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We study the behavior of the Rényi entropies for the toric code subject to a variety of different

perturbations, by means of 2D density matrix renormalization group and analytical methods. We find that

Rényi entropies of different index � display derivatives with opposite sign, as opposed to typical

symmetry breaking states, and can be detected on a very small subsystem regardless of the correlation

length. This phenomenon is due to the presence in the phase of a point with flat entanglement spectrum,

zero correlation length, and area law for the entanglement entropy. We argue that this kind of splitting is

common to all the phases with a certain group theoretic structure, including quantum double models,

cluster states, and other quantum spin liquids. The fact that the size of the subsystem does not need to scale

with the correlation length makes it possible for this effect to be accessed experimentally.
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The understanding of collective behavior arising from
microscopic interactions is one of the central issues in
physics. Indeed, the most recent research has been indicat-
ing that the kind of emerging order in extended systems is
not so simple as was expected. This is the case of quantum
phases of matter with the so-called topological order. These
phases, and the phase transitions between them, cannot be
characterized within the symmetry breaking mechanism, a
cornerstone in many-body physics. Topological phases are
characterized by global correlations that are captured by
subtle entanglement properties. This makes topological
order an elusive kind of order, and therefore very difficult
to detect. More generally, quantum spin liquids cannot be
characterized by a local order parameter, and are therefore
very difficult to detect. Here we show that the order in a
paradigmatic class of spin liquids, some of which are topo-
logical, can be revealed bymeasurements on a small portion
of the system through the analysis of their response to an
external perturbation. To this aim,we employ analytical and
numerical methods in quantum many-body theory and
quantum information. Our results can provide a venue to
detect topological order experimentally.

The Landau symmetry breaking mechanism classifies
different phases of many-body systems according to the
symmetry that the system-low-energy-states break [1].
This implies that some observable exists whose values

tell us in what phase the system is, the so called order
parameter. In this picture, the macroscopic order arises
from local order. For instance, we can distinguish a magnet
from a paramagnet by measuring the magnetization result-
ing from the breaking of a local rotation symmetry of the
atomic spin.
In the last two decades, a more complex scenario

emerged. An example of paramount importance in con-
densed matter physics is provided by quantum phase
transitions occurring in two-dimensional electron gas dis-
playing fractional quantum Hall effect [2]. Different Hall
states are characterized by different physical properties,
despite sharing the same symmetries. Different types of
topological orders have been found in various physical
systems so far, like spin liquids [3], anyonic systems [4],
and topological insulators [5]. Since these states do not
break any symmetry, they cannot be distinguished by
measuring a local order parameter. The comprehension
of topological phases is one of the central issues in modern
condensed matter [4]. Topological states have properties
like protected edge modes or degeneracies that are robust
under arbitrary perturbations [4]. They possess anyonic
excitations whose interactions are of topological nature
and are inherently robust against decoherence. These fea-
tures have made such states very interesting as a platform
for quantum computers [6].
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As a result from the interaction between condensed
matter and quantum information, it has been understood
that topological order in the ground state of a given system
can be characterized through entanglement [7–9].
Specifically, a long-range pattern of entanglement results
in the ground state, called topological entanglement en-
tropy � [9]. Such a quantity can be computed through the
von Neumann entropy S1 of the reduced density matrix �A

describing the subsystem A (being the system A [ B in
pure state). For a regular region A then von Neumann
entropy is given by S1 ¼ aj@Aj � �þ g, where j@Aj mea-
sures the boundary of A. The quantities a, g are nonun-
iversal and depend on the details of the Hamiltonian
describing the system, like the correlation length �. The
finite correction �, instead, is universal and can serve as
partial classification of topological phases [10]. We remark
that although A is a finite region, S1 is not a local order
parameter, because it is not the expectation value of a local
observable. On the other hand, the reconstruction of �A by
local measurements seems to be quite a daunting task
because A, though finite, scales with � [9]. Larger system
sizes can be studied numerically by using Rényi entropies
through the replica trick [11].

Much effort has been devoted to analyze the topological
order in the ground state for a fixed value of the control
parameter �. In this paper, we push forward the idea that
progress in probing topological order can be achieved by
analyzing local variations of the ground state by external
perturbation.

We study a set of spin�1=2 localized at the edges of 2D
square lattice with periodic boundary conditions in pres-
ence of a perturbation V,

H ¼ �X
s

Y
i2s

�x
i �

X
p

Y
i2p

�z
i þ Vð�Þ (1)

where s and p label the vertices and plaquettes of the lattice
respectively, while �x

i , �
z
i are Pauli operators of the spin

living at the edge i. For Vð�Þ ¼ 0 the Hamiltonian above is
the celebrated toric code, a paradigmatic model for topo-
logical order [12]. For the analysis below, we remark that
in this case, the ground state of this model features � ¼ 0.
We consider different Vð�Þ (see Table I) where � stands for
f�1; . . . ; �Ng that are the parameters controlling the pertur-
bation. The perturbation in (1) such that the correlation
length is increasing with �i until divergence at the critical
point �c. For a discussion of the critical point, see [14].

For � < �c these systems are topologically ordered,
while for � > �c they are trivial paramagnets. In both
phases there is no local order parameter. This model
belongs to a class of so-called quantum double models
which correspond to those phases whose low energy theory
is a lattice gauge theory [12]. In this article, we demon-
strate how the topological phase can be distinguished from
the paramagnet of (1) through the inspection of @�S�,
where S� ¼: ð1� �Þ�1 logTr��

A are the Rényi entropies.
We shall see that @�S� present a peculiar behavior even for

a small subsystem A as � varies as an effect of a perturba-
tion. We remind that S0 ¼ logR, where R is the Schmidt
rank of the state, i.e., the number of nonzero eigenvalues of
�A, and that S1 is the von Neumann entropy measuring the
entanglement entropy for the subsystem A. We observe
that, generically, R and thus S0 increase with � because
more degrees of freedom get entangled by increasing the
room for correlations. On the other hand, we find that the
behavior of S1 is drastically different between topological
phases and the topologically trivial phases presented here.
Our approach elaborates on the quantum information

notion of differential local convertibility (DLC), which
states that two proximal bipartite pure states are locally
convertible if it is possible to transform one into the other
by resorting only on local quantum operations on A and B
separately, plus classical communication and the aid of an
ancillary entangled system [15]. The necessary and suffi-
cient condition for that is @�S� < 0 for all �> 0 [16]. In
Ref. [17] such notion has been applied to the order-disorder
quantum phase transition occurred in a one dimensional
spin system.
For each Vð�Þ we compute the ground state wave

function jc ð�Þi and its reduced density matrix �Að�Þ.
For some Vð�Þ we can apply exact analytical approach;
for the generic perturbation Vxzð�Þ ¼ P

ið�z�
z
i þ �x�

x
i Þ

we resort to numerical analysis.
The numerical method employed here is an infinite

DMRG algorithm [18] in two dimensions, detailed in
[19]. The method provides Matrix Product State represen-
tation of a complete set of ground states on a cylinder
of infinite length and finite width Ly (Fig. 1) for a given

Hamiltonian that realizes topological order. As argued in
[20], each ground state has a well-defined flux threading
through the cylinder. The flux is measured by (in general)
dressed Wilson loop operators that enclose the cylinder in
the vertical direction.
In the case of fixed point toric code [Eq. (1) with V ¼ 0],

these loops are given by lz1 and l
x
2 [Fig. 1(a)]. Four topological

TABLE I. Local Convertibility in Topological Phase. DLC,
i.e., no splitting of the Rényi entropies, only occurs if the
perturbation is fine tuned in order to keep the system with
� ¼ 0. The left column shows the type of perturbation studied.
The first column details whether the considered model is Gauge
Invariant. The second column indicates whether DLC occurs.
For certain perturbations the ground state of the system is
accessible exactly (third column). The last column provides
the information on �. The subsystems we refer here have a
nontrivial bulk [13].

Perturbation Vð�Þ G.I. DLC Exact �

P
se

��s

P
i2s

�z
i ✓ ✓ ✓ 0

�h

P
i2H�

z
i ✓ � ✓ � 0

�z

P
i�

z
i ✓ � � � 0

�z

P
i�

z
i þ �x

P
j�

x
j � � � � 0
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sectors are then distinguished by hlz1i, hlx2i ¼ �1. Once
the perturbation is present, Wilson loops may change, but
as long as the perturbation is small, hlz1i and hlx2i can

still be used to identify topological sectors because hlz1i,
hlx2i ’ �1.

Simulations are carried out with cylinders of width up to

Ly ¼ 5 for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
x þ �2

z

q
� 0:05 and 0 � � < 0:7 as shown in

Figs. 2 and 3 respectively. In the topological phase, the
outcome of each simulation is four quasi-degenerate
ground states, from which the one with hlz1i, hlx2i ’ þ1 is

chosen for further investigation. This is done to ensure that
finite size effects have the least possible impact on results.
In the limit Ly ! 1 all four ground states become locally

indistinguishable. The results are converged in bond di-
mension of Matrix Product State which acts as a refinement
parameter. A reduced density matrix of a half-infinite
cylinder Ch:i: [Fig. 1(b)] is calculated throughout the simu-
lation. The bond dimension is increased until convergence
of its spectrum is reached.

In Fig. 2, we can see the behavior of the S� Rényi
entropies as we span the parameter space �x, �z for the
perturbation Vxz. We see clearly that in the topologically
ordered phase a splitting of S�’s occur: @�S� + 0 at a
given value of � ¼ �0; we found �0 ’ 0:6 (see caption
of 2). We call this phenomenon� splitting in the rest of this
article. In the paramagnetic phase all the Rényi entropies
are monotones with �. This behavior is generically inde-
pendent of the size and shape of the subsystem A, as long as
A contains some bulk [13]. Below we provide an explana-
tion of the phenomenon. The topologically ordered phase
we consider is characterized by the presence of a state (at
� ¼ 0) with � ¼ 0 and a flat entanglement spectrum (and
an area law) [10]. The flat entanglement spectrum implies
that small perturbations results in decreasing S� for �>
�0 being �0 < 1, because the distribution becomes less flat
in the most represented eigenvalues in the entanglement
spectrum. In contrast, S0 must increase with � as an effect
of the perturbation (new degrees of freedom are involved in
the entanglement spectrum). So the � splitting results from
the insertion of a finite � in the state evolving from a state
with flat spectrum and zero �. We also observe that such
property is shared with the so called G—states which
include all the topologically ordered quantum double mod-
els, and states like the cluster states [21], and therefore our
findings apply to this class of models as well [10] (see [22]
for a discussion of the cluster phase diagram). Here we
remark that the splitting effectively distinguishes a class
of quantum spin liquids (states with finite correlation

(a)

(b)

FIG. 1 (color online). Cylinder of infinite length and width
Ly ¼ 5 used in 2D density matrix renormalization group

(DMRG) calculation. (a) Subsystems on which Rényi entropies
are calculated: As—one star and As;p—composition of star and

plaquette. Loops lz1 and lx2 used to distinguished between topo-

logical sectors are also depicted. (b) Subsystem Ch:i: that con-
tains half of the infinite cylinder.

FIG. 2 (color online). The splitting phenomenon. The figure
displays the splitting with opposite slopes between the small and
large � Rényi entropies. We see the splitting occurring around
� ’ 0:6. The Rényi entropies are calculated for the partition As;p

of Fig. 1(a) for the ground state of H ¼ H TC þ Vxz.

(a)

(b)

FIG. 3 (color online). Rényi entropies as a function of � for the
ground state of H ¼ H TC þ Vxz with �x ¼ � and �z ¼ �=2.
Here, Ly ¼ 5. The reduced system A consists of As and Ch:i: in

panels (a) and (b), respectively. As � increases, the correlation
length increases. The Schmidt rank R and the low �< �0-Rényi
entropies increase as well. The value of �0 are 0.4, 0.6 in panels
(a) and (b), respectively. Nevertheless, the total entanglement S1
and all the higher Rényi entropies are decreasing with �. Notice
the spike in panel (b) marking the quantum phase transition to
the paramagnetic phase at �c � 0:35.
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length and no local order parameter), which are notoriously
very difficult to detect, since one cannot measure correla-
tion functions of all the possible local observables. To
further distinguish nontopologically ordered quantum
spin liquids like the cluster states from topologically
ordered states, we need to measure the degeneracy of the
ground state, since the former have a unique ground state
while topological states possess a degeneracy protected
by topology.

Moreover, notice that the splitting occurs no matter how
we perturb in the plane �x, �z, and it is therefore a robust
property of the phase. Note again that in the paramagnetic
phase all the @�S� have the same sign and no splitting ever
occurs, which is easily understood from the presence
(at very large �) of a completely factorized state, see Fig. 3.

We remark that the splitting phenomenon effectively
distinguishes the topologically ordered state from a
topologically-trivial ordered state (like a ferromagnet). As
discussed above, the latter states have typically S� increas-
ing with � and no splitting occurs (see Supplementary
Material [23]). Summarizing: We can distinguish between
the topological phase and the paramagnet of (1); further-
more, we can distinguish between the topological phase
and a symmetry breaking phase.

To corroborate our findings, we resort to exact analysis
for suitable perturbations Vð�Þ’s. We consider two cases
(i) Vh ¼ �z

P
i2h�

z
i , corresponding to placing the external

field / �z only along the horizontal links of the lattice

and (ii) Vð�Þ ¼ P
se

��
P

i2s
�z
i , leading to the Castelnovo-

Chamon model [24]. Since these perturbations commute
with the plaquette operators of Eq. (1), the ground state of
these models can be written as the superposition of loop
states jgiwith amplitudes�ðgÞ. A loop state jgi is obtained
from the completely polarized state in the z direction, by
flipping down all the spins intersected by a loop drawn on
the lattice. The corresponding loop operators g form a
group G called the gauge group of these theories.

In the case (i) the star operators
Q

i2s�
x
i interact only along

the rows of the lattice. The model maps onto the product of
arrays of Ising chains by the duality As ! �z�, �z

i !
�x��

x
�þ1: H TC þ Vh � H ff ¼ L

L
i¼1ð��

P
��

x
��

x
�þ1 �P

��
z
�Þ [25,26]. The relevant correlators in the variables �

can be obtained through the correlators in the dual variables �
that can be accessed exactly [27]. In the following, we sketch
a proof that the splitting phenomenon does occur in this
model (see [13] for details). We consider the star As ¼
fi1; i2; i3; i4g as subsystem A [see Fig. 1]; �As

is block diago-

nal with 2� 2 blocks labeled by ji1i2i3i4i and Asji1i2i3i4i.
It results that �A has maximum rank unless �ðgÞ ¼
�ðg1Þ�ðg2Þ, implying there is a zero eigenvalue in each
block. In the dual picture this is equivalent to require
h�i�ji ¼ h�iih�ji. Such condition holds at � ¼ 0 only, and

therefore R increases at � � 0. The factorization of the
amplitudes also proves that both the � ¼ 1, 2-Rényi entro-
pies decrease at small � [13].

Case (ii) is important to test the argument of the interplay
between splitting and increasing of correlation length.
This argument implies that a perturbation for which
�ð�Þ ¼ const does not lead to a splitting in the Renyi entro-
pies. Themodel of Castelnovo-Chamon features exactly this,
since spin-spin correlation functions h�x

i �
x
ji are vanishing

for every value of �. The exact ground state is made of loops

with amplitudes �ðgÞ ¼ e��=2
P

i2s
�z
i ðgÞ, where �z

i ðgÞ ¼hgj�z
i jgi. The topological phase is (� < �c � 0:44). A

lengthy calculation leads to S�ð�AÞ ¼ ð1� �Þ�1 �
logZ��ð�ÞPg2Ge

��Lgw��1ð�; gÞ, where Z ¼ P
ge

��Lg

and wð�; gÞ :¼ P
h2GA;k2GB

e��Lhgk , Lm is the length of the

loopm of the gauge groupG; here,GA andGB are the gauge
groups of the subsystemsA andB, respectively. The analysis
of small and large � expansions reveals that @�S�ð�Þ � 0
[13]. As a particular case, S0 is constant for every value of �.
Accordingly, for this fine tuned perturbation all Rényi entro-
pies decrease and therefore no splitting is observed. This is
consistent with the fact that also in this model the amplitudes
�ðgÞ factorize as discussed in (i).
In this paper, we have shown that topologically

ordered states in the paradigmatic class of quantum
double models have a peculiar way of responding to
perturbations: The Rényi entropies of a subsystem
display opposite slopes around � ’ 0:6. The subsystem
size can be small independently of �. In the paramagnetic
phases, in contrast, no such a phenomenon is observed.
The � splitting is shown to be a robust characteristic of
the topological phase, see Fig. 2. In a quantum informa-
tion context, we can say that, while paramagnets are
always differential locally convertible, the class of topo-
logically ordered ground states we studied here are not.
By measuring � together with the von Neumann entropy
S1 for a small subsystem (it can be shown this is sufficient
to show whether � splitting is present [28]), one could
tell apart spin liquid states of the class studied here from
symmetry breaking states. This should be contrasted with
the standard approach based on topological entropy
where the size of the subsystem must be much larger
than �.
Our results may provide the basis for the experimental

detection of exotic phases like topologically ordered states
or certain quantum spin liquids. In this endeavour, it would
be desirable to investigate these findings in the presence
of disorder.
It would be also important to investigate the behavior of

Rényi entropies under perturbations for more general to-
pological states without a flat entanglement spectrum like
fractional quantum Hall liquids and chiral spin liquids
[11,31], and for symmetry protected topological states
like one-dimensional systems or topological insulators
[32]. A relevant question is whether the splitting behavior
can shed light on the finite temperature resilience of
topological order, and on the very existence of anyonic
excitations.
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