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Coherently manipulating multipartite quantum correlations leads to remarkable advantages in quantum
information processing. A fundamental question is whether such quantum advantages persist only by
exploiting multipartite correlations, such as entanglement. Recently, Dale, Jennings, and Rudolph negated
the question by showing that a randomness processing, quantum Bernoulli factory, using quantum
coherence, is strictly more powerful than the one with classical mechanics. In this Letter, focusing on the
same scenario, we propose a theoretical protocol that is classically impossible but can be implemented
solely using quantum coherence without entanglement. We demonstrate the protocol by exploiting the
high-fidelity quantum state preparation and measurement with a superconducting qubit in the circuit
quantum electrodynamics architecture and a nearly quantum-limited parametric amplifier. Our experiment
shows the advantage of using quantum coherence of a single qubit for information processing even when
multipartite correlation is not present.
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Coherent superposition of different states, coherence, is a
peculiar featureof quantummechanics that distinguishes itself
from Newtonian theory. In different scenarios, coherence
exhibits as various quantum resources, such as entanglement
[1], discord [2], and single-party coherence [3]. In many
quantum information tasks, the common resource leading to
quantum advantage is multipartite quantum correlations. For
instance, entanglement plays a crucial role in quantum key
distribution [4,5], teleportation [6], and computation [7,8].
While the essence of multipartite correlation originates from
coherent superposition, it is natural to expect the essence of
quantum advantage to also originate from coherence. This
raises a fundamental question: Can quantum advantage be
obtained without using multipartite correlations?
In randomness generation, it has been shown that coher-

ence is the essential resource for generating true random
numbers [9]. It is thus natural to expect coherence to be a
resource for displaying quantum advantages in certain
randomness related tasks. Remarkably, in a recent work
by Dale et al., a rather simple task of randomness processing
is proposed to show that coherence yields a provable
quantum advantage over classical stochastic physics [10].
In this randomness processing task, a classical coin [see
Fig. 1(a)] corresponds to a classical machine that produces
independent and identically distributed random variables
where each one has the binary values head (0) and tail (1). A
coin is called p-coin if the probability of producing a head is
p, where p ∈ ½0; 1�. Given an unknown p-coin, an interest-
ing question is whether one can construct an fðpÞ-coin,
where fðpÞ is a function of p and fðpÞ ∈ ½0; 1�. Such
construction processing is called a Bernoulli factory [11,12].

Let us takefðpÞ ¼ 1=2, for example,whichwas solvedby
vonNeumannwith a rather simple but heuristic strategy [13].
Flip the p-coin (p ≠ 0) twice. If the outcomes are the same,
start over; otherwise, output the second coinvalue as the1=2-
coin output. Therefore, the function of fðpÞ ¼ 1=2 can be
constructed from an arbitrary unknown p-coin. As a gener-
alization, a natural question involves which kind of function
fðpÞ can be constructed from an unknown p-coin. This
classical Bernoulli factory problem was solved by Keane
and O’Brien [14]. Generally speaking, a necessary condition
for fðpÞ being constructible is that fðpÞ ≠ 0 or 1 when
p ∈ ð0; 1Þ. The function fðpÞ ¼ 1=2 satisfies this condition,
while there are many other examples that violate it. For
instance, surprisingly, the simple “probability amplification”
function fðpÞ ¼ 2p [15] does not satisfy the constructible
condition, wherewe have fð1=2Þ ¼ 1. Therefore, there is no
classical method to construct an fðpÞ ¼ 2p-coin.
In the language of quantum mechanics, a p-coin corre-

sponds to a machine that outputs identically mixed qubit
states,

ρC ¼ pj0ih0j þ ð1 − pÞj1ih1j; ð1Þ

where p ∈ ½0; 1�, and Z ¼ fj0i; j1ig is the computational
basis denoting head and tail, respectively. As p is generally
unknown,we can regard ρC as a classical way of encoding an
unknown parameterp. Ameasurement in the fj0i; j1ig basis
would output a head or a tailwith a probability according top
and 1 − p, respectively. On the other hand, a quantumway of
encodingp [see Fig. 1(b)] can be a coherent superposition of
j0i and j1i, i.e., ρQ ¼ jpihpj, with
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jpi ¼ ffiffiffiffi

p
p j0i þ

ffiffiffiffiffiffiffiffiffiffiffi

1 − p
p

j1i: ð2Þ

Following the nomenclature in Ref. [10], we call such
a quantum coin a quoin. It is straightforward to see that a
p-coin can always be constructed from a p-quoin by
measuring it in theZ (computational) basis. Thus, classically
constructible (via coins) fðpÞ functions are also quantum
mechanically constructible (via quoins), while a really
interesting question is whether the set of quantum construct-
ible functions (via a quantum Bernoulli factory) is strictly
larger than the classical set.
In Ref. [10], Dale et al. have theoretically proved

the necessary and sufficient conditions for fðpÞ being
quantum constructible. Specifically, they show that there
are functions—for instance fðpÞ ¼ 2p—which are impos-
sible to construct classically but can be efficiently realized
in the presence of p-quoins. Therefore, they provide a
positive answer to this problem where quantum resources
are strictly superior to classical ones. The protocol for
generating the fðpÞ ¼ 2p function relies on Bell state
measurement on two quoins, which essentially establish
entanglement between the two quoins.
Now, we are interested in seeing whether such a quantum

advantage persists even when multipartite correlations, such
as entanglement, are absent. Thus, we only allow single-
qubit operations. Without two-qubit operations, it turns out
that constructing the fðpÞ ¼ 2p function will require many
copies of qubits defined inEq. (2), and the convergence could
be poor. In this Letter, we propose another function that is
impossible with classical means but feasible with only a
limited number of single-qubit operations.
Theoretical protocol.—In this Letter, we analyze a

classically impossible fðpÞ function defined by

fðpÞ ¼ 4pð1 − pÞ: ð3Þ

For p ¼ 1=2, we have fðpÞ ¼ 1, which means that this
function is classically unachievable. On the other hand, it is
straightforward to check to see that the fðpÞ function
satisfies the requirements for being quantum constructible

[10]. Given a p-quoin, we explicitly present an efficient
protocol for generating an fðpÞ-coin as shown in Table I.
In our protocol, generating the q-coin, where

q ¼ 1

2

h

1þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1 − pÞ
p

i

ð4Þ

is an essential nonclassical step. In fact, the only addition-
ally required coin for constructing all quantum construct-
ible fðpÞ-coins is the haðpÞ-coin,

haðpÞ ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1 − aÞ
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

að1 − pÞ
p

�

2
; ð5Þ

which can be obtained by measuring the quoin in the
f ffiffiffiffiffiffiffiffiffiffiffi

1 − a
p j0i þ ffiffiffi

a
p j1i; ffiffiffi

a
p j0i − ffiffiffiffiffiffiffiffiffiffiffi

1 − a
p j1ig basis. In our

case, we set a ¼ 1=2. Here, one can see that entanglement
is not necessary to a quantum Bernoulli factory.
As shown in Table I, the first two steps involve quantum

devices, where quoins are measured in the Z and X ¼
fðj0i þ j1iÞ= ffiffiffi

2
p

; ðj0i − j1iÞ= ffiffiffi

2
p g bases, respectively, to

obtain the p- and q-coins. The following steps (steps 3–5)
are classical processing of the p- and q-coins. The rigorous
derivation of the classical steps can be found in the
Supplemental Material [16]. Compared to the fðpÞ ¼ 2p
function, our protocol converges much faster, which results
in a higher fidelity for the realization.
In practice, owing to experimental imperfections, we

cannot realize perfect p-quoins and perform ideal mea-
surements to get perfect p- and q-coins. Thus, in reality, we
cannot realize exact fðpÞ-coins; specifically, we cannot get

(b)(a)

FIG. 1. Classical and quantum coin. For a given p value,
(a) classical and (b) quantum p-coin corresponds to two different
ways of encoding p, see Eqs. (1) and (2), respectively. The key
difference lies in whether there is coherence in the computational
basis.

TABLE I. A protocol for generating an fðpÞ ¼ 4pð1 − pÞ-coin
from a p-quoin.

Step 1 Generate a p-coin: measure a quoin, jpi defined in Eq. (2),
in the Z basis. The measurement outcome is a p-coin.

Step 2Generate aq-coin,where q¼ ½1þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1−pÞp �=2: measure
the same quoin jpi in theX¼fðj0iþ j1iÞ= ffiffiffi

2
p

;ðj0i− j1iÞ= ffiffiffi

2
p g

basis. The measurement outcome is a q-coin.

Step 3 Construct an m-coin from a p-coin, where
m ¼ 2pð1 − pÞ. Toss the p-coin twice, and output a head if
the two tosses are different and a tail otherwise. Similarly, one
can construct an n-coin from a q-coin, where n ¼ 2qð1 − qÞ ¼
1=2 − 2pð1 − pÞ.

Step 4Construct an s-coin from anm-coin,where s ¼ m=ðmþ 1Þ.
Toss them-coin twice. If the first toss is a tail, then output a tail;
otherwise, if the second toss is a tail, output a head. If both tosses
are heads, repeat this step. Similarly, one can construct a t-coin
from an n-coin, where t ¼ n=ðnþ 1Þ.

Step 5 Construct an fðpÞ ¼ 4pð1 − pÞ-coin. First toss the s-coin,
then toss the t-coin. If the first toss is a head and the second toss
is a tail, then output a head; if the first toss is a tail and the
second toss is a head, then output a tail. Otherwise, repeat this
step.
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fðpÞ ¼ 1 when p ¼ 1=2. Following previous studies
[17–19], we employ a truncated function,

ft ¼ minff; 1 − ϵg; ð6Þ
with ϵ describing the imperfections. When ϵ is nonzero, the
truncated function of f ¼ 4pð1 − pÞ falls into the classical
Bernoulli factory and hence can be constructed via p-coins.
However, the number of classical coins N required to
construct fðpÞ scales poorly with ϵ; see the Supplemental
Material [16] for more details. In the experiment, we need
to implement high-fidelity state preparation and measure-
ment to reduce ϵ as small as possible in order to faithfully
demonstrate the quantum advantage.
In the following, we focus on the preparation and the

measurement of the p-quoin, and on how to construct an
fðpÞ ¼ 4pð1 − pÞ coin via necessary classical processing.
Here, we emphasize that the quantum circuit for realizing
the operations should be independent of p. In demonstra-
tion, we fix the measurement setting and prepare p-quoins
for various p values.
Experimental realization.—We choose a superconduct-

ing qubit system to prepare p-quoins. Superconducting
quantum systems have made tremendous progress in the
last decade, including a realization of long coherence times,
showing great stability with fast and precise qubit manip-
ulations, and demonstrating high-fidelity quantum non-
demolition (QND) qubit measurement. Thus, it serves as a
perfect candidate for our test.
In our experiment, we employ the so-called circuit

quantum electrodynamics architecture [20]. A supercon-
ducting transmon qubit (our quoin) is located in awaveguide
trench and dispersively couples to two 3D cavities [21–23]
as shown in Fig. 2. The transmon qubit has a transition
frequency of ωq=2π ¼ 5.577 GHz, an anharmonicity

αq=2π¼−246MHz, an energy relaxation time T1 ¼ 9 μs,
and a Ramsey time T�

2 ¼ 7 μs. The larger cavity has a
resonant frequency ofωc=2π ¼ 7.292 GHz and a decay rate
of κ=2π ¼ 3.62 MHz, which provides a fast way of reading
out the qubit state through their strong dispersive interaction
with a dispersive shift χ=2π ¼ −4.71 MHz. As we focus on
exhibiting a quantum advantage solely with a single quan-
tum system, the smaller cavity with a higher resonant
frequency is not used and remains in a vacuum state.
This higher frequency cavity can potentially be used as
another p-quoin in future experiments [24]. In this case,
joint measurement can be performed on two p-quoins,
which may save the resource. For now, we focus on
single-qubit operations.
The output of the readout cavity is connected to a

Josephson parametric amplifier (JPA) [25,26], operating
in a double-pumped mode [27,28] as the first stage of
amplification between the readout cavity, at a base temper-
ature of 10 mK, and the high electron mobility transistor, at
4 K. To minimize pump leakage into the readout cavity and
achieve a longer T�

2 dephasing time, we operate the JPA in a
pulsed mode. The readout pulse width has been optimized
to 180 ns with a few photons in order to have a high signal-
to-noise ratio. This JPA allows for a high-fidelity single-
shot readout of the qubit state. The overall readout fidelity
of the qubit measured for the ground state j0iwhen initially
prepared at j0i by a postselection is 0.996, demonstrating
the high QND nature of the readout, while the fidelity for
the excited state j1i is slightly lower, 0.943 (see the
Supplemental Material [16]). The loss of both fidelities
is predominantly limited due to the T1 process during both
the waiting time of the initialization measurement (300 ns)
and the qubit readout time (180 ns).
Because of stray infrared photons and other background

noise, our qubit has an excited state population of about
8.5% in the steady state. The high QND qubit measurement
allows us to eliminate these imperfections by performing an
initialization measurement to purify the qubit by only
selecting the ground state for the following experiments
[29]. The measurement pulse sequences for preparing
quoins can be found in the Supplemental Material [16].
It is worth mentioning that our superconducting system
always yields a detection result once the measurement is
performed, which is very challenging for other implemen-
tations, such as lossy photonic systems.
We apply an on-resonant microwave pulse to rotate the

qubit to an arbitrary angle θ along the Y axis,
RY
θ ¼ expð−iσyθ=2Þ, where σy is the Pauli matrix, for a

preparation of any p ¼ cos2ðθ=2Þ-quoins. We choose a
Gaussian envelope pulse truncated to 4σ ¼ 24 ns for the
rotation operations. We also use the so-called derivative
removal by adiabatic gate [30] technique to minimize qubit
leakage to higher levels outside the computational space. A
randomized benchmark calibration [31–34] shows that the
RY
π=2 gate fidelity itself is about 0.998, mainly limited by the

(a) (b) (c)

(d)

FIG. 2. Experimental setup. (a) Optical image of a transmon
qubit located in a trench, which dispersively couples to two 3DAl
cavities. (b) Optical image of the single-junction transmon qubit.
(c) Scanning electronmicroscope image of the Josephson junction.
(d) Schematic of the device with the main parameters. In our
experiment, the higher frequency cavity is not used and always
remains in vacuum, which can be used as anotherp-quoin in future
experiments [24]. Note that the highlighted boxes in (a) and (b) are
not to scale and are intended for illustrative purposes only.
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qubit decoherence (see the Supplemental Material [16]).
The final measurement for the quoins is along either the Z
axis or the X axis. The measurement along the X axis is
realized by applying an extra R−Y

π=2 rotation (Hadamard
transformation), followed by a Z-basis measurement.
In our experiment, the q-coins as defined in Eq. (4) are

implemented, which are also classically impossible [35]
when regarded as a function of q. We plot the experiment
result of the q-coins in Fig. 3(a) and the result of the
fðpÞ ¼ 4pð1 − pÞ-coins by following the protocol in
Table I in Fig. 3(b). The experimentally realized values
of qexp and fexpðpÞ are sampled from the observed coins,
which match well with the theoretical predictions. By
implementing state preparation, operation, and measure-
ment with high fidelities, we are able to achieve
qexpð1=2Þ ¼ 0.990 and fexpð1=2Þ ¼ 0.965, which can be
well modeled by the truncated function defined in Eq. (6)
with ϵ ¼ 0.010 and ϵ ¼ 0.035, respectively.
Discussion.—The classical Bernoulli factory cannot

produce exact q- and fðpÞ ¼ 4pð1 − pÞ-coins with a finite

number of usages of p-coins. In practice, the implemented
function may deviate from the desired one due to device
imperfections. In this case, the practically realized coins
may be constructible with classical means, though the
number of classical coins required may increase drastically
with decreasing deviation. Focusing on the truncated
function defined in Eq. (6), we present a classical protocol
for simulating the experiment data fexpðpÞ with ϵ ¼ 0.035
in the Supplemental Material [16]. It is shown that, on
average, more than 104 classical p-coins are required for
constructing the truncated function, which is much larger
than the average number of quoins (about 20) used in our
protocol [36]. For the q-coin, as the deviation is smaller, the
classical simulation is even harder. In the Supplemental
Material [16], we show that more than 105 classical coins
are needed for the truncated function, while our quantum
protocol only requires one quoin.
From the experimental perspective, the small deviation

fexpð1=2Þ from unity in the ideal case is dominated by qubit
decoherence. With better qubit coherence times of T1, T2 ∼
100 μs achieved recently [37], we expect the deviation of
fexpðpÞ from fthðpÞ to be an order of magnitude lower. In
the future, a more accurate quantum Bernoulli factory
could be realized and the classical simulation will even-
tually become intractable.
In a quantum Bernoulli factory, the only resource that is

responsible for constructing a classically impossible func-
tion is the quantumness of single qubits—coherence. Our
experiment also involves only single-qubit operations and
hence proves the quantum advantage solely using coher-
ence without multipartite correlations. Recently, a coher-
ence framework [3] was proposed in which coherence
could be measured quantitatively. Along these lines, it
would be interesting to see whether the advantage of
constructing fðpÞ from p-quoins is directly related to
the coherence of the p-quoins. Note that the Bernoulli
factory is a randomness process. From the close relation
between randomness and coherence [9], we expect that a
general p-quoin with a larger coherence would have an
advantage over a p-quoin with a smaller coherence.
Our experiment verification sheds light on a fundamental

question about what is the essential resource for quantum
information processing, which may stimulate the search for
more protocols that show quantum advantages without
multipartite correlations. Considering the conversion from
coherence to multipartite correlation [38], investigating the
power of coherence may also be helpful in understanding
the power of multipartite correlation and universal quantum
computation [39].
It is noteworthy that entanglement can be exploited to

save resources in the quantum Bernoulli factory, which
provides an extra advantage for randomness processing
[10]. Extending our implementation to multiqubit
systems can serve to verify this extra quantum advantage.
When considering practical imperfections, multiple-qubit
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FIG. 3. Theoretical and experimental results for the (a)q-coin and
(b) fðpÞ ¼ 4pð1 − pÞ-coin. Here, the number of experiment data
for the p-quoins is on the order of 107 and the number for the fðpÞ-
coin is on the order of 106. On average, we need about 20 p-quoins
to construct anfðpÞ-coin. The standard deviations ofp,q, and fðpÞ
are of the order of 10−4; thus, they are not plotted in the figure.
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operations generally have a lower fidelity of measurement.
Striking a balance between the saving of resources and
decoherence due to multiple-qubit interactions, it is inter-
esting to see whether multipartite correlation can display an
extra advantage in practice. As we are focusing on proving
the advantage only with coherence, we leave such an
extension and its discussion to future works.
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