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S-1. STEREOGRAPHIC COORDINATES AND A SKETCH OF THE KNOTTED SPIN TEXTURE

For Hopf insulators in a cubic lattice, the first Brillouin zone (BZ) is a 3D torus T3. Since it is not convenient to draw and
visualize different knots and links in T3, we first do a map g to go from T3 to S3 and use a stereographic coordinate system to
represent S3. The stereographic projection used in this paper is defined as:

(x, y, z) =
1

1 + η4
(η1, η2, η3), (S1)

where (x, y, z) and (η1, η2, η3, η4) are points of R3 and S3, respectively. In Fig.S1, we sketch the simplest nontrivial spin texture
of Hopf insulators with χ(f) = 1 in the stereographic coordinates defined above.

S-2. ADDING PERTURBATIONS TO THE HAMILTONIAN

In realistic experiments, there are additional noises other than the ideal Hamiltonian given by Eq.(3) in the main text. The first
one is a weak global harmonic trap typically present in cold-atom experiment. It is of the form

Htrap =
1

2
mω2

∑

r,σ

d2rc
†
r,σcr,σ, (S2)

where σ =↑, ↓, m is the mass of the atom and dr is the distance from the center of the trap to the lattice site r. We use
γt = mω2a2/2 to parametrize the relative strength of the trap with a denoting the lattice constant. The other perturbation we
consider is a random noise of the form

Hrand = γr

∑

r,r′,σ,σ′

c†r,σRrσ,r′σ′cr′,σ′ , (S3)

where γr characterizes the strength of the noise and R is a random Hermitian matrix with its largest eigenvalue normalized to
unity.
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FIG. S1. Knotted spin texture in stereographic coordinates. We sketch the spin orientations along each axis and on two circles. The parameters
are chosen as p = q = 1 and h = 2. Spins reside on the red (green) circle point to the x (z) direction and those on the z axis all point to the
south (negative z direction). Also, all spins faraway from the origin asymptotically point to the south. This spin texture is nontrivial (twisted
with χ(f) = 1) and cannot be untwined continuously unless a topological phase transition is crossed.
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FIG. S2. Laser configurations: schematics of the laser configuration to realize the Hamiltonian Hv. (a) A linear tilt ∆v per site along the
v direction is imposed. A Raman triplet with detunings matching the frequency offset can induce spin-flip hoppings in a desired direction.
(b) Two Raman triplets that realize all hoppings in Hv. δ1 and δ2 are two different detunings from the excited states. The Rabi frequencies
for each beam in terms of the unit Ω0 are: Ω̃1v = −

√
2Ω0e

iπ/4e−ikx, Ω1v = −Ω0e
−ikx, Ω↑ = Ω0e

iky , Ω̃2v =
√

2Ω0e
−iπ/4e−ikx,

Ω2v = Ω0e
−ikx, and Ω↓ = Ω0e

iky , where k is the magnitude of the laser wave vector. All these Raman beams can be draw from a single
laser through an electric or acoustic optical modulator.

S-3. ε-NEIGHBORHOOD METHOD

As discussed in the main text, the spin orientation Ŝ(k) in real experiment is always pixelized with a finite resolution. There-
fore, for a specific orientation, Ŝ1 for instance, the measured Ŝ(k) can only be approximately rather than exactly equal to Ŝ1 at
any momentum point k. Consequently, one need to consider a small ε-neighborhood of Ŝ1:

Nε(Ŝ1) = {Ŝ : |Ŝ− Ŝ1| ≤ ε}, (S4)

where |Ŝ − Ŝ1| = [(Ŝx − Ŝ1x)2 + (Ŝy − Ŝ1y)2 + (Ŝz − Ŝ1z)
2]1/2 measures the distance between Ŝ and Ŝ1. Let us denote

the preimages of all orientations in Nε(Ŝ1) as a set Pε(Ŝ1) = (f ◦ g)−1[Nε(Ŝ1)]. With a finite resolution, the BZ is discrete
and contains finite momentum points, and so does Pε(Ŝ1). As a result, one should wisely choose an appropriate value for ε so
that Pε(Ŝ1) contains a proper amount of momentum points to depict the loop structure of (f ◦ g)−1(Ŝ1). To obtain Fig.3(b) in
our numerical simulation in the main text, we examine the discrete Ŝ(k) (observed from time-of-flight measurements) at each
momentum point k and append k into the set P1ε (P2ε) if Ŝ(k) is in a ε-neighborhood of Ŝ1 (Ŝ2). Then Fig.3(b) can be obtained
by plotting g(P1ε) and g(P2ε) in the stereographic coordinate system defined above.

S-4. REALIZING HOPF INSULATORS WITH COLD ATOMS

In the main text, we have been focused on how to measure the Hopf invariant and probe knots and links using the stardard time-
of-flight imaging techniques. In this section, we propose a possible experimental scheme to realize Hopf insulators with ultracold
atoms in optical lattices. For simplicity, we consider the case of p = q = 1. After a Fourier transform, the corresponding
Hamiltonian in real space reads H = Hsf +Hsp, where Hsf denotes the collection of all terms with spin flips:

Hsf =
∑

r

1

2
[c†r,↑cr+2x̂,↓ − c†r,↑cr−2x̂,↓ − (1− i)c†r,↑cr−x̂−ŷ,↓ + (1 + i)c†r,↑cr+x̂−ŷ,↓ − (1 + i)c†r,↑cr−x̂+ŷ,↓ + ic†r,↑cr−2ŷ,↓

+(1− i)c†r,↑cr+x̂+ŷ,↓ − ic
†
r,↑cr+2ŷ,↓ − 2c†r,↑cr−x̂−ẑ,↓ + 2c†r,↑cr+x̂−ẑ,↓ + 2ic†r,↑cr−ŷ−ẑ,↓ − 2ic†r,↑cr+ŷ−ẑ,↓

+2h(c†r,↑cr+x̂,↓ − c
†
r,↑cr−x̂,↓ + ic†r,↑cr−ŷ,↓ − ic

†
r,↑cr+ŷ,↓)] + h.c.,
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and Hsp denotes the collection of all other terms:

Hsp =
∑

r

1

2
[c†r,↓cr−2x̂,↓ + c†r,↓cr+2x̂,↓ + c†r,↓cr+x̂+ŷ,↓ + c†r,↓cr−x̂−ŷ,↓ + c†r,↓cr−x̂+ŷ,↓ + c†r,↓cr+x̂−ŷ,↓ + c†r,↓cr−2ŷ,↓

+c†r,↓cr+2ŷ,↓ + c†r,↓cr+x̂+ẑ,↓ + c†r,↓cr−x̂−ẑ,↓ + c†r,↓cr−x̂+ẑ,↓ + c†r,↓cr+x̂−ẑ,↓ + c†r,↓cr+ŷ+ẑ,↓ + c†r,↓cr−ŷ−ẑ,↓

+c†r,↓cr−ŷ+ẑ,↓ + c†r,↓cr+ŷ−ẑ,↓ + 2h(c†r,↓cr+x̂,↓ + c†r,↓cr−x̂,↓ + c†r,↓cr+ŷ,↓ + c†r,↓cr−ŷ,↓

+c†r,↓cr+ẑ,↓ + c†r,↓cr−ẑ,↓) + 2(1 + h2)c†r,↓cr,↓]− [↓→↑].

To realize Hopf insulators with ultracold atoms, the method used here is similar to that in Ref. [1], where a cold-atom
implementation of three-dimensional (3D) chiral topological insulators was proposed. We consider cold fermionic atoms (6Li
for example) in a 3D cubic optical lattice and choose two internal atomic levels (hyperfine states) as our spin states |↑〉 and
|↓〉 . Other levels are initially depopulated by optical pumping and transitions to those levels are forbidden due to a large energy
detuning or carefully selected laser polarizations. In real space, the Hamiltonian has spin-orbit coupled hoppings along nine
possible directions. Here, we explicitly demonstrate how to engineer the specific hoppings along the v = x̂ + ŷ direction. For
other directions, the realization scheme will be similar and thus omitted for conciseness. The hopping terms in the v direction
can be written as

Hv =
1

2

∑

r

[−(1 + i)c†r,↓ − c
†
r,↑]cr+v,↑ + [(1− i)c†r,↑ + c†r,↓]cr+v,↓ + h.c. (S5)

Apparently, Hv consists of various hopping terms coupled with spin rotations. Basically, both spin |↑〉 and |↓〉 hop along the
−v direction to become a superposition of both spin states. We can decompose the four different hopping terms and each of
them can be achieved via Raman-assisted tunnelings [2–4]. For instance, the first two hoppings can be activated by two Raman
pairs, Ω↑, Ω̃1v, and Ω↑, Ω1v, where Ω↑ is in common; Ω̃1v and Ω1v can be drawn from the same beam split by an electric or
acoustic optical modulator. The phase and strength of the hopping can be controlled by the laser phase and intensity (see caption
of Fig. S2). Similarly, the other two hopping terms can be triggered by the Raman triplet Ω̃2v, Ω2v and Ω↓ as shown in Fig. S2.

One may notice that the parity (left-right) symmetry is explicitly broken and natural hoppings are suppressed. Both of these can
be achieved by a homogeneous energy gradient along the v direction, which can be accomplished, for instance, by the magnetic
field gradient, dc- or ac-Stark shift gradient, or the natural gravitational field [1, 3, 4]. We denote the linear energy shift per site
in the v direction by ∆v and impose that natural tunneling rate t0 � ∆v. As a consequence, the natural tunneling probability
(t0/∆v)2 is negligible in this tilted lattice. The energy offset also forbids Raman-assisted tunnelings in the opposite direction
other than the ones prescribed above. Incommensurate tilts along different directions also suppress unwanted couplings among
them. The detuning δ1 and δ2 for the two Raman triplets should also be different, so that no unintended interference between
these two triplets happens. In addition, the wave-vector difference of two Raman beams δk has to have a component along the
hopping direction (v-direction in this case) to ensure the Raman-assisted hopping strength is non-vanishing [1].

Since the real-space Hamiltonian contains hopping terms along nine different directions and each of them requires a similar
configuration as above, the overall scheme necessitates a considerable number of laser beams. Although many of the beams
can be used in common and created from the same laser by an electric or acoustic optical modulator, the implementation is
nonetheless very challenging. A simpler implementation protocol of Hopf insulators is highly desired. Controlled periodic
driving may be a promising alternative. Also, theoretically it may be possible to find a more natural model Hamiltonian that
encapsulates the nontrivial Hopf physics, which may in turn simplify the experimental realization. We would like to emphasize,
however, our detection and measurement protocol do not depend on the particular realization scheme. Regardless of the specific
implementation of Hopf Hamiltonians, we can detect the Hopf invariant and probe the rich knot structures hidden in Hopf
insulators.
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