
Algorithmica
DOI 10.1007/s00453-008-9183-1

A Simplicial Approach for Discrete Fixed Point
Theorems

Xi Chen · Xiaotie Deng

Received: 5 March 2008 / Accepted: 17 March 2008
© Springer Science+Business Media, LLC 2008

Abstract We present a new discrete fixed point theorem based on a variation of the
direction-preserving maps over simplicial structures. We show that the result is more
general than the recent discrete fixed point theorem of Iimura et al. (J. Math. Econ.
41(8):1030–1036, 2005) by deriving it from ours. The simplicial approach applied in
the development of the new theorem reveals a clear structural comparison with the
classical approach for the continuous case.
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1 Introduction

There have recently been a sequence of works related to fixed point theorems in a
discrete disguise, inspired by the work of Iimura [2] who introduced a crucial con-
cept of direction-preserving maps that may be considered as a discrete counter-part
of continuity. Iimura, Murota and Tamura [1] corrected the proof of Iimura for the
definition domains of the maps. With a different technique, Chen and Deng intro-
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duced another discrete fixed point theorem in order to achieve the optimal algorith-
mic bound for finding a discrete fixed point for all finite dimensions [3]. In [4], van
der Laan, Talman and Yang designed a combinatorial algorithm for the discrete zero
point problem. Friedl, Ivanyosy, Santha and Verhoeven defined the black-box Sperner
problem and obtained an upper bound of O(

√
n) for the two-dimensional case [5].

On the other hand, Chen and Deng [6] showed that the two theorems, that of Iimura,
Murota and Tamura [1], as well as that of Chen and Deng [3], cannot directly derive
each other.

The discrete nature of the fixed point theorem has been noticed previously, mainly
due to the proof techniques of Sperner’s lemma [7]. The simplicial structure has since
played an important role in establishing various continuous fixed point theorems, and
in developing algorithmic solutions, starting with Scarf [8] in the tradition of the
Lemke-Howson algorithm [9], and further developed by Eaves, Saigal, Todd, van der
Laan and Talman [10–14], to name a few.

Although the recent studies on discrete fixed point theorems have started with the
hypercubic approach by Iimura [2], as well as in [1], and [3], the simplicial approach
has also come back from several fronts to deal with the discrete versions, with the
path-following approach in [15], and also the divide-&-conquer approach in [5, 16]
which are in essence originated from the degree theory of Brouwer [17].

While Iimura’s concept of direction preserving is coordinate-wise for every two
points on a same unit hypercube, van der Laan, Talman, and Yang introduced a much
stronger concept of simplicially local gross direction preserving by requiring the
function values to be within a right angle for any two points on a same simplex.
They derived discrete zero point theorems, as well as proofs of convergence for both
a convergence condition and an antipodal condition [15]. In solving this problem,
they adapted the 2n-ray vector labeling algorithm of van der Laan and Talman [14].
Both their proofs and algorithms are closely related to the path-following paradigm,
started in the Lemke-Howson algorithm [9].

In this article, we derive a general discrete fixed point theorem based on a com-
bination of simplicial structures and an associated variation of Iimura’s direction-
preserving maps. Our approach can be viewed as a discrete approach of Brouwer’s
degree theory, an approach we started to use in the hypercubic case [3]. A work
closely related to ours is that of Friedl, Ivanyosy, Santha, and Verhoeven [5] who de-
rived a matching bound for finding a Sperner triangle in O(

√
n) time which matches

the lower bound of Crescenzi and Silvestri [18] (mirroring an earlier result of Hirsch,
Papadimitriou and Vavasis on the computation of two-dimensional approximate fixed
points [19]).

The recent effort in the direct formulation of discrete fixed point theorems has also
been made in response to the challenges in the complexity characterization of related
problems. The recent work in characterizing the computational complexity of Nash
equilibria, by Daskalakis, Goldberg and Papadimitriou [20], Chen and Deng [21],
Daskalakis and Papadimitriou [22], Chen and Deng [23], has been based on another
innovative formulation of the 2-dimensional (or 3-dimensional) discrete fixed point
problem, where a fixed point is defined as a collection of four [24] (or eight [20])
corners of a unit square (or unit cube). It’s difficult to efficiently generalize such a
formulation to high-dimensional spaces, since a hypercube has an exponential num-
ber of corners, which is computationally infeasible. Instead, a simplicial definition
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has been necessary in extending those results to a non-approximability theorem ob-
tained recently in [25].

We first introduce notations and definitions with a review of the previous work of
Iimura, Murota and Tamura [1]. We then define the concept of simplicial direction-
preserving maps, which is followed by the primitive discrete fixed point theorem.
In Sect. 3, we present the discrete Brouwer’s fixed point theorem for simplicial
direction-preserving maps, with the theorem of Iimura, Murota and Tamura [1] de-
rived as a direct corollary. Finally, we conclude in Sect. 4 with discussion and re-
marks.

2 Basic Definitions and Known Results

We use ek to denote the kth unit vector of Z
d , where ek

k = 1 and ek
i = 0 for all

i : 1 ≤ i �= k ≤ d .
Throughout the paper, we use “map” to denote a point-to-point correspon-

dence from a finite set X ⊂ R
d to R

d , and use “direction function” (or sim-
ply “function”) to denote a point-to-value correspondence from set X ⊂ R

d to
{0,±e1, . . . ,±ed−1,±ed} ⊂ Z

d .
Let F be a map on X ⊂ R

d , f be a direction function on X, and C ⊂ X. We use
F(C) and f (C) to denote {F(r), r ∈ C} and {f (r), r ∈ C}, respectively.

2.1 Hypercubic Direction-Preserving Maps and Functions

Informally speaking, a map F (or a direction function f ) on a finite point set X ⊂
Z

d is hypercubic direction-preserving if for any two neighboring points in X, their
directions given by F (or f ) are not opposite. The neighborhood relation considered
here is defined by the infinity norm.

Definition 1 (Hypercubic direction-preserving maps) Let X be a finite subset of Z
d .

Map F from X to R
d is said to be hypercubic direction-preserving on X if for any

two points r1, r2 ∈ X with ‖r1 − r2‖∞ ≤ 1, we have (Fi (r
1)− r1

i )(Fi (r
2)− r2

i ) ≥ 0,
for all i : 1 ≤ i ≤ d .

Definition 2 (Hypercubic direction-preserving functions) Let X be a finite sub-
set of Z

d . A direction function f from X to {0,±e1, . . . ,±ed−1,±ed} is said
to be hypercubic direction-preserving if for any two points r1, r2 ∈ X such that
‖r1 − r2‖∞ ≤ 1, we have ‖f (r1) − f (r2)‖∞ ≤ 1.

Point r ∈ X is called a fixed point of map F (or function f ), if F(r) = r

(or f (r) = 0). Iimura, Murota and Tamura proved in [1] that every hypercubic
direction-preserving map from an integrally convex set X to X must have a fixed
point.1 Here we use X to denote the convex hull of finite set X ⊂ Z

d .

1Although the original theorem of [1] deals with point-to-set correspondences, it is essentially equivalent
to the point-to-point version presented here.
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Definition 3 (Integrally convex sets) Finite set X ⊂ Z
d is integrally convex if for all

x ∈ X, x ∈ X ∩ N(x) where N(x) = {r ∈ Z
d | ‖r − x‖∞ < 1}.

Theorem 1 [1] Let X ⊂ Z
d be an integrally convex set, then any hypercubic

direction-preserving map F from X to X has a fixed point in X.

2.2 Simplicial Direction-Preserving Maps and Functions

We now introduce simplicial direction-preserving maps and functions based on sim-
plicial structures. We follow the main idea from our extended abstract originally pub-
lished in the Proceedings of the 12th Annual International Conference on Computing
and Combinatorics [16], held at Taipei, on August 15–18, 2006. We note that a more
general concept, called simplicially local gross direction-preserving functions, was
also introduced by van der Laan, Talman and Yang in [15].

Let X be a finite set in R
d . Here we only consider non-degenerate cases where X ⊂

R
d is a convex d-polytope. For standard definitions concerning polytopes, readers are

referred to [26] for details.

Definition 4 Given a finite set X ⊂ R
d , we let X ⊂ R

d denote its convex hull. A sim-
plicial decomposition S of X is a finite collection of simplices satisfying:

1. C = ⋃
S∈S S;

2. For any S ∈ S , if S′ is a face of S, then S′ ∈ S ; and
3. For any two simplices S1, S2 ∈ S , if S1 ∩ S2 �= ∅, then S1 ∩ S2 is a face of both S1

and S2.

Furthermore, a simplicial decomposition S of set X is a simplicial decomposition
of X such that for every S ∈ S , we have VS ⊂ X, where VS is the vertex set of
simplex S.

Given a simplicial decomposition S of X, we use FS ⊂ S to denote the set of
(d − 1)-simplices on the boundary of X, and BX ⊂ X to denote the set of points in
X on the boundary of X:

FS = {(d − 1)-simplexS ∈ S|S ⊂ F and F is a facet of X} and

BX = {r ∈ X|r ∈ F and F is a facet of X}.

Definition 5 (Simplicial direction-preserving maps) A simplicial direction-preserv-
ing map is a triple M = (F ,X,S). Here X is a finite set in R

d and S is a simplicial
decomposition of X. Map F from X to R

d satisfies the property that, for any two
points r1, r2 ∈ X, if there exists a simplex S ∈ S such that r1, r2 ∈ VS , then (Fi (r

1)−
r1
i )(Fi (r

2) − r2
i ) ≥ 0, for all i : 1 ≤ i ≤ d .

Definition 6 (Simplicial direction-preserving functions) A triple G = (f,X,S)

is said to be a simplicial direction-preserving function, if X is a finite set in
R

d , S is a simplicial decomposition of X, and direction function f : X →
{0,±e1,±e2, . . . ,±ed} satisfies the property that, for any two points r1, r2 ∈ X,
if there exists S ∈ S such that r1, r2 ∈ VS , then ‖f (r1) − f (r2)‖∞ ≤ 1.



Algorithmica

In other words, for any two neighboring points in X, their directions given by map
F (or function f ) cannot be opposite. The only difference with the hypercubic model
is that the neighborhood relation is now defined by the simplices in the simplicial
decomposition S instead of the unit hypercubes in Z

d .

Remark We note that there is a possibility that F is hypercubic direction-preserving
on X ⊂ R

d , but none of its simplicial decompositions S can make M = (F ,X,S)

simplicial direction-preserving. Therefore, our result in Sect. 3 is limited in the sense
that it covers only the cases when a direction-preserving simplicial decomposition
exists, and presented. However, for X ⊂ R

d of certain type (e.g., integrally convex
sets [1]), there always exists an easy-to-find S such that M = (F ,X,S) is simplicial
direction-preserving (see Lemma 3 in Sect. 3.3 for the formal statement).

Also note that the concept of simplicially local gross directional-preserving func-
tions in [15] is only defined over subsets of Z

d , while ours is more general, which is
defined over subsets of R

d .

2.3 The Primitive Discrete Fixed Point Theorem

We are now ready to state the primitive discrete fixed point theorem in the tradition
of Brouwer’s degree theory [3, 5, 17].

Definition 7 (Bad simplices) Let G = (f,X,S) be a simplicial direction-preserving
function with X ⊂ R

d . For t : 0 ≤ t < d , a t-simplex S ∈ S is bad relative to G if
f (VS) = {e1, e2, . . . , et+1}, where VS is the vertex set of S.

We let NG denote the number of bad (d − 1)-simplices in FS .

Lemma 1 [3, 5, 17] For every simplicial direction-preserving function G =
(f,X,S), if there exists no fixed point in X, then NG is even.

Proof Firstly, one can show that for every (d − 1)-simplex S ∈ S , if S ∈ FS , then
there exists exactly one d-simplex in S containing S. Otherwise, there are exactly
two such simplices. Using this property, the parity of NG is the same as the one of
the following summation:

∑

d-simplex Sd ∈ S
|{bad (d − 1)-simplices (relative to G) in Sd }|.

As G is direction-preserving and has no fixed point, the number of bad (d − 1)-
simplices in Sd is either 0 or 2. Therefore, the summation above must be even. �

We now get the primitive theorem as a simple corollary of Lemma 1.

Theorem 2 (The primitive discrete fixed point theorem [3, 5, 17]) Let G = (f,X,S)

be a simplicial direction-preserving function. If NG, i.e. the number of bad (d − 1)-
simplices on the boundary of X, is odd, then G must have a fixed point r ∈ X such
that f (r) = 0.
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3 Main Results

Our main result is a constructive proof for the following discrete fixed point theorem
concerning simplicial direction-preserving maps.

Theorem 3 (The discrete Brouwer’s fixed point theorem) For every simplicial
direction-preserving map M = (F ,X,S) such that F maps X to X, there must exist
a fixed point in X.

We will employ the primitive discrete fixed point theorem to prove this theorem,
which can be recognized as a discrete version of Brouwer’s fixed point theorem. In
Sect. 3.3, we will use it to derive the theorem of Iimura, Murota and Tamura as a
corollary.

On the other hand, it is not very surprising that, one can apply Brouwer’s fixed
point theorem to obtain a quick proof of this discrete version. However, our proof is
completely combinatorial and is based on an interesting boundary characterization
for simplicial direction-preserving maps (as will be shown in Lemma 2 below). The
advantage of such a constructive proof is that, for many structured sets X ⊂ R

d , (e.g.,
hypergirds [3]), one can employ the boundary characterization to derive a divide-&-
conquer algorithm for finding a discrete fixed point.

3.1 Preliminaries

Let X be a finite set in R
d , S be a simplicial decomposition of X, and S be a (d − 1)-

simplex in FS . We say S is visible from point r /∈ X, if eS ·(r −rS) > 0 for some point
rS ∈ S, where eS is the unique vector of length 1 that is outgoing and perpendicular
to S.

It is easy to check that, for all r ∈ X and rS ∈ S, eS · (r − rS) ≤ 0.

Construction 1 (Extension of simplicial decomposition) Let X ⊂ R
d be a finite set

and S be a simplicial decomposition of X. For every point r /∈ X, we can add new
simplices into S and build a simplicial decomposition S ′ of set X′ = X ∪ {r} as fol-
lows. For every (d − 1)-simplex S ∈ FS visible from r , we add d-simplex conv(S, r)

and all its faces into S .
One can check that S ′ is a simplicial decomposition of X′, and S ⊂ S ′.

Given a simplicial direction-preserving map M = (F ,X,S), we can convert it
into a direction-preserving function G = (f,X,S) as follows.

Construction 2 Given a simplicial direction-preserving map M = (F ,X,S), we can
build a simplicial direction-preserving function G = (f,X,S) as follows. For every
r ∈ X, if F(r) = r , then f (r) = 0. Otherwise, let i : 1 ≤ i ≤ d be the smallest integer
such that Fi (r) − ri �= 0, then f (r) = sign(Fi (r) − ri) · ei .
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3.2 The Key Lemma

We shall prove the key lemma, Lemma 2, through a sequence of definitions, struc-
tures, and their properties.

Lemma 2 Let M = (F ,X,S) be a simplicial direction-preserving map where F
is from X to X, and G = (f,X,S) be the direction function built from M using
Construction 2. Then either f has a fixed point in BX or NG is odd.

From Construction 2, every fixed point of f must also be a fixed point of F .
Therefore, Theorem 3 follows directly from Theorem 2 and Lemma 2.

We now outline the proof of Lemma 2.

Proof sketch Let n = maxr∈X,1≤i≤d |ri |, then we can scale down set X to get X′ ⊂
(−1,1)d by setting

X′ =
{

r

(n + 1)
, r ∈ X

}

.

We also get a simplicial decomposition S ′ of X′ from S , using the one-to-one corre-
spondence between X and X′. We let F ′ denote the map from X′ to X′ where

F ′(r) = F((n + 1)r)

n + 1
.

Let G′ be the function constructed from map M ′ = (F ′,X′,S ′) using Construc-
tion 2, then it is easy to check that NG = NG′ . Therefore, we only need to prove
the lemma for maps M = (F ,X,S) with X ⊂ (−1,1)d . From now on, we always
assume that X ⊂ (−1,1)d .

If f has a fixed point r ∈ BX , then the lemma is proven. Otherwise, we need to
extend (by applying Construction 1 for a number of times) G = (f,X,S) to be a new
function G∗ = (f ∗,X∗,S∗) such that

X ⊂ X∗, X∗ = [−1,1]d , and S ⊂ S∗.

We will describe the construction of G∗ in Sect. 3.2.1. In Sect. 3.2.2, we will show
that, if G is simplicial direction-preserving, then its extension G∗ is also simplicial
direction-preserving. Finally, in Sect. 3.2.3, we will prove the following two proper-
ties about functions G and G∗:

Property 1 NG∗ is odd; and
Property 2 NG ≡ NG∗ (mod 2).

Clearly, Lemma 2 follows directly from these two properties. �

3.2.1 The Construction of Function G∗

Before describing the construction of G∗, it should be emphasized that, for any point
r ∈ X, the value of f at r (as described in Construction 2) is decided by the first
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non-zero component of F(r) − r . Therefore, to evaluate f (r), we need to check
the components of F(r) − r , in the order of indices from lower to higher, until a
non-zero component is found. However, when constructing G∗, we first extend G

along the d-th coordinate, then along the (d − 1)-st, . . . , and finally along the first
coordinate. The use of reversed orders in these two constructions is very important,
as will become clear in the proof of Proposition 4.

We start with some notations used in the construction of function G∗. For point
r ∈ R

d , k : 1 ≤ k ≤ d and c ∈ R, we use r[k → c] to denote the point r ′ ∈ R
d such

that r ′
k = c and r ′

i = ri for all i : 1 ≤ i �= k ≤ d . For X ⊂ R
d , we use X[k → c] to

denote {r[k → c], r ∈ X}.

Definition 8 (Extension along the kth coordinate) Let G = (f,X,S) be a triple such
that: X is a finite subset of [−1,1]d ; every point r ∈ X satisfies |rk| < 1; S is a sim-
plicial decomposition of X; and f : X → {0,±e1, . . . ,±ed} is a direction function2

on X. Triple G′ = (f ′,X′,S ′) is said to be an extension of G along the kth coordinate
if the following properties are satisfied:

1. S ′ is a simplicial decomposition of X′ where

X′ = X ∪ X[k → +1] ∪ X[k → −1]; (1)

2. S ⊂ S ′; and
3. For any r ∈ X, f ′(r) = f (r), f ′(r[k → +1]) = −ek , f ′(r[k → −1]) = +ek .

Proposition 1 guarantees the existence of G′.

Proposition 1 For every triple G = (f,X,S) which satisfies all the conditions in
Definition 8, there exists a triple G′ = (f ′,X′,S ′) which is an extension of G along
the kth coordinate.

Proof According to Definition 8, it suffices to construct a simplicial decomposition
S ′ for X′ (as defined in (1)) satisfying S ⊂ S ′.

Actually, S ′ can be built as follows. We sort all the points in X′ −X under the lexi-
cographic order,3 add them into X one by one, and extend the original decomposition
S step by step using the method described in Construction 1. �

We now define function G∗ as an extension of G.

Definition 9 G∗ is said to be an extension of G, if there is a sequence Gd+1,

Gd, . . . ,G2,G1 such that Gd+1 = G, G∗ = G1 and Gi is an extension of Gi+1 along
the ith coordinate, for all i : 1 ≤ i ≤ d .

2Here we only require f to be a direction function from X to {0,±e1, . . . ,±ed }, and G is not necessary
to be simplicial direction-preserving.
3The lexicographic order over R

d is defined as follows: For any two r1 �= r2 ∈ R
d , r1 < r2 if there exists

i : 1 ≤ i ≤ d such that r1
i

< r2
i

and r1
j

= r2
j

for all j : 1 ≤ j < i.
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The existence of G∗ (and also the sequence G = Gd+1,Gd, . . . ,G2,G1 = G∗) is
guaranteed by Lemma 1.

3.2.2 Function G∗ is Simplicial Direction-Preserving

We let Gk = (f k,Xk,Sk ) for all k : 1 ≤ k ≤ d . Before proving G∗ is simplicial
direction-preserving, we need the following propositions about Gk .

Proposition 2 If r ∈ Xk , r ′ ∈ [−1,1]d and ri = r ′
i for all i : 1 ≤ i < k, then r ′ ∈ Xk .

The following two corollaries can be derived from Proposition 2.

Corollary 1 X∗ = [−1,1]d .

Definition 10 Vector v ∈ R
d is outgoing (with respect to X) at r ∈ X, if for any

ε > 0, we have r + εv /∈ X.

Corollary 2 If v = ek−1 or −ek−1 is outgoing (with respect to Xk) at r ∈ Xk , then

r + εv +
d∑

i=k

ciei /∈ Xk, for all ε > 0, ci ∈ R.

The following proposition concerning extensions along the kth coordinate, where
1 ≤ k ≤ d , is easy to prove.

Proposition 3 Let G = (f,X,S) be a triple that satisfies all the conditions in Defin-
ition 8, and G′ = (f ′,X′,S ′) be an extension of G along the kth coordinate. For any
r ∈ X, if +ek (or −ek) is not outgoing (with respect to X) at r , then no pair (r ′, S),
where r ′ ∈ X′ − X and S ∈ S ′ − S , can satisfy r ′

k = +1 (or −1) and r, r ′ ∈ VS .

Now we can show that, when G is simplicial direction-preserving, any of its ex-
tensions G∗ must be simplicial direction-preserving.

Proposition 4 Let M = (F ,X,S) be a simplicial direction-preserving map and F
maps X to X. Let G = (f,X,S) be the simplicial direction-preserving function con-
structed from M using the method in Construction 2, then any extension G∗ of G is
also simplicial direction-preserving.

Proof We will use induction on k to show that Gk = (f k,Xk,Sk) is a simplicial
direction-preserving function. The case for k = d + 1 is trivial. For case k ≤ d , if Gk

is not direction-preserving, then there must exist a simplex S ∈ Sk − Sk+1 and r1,
r2 ∈ VS such that f k(r1) and f k(r2) are opposite. As Gk+1 is direction-preserving,
one of these two points belongs to Xk+1 and the other is added into Xk when Gk+1

is extended along the kth coordinate.
Without loss of generality, we assume r1 ∈ Xk+1 and r2

k = 1. As a result,

f k(r2) = −ek and f k(r1) = +ek,
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as f k(r1) is opposite to f k(r2). The value of f k(r1) implies r1 ∈ X and
f (r1) = +ek . According to the way we construct G from M , F(r1) must satisfy

Fi (r
1) = r1

i for all i : 1 ≤ i < k and Fk(r
1) > r1

k .

From Corollary 2, we see that +ek is not outgoing (with respect to Xk+1) at r1 ∈
Xk+1, since F(r1) ∈ X ⊂ Xk+1. Therefore, Proposition 3 asserts that no pair (r2, S),
where r2 ∈ Xk −Xk+1 and S ∈ Sk −Sk+1, can satisfy r2

k = +1 and r1, r2 ∈ VS . This
contradicts with our assumption. �

3.2.3 Proofs of Properties 1 and 2

Finally, we finish the proof of Lemma 2 by proving Properties 1 and 2 as stated in the
proof sketch.

Property 1 Let G = (f,X,S) be a triple such that: X ⊂ (−1,1)d is finite; S is a
simplicial decomposition of X; and f : X → {0,±e1, . . . ,±ed} is a direction func-
tion4 on X. If G∗ = (f ∗,X∗,S∗) is an extension of G, then NG∗ is odd.

Proof We will use induction on d . The base case for d = 1 is trivial. For case d ≥ 2,
we first prove that every bad (d −1)-simplex S ∈ S∗ (relative to G∗) on the boundary
of [−1,1]d satisfies rd = −1 for any r ∈ VS . Let S ∈ FS∗ be such a simplex, then
there exists r ∈ VS satisfies f ∗(r) = +ed according to the definition of badness. Thus
r is added into X when it is extended along the d th coordinate. We have rd = −1 and
−1 < ri < 1 for all i : 1 ≤ i < d . This shows that S is covered by the hyperplane H

which passes 0[d → −1] and is perpendicular to +ed .
Let N be the number of bad (d − 1)-simplices (relative to G∗) in H , then we only

need to prove N is odd. Let X′ = P(X) and X′′ = P(H ∩ X∗), where projection
P(r) = (r1, r2, . . . , rd−1) ∈ R

d−1, then S ′ and S ′′ are simplicial decompositions of
X′ and X′′, respectively, where

S ′ = {P(S) | S ∈ S∗ and VS ⊂ X[d → −1]},
S ′′ = {P(S) | S ∈ S∗ and S ⊂ H }.

Let f ′ be an arbitrary direction function on X′, then we extend it to be f ′′ on X′′
as follows: For any r ∈ X′′, f ′′(r) = f ′(r) if r ∈ X′; and

f ′′(r) = f ∗((r1, r2, . . . , rd−1,−1))

otherwise. It’s easy to check that G′′ = (f ′′,X′′,S ′′) is an extension of G′ =
(f ′,X′,S ′) in the (d − 1)-dimensional space.

Using arguments which are similar to those in the proof of Lemma 1, the parity
of N is the same as the number of bad (d − 2)-simplices on the boundary of G′′. We
know that the latter is odd according to the induction hypothesis. Thus, Property 1 is
proven. �

4Again, G = (f,X,S) is not necessary to be simplicial direction-preserving.



Algorithmica

Property 2 Let M = (F ,X,S) be a simplicial direction-preserving map and F
maps X to X. If G = (f,X,S) (that is, the function constructed from M using the
method in Construction 2) has no fixed point on the boundary BX , then any extension
G∗ of G satisfies NG∗ ≡ NG (mod 2).

Proof With arguments which are similar to those in the proof of Lemma 1, we have
NG ≡ R1 (mod 2) and NG∗ ≡ R2 (mod 2) where

R1 =
∑

Sd∈S
|{bad (d − 1)-simplies (relative to G) in Sd}|,

R2 =
∑

Sd∈S∗
|{bad (d − 1)-simplices (relative to G∗) in Sd}|

(here we use Sd to denote d-simplices in S and S∗). As S ⊂ S∗, we have

R2 − R1 =
∑

Sd∈S∗−S
|{bad (d − 1)-simplices (relative to G∗) in Sd }|.

On the other hand, since G has no fixed point in BX , every d-simplex Sd ∈ S∗ −S
satisfies 0 /∈ f ∗(VSd ). As G∗ is simplicial direction-preserving according to Propo-
sition 4, the number of bad (d − 1)-simplices in Sd is either 0 or 2. Thus we have
R2 − R1 ≡ 0 (mod 2), and Property 2 is proven. �

3.3 Theorem 1 as a Corollary of Theorem 3

Finally, we prove the fixed point theorem of Iimura, Murota, and Tamura as a corol-
lary of Theorem 3.

Lemma 3 (Property of integrally convex sets [1]) For every integrally convex set
X ⊂ Z

d , there exists a simplicial decomposition S of X such that, for every x ∈ X,
letting Sx ∈ S be the smallest simplex containing x, then all the vertices of Sx belong
to N(x) = {r ∈ Z

d | ‖r − x‖∞ < 1}.
Let F be a hypercubic direction-preserving map from integrally convex set

X ⊂ Z
d to X, and S be a simplicial decomposition of set X which satisfies the con-

dition in Lemma 3, then one can check that M = (F ,X,S) is a simplicial direction-
preserving map from X to X. By Theorem 3, we know that there is a fixed point of
F in X.

Moreover, the argument above shows that the theorem of Iimura, Murota, and
Tamura can be greatly strengthened. Actually, map F is not necessary to be hypercu-
bic direction-preserving. Being simplicial direction-preserving relative to some sim-
plicial decomposition of X is sufficient to ensure the existence of a fixed point in X.

4 Concluding Remarks

In this paper, we generalize the concept of direction-preserving maps and charac-
terize a new class of discrete maps (and functions) over simplicial structures. The
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primitive discrete fixed point theorem is then stated, which is based on the count-
ing of bad (d − 1)-simplices on the boundary. It is then applied to prove the discrete
Brouwer’s fixed point theorem (Theorem 3) which is more general than the one of
Iimura, Murota and Tamura.

A stronger notion of simplicially local gross direction-preserving functions was
introduced by van der Laan, Talman and Yang [15]. They derived discrete fixed point
theorems, stronger in the requirement of the functions, using the adapted 2n-ray label-
ing algorithm in a path-following fashion. Ours can be employed to derive a divide-
&-conquer algorithm, originated from our earlier work on the algorithmic complexity
of the discrete fixed point problem [3]. Ours is more general in terms of the relaxed
boundary condition for the function values, in the tradition of Brouwer’s degree the-
ory approach [17].

It should be noticed that, in the simplicial approach, the property of a map
M = (F ,X,S) being simplicial direction-preserving heavily relies on the simpli-
cial decomposition S of X in the triple. For example, given an F on X, there might
exist two different decompositions S1 and S2 of X, such that, (F ,X,S1) is simplicial
direction-preserving, while (F ,X,S2) is not.

Besides, when proving Theorem 1 as a corollary of Theorem 3, we use the prop-
erty that for any hypercubic direction-preserving F over an integrally convex set
X ⊂ Z

d , there exists a decomposition S of X, such that, (F ,X,S) is simplicial
direction-preserving. However, this conversion is not always possible for general
sets X ⊂ Z

d . Actually, there exist sets X ⊂ Z
d such that even if F is hypercubic

direction-preserving over X, no decomposition S of X can make (F ,X,S) simpli-
cial direction-preserving. A counterexample the readers may want to check is when
X ⊂ Z

2 is a long and skew triangle.

Acknowledgements The authors would like to thank six referees’ careful readings of the original draft.
Their suggestions have significantly improved the presentation from the original extended abstract [16].
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