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ABSTRACT
Unlike a cellular or wired network, there is no base station or net-
work infrastructure in a wireless ad-hoc network, in which nodes
communicate with each other via peer communications. In order
to make routing and flooding efficient in such an infrastructureless
network, Connected Dominating Set (CDS) as a virtual backbone
has been extensively studied. Most of the existing studies on the
CDS problem have focused on unit disk graphs, where every node
in a network has the same transmission range. However, nodes may
have different powers due to difference in functionalities, power
control, topology control, and so on. In this case, it is desirable to
model such a network as a disk graph where each node has different
transmission range.

In this paper, we define Minimum Strongly Connected Domi-
nating and Absorbent Set (MSCDAS) in a disk graph, which is
the counterpart of minimum CDS in unit disk graph. We propose
a constant approximation algorithm when the ratio of the maxi-
mum to the minimum in transmission range is bounded. We also
present two heuristics and compare the performances of the pro-
posed schemes through simulation.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design - Wireless Communication

General Terms
Algorithms, Performance
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1. INTRODUCTION
A wireless ad-hoc network is an infrastructureless network where

nodes communicate with each other via peer-to-peer communica-
tions through single hop or multihops. Due to this characteristic,
wireless ad-hoc networks have been widely deployed in many ap-
plication areas such as military operations, disaster relief, and en-
vironmental monitoring where it is difficult to install base stations
or a physical backbone in the network.

A CDS is commonly used as the virtual backbone of a wire-
less ad-hoc network for efficient routing, broadcasting and colli-
sion avoidance protocols. Given an undirected graph G = (V, E),
a subset V ′ ⊆ V is a CDS of G if for each node u ∈ V , u is
either in V ′ or there exists a node v ∈ V ′ such that (u, v) ∈ E
and the subgraph induced by V ′, i.e., G(V ′), is connected. It is
desirable to maintain the size of a CDS as small as possible since
control overhead in the network can be significantly reduced. The
Minimum CDS (MCDS) problem has been studied intensively in
Unit Disk Graph (UDG), in which each node has the same trans-
mission range. The MCDS problem in UDG has been shown to be
NP-hard.

However, nodes in a network may have different powers due to
difference in functionalities, power control to alleviate collisions,
topology control to achieve a certain level of connectivity and so
on. For example, in a clustered network, cluster heads or gateway
nodes might have higher power than other nodes. On the other
hand, in a certain power control scheme, a node enlarges or shrinks
its transmission range according to a measured frequency in colli-
sions. Likewise, in some topology-controlled networks, each node
may adjust its transmission range to maintain a certain number of
neighbors in order to achieve a good spatial reuse. Such an ad-
justment of transmission range depends on node distribution in a
network.

In such cases, a wireless ad hoc network can be modeled as a
disk graph(DG) rather than a UDG. The nodes in V are located in
the Euclidean plane and each node vi ∈ V has a transmission range
ri ∈ [rmin, rmax]. There exists a directed edge (vi, vj) ∈ E if and
only if d(vi, vj) ≤ ri, where d(vi, vj) denotes the Euclidean dis-
tance between vi and vj . Such a graph is called a Disk Graph. An
edge (vi, vj) is unidirectional if (vi, vj) ∈ E, but (vj , vi) /∈ E.
An edge (vi, vj) is bidirectional if both (vi, vj) and (vj , vi) are in
E, i.e., d(vi, vj) ≤ min{ri, rj}. In other words, the edge (vi, vj)
is bidirectional if vi is in the disk Dj centered at vj with radius
rj and vj is in the disk Di centered at vi with radius ri. Fig. 1
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gives an example of a DG representing a network. A dotted circle
indicates the transmission range of a node and a directed edge rep-
resents a unidirectional link in G, while a undirected edge represent
a bidirectional link.

Figure 1: A disk graph representing a network

Wu and Dai [7] [1] extended the concept of dominating set in
UDG to the one in DG, which is called a Dominating and Ab-
sorbent Set(DAS). Given a directed graph G = (V, E), a subset
D ⊆ V is a dominating set of G if for any vertex u ∈ V , u ∈ D
or there exists v ∈ D such that (v, u) ∈ E. A vertex in D is
called a dominant, while a vertex in V − D is called a dominated
node. Also, a set A ⊆ V is an absorbent set of G if, for any vertex
u′ ∈ V , u′ ∈ A or there exists v′ ∈ A such that (u′, v′) ∈ E. A
vertex in A is called an absorbent, while a vertex in V −A is called
an absorbed node. A vertex set is a DAS if it is both a dominating
set and an absorbent set. For a vertex u, the dominating neighbor
set of u is defined as {v ∈ V |(v, u) ∈ E}, while the absorbent
neighbor set of u is defined as {w ∈ V |(u, w) ∈ E}. Unlike
in UDG, these two sets might be different in DG. A digraph G is
strongly connected if, for any pair of two vertices, (u, v), there ex-
ists a directed path from u to v and from v to u as well. Throughout
the paper, we assume that G is strongly connected.

Like CDS in UDG, we want to make the size of DAS as small
as possible. Minimum Strongly Connected Dominating and Ab-
sorbent Set(MSCDAS) problem is defined as follows: Given a di-
rected disk graph G = (V, E), find a subset S ⊆ V with mini-
mum size, such that S is a DAS and the subgraph induced by S is
strongly connected. The MSCDAS problem is NP-hard since the
MCDS problem in UDG is NP-hard and UDG is a special case of
DG.

In this paper, we propose a constant approximation algorithm for
MSCDAS problem when the ratio of the maximum to the minimum
in transmission range is bounded. We also present heuristics and
evaluate the proposed schemes through simulation. The simula-
tion results show that our algorithms produce significantly smaller
size of SCDAS compared to existing algorithms in [7]. This phe-
nomenon appears especially under dense network environments,
which is the usual case in sensor networks. The remainder of this
paper is organized as follows. Section 2 describes the related re-
search work on the MSCDAS problem in (U)DGs. We discuss a
constant approximation algorithm and give its theoretical analysis
in Section 3. We present two heuristics and discuss the performance
evaluation of the proposed schemes in Section 4 and 5, respectively.
Finally, in Section 6, we conclude this paper.

2. RELATED WORK
The MCDS problem has been studied extensively in UDGs which

model homogeneous wireless sensor networks. The two compo-
nents of most of existing algorithms for the MCDS problem are

constructing a Maximal Independent Set(MIS) and connecting the
nodes in the constructed MIS using extra nodes if necessary. [6]
proposed a distributed algorithm with approximation ratio of 8. The
algorithm starts with an arbitrary rooted spanning tree and run a
ranking process originated from a root in order to give a total or-
dering of nodes in a given network. Once the ranking process is
done, it constructs a MIS from the root at the spanning tree by a
color-marking process based on the ranking of nodes. All nodes in
the MIS are colored black and others in grey after this phase. At
the last phase, a dominating tree is constructed to connect all the
nodes in the MIS. Forming the dominating tree starts from a grey
node which is neighbored to the root at the spanning three and has
the largest number of black nodes. Grey nodes joining the tree in
this phase are colored blue. Eventually, the internal nodes (black
or blue) of the dominating tree will become an output of the CDS.
Later, Li et al. proposed an improved algorithm for connecting
black nodes in MIS and achieved the approximation ratio of 6.8 [4].
The authors add blue nodes in a greedy fashion. More specifically,
the algorithm considers the current connected components consist-
ing of black and blue nodes at each iteration and colors in blue a
grey node connecting the largest number of connected components.
Thai et al. extended the work of [4] to undirected disk graphs by
considering different transmission ranges [5].

None of the above works assumed a directed disk graph as their
network models. However, nodes in a network may have different
powers due to difference in functionalities, power control to alle-
viate collisions, topology control to achieve a certain level of con-
nectivity and so on. In this case, a wireless ad hoc network can be
modeled as a directed disk graph(DG) rather than any type of undi-
rected graph. A node u in a given directed DG can communicate
directly with node v but node v might not be able to communicate
directly with node u.

In directed graphs, very few related works have been done. In
[7], Wu presented a localized algorithm to construct a strongly con-
nected DAS. The localized algorithm is an extension of marking
process in UDG. The basic idea of the extended marking process
is simple; whenever a node finds that any two neighbors have no
direct edge, it marks itself as a member of DAS. In consequence of
the above procedure, the resulting DAS is the set of all intermedi-
ate nodes along a shortest path between any pair of nodes. Even
if the algorithm is simple, the extensive marking process does not
guarantee a performance bound. In [1], the authors extended their
previous work of [7]. However, the proposed algorithm has the
same limitation in performance bound as their previous work.

3. O(1) APPROXIMATION ALGORITHM
In this section, we introduce the Dominating-Absorbent Span-

ning Trees (DAST) Algorithm to approximate the MSCDAS prob-
lem. We then give the theoretical analysis of its approximation ratio
based on the geometric characteristics of disk graphs. Let us begin
this section with notations that will be used throughout this paper.

For an arbitrary vertex v ∈ V , let N−(v) be the set of its in-
coming neighbors, i.e., N−(v) = {u | (u, v) ∈ E}. Likewise,
let N+(v) be the set of its outgoing neighbors, i.e., N+(v) =
{u | (v, u) ∈ E}
3.1 Algorithm Description

In the DAST algorithm, we construct an outgoing spanning tree
and an incoming spanning tree rooted at an arbitrary node r from
a given graph G, and then output the non-leaf nodes of the two
trees as a SCDAS. More specifically, we pick an arbitrary node r
as the root and construct DT and AT from the root node by call-
ing the subroutine ConsTree. The subroutine ConsTree produces
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a rooted outgoing spanning tree of the input graph, i.e., the root
has an outgoing path to every vertex on the tree. Reversing edges
of the graph and calling ConsTree again gives a rooted incoming
tree. Thus, every pair of nodes can communicate with each other
through the root. Finally, we output all the non-leaf nodes of the
two trees as a SCDAS.

Algorithm 1 Dominating-Absorbent Spanning Tree(DAST)

1: INPUT: A directed disk graph G = (V, E)
2: OUTPUT: A strongly connected dominating and absorbent set

S
3: arbitrarily select a node r in V
4: DT = ConsTree((V,E), r)
5: reverse all directed edges in E and form a new edge set E′

6: AT = ConsTree((V,E′), r)
7: return DT ∪ AT
8:
9: Subroutine ConsTree(V,E,r):

10: color all nodes WHITE
11: D ← {r}
12: while D contains at least one WHITE node do
13: select any WHITE node v from D and color it BLACK
14: for each WHITE node u in N+(v) do
15: color u GRAY
16: for each WHITE nodes s in N+(u) do
17: if s /∈ D then
18: D ← D ∪ {s}
19: parent(s) = u
20: end if
21: end for
22: end for
23: if v �= r then
24: color parent(v) BLUE
25: D← D − {v}
26: end if
27: end while
28: return all BLACK and BLUE nodes

3.2 The Correctness of the Algorithm
In order to prove the correctness of the algorithm, we first prove

two lemmas on the subroutine ConsTree.

LEMMA 1. The set of BLACK nodes produced by ConsTree
forms a dominating set of the input graph.

PROOF. Assuming that the graph G is strongly connected, we
first claim that no vertex remains WHITE at the end of ConsTree.
Suppose that some vertex x remains WHITE. Then x �∈ D since
ConsTree does not terminate until there is no WHITE node left in
D. Because of the strong connectivity of G , there must exist a path
from r to x. According to the subroutine, no vertex in the path can
be marked with any color other than WHITE. Otherwise, x will not
be WHITE in some following iteration. But it is easy to see that r is
colored BLACK in the first iteration. The contradiction leads to the
first claim. Consequently, all the nodes are categorized into three
classes according to their colors; BLACK, BLUE, and GRAY. For
each gray node, its black dominant is determined explicitly when
the gray node has been colored. Since every blue node must be gray
before it becomes BLUE, it also has a black dominant. Therefore
we conclude that the set of black nodes is a dominating set of the
input graph.

LEMMA 2. For each vertex v ∈ G, there is an outgoing path
from r to v after running ConsTree, which consists of BLACK or
BLUE intermediate nodes and v itself.

PROOF. A GRAY node must have an incoming edge from its
BLACK dominant by Lemma 1 and Line 13-15. So, it is sufficient
to prove that the lemma holds for each BLUE or BLACK node.
We want to prove this by induction on each iteration of the WHILE
loop. The basis case is trivial, in which r turns into BLACK. As-
sume that the lemma holds for all BLUE and BLACK nodes gen-
erated in the first k iterations. Let us consider k + 1 iteration. A
new BLUE node ve is always generated from a GRAY node. This
implies that ve must have an incoming edge from some BLACK
node vb ,which was turned into BLACK at some iteration i where
i < k + 1. By the induction hypothesis, there exists an outgoing
path from r to vb using only BLACK and BLUE nodes as its inter-
mediate nodes. By linking this outgoing path to an edge (vb, ve),
we can construct an outgoing path from r to the new BLUE node
ve. On the other hand, a new BLACK node at the k + 1 iteration is
generated from a WHITE node, say, vw. vw must have been found
by an incoming edge from a GRAY node vg at some iteration i,
where i < k + 1 (Line 15 - 19). This implies that the following is
true at the beginning of k + 1 iteration; (i) the parent of vw is vg

(ii) there exists an outgoing path from r to vg satisfying the inter-
mediate node condition by the induction hypothesis. Note that vg

turns into BLUE at the end of k + 1 iteration (Line 22). Therefore,
we get an outgoing path from r to the new BLACK node satisfying
the intermediate node condition at k + 1 iteration.

Now, we are ready to conclude the correctness of the DAST al-
gorithm from the above two lemmas.

THEOREM 1. The DAST algorithm computes a SCDAS of G.

PROOF. From Lemma 1, we know that DT and AT are respec-
tively a dominating set and an absorbent set of G. Let u and v be a
pair of vertices in DT ∪AT . By Lemma 2, there exist a path from
u to r whose intermediate nodes belong to AT and a path from r
to v whose intermediate nodes belong to DT . By linking these two
paths, we get a path from u to v such that all intermediate nodes
are in DT ∪ AT . This also holds for a path from v to u. Thus the
correctness of the DAST algorithm is proved.

3.3 Approximation Ratio
In this section, we want to claim that the DAST algorithm guar-

antees constant approximation ratio if the ratio of the maximum to
minimum in transmission range is bounded. In order to prove our
claim, we first introduce a concept underlying in our proof.

Definition An Independent Subset (IS) of a directed graph G =
(V, E) is a vertex set I ⊂ V which satisfies: for any u, v ∈ I , at
least one of (u, v) and (v, u) is not in E.

Simply, any two vertices in an IS do not have bidirectional edges
between them. This leads to the following property of an IS.

LEMMA 3. For any two nodes u, v in an IS, the distance be-
tween u and v, dist(u, v) is greater than rmin.

PROOF. For two nodes, u and v, dist(u, v) ≤ rmin implies that
both (u, v) and (v, u) are in E, which leads to a contradiction.

The framework of our proof is to bound the size of any IS by using
this minimum distance property of an IS. This method is similar
to the one in [2]. We will see that the BLACK nodes returned by
DT or AT actually forms an IS. Furthermore, it is easy to see that,

24



in the output of DT or AT, the number of BLUE nodes cannot be
more than the number of BLACK nodes since a BLUE node is
set as a parent of a BLACK node. Combining all these properties
together, we prove that the DAST algorithm guarantees constant
approximation ratio. Let us start with the property of the BLACK
nodes returned by DT or AT.

LEMMA 4. The set of BLACK nodes returned by DT or AT is
an IS of G.

PROOF. Let us assume that there exists a pair of BLACK nodes,
u and v such that both (u, v) and (v, u) are in E. Without loss of
generality, we can assume that u is marked with BLACK before
v. Then, v must be WHITE when u becomes BLACK at some
iteration k. Since v ∈ N+(u) by the assumption, v must be marked
with GRAY at the iteration k. Once v has been colored GRAY, its
color can change only to BLUE(Line 24), and BLUE nodes cannot
change color. This implies that v will not be colored BLACK at any
following iteration, leading to a contradiction. So, there is no pair
of BLACK nodes that has bidirectional edges between them.

LEMMA 5. In a disk graph G = (V, E), the size of any IS S is
upper bounded by

2.4(k +
1

2
)2opt + 3.7(k +

1

2
)2

where k = rmax/rmin and opt is the size of the optimal solution
of the SCDAS problem.

PROOF. Let OPT ∗ and opt∗ be an optimal strongly connected
dominating set and its size. Let OPT and opt be an optimal SC-
DAS and its size. It is easy to see that opt∗ ≤ opt. Since OPT ∗

is a dominating set, any node in G must lie in the area A∗ covered
by OPT ∗. This implies that any IS must lie in A∗. Note that a
node in an IS may lie on the boundary of A∗. By Lemma 3, we
know that all the disks centered at nodes in S with radius rmin/2
are disjoint. Thus the size of any IS is bounded by the maximum
number of disks with radius rmin/2 packed in the area covered by
the extension with radius rmin/2 for each node in OPT ∗.

Let vi, 1 ≤ i ≤ opt∗ be the nodes in OPT ∗ and vo be a dom-
inated node, i.e., a node in G but not in OPT ∗. Let D′

i be a disk
centered at vi with radius rmax and D′

o be a disk centered at vo

with radius rmin
2

. Clearly, for a given disk Di, there exists a disk
Dj intersecting with Di where 1 ≤ i, j ≤ opt∗. Let L be the set
of disks Li with radius (rmax + rmin/2) centered at vi. Hence,
all disks D′

i and D′
o must be contained in the union of the disks Li.

Each disk Li is added as follows. At each iteration i, add a disk Li

centered at vi such that there exists a node vj ∈ {v1, ..., vi−1} such
that d(vi, vj) ≤ rmax. The node vj exists since all nodes in OPT
are connected. The newly covered area Ai is bounded by two arcs
of disk Li and Lj in Fig. 2, where d(vi, vj) = rmax. Note that in
Fig. 2, the disk Lj was added before the disk Li, i.e., j < i. Let

α = ∠Xvjvi and c = rmax +
rmin

2
, we have:

Ai ≤ area of Li − 2 area of the ∠XvjY sector of Lj

+ area of the diamond XvjY vi

≤ πc2 − 2αc2 + rmax

r
c2 − (

rmax

2
)2

≤ c2(π − 2π

3
) + crmax

≤ c2(
π

3
+ 1)

Hence the total area A covered by L is at most

c2(
π

3
+ 1) · opt∗ + c2π

Note that d(vi, vj) ≥ rmin where vi, vj are in independent set
S. Hence all disks with radius rmin

2
centered at nodes in S are

disjoint. Now we compute how many such disks are in A. We

X

Y

vivj LiLj

α

c

Figure 2: On the proof of the size relationship between a DAS and
a SCDS

v1

v2

Figure 3: The densest packing of unit disks

know that the densest packing of unit disks in the plane is attained
by a hexagonal lattice. For each disk di with radius rmin

2
centered

at a vertex vi where vi is in the independent set S, place a regular
hexagon of width rmin as shown in Fig. 3. Each hexagon has an
area of

√
3/2 · r2

min. For example, in Fig. 3, the disk d1 uses an
area of at least

√
3/2 · r2

min.
Notice that a disk nearby the boundary might not use all its area.

For example, in Fig. 3, the hexagon of the disk d2 centered at v2

has one part outside of disk D which is the biggest disk in Fig. 3.
That part has an area of

(

√
3

2
)r2

min − (
rmin

2
)2π)/6

Hence each disk with radius of rmin/2 can use an area of:

(

√
3

2
r2

min − (

√
3

2
r2

min − πr2
min

4
)/6) ≥ .85r2

min

Therefore, the size of S is bounded by:

|S| ≤ Total Area A
.85r2

min

≤ opt∗(c2(π
3

+ 1)) + c2π

.85r2
min

≤ opt
1 + π/3

.85

„
rmax

rmin
+

1

2

«2

+
π

.85

„
rmax

rmin
+

1

2

«2

≤ 2.4

„
rmax

rmin
+

1

2

«2

opt + 3.7

„
rmax

rmin
+

1

2

«2
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THEOREM 2. The DAST algorithm produces a SCDAS with its
size bounded by

9.6(k +
1

2
)2opt + 14.8(k +

1

2
)2

where k = rmax/rmin.

PROOF. Let C denote the SCDAS obtained from the DAST al-
gorithm. Let BLACKDT and BLUEDT be the black and blue
nodes in DT , respectively. Also, let BLACKAT and BLUEAT

be the black and blue nodes in AT , respectively. When we add a
BLACK node, we may add a BLUE node, and a BLUE node can
be added at no other time.

Thus we know that BLUEDT ≤ BLACKDT−1 and BLUEAT ≤
BLACKAT − 1. Finally, from Lemma 3, 4 and 5, we can con-
clude:

|C| ≤ BLUEDT + BLACKDT + BLUEAT + BLACKAT

≤ 2× (BLACKDT + BLACKAT )

≤ 4× (2.4(k +
1

2
)2opt + 3.7(k +

1

2
)2)

≤ 9.6(k +
1

2
)2opt + 14.8(k +

1

2
)2

COROLLARY 1. If the ratio of the maximum to the minimum
in transmission range is bounded, the DAST algorithm guarantees
constant approximation ratio.

4. HEURISTICS
In this section, we propose two efficient heuristics for MSCDAS

problem, namely greedy spider contraction algorithm and greedy
strongly connected component merging algorithm. The two algo-
rithms are similar in terms of their structures, that is, first, find a
DAS and add nodes in a greedy manner to make it connected. In
fact, the two algorithms use the same subroutine to find a DAS.
Thus, we begin with introducing the algorithm to find a DAS.

4.1 Finding Dominating and Absorbent Set
As shown in Fig. 2, the algorithm FDAS consists of two stages -

construction of a DS and construction of an AS. It then outputs the
union of the DS and AS. More specifically, in the phase of finding
a DS, all nodes in the network are initially uncolored. At each iter-
ation, an uncolored node u is selected and colored BLACK. More-
over, any uncolored node with an incoming edge from u, if any, is
colored GRAY. When the uncolored node u is selected, we consider
two criteria, namely, random selection and highest degree first. In
the random selection policy, a node is randomly chosen among all
uncolored nodes. In the highest degree first policy, a node with
the highest vertex degree is chosen among all uncolored nodes. In
this paper, the degree of a node is defined by the sum of the num-
ber of incoming edges and the number of outgoing edges. The
node u which has just been colored BLACK is put into S, which
will become a DAS. Let us assume that there is no uncolored node
at the beginning of the i-th iteration. Then, S constructed so far
forms a dominating set. Since there is no uncolored node in the
network at the start of the i-th iteration, a given node w ∈ V is
either BLACK or GRAY. If there is a GRAY node which is not
dominated by any BLACK node, this contradicts Line 11 where a
node turns into GRAY only when a BLACK node dominates it.

Finding an AS consists of two parts, pre-processing and main
processing. Once we get the list of BLACK nodes from the dom-
inating set, we check if any dominated node (a GRAY node) is

absorbed as well by a BLACK node. By doing this, we can avoid
adding extra BLACK nodes unnecessarily in finding AS. If there
exist such dominated nodes, we color them WHITE. Now, we have
three different colored nodes in the network, that is, BLACK, GRAY,
and WHITE. A BLACK node is in the DS described above. A
GRAY node is dominated, but not yet absorbed by the DS. A WHITE
node is dominated and absorbed as well by the DS

Once finishing the pre-processing, but having still GRAY nodes
left, we choose a GRAY node in a greedy manner so that color-
ing the GRAY node BLACK can bring as many absorbed nodes as
possible. We repeat this procedure until there is no GRAY node in
the network. It is obvious that the final S forms a DAS with the
reasoning similar to the proof of DS discussed above.

Algorithm 2 Find a Dominating and Absorbent Set (FDAS)

1: INPUT: A directed graph G = (V, E)
2: OUTPUT: A dominating and absorbent set S
3: /* initially, all nodes are uncolored */
4: /* find a dominating set */
5: S ← ∅
6: while there exits an uncolored node do
7: find an uncolored node u ∈ V with policy 1 or 2 and color

u in black
8: S ← S ∪ {u}
9: for v is an outgoing adjacent node of u do

10: if v is an uncolored node then
11: color v GRAY
12: end if
13: end for
14: end while
15: /* find an absorbent set */ STATE /* pre-processing */
16: for u is a BLACK node do
17: for v′ : an incoming adjacent node of u do
18: if v′ : GRAY then
19: color v′ WHITE
20: end if
21: end for
22: end for
23: /* main processing */
24: while there exists a GRAY node do
25: find a GRAY node, w, with the most incoming edges from

GRAY nodes
26: color w BLACK
27: S ← S ∪ {w}
28: color the related GRAY nodes WHITE
29: end while
30: Return S

4.2 Greedy Spider Contraction Algorithm
In this section, we propose a heuristic called Greedy Spider Con-

traction Algorithm(G-SCA). The G-SCA algorithm finds a DAS
first, then makes the DAS connected via extra nodes if necessary.
In order to get a DAS, the G-SCA runs Algorithm FDAS described
in the previous section. Before explaining how the G-SCA makes
its DAS connected, let us introduce the definitions that will be used
in the G-SCA.

Definition The directed Steiner tree with Minimum Steiner Nodes
(DSMSN) problem is defined as follows: Given a directed graph
G = (V, E), a root node r ∈ V and a set of nodes S ⊆ V called
terminals, find a directed tree T = (V ′, E′) rooted at r such that it
spans all the terminals in S and |V ′ − S| is minimum.
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We call a node w ∈ V ′ − S a Steiner node and T a directed
Steiner tree with minimum Steiner nodes. The DSMSN problem
is NP-hard since a node-weighted Steiner tree problem with node
weight of 1 is a special case of DSMSN problem and it is known as
NP-hard [3].

Definition Given a directed graph G = (V, E), a root node r ∈
V and a vertex subset S ⊂ V , a subgraph T ⊆ G is said to be
inconnected to a node r with regard to S if for every node v ∈ S,
there exists a path from v to r.

Definition Given a directed graph G = (V, E), a root node r ∈
V and a vertex subset S ⊂ V , a subgraph T ⊆ G is said to be
outconnected from a node r with regard to S if for every node v ∈
S, there exists a path from r to v.

Consider S as a DAS returned by Algorithm FDAS and a node
r ∈ V as a root. Note that S is a set of BLACK nodes at end of
Algorithm FDAS. Suppose that we have an inconnected tree to a
node r from a every node in S and an outconnected tree from the
node r to every node in S. Then the union of the inconnected and
outconnected trees contains a path between any two nodes in S.
In this way, we get a strongly connected subgraph that contains a
DAS. This is the underlying framework of the G-SCA. However,
our goal is to get a strongly connected subgraph containing a DAS
where the number of additional nodes is as small as possible. In
order to achieve that goal, we use a greedy method using a concept
which is defined as follows.

Definition Given a directed graph G = (V, E) and a root s ∈ V ,
a directed spider is an outconnected subtree rooted at s satisfying
the following conditions: (1) all the other nodes except the root in
the tree are NON-WHITE and (2) there exists a directed path in the
tree from the root to every node in the tree.

Note that when a DAS is returned by Algorithm FDAS, there are
two types of nodes in the network, that is, WHITE and BLACK.
Let us call a directed spider rooted at a WHITE node v a v-spider.
For a leaf node u in a directed spider, a directed path from v or r to
u is called a leg. Note that for a v-spider, all the other nodes except
v in a leg are NON-WHITE. As long as its DAS is not strongly
connected, the G-SCA finds a directed spider with the largest num-
ber of NON-WHITE nodes, color the root of the spider BLUE, and
contracts it. The contracting operation works as follows:

Definition Contracting operation: The contraction of a v-spider
performs in the following way:

• Step 0 : start from i = 1

• Step 1 : for each undeleted node u at level i in the spider,
check if the link (v, u) is bidirectional or unidirectional

(1) add an unidirectional edge (v, wo) for each wo ∈ N+(u)
such that (v,wo) /∈ E.

(2) if (v, u) is bidirectional, add an unidirectional edge (wi, v)
for each wi ∈ N−(u) such that (wi, v) /∈ E.

(3) if (v, u) is unidirectional, add an unidirectional edge (wi, wo)
for each wi ∈ N−(u) such that (wi, wo) /∈ E for wo ∈
N+(u).

• Step 2 : delete u

• Step 3 : repeat the above procedure for all the levels in the
spider.

The contracting operation described above preserves connectiv-
ity between any two nodes. Suppose that there is a path p =
(u, v1, v2, · · · , vk, w) from node u to node w in the current graph,
and the node vi has been deleted. Then, in a new graph resulting
from contracting operation, p′ = (u, v1, v2, · · · , vi−1, vi+1, · · · , vk, w)
still forms a path between u and w.

Now, we are ready to introduce our heuristic for the DSMSN
problem, which is shown in Algorithm SpanByDSpider.

LEMMA 6. Algorithm SpanByDSpider produces an outconnected
tree rooted at r spanning all BLACK nodes

PROOF. From the definition of spider contraction, note that once
a directed spider contraction occurs, the root of the spider becomes
a BLUE node. Moreover, all the other nodes in the spider are
deleted. Since we delete all the incoming edges to the root r, a
v-spider contraction containing r can happen only if the root of
the v-spider is r. This implies that the root r must be the only one
NON-WHITE node when the WHILE loop exits. Note that a BLUE
node u is an abstraction of outconnected subtree rooted at u which
contains only BLUE and BLACK nodes. When WHILE loop ex-
its, there cannot exist a BLACK node in the network. Thus there
exists an outconnected tree at r containing only and all BLUE and
BLACK nodes.

Algorithm 3 SpanByDSpider(G, r, S)

1: INPUT: Graph G = (V, E), a root r, a set of BLACK nodes
S

2: OUTPUT: An outconnected tree T rooted at r spanning all the
nodes in S

3: delete all the incoming edges to r
4: T ← ∅;
5: while the number of NON-WHITE nodes in G > 1 do
6: find a directed spider with the largest number of NON-

WHITE nodes
7: contract the selected spider
8: color the root of the spider BLUE.
9: update G

10: end while
11: construct T from the set of NON-WHITE nodes

Now, we are ready to describe the G-SCA algorithm which is
shown in Algorithm 4. The G-SCA algorithm consists of two
stages. At the first stage, the G-SCA constructs its DAS S using
Algorithm FDAS At the second stage, Algorithm SpanBySpider
is deployed to construct a strongly connected DAS.

Choose s ∈ S with the largest transmission range among all the
nodes in S. Note that at the beginning of Line 4, all the nodes in S
are BLACK and all the nodes in V −S are WHITE. By calling the
algorithm SpanByDSpider(G, s, S′), we construct an outconnected
tree, T o

s , rooted at s. In order to get an inconnected tree rooted at s,
we reverse all the edges in the original graph G to construct a new
graph G′ and then call the algorithm SpanByDSpider(G′, s, S′) to
obtain a tree T i′

s . By reversing all the edges in T i′
s back to their

original directions, we can construct an inconnected tree T i
s rooted

at s. Last, taking the union of these two trees, T o
s and T i

s , produces
a strongly connected subgraph containing a DAS since it has paths
from s to s′ and from s′ to s for any given node s′ ∈ S.

4.3 Greedy Strongly Connected Component
Merging Algorithm

As mentioned earlier, the Greedy Strongly Connected compo-
nent Merging algorithm (G-CMA) consists of two stages, finding a
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Algorithm 4 Greedy Spider Contraction Algorithm (G-SCA)

1: INPUT: A directed graph G = (V, E)
2: OUTPUT: A SCDAS
3: run FDAS
4: choose node s ∈ S with the largest transmission range
5: S′ = S − {s}
6: T o

s = SpanByDSpider(G, s, S′)
7: construct G′ = (V, ET ), where ET = {e′|e′ =

(v, u)where(u, v) ∈ E}
8: T i′

s = SpanByDSpider(G′, s, S′)
9: construct T i

s by reversing all the edges in T i′
s

10: H = T o
s ∪ T i

s

11: return all nodes in H

DAS and making it connected via extra nodes. More specifically,
in the first stage, the G-CMA gets a DAS by running Algorithm
FDAS. In the second stage, two strongly connected components
(SCCs) of BLACK nodes are continually merged by using a short-
est path between them until there is only one SCC of BLACK nodes
in the network. The main steps of the G-CMA algorithm are de-
scribed in Algorithm 5

Algorithm 5 Greedy Strongly Connected Component Merging Al-
gorithm (G-CMA)

1: INPUT: A directed graph G = (V, E)
2: OUTPUT: A SCDAS
3: H ← ∅
4: run FDAS
5: H ← S ∪H
6: let C be the current collection of strongly connected compo-

nents of BLACK nodes
7: while |C| > 1 do
8: for every pair (i, j) where Ci, Cj ∈ C and i �= j do
9: find a minimum cost path, Pf to connect Ci to Cj

10: find a minimum cost path, Pb to connect Cj to Ci

11: let Costij be the number of distinct WHITE nodes along
the forward path Pf and the backward path, Pb

12: end for
13: find a pair of (i′, j′) with the minimum Costij among all

the pairs of (i, j)
14: color BLACK distinct WHITE nodes, w1, w2, · · ·wk along

the paths Pf and Pb

15: H ← H ∪ {w1, w2, · · ·wk}
16: end while
17: Return H

The G-CMA algorithm constructs a SCDAS which is a subgraph
H of G. After the first stage, H contains a DAS returned by Algo-
rithm 2. If the DAS is not strongly connected, The G-CMA contin-
ues to find two SCCs which can be merged by the minimum cost
until there is only one SCC in the network. At each iteration, the
G-CMA considers every pair of SCCs in the network and calcu-
lates the merging cost for that pair. When two SCCs, Ci and Cj

are considered for merging, we need to consider a forward path
to connect Ci and Cj and a backward path to connect Cj and Ci

since G is a directed graph. If G is a UDG, a forward path is also
a backward path. However, this is not necessarily the case in DG.
The G-CMA algorithm first finds a forward path with the minimum
cost. In our algorithm, the cost of a path is defined as the number
of WHITE intermediate nodes along the path. If there is more than
one minimum cost forward path, one of such forward paths is ar-

bitrarily chosen. Once a minimum cost forward path is discovered,
the G-CMA assumes all intermediate nodes along that forward path
as BLACK nodes and then finds a backward path with a minimum
cost. Then, among all the pairs of SCCs, the G-CMA selects a pair
of SCCs with minimum merging cost. One may get a cheaper path
by considering all possible combinations of forward and backward
paths for each pair of SCCs.

5. NUMERICAL RESULTS
In this section, we evaluate the schemes for MSCDAS prob-

lem through simulation which are proposed in the previous sec-
tion. More specifically, we investigate the impact of the network
density and the ratio of transmission range on the performance of
each scheme in terms of the size of SCDAS. The network density
can be varied by either changing the number of nodes in a given
area or increasing the area size for a fixed number of nodes. In our
simulation, we consider both ways to get different network density.
For each run, we generate a network where nodes are randomly
distributed, and choose the transmission range of each node ran-
domly for a given range of powers. Once a network is generated,
we check whether or not it is strongly connected. If not, the gen-
erated network is thrown away. Otherwise, it is considered as one
instance. Repeating this procedure, we get 1000 instances of net-
works for each performance measure and take the average value
for each point in simulation results. Since Wu’s localized marking
algorithm is the only one available in the literature with which our
proposed schemes can be compared, we describe Wu’s algorithm
in detail as below.

For a given network G = (V, E), every node is initially un-
marked and has a unique id. A node broadcasts the information
of its neighbors Whenever a node u ∈ V discovers that (w, u),
(u, v) ∈ E, but (w, v) �∈ E, the node u marks itself as a mem-
ber of SCDAS. Furthermore, two additional rules are applied in
order to reduce the size of SCDAS. Before we explain the two
rules, recall the definition of N−(u) and N+(u) for a given node
u defined in Section 3. The former is the set of incoming neigh-
bors of node u, while the latter is the set of outgoing neighbors of
node u. In Rule 1, a marked node u unmarks itself whenever the
marked node u finds that for some node v ∈ V , N−(u) − {v}
and N+(u)−{v} are covered by N−(v) and N+(v), respectively
and id(u) < id(v). Rule 2 is an extension of Rule 1 to a triple of
nodes. More specifically, a marked node u unmarks itself whenever
all the following conditions are satisfied: (1) N−(u) − {v, w} ⊆
N−(v) ∪N−(w), (2) N+(u) − {v, w} ⊆ N+(v) ∪N+(w), (3)
id(u) = min{id(u), id(v), id(w)}

In our simulation results, we represent the performance of Wu’s
algorithm as LOCAL. R-SCA and H-SCA indicates the performances
of the G-SCA with random selection policy and with highest degree
first policy, respectively.

5.1 Effect of network density

5.1.1 Varying the number of nodes
To evaluate the performance of the proposed algorithms under

the different number of nodes, we randomly deploy N nodes in a
fixed area of 1000m × 1000m. N varies from 10 to 130 with an
increment of 10. In other words, we vary network density from
10−5 to 1.3× 10−4. Each node randomly chooses its transmission
range from the range of [200m, 600m].

As shown in Fig. 4, the LOCAL performs the worst among all
the schemes considered in our simulation as the number of node in-
creases. Among the proposed centralized algorithms, the G-CMA
does the best while R-SCA performs the worst. As the number
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Figure 4: Effect of number of nodes

of nodes increases, the size of SCDAS increases linearly with the
LOCAL, while it tends to saturate with our centralized algorithms.
More specifically, the LOCAL chooses as a SCDAS about 50% of
the total number of nodes N in the network at the range of [10, 60]
of N . On the other hand, the G-CMA finds its SCDAS with steadily
decreasing percentage. For example, The size of SCDAS returned
by the G-CMA is about 50%, 20% and 10% at N = 20, 60 and
130, respectively. Note that the differences between the LOCAL
and the G-CMA in the size of SCDAS becomes very distinct as
the network grows. This phenomenon is the same for the LOCAL
versus the R-SCA (or H-SCA). The reason why the performance
of the LOCAL does not improve as the network becomes dense is
that Rule 1 and Rule 2 can be hardly satisfied when the number of
nodes increases in a fixed area, while the power range remains the
same.

It is also noticeable that the H-SCA performs better than the R-
SCA. This implies that node selection method in finding a DAS
have a significant impact on the resulting size of SCDAS. high-
est degree first policy always performs better than random selec-
tion policy for the Algorithm SCA. At a low network density, the
difference in performance of the R-SCA and the H-SCA is slight.
However, as the network density grows, H-SCA performance sig-
nificantly better than the R-SCA. For example, the sizes of SCDAS
produced by the R-SCA and the H-SCA are 8.85 and 8.16 N = 10,
respectively, while 25.44 and 27.28 at N = 90. Intuitively, if a net-
work is sparse, most of nodes in the network will be included in a
DAS irrespective of random selection policy or highest degree first
policy. If the network becomes dense, we have a room to use the
benefit of node spatial distribution. So, highest-degree-first policy
performs better than random selection policy.

One can observe that the DAST algorithm performs almost the
same as the H-SCA. For a network density up to N = 40, the
DAST algorithm is slightly better than the H-SCA. Beyond that,
however, the performance of the H-SCA gets better than the DAST.
Moreover, the difference of performance becomes distinct as the
number of nodes increases. Compared to the G-CMA, the DAST
algorithm obtains 120%, 136% and 130% of the size of SCDAS
achieved by the G-CMA at N = 40, 60 and 130, respectively.

5.1.2 Varying area size
In this section, we vary the area size rather than the number
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of nodes in the network in order to evaluate the performance of
the proposed algorithms under the different network density. We
randomly deploy 50 nodes in the network. Each node randomly
choose its transmission range from the range of [200m, 600m].
The area width varies from 600m to 1400m. This corresponds
to the network density from about 1.4×10−4 to about 2.5×10−5 .
As shown in Fig. 5, the G-CMA performs the best among all the
schemes considered in our paper. More specifically, the G-CMA
obtains its SCDASs with about 52.6%, 50.2% and 61.2% of the
size of SCDSs achieved by LOCAL at the area width 800, 1000 and
1400, respectively. This corresponds to 18.3%, 23.9% and 36.2%
of the total number of nodes in the network. Unlike varying the
number of nodes in a given area mentioned in the previous sec-
tion, the size of SCDAS with the LOCAL tends to saturate, while
those of all centralized algorithms tend to increase as the area width
becomes larger. We observe that, at the area width of 600, the per-
formance of the LOCAL is as good as the G-CMA. In fact, with
the area width of 600, the network becomes close to a complete
graph with the parameters set as mentioned above where a node
can communicate with all the other nodes. It is obvious that any
localized algorithm will work well with a complete graph. The LO-
CAL chooses as its SCDASs about 12.4%, 34.9%, 47.8%, 55.3%
and 59.08% of N at the area width of 600, 800, 1000, 1200 and
1400, respectively.

Similarly in the previous section where the number of nodes
varies in a given area, SCA with random selection policy performs
the worst among all proposed schemes, at all area width considered
in this paper. R-SCA obtains its SCDAS with about 29%, 18.9%
and 17.1% more nodes than H-SCA at the area width of 600, 1000
and 1400, respectively. Rather than using random selection policy,
when highest degree first policy is used, we observe that the size of
SCDAS can be significantly reduced. Very interestingly, when the
area size varies, the performance of H-SCA is the same as that of
the DAST with slight difference at area width of 1400. Both algo-
rithms achieve the size of SCDAS about 21%, 36% and 44.7% at
the area width of 800, 1200 and 1400, respectively. One can also
observe that the difference in performance of the G-CMA and other
schemes become distinct as the area size grows. This implies that
strongly connected component merging technique can save unnec-
essary nodes much more efficiently than any other scheme when
the network is sparse.

29



5.2 Effect of Transmission Range Ratio
In this section, we investigate the effect of transmission range

ratio, k. In the previous section, we prove that the size of SCDAS
produced by the DAST algorithm is bound by a function which is
proportionate to k2. Let us assume that the number of nodes and
their locations in a given area are fixed. Consider the following
two cases of transmission range; In case 1, all nodes have the same
transmission range R. On the other hand, in case 2, 50% of nodes
has a transmission range of R1 = 2

3
· R and 50% of nodes have

a transmission range of R2 = 2R1. Note that the average trans-
mission range is the same for both cases. Now, assume that the
network constructed by each case is strongly connected. Which
case has a higher chance to have a larger DAS? Intuitively, the an-
swer is the second case. It is because, in order for a node with a
small transmission range to reach a node in DAS within one hop,
the more BLACK nodes are needed. With the same reasoning, one
can expect that if the value of k is larger, so is the size of SCDAS.

In the first experiment, we deploy 50 nodes randomly in the
area of 1000m × 1000m. In order to vary the value of k, we fix
1000m for the maximum transmission range, while vary the mini-
mum transmission range from 200m to 1000m for an integer value
of k ∈ [1, 5]. Interestingly, the LOCAL performs the best with the
low values of k. By noticing that the graph grows to a complete
graph as the value of k becomes lower, a node can communicate
with any other node directly without any intermediate nodes. So
the size of SCDAS produced by the LOCAL becomes smaller. The
intuitive reason why our centralized algorithms performs worse for
lower values of k is that they finds SCDAS in multiple phases,
which is possible to lead to larger sizes of SCDASs than the LO-
CAL in a certain network situation. However, one can observe that
the performance of the LOCAL sharply degrades as k grows. Wu’s
localized algorithm obtains its SCDASs with 2.2%, 11.9%, 25.3%
and 32.3% of N for k = 2, 3, 4 and 5, respectively.

As shown in the Fig. 6, the H-SCA algorithm performs the best
among the proposed algorithms for every value of k considered
in the simulation. More specifically, it produces its SCDASs with
7.7%, 13.7%, 17% and 19.6% of N for k = 2, 3, 4 and 5, respec-
tively. From the figure, one can observe that the performance of the
DAST algorithm is as good as the H-SCA algorithm for the entire
interval of k. Even though we do not show in the figure, the R-SCA
algorithm performs the worse than the DAST algorithm. Similarly
to the results in the previous sections, it shows again that the ran-
dom selection of nodes in drawing DAS performs badly, which is
even worse than the simple pruning algorithm, the DAST. By set-
ting a DAS via greedy choice of nodes with highest degree first
policy, however, one can improve the performance of SCA signifi-
cantly.

From the figure, one can observe that increase in the size of SC-
DAS obtained by each algorithm gets slow down as the value of
k increases. It is also prominently noticeable that the G-CMA al-
gorithm performs the best when k = 1. However, as k increases,
the performance of the G-CMA becomes the worst. For instance,
when k increases from 2 to 3, the size of SCDAS produced by
the G-CMA sharply increases. From our experiment, we find that
the G-CMA algorithm performs as bad as the R-SCA for higher
values of k. Unlike the case where network density varies, the G-
CMA does not perform efficiently when the transmission range ra-
tio varies. In other words, the G-CMA algorithm is sensitive to
the transmission range ratio with the parameters described above.
We also investigate the performances of the proposed schemes in a
larger network. At this time, we deploy 100 nodes randomly in the
area of 1200m× 1200m. In order to vary the value of k, we select
1200m for the maximum transmission range, while vary the mini-
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Figure 6: Effect of transmission range ratio, N=50

mum transmission range from 200m to 1200m for an integer value
of k ∈ [1, 6]. Unlike the first experiment, the G-CMA algorithm
performs the best among all the schemes for k ∈ [2, 6] as shown in
the Fig. 7. It produces as the size of SCDAS 5.18%, 14.1%, 20.3%
and 22.6% of N with k = 1, 3, 5 and 6, respectively. Similarly to
the case with N = 50, the performance of the LOCAL is the best
when k = 1, i.e, when the network becomes a complete graph.
When k becomes 2, however, the size of SCDAS achieved by the
LOCAL increases very steeply, which is more than 30 times the
one for k = 1. In fact, one can observe that the sizes of SCDAS
by the LOCAL is about four times of the ones by the G-CMA for
all values of k ∈ [2, 6]. We can conclude that the performance
of the LOCAL is sensitive to the transmission range ratio. As the
power levels available in a network becomes more various, the per-
formance of the LOCAL degrades very sharply.

One can also observe that the DAST is as good as the G-CMA
when k = 1, i.e., the network becomes homogeneous where each
node have the same transmission range. However, the difference
in performance of the DAST and the G-CMA becomes very dis-
tinct as k grows. For example, the size of SCDAS achieved by the
DAST is 1%, 3.7% and 5.6% more than the one by the G-CMA
at k = 2, 4, and 6, respectively. Even though we do not show in
the figure, it is observed that, unlike the case with N = 50, the
R-SCA performs similar to the H-SCA at the low values of k. As
k increases, however, the H-SCA performs significantly better than
the R-SCA. For example, when k = 6, the difference between the
performance of the R-SCA and the H-SCA becomes 5.1%. Note
that when the heterogeneity in transmission range grows, i.e., the
value of k grows, the size of SCDAS achieved by each scheme also
becomes larger. However, one can observe that every scheme tends
to saturate as k increases.

6. CONCLUSIONS
In this paper, we discuss the Minimum Strongly Connected Dom-

inating and Absorbent Set (MSCDAS) problem in a heterogeneous
wireless ad-hoc network, where each node may have a different
transmission range. The MSCDAS problem is the counterpart of
MCDS problem in a homogeneous wireless ad-hoc network. We
propose an O(1) approximation algorithm called DAST and give a
theoretical analysis based on geometric properties of a disk graph.
We also present two heuristics for MSCDAS problem, namely G-
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SCA algorithm and G-CMA algorithm. The G-SCA algorithm is
based on greedy spider contraction, while the G-CMA algorithm
is based on merge of strongly connected components with mini-
mum cost. Through simulation, we investigate the performance of
the proposed schemes under various network environments such as
varying the total number of nodes in the network, the area size,
and the transmission range ratio. The simulation results show that,
overall, the G-CMA algorithm performs the best among all pro-
posed schemes. However, when transmission range ratio varies
with N = 50 in our experiment, the performance of the G-CMA
algorithm becomes worse than the DAST. So, one needs to select
an appropriate scheme according to network parameters.
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