling phase, the
wave function of a polariton from one lattice site to another
acquires a nontrivial phase, which can be interpreted as an
effective Aharonov-Bohm phase. With a suitable tuning of
the tunneling phases between pairs of neighboring NVEs, the
polariton turns out to experience a nontrivial artificial gauge
potential A, which can be identified by

e P9 . L e (PO
9,,_,1:;71/0 A-dL:r—l/ A-dL, (17)
4 Pq

where the integral is performed along the segment connecting
the TLRs, and e is the effective charge. With the choice of the
symmetric gauge, we set

0pq = —TpqQ, (18)

where ¢ = ®/®( with ® the magnetic flux through a unit cell,
and &y = h/e the flux quantum. So a uniform artificial gauge
field will emerge during the polaritonic dynamics. The sum
of the tunneling phases along a closed loop surrounding the
plaquette is

20p+1.g +Opgt1 = Opg = Oprige1) =270,

which is actually the flux quanta per plaquette, namely, the
strength of the artificial gauge field. Note that the phase errors
of the local microwave source only cause the local gauge field
variance. The total flux remains unchanged.

Next we focus on the observable consequences of a uniform
magnetic field in the present system. For simplicity, we
consider the case of noninteracting polaritons in finite-size
2D square lattice under the tight-binding limit and the single-
polariton subspace.

As shown in Fig. 3, we plot the spatial distribution of
polaritons B, , in the ground state of the 10 x 10 lattice under
different values of «. (i) When o = 0, the Hamiltonian in
Eq. (16) can be reduced to that for a free particle in an infinitely
deep square potential well and the form of ground state takes
the Sine functions. (ii) When « increases from 0 to g >~ 0.181,
we find that the polaritons concentrate at the central region
which implies the wave-function of the ground state gradually
changes from Sine function into that of the zeroth Landau
level with zero angular momentum m, and the radius of the
zeroth Landau level decreases as the gauge field increases. This
transition denoted by « is really from the zeroth Landau level
of m = 0 to the zeroth Landau level of m > 0. However, the
distribution changes dramatically once the value of « exceeds
a critical value oy, where the zeroth Landau level with m > 0
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0=0.181 0=0.182

FIG. 3. (Color online) For 10 x 10 lattice, the spatial distribution
of absolute square of the polariton B, , wave function in the ground
state of Hamiltonian Eq. (3) with open boundary conditions, under
different values of «: (a) « = 0.181; (b) @ = 0.182.

momentum becomes ground state. The physical mechanism
behind this intriguing phenomena is the competition between
the gauge field and the size effect [39]. As shown in Fig. 4,
we find that the crossing point o can be well fitted by the
equation ag = 2/(N + 1) for the N x N systems with N > 4
(see Appendix A). (iii) If we further increase o, many level
crossing points would appear. We find that all the crossing
points are near certain rational points @ = p/q, at which the
wave-functions show regular oscillations [2]. After Fourier
transformation, one can see that such regular oscillations come
from the coherent interference between the peculiar points in
momentum space (see Appendix B).

Thus, it is very interesting that the results from the model
with the periodic condition in thermodynamic limit can be
observed in this small and open boundary system. In order
to measure the level crossing, we can couple the NVEs to
superconducting qubits and transfer the state of NVEs to
the nearby qubits. Then we can measure the ground-state
population distribution of polaritons by measuring the states
of superconducting qubits.

To investigate the possibility of observing the fractal band
structure of HB, we diagonalize the Hamiltonian Hp in the
single-polariton subspace for several small lattice sizes. As
shown in Fig. 5(a), the HB structure can be observed in the size
of 5 x 5. It becomes clearer in the whole transmission spectra
with the growth of the size. Experimentally, transmission
and reflection measurements have been by far performed

0.35 . -
* Numerical

0.25

0.05

FIG. 4. (Color online) The relation between the critical value of
o and the system size N. Here the parameters are dimensionless.
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o N A
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Eigenvalue

|
N
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FIG. 5. (Color online) The energy spectrum for (a) 5 x 5 lattice;
(b) 6 x 6 lattice; (c) 8 x 8 lattice; (d) 10 x 10 lattice, where energy is
in units of tunneling strength J. The vertical axis is the eigenenergy
of the system, and the horizontal axis indicates magnetic flux through
a unit cell. Here the parameters are dimensionless.

routinely in small-scale circuit QED systems with one or two
resonators [28,40]. We can characterize our hybrid circuits
by spectroscopic measurements, and a feasible method is
to measure the resonator transmission through a network
analyzer. In realistic experiments, the transmission spectrum
of these superconducting resonators will show a series of
Lorentzian peaks, whose central frequencies correspond to
the eigenfrequencies of the Hamiltonian Hp in Eq. (16).
Alternatively, using homodyne detection followed by sampling
and averaging after amplification, we may reveal the coupled
resonator-spin dynamics by measuring the amplitude of the
exponentially damped microwave signal that leaks out of the
resonators after its interaction with the spin ensembles [41].
So far it is still a great challenge to observe such a fascinating
structure in ordinary solid-state system, where the major chal-
lenge comes from the extremely high magnetic field required
in realistic experiments [42]. In this sense, our proposal opens
an entirely new arena to investigate condensed matter and
many-body system with light. Meanwhile, the experimental
progress, especially in large-scale circuit QED [31,32], has
raised the possibility of observing the HB spectrum directly in
realistic experiments [43].

IV. DISCUSSION

Finally, we survey the relevant experimental parameters.
First, the TLR cavity with an inductance F; = 1.2 nH and
capacitance C; = 2 pF leads to a full wave frequency wy /27 =
Dgs + Ac =3.31 GHz with A./2m =440 MHz. Second,
our scheme requires the large-detuning condition, namely,
the detuning A. > g Third, the classical field should be
tuned to 2/27 = 400 MHz > g., which makes the energy
shift induced by the cavity mode negligible [47]. So if we
take the values of the parameters gesr/2m = 8 MHz, T/2n =
4 MHz, and §/2n = 40 MHz, yielding J/2m = Tgfff/482 =
0.04 MHz, our scheme is feasible. This could be confirmed
by recent experimental demonstration of coherent coupling
of a NVE and a superconducting flux qubit [48] as well as
the experimental advances in excellent quantum control with

PHYSICAL REVIEW A 86, 012307 (2012)

strong magnetic coupling (~ 27 x 10 MHz) between TLR and
NVE and the cavity linewidth of k /2w ~ kHz [21-24]. On the
other hand, the electron spin relaxation time 7} of NV centers
ranges from 6 ms at room temperature [49] to 28 ~ 265 s atlow
temperature [50]. In addition, the dephasing time 7, > 600 us
for NVE with natural abundance of '*C has been reported [51].
A later experimental progress [52] with isotopically pure
diamond sample has demonstrated a longer dephasing time
to be 7, = 1.8 ms. Therefore, the parameter J is higher by
nearly two orders of magnitude than the dissipation rates of
the NVE, which makes reliable quantum simulation feasible.

Compared with previous cavity QED protocols [18,53],
our scheme requires only one driving source at each site, and
the effective couplings between neighboring spins are much
larger than in Ref. [18] because the excited states are not
required to be adiabatically eliminated in our case. However,
so far we have ignored the detrimental influence from the
nuclear spin, such as 3¢ defects, in the NVE, which could
be alleviated by isotopically purified '>C diamond through the
purification technique [25,52]. Another decoherence source is
the dipole-interaction between the redundant Nitrogen spins
and the NV centers, which could be reduced by improving the
nitrogen to N-V conversion rate while maintaining the large
collective coupling constants [24]. Alternatively, this problem
could be overcome by applying the external driving field to
the electron spins on the Nitrogen atoms. It would increase
the coherence time of the NVE if these spins are flipped on
a time scale much faster than the flip-flop processes [25]. On
the other hand, the dephasing time can be greatly enhanced by
decoupling the electron spin from its local environment with a
spin echo sequence. Using this technique, the dephasing time
of the NVE reaches 3.7 us at room temperature [24].

V. CONCLUSION

In summary, we have discussed how to simulate gauge
field in a J-C lattice of NVE-TLR system, where the motion
of polaritons (collective excitations) in NVEs is analogous to
the motion of charged bosonic particles in a magnetic field.
We have discussed the competition between the size effect
and the gauge field on the ground state crossover and also
discussed the possibility of identifying signatures of the HB
in the optical spectra of the superconducting resonators. With
currently available techniques, we argue that our system lends
itself as a well-suited quantum simulator for investigating
phenomena encountered in condensed matter physics, and our
study would be useful for the future spintronics technology.
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APPENDIX A: THE GROUND STATE NEAR LEVEL CROSSING

We find that the ground state level crossing can be observed in the system as small as 5 x 5 lattices. As shown in Fig. 6, the

critical value of gauge field is op = 0.333 >~ 1/3.

The numerical result of the ground state near the critical gauge field oy for the 5 x 5 lattice system is shown as follows,

®(0.333) = 01)1.1 + (0.0003 — 0.0002i)[1); » + (0.144 — 0.0009:)[1); 5 + (0.0003 + 0.0002:)[1); 4 + 0|1} 5
+(0.0003 4 0.0002i)| 1)1 4 0.1448]1)55 + (0.3536 — 0.0011i)]1)5.3 + (0.1448 — 0.0009i)|1).4
+(0.0003 — 0.0002i)]1)5.5 + (0.1440 + 0.0009i)|1)3.1 + (0.3536 + 0.00117)[1)3.5 + 0.5772|1)3 3
+(0.3536 — 0.0011i)[1)3 4 4 (0.144 4 0.0009i)[1)3.5 + (0.0003 — 0.0002i)[1)4.1 + (0.1448 + 0.0009i)|1)4.2
+(0.3536 + 0.0011i)[1)4.3 + 0.14481)4 4 + (0.0003 4+ 0.0002)]1)4.5 + 0]1)5.1 + (0.0003 + 0.0002:)|1)s.,
+(0.1440 + 0.0009i)| 1)s 3 + (0.0003 — 0.0002:)[1)s.4 + O[1)s.5. (A1)

®(0.334) = —0.0004(1)1.; + (0.1251 — 0.00713i)|1); 2 + (0.0022 — 0.1763i)[1); 3 + (—0.1232 + 0.00745i)|1) | 4
+0.0004] 1)1 5 + (0.1251 + 0.07130)|1)2.1 + 0.3065|1)2.» + (0.0018 — 0.2890i)|1)2.5 + (0.3064 — 0.0039i)[1).4
+(0.1260 — 0.0698)|1).5 + (0.0022 + 0.1763i)[1)3.1 -+ (0.0018 + 0.2890i)[1)3.2 + 0]1)3.3
+(—0.0018 + 0.2890i)|1)3.4 + (—0.0022 4 0.1763)|1)3.5 + (—0.1232 + 0.0745i)|1)4,
+(—0.3064 4 0.0039i)|1)4.5 + (—0.0018 — 0.2890)|1)4.3 + 0.3065]1)4.4 + (0.1242 + 0.00729i)|1)4.5
+0.0004[1)s.; + (—0.1260 + 0.0698i)[1)5.5 + (—0.0022 + 0.1763i)|1)s.5 + (0.1242 — 0.0729i)[1)s5.4

— 0.0004]1)s.s.

Here |®(a)) denotes the ground state at the field «, and [1), 4
denotes the Fock state | 1) of the polariton at the lattice site p,q.
Itis easy to verify that (®(0.333)|®(0.334)) = 1.58 x 1075 ~
0. Therefore, there is level crossing near the critical gauge field
ap = 0.333.

In general, we can define the ground state fidelity for
the system F(o) = (P(a)|P(« + 5)), with § — 0. For those
F(a) approaching zero, the level crossing occurs. We have
numerically calculated the F(«) and identified the level
crossing points for different sizes of lattices. For example, for
5 x 5 lattice, the level crossing point is near 1/3 . For 6 x 6
lattice, the level crossing points arenear2/7,3/8,2/5,and 1 /2.
The critical points are fitted very well with rational number
p/q for different lattices, and the first crossing point « is just
2/(L + 1) for the L x L systems (L > 4). To qualitatively
learn the nature of the first level crossing at oy = 2/(L + 1),
we estimate o by perturbation approach.

First, we consider a zero magnetic field case, « = 0. Now
the effective model in Eq. (15) is reduced to a continuum

FIG. 6. (Color online) The spatial distribution of the NVE polari-
tons for a 5 x 5 lattice under different values of «: (a) o = 0.334.
(b) @ = 0.333.

(A2)
[
form as
2R
Hpy > L 4+ 1, (A3)
2m  2m

where m = % Considering the boundary condition,
V(0,00 =0, ¥(L,,00 =0, W(O,L;)=0,V¥(Lp,,Ly) =0,

where L, (L,) is the number sites along p(q) direction. We
have the wave-function as

(pq) = ——==sin| — | sin|{ — |,

and the energy eigenvalues as

1 Tp 2 Tq 2
E =—||=—= —= |,
o=l (z) (2]

where p =1,2,3,...,L,andg = 1,2,3,...,L,.Itmeans that
the ground state for the « — O caseislabeledby p = 1,9 = 1
with the energy

1 Tp 2 nq 2
Eqpn=—|— == 1.
o=zl (z) +(2)

The first excited state is labeled by p =2, g =1or p =1,
q = 2 with the energy

n(Eo . En vy — min (L [( 272 ? (™ ?
min s = min|{ — - — ,
@D =02 om [\ 'L, L,
| 2 2
X — <7T—p + 271_q .
2m L, L,

Second, we add a tiny magnetic field «. The energy
spectrum of the system changes little. So we may use the
perturbation theory to deal with this case. Here we choose the
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Landau gauge, A= (By,0), where the gauge field strength
B = 2na. In the following part we set L, = L, = L.
Now the model in Eq. (15) in a continuum form turns into

(k, —Bg» K

2m 2m
In the perturbation theory, we use the plane waves of
nonmagnetic case W, ,) to describe the above model. Then

for the lowest eigenstate W 1), and the excited state W, ),
we have the corresponding perturbation energies as

Fi - 2;[<%>2]+ﬁ[(%ﬂ

Hj — (A4)

1
T29m 22 (— 2naq)+a term,
and
e L[(" : L[ :
D" om [\ L 2m L
1
+L22 ZZ—( Znaq)—i—a term,

where the o terms can be neglected when o < 1. So there
may exist level crossing between ¥(; 1y and W, 1y when

Eq = EQqy.

Then we can obtain the relations

()]l ]t e

1

—§2—22 Qra. q)

for tiny «, and
3 /72\ 1 1 &n
(=) ==—Y 22 @ra
2m<L> L22m2; g e )
for

31
2L+
with 25:1 q = %ﬂ) Therefore, we estimate the first level

crossing at ¢y = 1.5/(L + 1) by perturbation approach, which
is qualitatively same as the numerical result &g = 2/(L + 1).

APPENDIX B: INTERFERENCE PATTERN FOR a = p/q

From the ground-state fidelity we have found that all the
level crossing points are near certain rational points « = p/q,
at which the wave functions show regular oscillations. Figure 7
illustrates the particle density of o = % case on 20 x 20
lattice. After Fourier transformation, we find that such regular
oscillations come from the coherent interference between the
peculiar points in momentum space. Thus for the ground
state of o = % case on an L x L lattice with open boundary
condition, the particle density can be transformed into eight

resonant points inside the reduced Brillouin zone (BZ) of

PHYSICAL REVIEW A 86, 012307 (2012)

FIG. 7. (Color online) The illustration of interference pattern
of m-flux case on 20 x 20 lattice in momentum space in the case
of « = 1/2. The blue lines are the boundary of reduced BZ. The
eight resonant points are (k,.k,) = (3 & + 7 £ %). Here the
parameters are dimensionless.

20’

momentum space as

kpkp= (22 247

*p: 4)_<2 L2 L)

around the nodal points (k,,k,) = (5, £ ). Let’s explain this
result. For an infinite system, the case of « = % is just a w-flux
model, of which there are two nodal points in the reduced BZ
as (7, = 7). To transform the wave-function of the system
with finite size, we can consider the L x L lattice with open
boundary condition as an infinite system with periodic L x L
supercells, of which the wave-functions are fixed to be zero at
the interfaces between two L x L supercells. Thus, modulated
by L x L supercells, each nodal points split to four points. As
a result, we can read out the information of a model with the
periodic condition in thermodynamic limit in this small and
open boundary system. As shown in Fig. 8, for a 20 x 20
lattice, the eight resonant points in the reduced BZ zone are
already very close to the two nodal points for an infinite system.

a=1/2

0.02

g /20
L2001

15
10

q 00

FIG. 8. (Color online) The total fermion density of w-flux case
on 20 x 20 lattice in the case of @ = 1/2. Here the parameters are
dimensionless.
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