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Abstract

We give algorithms for the optimization problem: maxρ 〈Q, ρ〉, where Q is a Hermitian matrix,
and the variable ρ is a bipartite separable quantum state. This problem lies at the heart of sev-
eral problems in quantum computation and information, such as the complexity of QMA(2).
While the problem is NP-hard, our algorithms are better than brute force for several instances
of interest. In particular, they give PSPACE upper bounds on promise problems admitting a
QMA(2) protocol in which the verifier performs only logarithmic number of elementary gate
on both proofs, as well as the promise problem of deciding if a bipartite local Hamiltonian has
large or small ground energy. For Q ≥ 0, our algorithm runs in time exponential in ‖Q‖F.
While the existence of such an algorithm was first proved recently by Brandão, Christandl and
Yard [Proceedings of the 43rd annual ACM Symposium on Theory of Computation , 343–352, 2011],
our algorithm is conceptually simpler.

1 Introduction

Entanglement is an essential ingredient in many ingenious applications of quantum information
processing. Understanding and exploiting entanglement remains a central theme in quantum in-
formation processing research [HHH+09]. Denote by SepD (A1 ⊗A2) the set of separable (i.e, un-
entangled) density operators over the space A1⊗A2. A fundamental question known as the weak
membership problem for separability is to decide, given a classical description of a quantum state ρ
over A1 ⊗A2, whether this state ρ is inside or ε far away in trace distance from SepD (A1 ⊗A2).
Unfortunately this very basic problem turns out to be intractable. In 2003, Gurvits [Gur03] proved
the NP-hardness of the problem when ε is inverse exponential in the dimension of A1 ⊗A2. The
dependence on ε was later improved to inverse polynomial [Ioa07, Gha10].

In this paper we study a closely related problem to the weak membership problem discussed
above. More precisely, we consider the linear optimization problem over separable states.

Problem 1. Given a Hermitian matrix Q overA1⊗A2 (of dimension d× d), compute the optimum
value, denoted by OptSep(Q), of the optimization problem

max 〈Q, X〉 subject to X ∈ SepD (A1 ⊗A2) .

It is a standard fact in convex optimization [GLS93, Ioa07] that the weak membership problem
and the weak linear optimization, a special case of Problem 1, over certain convex set, such as
SepD (A1 ⊗A2), are equivalent up to polynomial loss in precision and polynomial-time overhead.
Thus the hardness result on the weak membership problem for separability passes directly to
Problem 1.
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Besides the connection with the weak membership problem for separability, Problem 1 can
also be understood from many other aspects. Firstly, as the objective function is the inner-product
of a Hermitian matrix and a quantum state, which represents the average value of some phys-
ical observable, the optimal value of Problem 1 inherently possesses certain physical meaning.
Secondly, in the study of the tensor product space [DF92], the value OptSep(Q) is precisely the
injective norm of Q in L(A1) ⊗ L(A2), where L(A) denote the Banach space of operators on A
with the operator norm. Finally, one may be equally motivated from the study in operations re-
search. The definition of Problem 1 appeared in an almost identical form in [LQNY09] with the
new name of “Bi-Quadratic Optimization over Unit Spheres”. Subsequent works [HLZ10, So11]
demonstrate that Problem 1 is just a special case of a more general class of optimization prob-
lems called homogenous polynomial optimization with quadratic constraints, which is currently
an active research topic in that field.

Another motivation to study Problem 1 is the recent interest about the complexity class QMA(2).
Originally the class QMA (also known as quantum proofs) was defined [KSV02] as the quantum
counterpart of the classical complexity class NP. While the extension of NP to allow multiple
provers trivially reduces to NP itself, the power of QMA(2), the extension for QMA with mul-
tiple unentangled provers, remains far from being well understood. The study of the multiple-
prover model was initiated in [KMY01, KMY03], where QMA(k) denotes the complexity class for
the k-prover case. Much attention was attracted to this model because of the discovery that NP
admits logarithmic-size unentangled quantum proofs [BT09]. This result was surprising because
single prover quantum logarithm-size proofs only characterize BQP [MW05]. It seems adding
one unentangled prover increases the power of the model substantially. There are several subse-
quent works on refining the initial protocol either with improved completeness and soundness
bounds [Bei10, ABD+09, CF11, GNN11] or with less powerful verifiers [CD10]. Recently it was
proved that QMA(2)=QMA(poly) [HM10] by using the so-called product test protocol that deter-
mines whether a multipartite state is a product state when two copies of it are given. There is
another line of research on the power of unentangled quantum proofs with restricted verifiers.
Two complexity classes BellQMA and LOCCQMA, referring to the restricted verifiers that per-
form only nonadaptive or adaptive local measurements respectively, were defined in [ABD+09]
and studied in [Bra08, BCY11]. It has been shown [BCY11] that LOCCQMA(m) is equal to QMA
for constant m.

Despite much effort, no nontrivial upper bound of QMA(2) is known. The best known up-
per bound QMA(2)⊆NEXP follows trivially by nondeterministically guessing the two proofs. It
would be surprising if QMA(2) = NEXP. Thus it is reasonable to seek a better upper bound like
EXP or even PSPACE. It is not hard to see that simulating QMA(2) amounts to distinguishing be-
tween two promises of OptSep(Q), although one has the freedom to choose the appropriate Q.
Note that Problem 1 was also studied in [BCY11] for the same purpose.

Hardness result. There are several approaches to prove the hardness of Problem 1. The first is
to make use of the NP-hardness of the weak membership problem and the folk theorem in con-
vex optimization as mentioned above. However, one may directly reduce the CLIQUE problem
to Problem 1 [deK08, LQNY09]. There is also a stronger hardness result [HM10] on the precise
running time of algorithms solving Problem 1 conditioned on the Exponential Time Hypothesis
(ETH) [IP01]. The hardness results extend naturally to the approximation version of Problem 1. It
is known that OptSep(Q) remains to be NP-hard to compute even if inverse polynomial additive
error is allowed. Nevertheless, it is wide open whether the hardness result remains if one allows
even larger additive error.
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From the perspective of operations research, the hardness of Problem 1 is a consequence of
not being a convex optimization problem. In this case although efficient methods, compared with
brute-force, for finding a local optimum usually exist, on the other hand finding the global one
is fraught with difficulty. This is because one needs to enumerate all possible local optima before
one can determine the global optimum in the worst case.

Our contributions. In this paper we provide efficient algorithms for Problem 1 in either time or
space for several Qs of interest. As the hardness result implies that enumeration is likely to be
inevitable in the worst case, our idea is to enumerate via epsilon-nets more "cleverly" with the
help of certain structure of Q.

When the total number of points to enumerate is not large, one can represent and hence enu-
merate each point in polynomial space. If the additional computation for each point can also
be done in polynomial space, one immediately gets a polynomial-space implementation for the
whole algorithm by composing those two components naturally. In order to obtain space-efficient
implementation for the additional computation, we make use of the relation NC(poly)=PSPACE
[Bor77]. Namely in order to design space-efficient algorithms, it suffices to design efficient paral-
lel algorithms. The additional computation in our following cases basically includes the following
two parts. The first part helps to make sure the enumeration procedure works correctly. This is
because these epsilon-nets of interest in our algorithm are not standard, additional effort is neces-
sary to generate them. This part turns into a simple application of the so-called multiplicative ma-
trix weight update (MMW) method [AHK05, WK06, Kal07] to computing a min-max form, which
is known to admit efficient parallel algorithms under certain conditions. The second part does
the real computation that in our case only consists of fundamental matrix operations. It is well
known those operations usually admit efficient parallel algorithms [Gat93]. As a result, both parts
of the additional computation admit efficient parallel algorithms, and therefore, the additional
computation can be implemented in polynomial space in our case.

We summarize below the main results obtained by applying the above ideas.

1. The first property exploited is the so-called decomposability of Q which refers to whether Q can
be decomposed in the form Q = ∑M

i=1 Q1
i ⊗ Q2

i with small M. Note this concept is closely related
to a more commonly studied concept, tensor rank. Intuitively, if one substitutes this Q’s decom-
position into 〈Q, ρ1 ⊗ ρ2〉 and treat

〈
Q1

1, ρ1
〉

, · · · ,
〈

Q1
M, ρ1

〉
,
〈

Q2
1, ρ2

〉
, · · · ,

〈
Q2

M, ρ2
〉

as variables,
the optimization problem becomes quadratic and M corresponds to the number of second-order
terms in the objective function. If we plug the values of

〈
Q1

1, ρ1
〉

, · · · ,
〈

Q1
M, ρ1

〉
into the objective

function, then the optimization problem reduces to be a semidefinite program, and thus can be
efficiently solved. Hence by enumerating all possible values of

〈
Q1

1, ρ1
〉

, · · · ,
〈

Q1
M, ρ1

〉
one can

efficiently solve the original problem when M is small. Since this approach naturally extends to
the k-partite case for k ≥ 2, we obtain the following general result.

Theorem 1 (Informal. See Section 3). Given any Hermitian Q and its decomposition Q = ∑M
i=1 Q1

i ⊗
· · · ⊗Qk

i as input, the quantity OptSep(Q) can be approximated to precision δ in quasi-polynomial time in
d and 1/δ if kM is bounded by poly-logarithms of d.

By exploiting the space-efficient algorithm design strategy above, this algorithm can also be
made space-efficient. To facilitate the later applications to complexity classes, we choose the input
size to be some n such that d = exp(poly(n)).

Corollary 1 (Informal. See Section 3). If kM/δ ∈ O(poly(n)), the quantity OptSep(Q) can be
approximated to precision δ in PSPACE.
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As a direct application, we prove the following variant of QMA(2) belongs to PSPACE where
QMA(2)[poly(n), O(log(n))] refers to the model where the verifier only performs O(log(n)) ele-
mentary gates that act on both proofs at the same time and a polynomial number of other elemen-
tary gates. Note QMA(2)[poly(n),poly(n)]=QMA(2) in our notation.

Corollary 2. QMA(2)[poly(n), O(log(n))] ⊆ PSPACE.

This result establishes the first PSPACE upper bound for some variants of QMA(2) where the
verifier is allowed to generate some quantum entanglement between two proofs. In contrast,
previous results are all about variants with nonadaptive or adaptive local measurements, such as
BellQMA(2) [ABD+09, Bra08, CD10] or LOCCQMA(2) [ABD+09, BCY11].

We also initiate the study of Problem 1 when Q is a local Hamiltonian over k parties. Recall
that a promise version of this problem in the one party case, namely the local-Hamiltonian prob-
lem, is QMA-complete problem [KSV02]. Our definition extends the original local Hamiltonian
problem to its k-partite version. However, as will be clear in the main section, the k-partite local
Hamiltonian problem is no longer QMA(k)-complete. On the other side, our enumeration algo-
rithm based on the decomposability of Q works extremely well in this case. As a result, we obtain
the following corollary.

Corollary 3 (Informal. See Section 5). Given some local Hamiltonian Q over k parties, OptSep(Q)
can be approximated to precision δ in quasi-polynomial time in d, 1/δ; the k-partite local Hamil-
tonian problem belongs to PSPACE.

2. The second structure made use of is the eigenspace of Q of large eigenvalues. As a result, we
establish an algorithm solving Problem 1 with running time exponential in ‖Q‖F.

Theorem 2 (Informal. See Section 6). For positive semidefinite Q, the quantity OptSep(Q) can be
approximated to precision δ with running time exp(O(log(d) + δ−2‖Q‖2

F ln(‖Q‖F/δ))).

A similar running time exp(O(log2(d)δ−2508‖Q‖2
F)) was obtained in [BCY11] using some

known results in quantum information theory (i.e., the semidefinite programming for finding
symmetric extension [DPS04] and an improved quantum de Finetti-type bound.) In contrast, our
algorithm only uses fundamental operations of matrices and epsilon-nets. To approximate with
precision δ, it suffices to consider the eigenspace of Q of eigenvalues greater than δ whose di-
mension is bounded by ‖Q‖2

F/δ2. Nevertheless, naively enumerating density operators over that
subspace does not work since one cannot detect the separability of those density operators. We
circumvent this difficulty by making nontrivial use of the Schmidt decomposition of bipartite pure
states.

We note, however, that the other results in [BCY11] do not follow from our algorithm, and our
method cannot be seen as a replacement of the kernel technique therein. Furthermore, our method
does not extend to the k-partite case, as there is no Schmidt decomposition in that case.

Open problems. The main open problem is whether Problem 1 admits an efficient algorithm in
either time or space, when larger additive error is allowed. It is also interesting to see whether, for
those Qs that come from the simulation of the complexity class QMA(2), the quantity OptSep(Q)
can be efficiently computed.

Organizations: The rest part of this paper is organized as follows. The necessary background
knowledge on the particular epsilon-nets in use is introduced in Section 2. The main algorithm
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based on the decomposability of Q is illustrated in Section 3. Two applications of such an algo-
rithm is discussed immediately after; the simulation of variants of QMA(2) is discussed in Sec-
tion 4 and the local Hamiltonian case is discussed in Section 5. Finally, the demonstration of an
algorithm with running time exponential in ‖Q‖F for Problem 1 can be found in Section 6.

Notations: We assume familiarity with standard concepts from quantum information [NC00,
KSV02, Wat08]. Particularly, our notations follow from [Wat08]. Precisely, we use A,B to denote
complex Euclidean spaces and L (A) , Herm (A) , D (A) to stand for the linear operators, Hermi-
tian operators and density operators over A respectively. We denote the trace norm of operator Q
by ‖Q‖tr, i.e. ‖Q‖tr = Tr (Q∗Q)1/2 where Q∗ stands for the conjugate transpose of Q. The Frobe-
nius norm is denoted by ‖Q‖F and the operator norm is denoted by ‖Q‖op. The `1 norm of vector
x ∈ Cn is denoted by ‖x‖1 = ∑n

i=1 |xi| and its `∞ norm is denoted by ‖x‖∞ = maxi=1,··· ,n |xi|. We
use ‖x‖ to denote the Euclidean norm. The unit ball of Cn under certain norm ‖·‖ is denoted by
B(Cn, ‖·‖).

2 Epsilon Net

The epsilon-net (or ε-net) is an important concept in several mathematical topics. For our purpose,
we adopt the following definition of ε-net.

Definition 1 (ε-net). Let (X, d) 1 be any metric space and let ε > 0. A subset Nε is called an ε-net
of X if for each x ∈ X, there exists y ∈ Nε with d(x, y) ≤ ε.

Now we turn to the particular ε-net considered in this paper. Let H be any Hilbert space
of dimension d and Q = Q(M, w) = (Q1, Q2, · · ·QM) be a sequence of operators on H with
‖Qi‖op ≤ w, for all i. Define the Q-space, denoted by SP(Q), as

SP(Q) = {(〈Q1, ρ〉 , 〈Q2, ρ〉 , · · · , 〈QM, ρ〉) : ρ ∈ D (H)} ⊆ CM.

The set is convex and compact, and a (possibly proper) subset of Raw-(M, w) = {(q1, q2, · · · , qM) :
∀i, qi ∈ C, ‖qi‖ ≤ w}.

In the following, we construct an ε-net of the metric space (SP(Q), `1). Our method will first
generate an ε-net of (Raw-(M, w), `1) via a standard procedure and then select those points that
are also close to Q-space. We will present and analyze the efficiency of the selection process first
and come back to the construction of the ε-net afterwards.

Selection process

The selection process determines if some point ~p in Raw-(M, w) is close to SP(Q). Denote by
SP(Q) the distance of ~p ∈ CM to SP(Q), i.e.,

dis(~p) = min
~q∈SP(Q)

‖~p−~q‖1.

We show in this section how to compute dis(~p) in polylog space.That the problem admits a poly-
nomial time algorithm follows from the fact that it can be cast as a semidefinite programming

1We will abuse the notation later where the metric d is replaced by the norm from which the metric is induced.
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problem. However, !EXPLAIN THE STATE OF THE ART RESULT ON THE SPACE COPMLEX-
ITY OF SDP Thus we need to develop our own space-efficient algorithm for this problem.

By making use of the definition of SP(Q) and the duality of the `1 norm, one can find the
following equivalent definition of the distance.

dis(~p) = min
ρ∈D(H)

max
~z∈B(CM ,‖·‖∞)

Re 〈~p−~q(ρ),~z〉

where
~q(ρ) = (〈Q1, ρ〉 , 〈Q2, ρ〉 , · · · , 〈QM, ρ〉) ∈ CM (1)

By rephrasing dis(~p) in the above form, one shows the quantity dis(~p) is actually an equilibrium
value. This follows from the well-known extensions of von’ Neumann’s Min-Max Theorem [vN28,
Fan53]. One can easily verify that the density operator set D (H) and the unit ball of CM under
`∞ norm are convex and compact sets. Moreover, the objective function is a bilinear form over the
two sets. The Min-Max theorem implies

min
ρ∈D(H)

max
~z∈B(CM ,‖·‖∞)

Re 〈~p−~q(ρ),~z〉 = max
~z∈B(CM ,‖·‖∞)

min
ρ∈D(H)

Re 〈~p−~q(ρ),~z〉 (2)

Fortunately, there is an efficient algorithm in either time or space (in terms of d, M, w, 1/ε) to
approximate dis(~p) with additive error ε. The main tool used here is the so-called matrix mul-
tiplicative weight update method [AHK05, Kal07, WK06]. Similar min-max forms also appeared
before in a series of work on quantum complexity [JW09, Wu10a, Wu10b, GW10]. The algorithm
presented here is another simple application of this powerful method. For the sake of complete-
ness, we provide the entire proof of the following lemma in Appendix A.

Lemma 3. Given any point ~p ∈ Raw-(M, w) and ε > 0, there is an algorithm (depicted in Appendix A)
that approximates dis(~p) with additive error ε. Namely, the return value d̃ of this algorithm satisfies,

d̃− ε ≤ dis(~p) ≤ d̃ + ε

Moreover, the algorithm runs in poly(d, M, w, 1/ε) time. Furthermore, if d is considered as the input size
and M, w, 1/ε ∈ O(poly-log(d)), this algorithm is also efficient in parallel, namely, it is inside NC.

Construction of the ε-net

We are now ready to show the construction of the ε-net of SP(Q). As mentioned before, this
construction contains two steps below. Given any Q(M, w) and ε > 0,

• Construct the ε-net of the set Raw-(M, w) with the metric induced from the `1 norm. Denote
such an ε-net byRε.

• For each point ~p ∈ Rε, determine dis(~p) and select it to Nε if dis(~p) ≤ ε. We claim Nε is the
ε-net of (SP(Q), `1).

The construction for the first step is rather routine. Creating an ε′-net T′ε over a bounded complex
region {z ∈ C : ‖z‖ ≤ w} is simple: we can place a 2D grid over the complex plane to cover
the disk ‖z‖ ≤ w. Simple argument shows |T′ε| ∈ O(w2

ε′2
). Then Rε can be obtained by the cross-

product T′ε × · · · × T′ε︸ ︷︷ ︸
M times

. To ensure the closeness in the `1 norm, we will choose ε′ = ε/M.
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Theorem 4. TheNε constructed above is indeed an ε-net of (SP(Q), `1) with cardinality at most O((w2 M2

ε2 )M).
Furthermore, for any point ~n ∈ Nε, we have dis(~n) ≤ ε.

Proof. First we show Rε is indeed an ε-net of (Raw-(M, w), `1). To that end, consider any point
~p ∈ Raw-(M, w). From the construction ofRε, there is some point~q ∈ Rε such that ‖~p−~q‖∞ ≤ ε′.
Then we have ‖~p −~q‖1 ≤ M‖~p −~q‖∞ ≤ Mε′ ≤ ε. Since Nε ⊆ Rε, one has |Nε| ≤ |Rε| ∈
O((w2 M2

ε2 )M).
In order to show Nε is the required ε-net, consider any point ~p ∈ SP(Q). Since SP(Q) ⊆

Raw-(M, w), there exists a point ~p′ ∈ Rε such that ‖~p− ~p′‖1 ≤ ε. Hence we have dis(~p′) ≤ ε and
the point ~p′ will be selected, namely ~p′ ∈ Nε. Finally, it is a simple consequence of the selection
process that every point ~n ∈ Nε has dis(~n) ≤ ε .

Remarks. It is not hard to see that if one choose Q to be Q(d2, 1) = {|i〉〈j| : i, j = 1, · · · , d}, one
can generate the ε-net of the density operator set with the `1 norm in the method described above.
It is akin to generating an ε-net for every entry of the density operator. At the other extreme, one
can also efficiently generate the ε-net of a small size SP(Q) even when the space dimension d is
relatively large.

3 The Main Algorithm

In this section, we prove the main theorem. Without loss of generality, we assumeA1,A2 are iden-
tical, and of dimension d in Problem 1. Moreover, our algorithm will deal with the set of product
states rather than separable states. Namely, we consider the following optimization problem.

max: 〈Q, ρ〉 (3)
subject to: ρ = ρ1 ⊗ ρ2, ρ1 ∈ D (A1) , ρ2 ∈ D (A2)

It is easy to see these two optimization problems are equivalent since product states are extreme
points of the set of separable states. Our algorithm works for both maximization and minimization
of the objective function. In fact, both results can be obtained at the same time. Since our algorithm
naturally extends to multipartite cases, we will demonstrate the algorithm for the k-partite version
first, and then obtain the solution for Problem 1 as a special case when k = 2.

Problem 2 (k-partite version). Given any Hermitian matrix Q overA1⊗ · · · ⊗Ak (k ≥ 2), compute
the optimum value OptSep(Q) of the following optimization problem to precision δ.

max: 〈Q, ρ〉 (4)
subject to: ρ = ρ1 ⊗ · · · ⊗ ρk, ∀i, ρi ∈ D (Ai)

Before describing the algorithm, we need some terminology about the decomposability of a multi-
partite operator. Any Hermitian operator Q over A1 ⊗A2 ⊗ · · · ⊗ Ak is called M-decomposable if
there exists (Qt

1, Qt
2, · · · , Qt

M) ∈ L (At)
M for t=1,2,..., k such that

Q =
M

∑
i=1

Q1
i ⊗Q2

i ⊗ · · · ⊗Qk−1
i ⊗Qk

i

To facilitate the use of ε-net, we adopt a slight variation of the decomposability above. Let ~w ∈
Rk

+ denote the widths of operators over each Ai. Any Q is called (M, ~w)-decomposable if Q is
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1. Let Qt(M, wt) = (Qt
1, Qt

2, · · · , Qt
M) for t=1,..., k-1. Let W = Πk

i=1wi. Generate the εt-net (by
Theorem 4) of (SP(Qt), `1) for each t=1,..., k-1 with εt = wtδ/(k− 1)W and denote such set
by N t

εt
. Also let OPT store the optimum value of the maximization problem.

2. For each point ~q = (~q1,~q2, · · ·~qk−1) ∈ N 1
ε1
×N 2

ε2
× · · · × N k−1

εk−1
, let Qk be

Qk =
M

∑
i=1

q1
i q2

i · · · qk−1
i Qk

i

and calculate Q̃k = 1
2 (Qk + Qk∗). Then compute the maximum eigenvalue of Q̃k, denoted by

λmax(~q). Update OPT as follows: OPT = max{OPT, λmax(~q)}.
3. Return OPT.

Figure 1: The main algorithm with precision δ.

M-decomposable and the widths of those operators in the decomposition are bounded in the
sense that maxi‖Qt

i ‖op ≤ wt for t=1,2,..., k. It is noteworthy to mention that the decomposability
defined above is related to the concept tensor rank 2 defined in tensor product spaces. Precisely
for any hermitian operator Q over A1 ⊗A2 ⊗ · · · ⊗ Ak, its tensor rank rank⊗(Q) is defined to be
min{M|Q is M-decomposable}. One can also define its bounded tensor rank brank⊗(Q, ~w) to be
min{M|Q is (M, ~w)-decomposable}.

It is easy to see from the definition that rank⊗(Q) (resp. brank⊗(Q, ~w)) is the minimum M that
Q can be M (resp. (M, ~w))-decomposable. However, given the representation Q as input, it is hard
in general to compute rank⊗(Q) or brank⊗(Q, ~w) or its corresponding decomposition. Therefore
our algorithm cannot make use of the optimal decomposition when Q is the only input. Instead,
for any (M, ~w)-decomposable Q we assume its corresponding decomposition is also one part of
the input to our algorithm.

Theorem 5. Let Q be some (M, ~w)-decomposable Hermitian over A1 ⊗ A2 ⊗ · · · ⊗ Ak (each Ai is of
dimension d) and δ > 0. Also let (Qt

1, Qt
2, · · · , Qt

M), t = 1, 2, · · · , k be the operators in the correspond-
ing decomposition of Q. The algorithm shown in Fig. 1 approximates the optimum value OptSep(Q) of
Problem 2 with additive error δ. Furthermore, the whole algorithm runs in O(( (k−1)2W2 M2

δ2 )(k−1)M) ×
poly(d, M, k, W, 1/δ) time.

Proof. Let’s first prove the correctness of the algorithm. By choosingQt(M, wt) = (Qt
1, Qt

2, · · · , Qt
M)

for t=1,...,k-1, the algorithm first generates the ε-net Nεt of each (SP(Qt), `1) , whose correctness
is guaranteed by Theorem 4. By substituting the identity Q = ∑M

i=1 Q1
i ⊗ Q2

i ⊗ · · · ⊗ Qk−1
i , the

optimization problem becomes

max:

〈
M

∑
i=1

p1
i p2

i · · · pk−1
i Qk

i , ρk

〉
subject to: ∀t ∈ {1, · · · , k− 1}, ~pt ∈ SP(Qt(M, wt)), and ρk ∈ D (Ak)

2Our definition should be more accurately related to the Kronecker-Product rank defined in [RvL11]. However, one
can also consider this concept as a special case of the more general concept tensor rank.
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Thus, solving the optimization problem amounts to first enumerating ~pt ∈ SP(Qt(M, w1)) for
each t, and then solving the optimization problem over D (Ak).

Consider any point ~p = (~p1,~p2, · · · ,~pk−1) ∈ SP(Q1) × · · · × SP(Qk−1). Due to Theorem 4,
there is at least one point ~q = (~q1,~q2, · · ·~qk−1) ∈ N 1

ε1
×N 2

ε2
× · · · × N k−1

εk−1
such that ‖~qt − ~pt‖1 ≤

εt for t=1,..,k-1. The choice of Q̃k is to symmetrize Qk where the latter is not guaranteed to be
Hermitian because~q only comes from an ε-net. With Q̃k being Hermitian, it is clear that λmax(~q) =
maxρk∈D(Ak)

〈
Q̃k, ρk

〉
. Now let’s analyze how much error will be induced in this process.

Let Pk(~p) = ∑M
i=1 p1

i p2
i · · · p

k−1
i Qk

i and P̃k = 1
2 (Pk + Pk∗). It is not hard to see that Pk = P̃k. The

error bound is achieved by applying a chain of triangle inequalities as follows. Firstly,

‖ P̃k− Q̃k‖op = ‖ 1
2
(Pk−Qk)+

1
2
(Pk∗−Qk∗)‖op ≤

1
2
(‖Pk−Qk‖op + ‖Pk∗−Qk∗‖op) = ‖Pk−Qk‖op

Then we substitute the expressions for Pk, Qk and apply the standard hybrid argument

‖Pk −Qk‖op = ‖
M

∑
i=1

(p1
i p2

i · · · pk−1
i − q1

i q2
i · · · qk−1

i )Qk
i ‖op

= ‖
M

∑
i=1

k−1

∑
t=1

(q1
i · · · qt−1

i pt
i pt+1

i · · · pk−1
i − q1

i · · · qt−1
i qt

i pt+1
i · · · pk−1

i )Qk
i ‖op

which is immediately upper bounded by the sum of the following terms,

M

∑
i=1
|p1

i − q1
i ||p2

i · · · pk−1
i |‖Qk

i ‖op,
M

∑
i=1
|q1

i ||p2
i − q2

i ||p3
i · · · pk−1

i |‖Qk
i ‖op, · · · ,

M

∑
i=1
|q1

i · · · qk−2
i ||pk−1

i − qk−1
i |‖Qk

i ‖op

As the tth term above can be upper bounded by εtW/wt for each t=1,...,k-1, we have

‖ P̃k − Q̃k‖op ≤ ε1W/w1 + ε2W/w2 + · · ·+ εk−1W/wk−1 =
δ

k− 1
+ · · ·+ δ

k− 1︸ ︷︷ ︸
k-1 terms

= δ

Hence the optimum value for any fixed ~p won’t differ too much from the one for its approximation
~q in the ε-net. This is because

max
ρk∈D(Ak)

〈
P̃k, ρk

〉
= max

ρk∈D(Ak)

〈
Q̃k, ρk

〉
+
〈

P̃k − Q̃k, ρk

〉
By Hölder Inequalities we have |

〈
P̃k − Q̃k, ρk

〉
| ≤ ‖ P̃k − Q̃k‖op‖ρk‖tr ≤ δ and thus,

λmax(~q)− δ ≤ max
ρk∈D(Ak)

〈
P̃k(~p), ρk

〉
≤ λmax(~q) + δ

We now optimize ~p over SP(Q1)× · · · × SP(Qk−1) and the corresponding~q will run over the ε-net
N 1

ε1
× N 2

ε2
× · · · × N k−1

εk−1
. As every point ~q ∈ N 1

ε1
× N 2

ε2
× · · · × N k−1

εk−1
is also close to SP(Q1) ×

· · · × SP(Qk−1) in the sense that dis(~qt) ≤ εt for each t, we have

max
~q∈N 1

ε1
×N 2

ε2
×···×N k−1

εk−1

λmax(~q)− δ ≤ max
~p∈SP(Q1)×···×SP(Qk−1)

max
ρk∈D(Ak)

〈
P̃k(~p), ρk

〉
≤ max

~q∈N 1
ε1
×N 2

ε2
×···×N k−1

εk−1

λmax(~q)+ δ

9



Finally, it is not hard to see that OPT = max~q∈N 1
ε1
×N 2

ε2
×···×N k−1

εk−1
λmax(~q) and therefore

OPT− δ ≤ OptSep(Q) ≤ OPT + δ

Now let us analyze the efficiency of this algorithm. The total number of points in the ε-net N 1
ε1
×

N 2
ε2
× · · · ×N k−1

εk−1
is upper bounded by O(( (k−1)2W2 M2

δ2 )(k−1)M) by Theorem 4. For each point~q, the
generation of such a point will cost time polynomial in d, M, W, 1/δ (this part is done through the
calculation of dis(~q). See Lemma 3. ). After the generation process, one needs to calculate Q̃k and
its maximum eigenvalue for each point, which can be done in time polynomial in d, k, M. Thus,
the total running time will be bounded by O(( (k−1)2W2 M2

δ2 )(k−1)M)× poly(d, M, k, W, 1/δ).

Remarks. There are a few remarks to make about Theorem 5. First, it is straightforward to extend
the concept of decomposability to its approximate version. For instance, any Hermitian Q is called
ε-approximate (M, ~w)-decomposable if there exists some (M, ~w)-decomposable Q̃, such that ‖Q−
Q̃‖ ≤ ε, where the norm could be the operator norm or the injective tensor norm. It is easy to
verify that one could apply the same algorithm to approximately solve OptSep(Q).

Second, one can easily observe that all operations in the algorithm described in Fig. 1 can be
implemented efficiently in parallel in some situation. This is because fundamental operations of
matrices can be done in NC and the calculation of dis(~p) can be done in NC (See Lemma 3) when
M, W, k, 1/δ are in nice forms of d. Thus, we can apply the observation stated in the introduction
part and prove the algorithm in Fig. 1 can also be made space-efficient. To facilitate the later use
of this result, we will change the input size as follows.

Corollary 4. Let n be the input size such that d = exp(poly(n)), if W/δ ∈ O(poly(n)), kM ∈
O(poly(n)), then OptSep(Q) can be approximated with additive error δ in PSPACE.

Proof. Here we present an argument that composes space-efficient algorithms directly. Given Q
and its decomposition as input, consider the following algorithm

1. Enumerate each point ~p = (~p1,~p2, · · · ,~pk−1) from the raw setR1
ε1
× · · · ×Rk−1

εk−1
.

2. Compute dis(~pt) for each t=1,...,k-1. If ~p is a valid point in the epsilon-net, then we continue
with the rest part in Step 2 of the algorithm in Fig. 1.

3. Compare the values obtained by each point ~p and keep the optimum one.

Given the condition W/δ ∈ O(poly(n)), kM ∈ O(poly(n)), the first part of the algorithm can
be done in polynomial space. This is because in this case each point in the raw set can be rep-
resented by polynomial space and therefore enumerated in polynomial space. The second part
is more difficult. Computing dis(~pt) for each t=1,...,k-1 can be done in NC(poly(n)) as shown
in Lemma 3. Step 2 in the main algorithm only contains fundamental operations of matrices
and the spectrum decomposition. Thus, it also admits a parallel algorithm in NC(poly(n)). One
can easily compose the two circuits and get a polynomial space implementation by the relation
NC(poly)=PSPACE [Bor77]. The third part can obviously be done in polynomial space.

Thus, by composing these three polynomial-space implementable parts, one proves the whole
algorithm can be done in PSPACE.
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4 Simulation of several variants of QMA(2)

This section illustrates how one can make use of the algorithm shown in Section 3 (when k=2) to
simulate some variants of the complexity class QMA(2). The idea is to show for those variants,
the corresponding POVM matrices of acceptance are (M, ~w)-decomposable with small Ms. Before
we dive into the details, let us recall the definition of the complexity class QMA(2).

Definition 2. A language L is in QMA(2)m,c,s if there exists a polynomial-time generated family
of quantum verification circuits Q = {Qn|n ∈ N} such that for any input x of size n, the circuit
Qn implements a two-outcome measurement {Qacc

x , 1−Qacc
x }. Furthermore,

• Completeness: If x ∈ L, there exist 2 witness |ψ1〉 ∈ A1, |ψ2〉 ∈ A2, each of m qubits, such
that

〈Qacc
x , |ψ1〉〈ψ1| ⊗ |ψ2〉〈ψ2|〉 ≥ c

• Soundness: If x /∈ L, then for any states |ψ1〉 ∈ A1, |ψ2〉 ∈ A2,

〈Qacc
x , |ψ1〉〈ψ1| ⊗ |ψ2〉〈ψ2|〉 ≤ s

We call QMA(2)=QMA(2)poly(n),2/3,1/3. It is easy to see that simulating the complexity class
QMA(2) amounts to distinguishing between the two promises of the maximum acceptance prob-
ability, represented by the inner product 〈Qacc

x , ρ〉, over the set of all possible valid strategies of
the two provers which is exactly SepD (A1 ⊗A2). Note the maximum acceptance probability is
exactly OptSep(Qacc

x ) defined in Problem 1. Thus, if one were able to distinguish between the two
promises of OptSep(Qacc

x ), one could simulate this protocol with the same amount of resources
(time or space).

The first example is the variant with only logarithm-size proofs, namely QMA(2)O(log(n)),2/3,1/3.
It is not hard to find out the corresponding POVMs of acceptance (i.e. Qacc

x ) need to be (poly(n),~w)-
decomposable sinceA1,A2 in this case are only of poly(n) dimension. Moreover, ~w could be (1, 1)
in this case. Thus, it follows directly from Corollary 4 that OptSep(Qacc

x ) can be approximated in
polynomial space. Namely,

QMA(2)O(log(n)),2/3,1/3 ⊆ PSPACE

The next example is slightly less trivial. Before moving on, we need some terminology about
the quantum verification circuits Q. Assume the input x is fixed from now on. Let A1,A2 be
the Hilbert space of size dA for the two proofs and let V be the ancillary space of size dV . Note
dAdV is exponential in n. Then the quantum verification process will be carried out on the space
A1⊗A2⊗V with some initial state |ψ1〉⊗ |ψ2〉⊗

∣∣∣~0〉where |ψ1〉 , |ψ2〉 are provided by the provers.
The verification process is also efficient in the sense the whole circuit only consists of poly(n)
elementary gates. Without loss of generality, we can fix one universal gate set for the verification
circuits in advance. Particularly, we choose the universal gate set to be single qubit gates plus
the CNOT gates [NC00]. Henceforth we are able to say something more precisely about those
elementary gates in the verification circuits.

We categorize all elementary gates in the verification circuits into two types. A gate is of type-I
if it only affects the qubits within the same space (i.e, A1,A2, or,V). Otherwise, this gate is of
type-II. It is easy to see single qubit gates are always type-I gates. The only type-II gates are CNOT

11



gates whose control qubit and target qubit sit in different spaces. Let p, r : N→N be polynomial-
bounded functions. A polynomial-time generated family of quantum verification circuits Q is
called Q[p, r] if each Qn only contains p(n) type-I elementary gates and r(n) type-II elementary
gates.

Definition 3. A language L is in QMA(2)m,c,s[p, r] if L is in QMA(2)m,c,s with some Q[p, r] verifi-
cation circuit family.

It is easy to see that QMA(2) = QMA(2)[poly, poly] from our definition. In the following
we will show that when the number of type-II gates is relatively small, one can simulate this
complexity model efficiently by the algorithm in Fig. 1.

Lemma 6. For any family of verification circuits Q[p, r], the corresponding POVM Qacc
x is (4r(n), (1, 1))-

decomposable for any n ∈ N and input x. Moreover, this decomposition can be calculated in parallel with
O(t(n)4r(n))× poly(n) time.

Proof. For any n ∈ N and input x, let us denote the whole unitary that the verification circuit
applies on the initial state by U = UtUt−1 · · ·U1 where each Ui corresponds to one elementary
gate and t = p + r. Without loss of generality, we assume the output bit is the first qubit in the
space V and the verification accepts when that qubit is 1. Let V̄ be the space V without the first
qubit, then we have

Qacc
x = TrV

(
1A1A2 ⊗

∣∣∣~0〉〈~0∣∣∣ (U∗1A1A2 ⊗ 1V̄ ⊗ |1〉〈1|U)1A1A2 ⊗
∣∣∣~0〉〈~0∣∣∣)

Let Pt+1 = 1A1A2 ⊗ 1V̄ ⊗ |1〉〈1| and Pτ = U∗τ Pτ+1Uτ for τ=t,t-1,...,1. It is easy to see P1 =
U∗(1A1A2 ⊗ 1V̄ ⊗ |1〉〈1|)U. Also it is straightforward to verify that Pt+1 is 1-decomposable. Now
let us observe how the decomposability of Pτ changes with τ.

For each τ, the unitary Uτ either corresponds to a type-I or type-II elementary gate. In the
former case, applying Uτ won’t change the decomposability. Thus, Pτ is M-decomposable if Pτ+1
is. In the latter case, applying Uτ will potentially change the decomposability in the following
sense. For any such CNOT gate one has Uτ = |0〉〈0| ⊗ 1 + |1〉〈1| ⊗ X where X is the Pauli matrix
for the flip. And one can show

Pτ = (|0〉〈0| ⊗ 1)Pτ+1(|0〉〈0| ⊗ 1) + (|0〉〈0| ⊗ 1)Pτ+1(|1〉〈1| ⊗ X)
+ (|1〉〈1| ⊗ X)Pτ+1(|0〉〈0| ⊗ 1) + (|1〉〈1| ⊗ X)Pτ+1(|1〉〈1| ⊗ X)

Thus in general we can only say Pτ is 4M-decomposable if Pτ+1 is M-decomposable. As there
are r(n) type-II gates, one immediately has P1 is 4r(n)-decomposable. Moreover, each operator
appearing in the decomposition is a multiplication of unitaries , |0〉〈0| , |1〉〈1| and X in some order,
which implies the operator norm of those operators is bounded by 1. Therefore we have P1 is
(4r(n), (1, 1))-decomposable.

Finally, it is not hard to verify that multiplications with 1A1A2 ⊗
∣∣∣~0〉〈~0∣∣∣ and partial trace over

V won’t change the decomposability of P1. Namely, we have Qacc
x is (4r(n), (1, 1))-decomposable.

The above proof can also be considered as the process to compute the decomposition of Qacc
x . Each

multiplication of matrices can be done in NC(poly(n)). And the total number of multiplications is
upper bounded by O(t(n)4r(n)). Therefore, the total parallel running time is upper bounded by
O(t(n)4r(n))× poly(n).
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Corollary 5. QMA(2)[poly(n), O(log(n))] ⊆ PSPACE.

Proof. This is a simple consequence of Lemma 7 and Corollary 4. For any fixed x of length n. One
can first compute the decomposition of Qacc

x in parallel with O(t(n)4r(n))× poly(n) time, which is
parallel polynomial time in n when r(n) = O(log(n)) and t(n) ∈ poly(n). Hence the first step can
be done in polynomial space via the relation NC(poly)=PSPACE [Bor77].

Then one can invoke the parallel algorithm in Corollary 4 to approximate OptSep(Qacc
x ) to

sufficient precision δ such that one can distinguish between the two promises. Precisely in this
case, we choose those parameters as follows.

k = 2, W = 1, M = 4O(log(n)) = poly(n), 1/δ = poly(n)

Thus the whole algorithm can be done in polynomial space, which completes the proof.

Remarks. Although the proof of the result is not too technical, it establishes the first non-trivial
upper bound (PSPACE in this case) for variants of QMA(2) that allow quantum operations act-
ing on both proofs at the same time. In contrast, previous results are all about variants with
nonadaptive or adaptive local measurements, like BellQMA(2) [Bra08, ABD+09, CD10] or LOCC-
QMA(2) [ABD+09, BCY11].

However, our results are hard to extend to the most general case of QMA(2). This is because
SWAP-test operation uses many more type-II gates than what is allowed in our method. And
SWAP-test seems to be inevitable if one wants to fully characterize the power of QMA(2).

5 Quasi-polynomial algorithms for local Hamiltonian cases

In this section, we illustrate that if Q appears in the objective function that is a local Hamiltonian
then the optimal value OptSep(Q) can be efficiently computed by our main algorithm. Consider
any k-partite space A1 ⊗ A2 ⊗ · · · ⊗ Ak where each partite Ai contains n qubits and thus is of
dimension 2n.

Definition 4. Any Hermitian Q over A1 ⊗ · · · ⊗ Ak is a l-local Hamiltonian if Q is expressible as
Q = ∑r

i=1 Hi where each term is a Hermitian operator acting on at most l qubits among k parties.

Hamiltonians are widely studied in physics since they usually characterize the energy of a
physical system. Local Hamiltonians are of particular interest since they refer to the energy of
many interesting models in low-dimension systems. Our algorithm can be considered as a way to
find the minimum energy in the system achieved by separable states.

Local Hamiltonians are also appealing to computational complexity theorists since the discov-
ery of the promise 5-local Hamiltonian problem [KSV02] which turns out to be QMA-complete.
Precisely, it refers to the following promise problem when k = 1, l = 5.

Problem 3 (k-partite l-local Hamiltonian problem). Take the expression Q = ∑r
i=1 Hi for any l-

local Hamiltonian over A1 ⊗ · · · ⊗ Ak as input3, where ‖Hi‖op ≤ 1 for each i. Let OptSep(Q)
denote the minimum value of 〈Q, ρ〉 achieved for some ρ ∈ SepD (A1 ⊗ · · · ⊗ Ak). The goal is to
tell between the following two promises: either OptSep(Q) ≥ a or OptSep(Q) ≤ b for some a > b
with inverse polynomial gap.

3It is noteworthy to mention that the input size of local Hamiltonian problems can be only poly-logarithm in the
dimension of the space where Q sits in.
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When k = 1, the promise problem defined above is exactly the original l-local Hamilto-
nian problem. Subsequent results demonstrate that it remains QMA-complete even when l =
3, 2 [AGIK09, KKR06, OT08]. Our definition of the promise problem naturally extends to the k-
partite case. We refer to Chapter 14 in [KSV02] for technical details. It is not hard to see that
k-partite l-local Hamiltonian problems belong to QMA(k) by applying similar techniques in the
original proof. However, they do not remain as QMA(k)-complete problems. This is because
the original reduction transforms from the proof space to the transcript and clock space and the
separability of quantum states does not persevere under such an operation. As a result, k-partite
local Hamiltonian problems defined above only enforce the separability in the transcript and clock
space rather than in the proof space. Note this is not an issue for the 1-partite case since there is
no separability involved. Nevertheless it becomes a huge problem for its k-partite extensions.

Lemma 7. Any l-local Hamiltonian Q over A1 ⊗ · · · ⊗ Ak such that Q = ∑r
i=1 Hi and ‖Hi‖op ≤ w is

(O((4nk)l), w )-decomposable.

Proof. Since Q is a l-local Hamiltonian, it is easy to see r ≤ (kn
l ). For each Hi with ‖Hi‖op ≤ w, since

it acts only on at most l qubits, it must be (4l , w)-decomposable. Thus Q is (r4l , w)-decomposable.
In terms of only n, k, l, we have Q is (O((4nk)l), w)-decomposable.

Corollary 6. Take the expression Q = ∑r
i=1 Hi of any l-local Hamiltonian overA1⊗ · · · ⊗Ak (each

Ai is of dimension d = 2n) such that ‖Hi‖op ≤ w for each i as input. Assuming k, l = O(1), the
quantity OptSep(Q) can be approximated to precision δ in quasi-polynomial time in d, w, 1/δ.

If n is considered as the input size and w/δ = O(poly(n)), then OptSep(Q) can be approxi-
mated to precision δ in PSPACE.

Proof. The proof of the first part follows directly from Lemma 7 and Theorem 5. Recall the proof
of Lemma 7 also provides a way to compute the decomposition of Q given the expression Q =
∑r

i=1 Hi as input. It is easy to verify that O(r4l) time (upper bounded by O((4k log d)l)) is sufficient
to complete this computation. After that, one may directly invoke the algorithm in Fig. 1 and make
use of Theorem 5. Now we substitute the following identities into our main algorithm. Note
k, l = O(1) and we have M = O(logO(1) d), W = wO(1). One immediately gets the total running
time bounded by

exp(O(logO(1)(d)(log log d + log w/δ)))× poly(d, w, 1/δ)

which is quasi-polynomial time in d, w, 1/δ.
For the second part when n is considered as the input size, it is easy to see the computation of

the decomposition of Q according to Lemma 7 can be done in NC(poly), henceforth in polynomial
space. (Note M = O(poly(n)).) Then by composing with the polynomial-space algorithm implied
by Corollary 4, one proves the whole algorithm can be implemented in polynomial space.

Remarks. It is a direct consequence of Corollary 6 that Problem 3 is inside PSPACE.

6 An algorithm with running time exponential in ‖Q‖F

In this section we demonstrate another application of the simple idea "enumeration" by epsilon-
net to Problem 1. As a result, we obtained an algorithm with running time exponential in ‖Q‖F
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1. Compute the spectral decomposition of Q. After that, one has the decomposition Q =
∑t λt |Ψt〉〈Ψt|. Choose ε = δ/2 and Γε = {t : λt ≥ ε}.Also let OPT store the optimum
value of the maximization problem.

2. Generate the ε-net of the unit ball of C|Γε| under the Euclidean norm with ε = δ
4‖Q‖F

. Denote
such set by Nε. Then for each point α ∈ Nε,

(a) Compute |φα〉 = ∑t∈Γε
α∗t
√

λt |Ψt〉 and compute the Schmidt decomposition of |φα〉, i.e.

|ψα〉 = ∑
i

µi |ui〉 |vi〉

where µ1 ≥ µ2 ≥ · · · and {ui}, {vi} are orthogonal bases. Note |φα〉 is not necessarily a
unit vector.

(b) Update OPT as follows: OPT=max{OPT,µ1}.

3. Return OPT.

Figure 2: The algorithm runs in time exponential in ‖Q‖F/δ.

(or ‖Q‖LOCC [MWW09]4) for computing OptSep(Q) with additive error δ. This reproves one of
the main results in the recent work (See Theorem 2 [BCY11]). It is noteworthy to mention such
a result was obtained in [BCY11] by making use of a sequence of non-trivial results in quantum
information, such as the semidefinite programming for finding symmetric extension proposed
in [DPS04] and an improved quantum de Finetti-type bound.

By contrast, our algorithm makes no use of any advanced tool above and only utilizes funda-
mental operations of matrices. Intuitively, in order to approximate the optimum value to precision
δ, one only needs to look at the eigenspace of eigenvalues greater than δ, the dimension of which is
no more than ‖Q‖2

F/δ2. Nevertheless, naively enumerating density operators over that subspace
doesn’t work since one cannot detect the separability of those density operators. We circumvent
this difficulty by making nontrivial use of the Schmidt decomposition of bipartite pure states.

Finally, as mentioned in the introduction we admit that other results in the original paper [BCY11]
do not follow from our algorithm and our method cannot be seen as a replacement of the kernel
technique of that paper. Also our method does not extend to the k-partite version as there is no
Schmidt decomposition in that case.

Recall the optimization problem we are interested in is as follows.

max : 〈Q, ρ〉 s.t. ρ = |u〉〈u| ⊗ |v〉〈v| , |u〉 ∈ A1, |v〉 ∈ A2

Theorem 8. Given any positive semidefinite Q over A1 ⊗A2 (of dimension d× d) and δ > 0, the algo-
rithm in Fig. 2 approximates the optimal value OptSep(Q) to precision δ with running time exp(O(log(d)+
δ−2‖Q‖2

F ln(‖Q‖F/δ))).

Proof. We first prove the correctness of the algorithm. The analysis will mainly be divided into
two parts. Let Sε = span{|Ψt〉 |t ∈ Γε}. The first part shows it suffices to only consider vectors

4This follows easily from the fact ‖Q‖F = O(‖Q‖LOCC) [MWW09] where ‖Q‖LOCC stands for the LOCC norm of
the operator Q.
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inside the subspace Sε for approximating OptSep(Q) to precision δ. The second one demonstrates
that our algorithm in Fig. 2 approximates the optimal value obtained by only considering vectors
in Sε. Precisely, since {|Ψi〉} forms a basis, one has |u〉 |v〉 = ∑t∈Γε

βt |Ψt〉+ ∑t/∈Γε
βt |Ψt〉 where β

is a unit vector in Cd2
. Then we have

〈Q, |u〉〈u| ⊗ |v〉〈v|〉 = ∑
t∈Γε

λt|βt|2︸ ︷︷ ︸
(I)

+ ∑
t/∈Γε

λt|βt|2︸ ︷︷ ︸
(I I)

where the term (II) is obviously bounded by δ/2 (i.e., ∑t/∈Γε
λt|βt|2 ≤ δ/2). For the term (I), it is

equivalent to OptSep(Q̃) where Q̃ = ∑t∈Γε
λt |Ψt〉〈Ψt|. Namely, small eigenvalues are truncated

in Q̃. Now observe the following identity.

max
|u〉|v〉

〈
Q̃, |u〉〈u| ⊗ |v〉〈v|

〉
= max

|u〉|v〉
∑

t∈Γε

λt| 〈u| 〈v|Ψt〉 |2 = max
|u〉|v〉
‖γu,v‖2

= max
|u〉|v〉

max
α∈B(C|Γε |,‖·‖)

| ∑
t∈Γε

α∗t
√

λt 〈u| 〈v|Ψt〉 |2 = max
|u〉|v〉

max
α∈B(C|Γε |,‖·‖)

| 〈u| 〈v|φα〉 |2

= max
α∈B(C|Γε |,‖·‖)

max
|u〉|v〉

| 〈u| 〈v|φα〉 |2

where γu,v ∈ C|Γε| and γu,v
t =

√
λt 〈u| 〈v|Ψt〉 for each t ∈ Γε. The second line comes from the

duality of the Euclidean norm (i.e., ‖y‖ = max‖z‖≤1 | 〈z|y〉 |). The third line comes by exchanging
positions of the two maximizations. We then make use of the following well-known fact.

Fact ([NC00]). For any bipartite vector |ψ〉 with the Schmidt decomposition

|ψ〉 = ∑
i

µi |ui〉 |vi〉

where µ1 ≥ µ2 ≥ · · · and {ui}, {vi} are orthogonal bases . Then max|u〉|v〉 | 〈u| 〈v|ψ〉 | = µ1 and
the maximum value is obtained by choosing |u〉 |v〉 to be |u1〉 |v1〉.

It is not hard to see that our algorithm computes exactly the term on the third line except that
we replace the unit ball by its ε-net. However, this won’t incur too much extra error. For any
α ∈ B(C|Γε|, ‖·‖), there exists α̃ ∈ Nε, such that ‖α − α̃‖ ≤ ε. Thus, the extra error incurred is
|| 〈u| 〈v|φα〉 |2 − | 〈u| 〈v|φα̃〉 |2| and can be bounded by

(‖|φα〉‖+ ‖|φα̃〉‖)| 〈u| 〈v|ψα − ψα̃〉 | ≤ 2 max
‖β1‖≤1

‖φβ1 ‖ max
β2=α−α̃,‖β2‖≤ε

‖φβ2 ‖

= 2
√
‖Q‖F × ε

√
‖Q‖F ≤ δ/2

where max‖β‖≤ε′‖φβ‖ ≤ ε′
√
‖Q‖F for any ε′ > 0 can be verified directly and therefore the total

additive error is bounded by δ/2 + δ/2 = δ.
Finally, let us turn to the analysis of the efficiency of this algorithm. The spectrum decom-

position in the first step takes polynomial time in d, so is the same with calculation of |ψα〉. The
generation of the ε-net of the unit ball is standard and can be done in O((1 + 2

ε )
|Γε|)× poly(|Γε|).

The last operation, finding the Schmidt decomposition, is equivalent to singular value decompo-
sitions, and thus can be done in polynomial time in d as well. Also note |Γε| ≤ min{d2, ‖Q‖2

F/δ2}.
To sum up, the total running time of the algorithm is upper bounded by O((1 + 2

ε )
|Γε|)× poly(d),

or equivalently exp(O(log(d) + δ−2‖Q‖2
F ln(‖Q‖F/δ))).
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Remarks. One can also apply the observation in the introduction to parallelize the computation in
this case. However, the size of the ε-net here will depend on some other parameter (i.e. ‖Q‖F/δ)
that is independent of the input size.
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1. Let γ = ε
8Mw and T =

⌈
ln d
γ2

⌉
. Also let W(1) = 1X , d = dim (X ).

2. Repeat for each t = 1, . . . , T:

(a) Let ρ(t) = W(t)/ Tr W(t) and compute ~q(ρ(t)) (Equ. (1)). One can then rewrite the

vector ~p − ~q(ρ(t)) in the polar form (c(t)
1 eiφ(t)

1 , c(t)
2 eiφ(t)

2 , · · · , c(t)
M eiφ(t)

M ) and choose ~z(t) =

(e−iφ(t)
1 , e−iφ(t)

2 , · · · , e−iφ(t)
M ). It is not hard to see such~z(t) maximizes Re

〈
~p−~q(ρ(t)),~z

〉
.

(b) Choose N(t) to be

N(t) = Re
〈
~p,~z(t)

〉
1X −

1
2
(Q(t) + Q(t)∗) + 2Mw1X

where Q(t) = ∑M
i=1 e+iφ(t)

i Qi.
(c) Update the weight matrix as follows: W(t+1) = exp(−γ ∑t

τ=1 N(τ)).

3. Return d̃ = 1
T ∑T

t=1

〈
ρ(t), N(t) − 2Mw1X

〉
.

Figure 3: An algorithm that approximates the d(~p) with additive error ε.

A Proof of Lemma 3

Theorem 9 (Multiplicative weights update method—see Ref. [Kal07, Theorem 10]). Fix γ ∈ (0, 1/2).
Let N(1), . . . , N(T) be arbitrary d× d “loss” matrices with 0 � N(t) � αI. Let W(1), . . . , W(T) be d× d
“weight” matrices given by

W(1) = I W(t+1) = exp(−γ(N(1) + · · ·+ N(t))).

Let ρ(1), . . . , ρ(T) be density operators obtained by normalizing each W(1), . . . , W(T) so that ρ(t) = W(t)/ Tr W(t).
For all density operators ρ it holds that

1
T

T

∑
t=1

〈
ρ(t), N(t)

〉
≤
〈

ρ,
1
T

T

∑
t=1

N(t)

〉
+ α(γ +

ln d
γT

).

Note that Theorem 9 holds for all choices of loss matrices N(1), . . . , N(T), including those for
which each N(t) is chosen adversarially based upon W(1), . . . , W(t). This adaptive selection of loss
matrices is typical in implementations of the MMW. Consider the algorithm shown in Fig. 3.

Lemma 10 (Restated Lemma 3). Given any point ~p ∈ Raw-(M, w) and ε > 0, the algorithm in Fig. 3
approximates dis(~p) with additive error ε. Namely, the return value d̃ of this algorithm satisfies,

d̃− ε ≤ dis(~p) ≤ d̃ + ε

Moreover, the algorithm runs in poly(d, M, w, 1/ε) time. Furthermore, if d is considered as the input size
and M, w, 1/ε ∈ O(poly-log(d)), this algorithm is also efficient in parallel, namely, inside NC.
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Proof. The algorithm is a typical application of the matrix multiplicative weight update method.
In order to make use of Theorem 9, we need first to show N(t) is bounded for each t. Since
~p ∈ Raw-(M, w) and ‖~z(t)‖∞ ≤ 1, by Cauchy-Schwartz inequality we have

|Re
〈
~p,~z(t)

〉
| ≤ ‖~p‖1‖~z(t)‖∞ ≤ M‖~p‖∞‖~z(t)‖∞ = Mw

Furthermore we have

‖Q‖op = ‖
M

∑
i=1

e−iφ(t)
i Qi‖op ≤

M

∑
i=1
‖Qi‖op ≤ Mw

Thus by triangle inequality, one can easily find

0 � N(t) � 4Mw1X

Then we can make use of Theorem 9. Immediately, for any ρ ∈ D (X ), we have

1
T

T

∑
t=1

〈
ρ(t), N(t)

〉
≤
〈

ρ,
1
T

T

∑
t=1

N(t)

〉
+ α(γ +

ln d
γT

).

Substitute α = 4Mw, γ = ε
8Mw and T =

⌈
ln d
γ2

⌉
. Also consider the identity

〈
ρ(t), N(t) − 2Mw1X

〉
=

Re
〈
~p−~q(ρ(t)),~z(t)

〉
. Then we have for any ρ ∈ D (X ),

d̃ =
1
T

T

∑
t=1

〈
ρ(t), N(t) − 2Mw1X

〉
≤ Re

〈
~p−~q(ρ),

1
T

T

∑
t=1

~z(t)

〉
+ ε (5)

Consider the equilibrium value form of dis(~p) in Equ. (2). For each ρ(t), we always find the ~z(t)

that maximizes Re
〈
~p−~q(ρ(t)),~z

〉
. Hence, dis(~p) ≤ d̃. Let ρ? be any equilibrium point of the

equilibrium value in Equ. (2). By substituting such ρ? into Equ. (5) we have

d̃ ≤ Re

〈
~p−~q(ρ?),

1
T

T

∑
t=1

~z(t)

〉
+ ε ≤ dis(~p) + ε

So far we complete the proof of the correctness of this algorithm. Note that each step in the
algorithm only contains fundamental operations of matrices and vectors, which can be done in
polynomial time in M, d. Also there are totally O(T) = poly(ln d, M, w, 1/ε) steps, thus the whole
algorithm can be executed in poly(d, M, w, 1/ε) time. Moreover, given the fact that fundamental
operations of matrices and vectors also admit efficient algorithms in parallel (i.e., NC algorithm),
one can easily compose these NC circuits of each step and obtain a NC algorithm as a whole if
the total number of steps T is not too large. Precisely, if M, w, 1/ε ∈ O(poly-log(d)) and d is
considered as the input size, this algorithm is also efficient in parallel.
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