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Abstract; Fiber-coupled cavity QED system is a perfect theoretical model to study the deterministic
distributing quantum information processes. Recent works on distributing quantum information
processing in fiber — coupled cavity QED systems were reviewed in this paper. In this review,
quantum state transfer, entanglement distribution, quantum logic gates and et al. in this system were
discussed. The several types of the schemes, such as resonant interaction, adiabatic passage, and
virtual-excitation processes were summarized. Finally, the experimental progresses in this direction
were discussed.
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0 Introduction

The concept of quantum computation and quantum simulation was firstly discussed by Feynman in
1982""". This new method of information processing has shown a lot of advantages. For example, quantum
Shor algorithm can be used for large N integer factorization problem in polynomial time'>’ | which is
substantially faster than the most efficient known classical algorithms.

In order to realize practical quantum computation, the scalability is one of the most difficult criteria to be
fulfilled. In order to fulfill the scalability criteria, distributed quantum computing was proposed*™'. The
quantum computation can be divided into subroutines, each of which has a separate quantum processor. The
local quantum processor has a few qubits, in which universal quantum logic gates and qubit—specific quantum
measurement can be realized with high fidelity and efficiency. Therefore, one of the key problems in
distributed quantum computing is how to realize universal quantum logic gates among distant quantum
processors’ .

In this review, we will focus on how to realize distributed quantum computing between distant cavity QED

6-10

systems, which are connected with quantum transmission lines, such as fibers'*™'"). We discuss decoherence

effects in the quantum information processing, and how to decrease decoherence by speeding up the

8 o) 17140 The coupled cavity QED systems can also

| [18-19]

or adiabatic passage
[15-17)

evolution'®’ | or by virtual excitation

be used for simulating many —body systems , and quantum networl Here we focus on how to
deterministically realize quantum information process in distant cavity QED systems.

The review is organized as follows. In the Sec. 1, we introduce the basic model of fiber—coupled cavity
QED systems. In the section 2, we discuss how to realize quantum state transfer between distant nodes. In the
section 3 and 4, we will discuss how to realize entanglement and quantum logic gates between distant nodes.
We will discuss three types of schemes, respectively through resonant interaction, virtual — excitation
processes , and adiabatic passage. In the section 5, we will discuss how to deal with the decoherence processes

in the schemes and experimental possibility. In the section 6, we will give the summary.

1 The model of fiber—coupled cavity QED systems

As shown in Fig. 1, the distant cavities QED systems are connected with an optical fiber. The eigenmodes

of the fiber are b, , with £=0,1,2,---. The Hamiltonian of the fiber modes is H, = 2 kw,{b,’:bk . The interaction

Hamiltonian between fiber and cavity modes is H,, = 2 k”k[“l + (- 1)*a,]b] + H.C. The factors (- 1)"

model the phase difference of 7™ between the modes on both ends of the fiber for every second fibre—mode. v,
is the coupling strength between the fiber modes b, and the cavity modes @, and a,. In each cavity, there is one
two-level atom trapped in. The fiber modes b, couple with both cavity modes. The atoms couple with the local

cavity mode. The vy and k are the atomic spontaneous emission rate and the cavity photon loss rate.

Fig.1 Fiber coupled the cavity QED systems

If the length of the fiber is short, the fiber modes distance is much larger than the coupling strength
between fiber and cavity modes. We can only consider one fiber mode, which couples with cavity modes near
resonantly. The short fiber limit requires that 2Lv,/(2mc) << 1, where ¢ is the light velocity in fiber. In this

case, the Hamiltonian H, can be approximated to! 7™
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H;,=v[b(a, +a,) +H.C. ], (1)
where the phase ( — 1)* has been absorbed into the annihilation and creation operators of the mode of the
second cavity field.

The interaction Hamiltonian between atoms and cavity mode is

2
H, = z (A.a;a' + gja'j'af +H.C.), (2)
j=1

J )

where A, = ,; - w_,w, is the mode frequency of cavity j, w, is the atomic transition frequency. In the

e

interaction picture, the total Hamiltonian of the atom—cavity—fiber combined system is

J J

2
H=H, +H =), (Aaja, + go7o] +H.C.) +v[b(a, +a,) +H.C.]. (3)
j=1

2  Quantum state transfer among distant quantum nodes

2.1 Adiabatic passage through large—detuned Raman processes

One way to realize the quantum state transfer between distant cavities is to adiabatically control external

parameters, as previously prOposed by[6,20]

. The system considered is two A—type atoms held in two separate
cavities that are coupled by an optical fiber, as shown in Fig. 2. Each atom has one excited state | e), and two
ground states | g, ). and | g,), , where i denotes the site position. The transition | e) <> | g, is coupled to
a laser with frequency w, , while the transition | e),<> | g,), is coupled to a quantized cavity mode with
frequency w, . The corresponding Rabi frequencies for the two transitions are (2, and g, , respectively. In the

interaction picture, the interaction Hamiltonian describes the laser—atom—cavity system can be expressed as

(h=1)

2
H, =Y (gae™le) (g +0Qe*le) (g, +HC), (4)
=
with A,(A,) being the detuning between the cavity (laser) and the atomic transition | e>j<—> | g, >j(| e>j<—>
| g2>j> .

Fig.2 Two A —type atoms are trapped in two spatially separated cavities 1 and 2 respectively

Under the large—detuned condition, i.e. , A;,A > g; {2, the atomic excited states are virtually excited

and can be adiabatically eliminated, resulting in an effective Hamiltonian

2
H, = z ()‘l,j | gl>j <g1 lj + /\c,j l g2>,' <g2 |,'a;aj + /\jal gl>j <g2 lj +H.C.), (5)
j=1
for the laser—atom —cavity system, where A,. =~ A . = gi A= !zjgj(L + L) . Therefore, taking into
’ L,j Al s ey AU’ J 2 Al Ac ’

account the interaction Hamiltonian between the fiber and cavity modes as given in Eq. (3), the effective
Hamiltonian of the total system is now given by

H=H +H =H,+H,,, (6)

With

2
HIO:Z/\I,jlgl>j <g1|js (7)
j=1
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2
H,, = 21, (A1 &), (g |ja;'aj +Aal g), (g, +H.C.) +[vb(a, +a,) + H.C. ]. (8)
iz

Suppose that at the initial time all modes of both the cavities and fiber are not excited and the atom in the
first cavity is in a superposition state of (a| g,), +B1 g,),) , where a and B8 are complex numbers and fulfill
the normalization condition. The atom in the second cavity is in the ground state | g,),. The goal of quantum
state transfer is to deterministically accomplish the operation (a | g,), +B1 g,),) ® 1 2,0, =1 2,0, ®
(al g7, +B1 g,),) . The time evolution of the total system is governed by the Schrodinger equation:

i%l (1)) =H!| ¥(t)), which will be confined in the single — excitation subspace V e {| ¢,) =

1000) 1 g0yl g)ss ! ) =1100) 1 g0, 1 g2)s, | ps) =1 001) | gy, 1 gy),, 1 dby) =1010) 1 gy),
| g,),,1 ds) =1000)1 g,), | g ),},withl n,nmn,) denoting the field state with n, photons in the cavity 1,
n, in the cavity 2, and n; in the fiber.

Note that, for the Hamiltonian H dark states with respect to two cavity modes exist. This is not the

part 9
case for the full Hamiltonian H in (6), as the term (7) that describes Stark shifts induced by laser fields
deteriorate the dark state. In order to manipulate the dark state by controlling the system’s parameters, it is
required to apply another laser field to produce an ac—Stark shifts to neutralize the term (7). The two relevant
dark states of H  read | D) < vA,1 ¢,) =, A, 1 dy) +vA, 1 ds) cwA,1000) 1 g,),1 g,), —A,;A,1 001)
l g, gy, +vA, 1000) | g0, | g ),, | D) o<l 000)! g,),1 g,),. For the first dark state | D,) the
cavity modes are not populated due to destructive interference whereas the second dark state | D)) is always
decoupled from the atom-field interaction. Provided that the system is initially in a superposition of the two
dark states ina | D,) + B D,) and the laser intensities are changed slowly in such a way that the initial
condition A, = A,is adiabatically converted to the final case A, = A,. So the system is finally in | 000)
| g,),(al g%, +B1 g,),) . This thus achieves the quantum state transfer. One important feature of the
scheme is that the details of the laser pulses are not important as long as the process is performed

adiabatically.
2.2 Resonant interaction

Another way to realize the quantum state transfer between distant cavity is through resonant coherent

interaction! ™

. Compared with the adiabatic passage, the dynamics through resonant interaction is much
faster. In order to realize the quantum state transfer with a high fidelity, the coupling between atoms and the
cavity should be turned on/off suddenly at certain time.

Suppose that at the initial time all modes of both cavities and fiber are not excited and the atom in the first
cavity is in a superposition state of (| g), + 81 e),) , where a and B are complex numbers and fulfill the
normalization condition. The atom in the second cavity is in the ground state | g) . The goal of quantum state
transfer is to deterministically accomplish the operation (al g), +Ble),) X1 g), =1 g), ® (al g), +

Bl e>2).

The time evolution of the total system is governed by the Schrodinger equation: i % I P(1)) =

H1 ¥(t)), where we set i = 1. The basis of the Hamiltonian is ¢, =1 000) | g), | e),, ¢, =1 000) | e),
L g)ss &3 =1001) 1 g), 1 g),, d,=1010) 1 g), | g),, b5 =1100) | g), | g),, where | nnn,) denotes
the field state with n, photons in the cavity 1, n, in the cavity 2, and n, in the fiber. We suppose that the

detuning A, = 0, the Hamiltonian(3)in the one excitation basis reads

00 g 00
0000 g

H=|g 0 0 v 0], (9)
0O 0 v 0 v
0 g 0 v 0
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where g, = g, = g has been assumed.

The Hamiltonian (9) has five eigenvalues: £, =0, E, ; =F g, E, ; =F «/ g~ + 2v° . The unitary matrix
S diagonalizes the Hamiltonian matrix (9). A state of the entire system with one excitation number can be

expanded in terms of the basis vectors as

5
V(1) = X C0) 1 ). (10)

By use of the unitary matrix S, Schriodinger equationt_can be rewritten as the compact form
i5C = SHS™'SC, (11)
where C = [C,C,C,C,C]" . Since the matrix SHS™' is diagonal, a general solution of Eq. (11) is given by
Ci(1) = Ai [S7'], [SC(0) 1,67 (12)
Using this solution, for the initial condition C(0) = [0,1,0,0,0]" , it is easily shown that at ¢ =

7/(/Ng) the initial state (al g), +B| e),) ®| g),evolves in the state | g), ® (al g), +BI e),) if the
parameter r fulfills the condition r* = (4k* = 1)/2,k =1,2,3,---.

3 Entanglement generation among distant nodes

3.1 Resonant interation

Here we discuss how to create entangled states between distant cavities by resonant interaction"*' ™).
For the fiber—coupled cavity QED system, we can use the canonical transformations'’™’
1
a, =?(c++ c_+42¢),
- 2
az—?(c++c_— c),
p= L 13
=—(c,-c.), (13)

2
to introduce three normal bosonic modes ¢ and ¢ . The frequencies of the normal mode ¢ and ¢ are @ and
o F +2v, respectively. Excitations of the non —resonant modes are highly suppressed, and can be safely
neglected. In this way, the system reduces to two qubits resonantly coupled through a single —mode of the

cavity field, and the Hamiltonian in the interaction picture becomes

1 B .
H=—(go;¢ —go5¢ +H.C.). (14)
ﬁ 1 1 2Y 2

Suppose that the atoms are in the state | e), | g),, and the mode c is in the vacuum state at the initial

time. From Eq. (14), the system at the later time is restricted to the subspace spanned by the basis vectors

L) =10)1g),le,,ldy)=10)le |l gy, dby)=11).1g), | g),, wherel 0)_ and| 1) are

number states of the normal modes ¢ with zero and one photon, respectively. By solving the Schriodinger
equation, one can show that at time ¢ the system evolves in the state | W(t)) . In order to generate the Bell
state, we find the results;

(i) ifg, = (1 +/2)g,and g,t =7/ /2 + /2, the field comes back to the vacuum state and the atoms
are in the entangled state | W) = (1 e), | g), +1 g), 1 e),)/ 2.

(ii) ifg, =(=1++/2)g,and g,t =m/ /2 — /2, the field comes back to the vacuum state and the atoms
are in the entangled state | ¥,,) = (1 e), | g), =1 g), 1 e),)/ 2.

We can use numerical method to test the regime that the non-resonant normal modes can be safely
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neglected. It is observed that the maximum of the fidelity can be larger than 0. 99 if r is beyond 20. In
practice, in the regime v > g, the fiber mode is adiabatically eliminated. The loss of fiber mode can be

neglected.
3.2 Adiabatic passage through resonant Raman processes

We note that entangled states for distant atoms held in separate cavities can also be prepared by adiabatic
passage through resonant Raman processes as proposed by Refs. [6, 11, 13, 22, 27-29 ]. The system
considered is also two A —type atoms held in two separate cavities that are coupled by an optical fiber, as
similarly shown in Fig. 2. The difference is that there is no detuning between the cavity (laser) and the
corresponding atomic transition, i.e. , A, = A, = 0. In the interaction picture, the interaction describing the

laser—atom—cavity—fiber system can be expressed as ( i =1)

H = Z(gjajl e); (g, +Q1e) (g, +HC) +v[bla"+a") +H.C. ]. (15)

Suppose that at the initial time all modes of both cavities and fiber are not excited and the atom in the first

cavity is in | g, ), while the atom in the other cavity is in | g,),. The time evolution of the total system is

governed by the Schrodinger equation ; i%l Y(t)) =H| ¥(1)) , the corresponding state subspace {| ¢,) =

1000) I g,), 1 &)y, 1 &) =1000) 1 €)1 g,),, | dy) =1 100) 1 g,),1g,),,1 ) =010)1g,),
L gy)s, L ps) =1 001) | gy, | gy)s, | gy =1 000) | g0, 1 e),, | b)) =1 000)1 g,), 1 g),!, with
| n,nm,) denoting the field state with n, photons in the cavity 1, n, in the cavity 2, and n; in the fiber.
For the Hamiltonian in Eq. (15), there exist two dark states
I D'y) =l &) =1000) 1 g), 1 g),; 1 D) <gdld) -0 ) -l ds)) -0 1 ¢;) <
245 1000) 1 g,), 1 g), —20,(1100) =1 001)) 1 g,), 1 g), —g1000)1 g), g, (16)

In order to prepare the entangled state between the two atoms, i. e. , L( gl @)a=1l gl g),),
2

2

the laser intensities should first be adjusted in such a way so that the condition £2, > (), is satisfied, then
changed slowly (say, adiabatically) to made {2, decrease while {2, increased, and finally approached to the
case fulfilling g,£2, = g,{2,. Besides, the condition {2, , {2, < g,, g, should also be guaranteed such that the
two cavity modes are virtually populated during the operation process.

Based on such a mechanism of adiabatic passage of dark sate, the qutrit-qutrit entangled state between

[22 1]

two distant atoms'”' and multi-particle W-type entangled state between multiple distant atoms''’ can be

prepared.
3.3 Virtual-excitation processes

Another type of method for quantum communication and entanglement between two distant atoms held in
separate cavities is that based on virtual—excitation processes'** **=/

The system considered is also two A —type atoms held in two separate cavities that are coupled by an
optical fiber, the related atomic configuration and atom-field coupling is similarly shown in Fig. 2. In the

interaction picture, the interaction Hamiltonian describing the laser-atom-cavity-fiber system can be expressed

as (h=1)

2
H= 2 (gja;em" ey, (g l; +.Qjem“l ey, (g1, +H.C.) + [vb(a, +a,) + H.C. ]. (17)
j=1

, Y= L0=0 5= gl 1y O g onditi
Assume g, =g, =g, 0, =0,=0,6=A,-A, A= ) (Al A n—Al , dnd{—AC. Under the condition
A LA > {g, 01,18I>A,18 +/2v] >>% , and \2v > %%,%} , not only the atomic excited states
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but also the photons in the cavities and fibers are virtually populated. The off-resonant Raman coupling leads

[30]

to the Stark shifts and Heisenberg XY coupling between the atoms'™'. If all the modes of the cavities and

fibers are initially in the vacuum state, they will remain in the vacuum state during the process. The effective

Hamiltonian of the system finally reduces to

2
Hy=Dunl g, (g, -x(SS; +5.57), (18)
j=1

A2 1

A2 1
=51

1
Where u = = [ = + +
478 5-2v §+2v

1
o §-2v &+ 2v

I =-mx J’andsj+:|gl>j<g2|j‘

Assume that the two atoms are initially prepared in | g,), | g,),, the evolution of the system can be
written as

e ™[cos (xt) | g, | &), —isin (xt) | g,), 1 g),]. (19)

Setting the interaction time to satisfy yt = m/4, a maximal entangled state for two distant atoms is

obtained;%(l gl gy, —il g, 1 g),) , where the common phase factor e ™ is discarded.
2

4 Distant quantum controlled—phase gate among distant nodes

In this section, we investigate how to realize the controlled—phase gate between the two atomic systems

(0, +1 1)) ®U0), +11),)72—(10),10), +10), 1 1), +11),10), +e?l 1), 11),)/2.
4.1 Resonant interaction

For the resonant scheme, there are two types of methods. The first one works in the regime that v is

") With the similar idea of Ref. [10], the controlled—Z gate can be easily extended to

[33

comparable with g
N-qubit controlled—-Z gate'*'. The second one requires ¥>>g'%/. Here we focus on the first type of scheme.
The first type of scheme uses three-level atoms, each has an excited state | e) and two ground states | g) and
| s) . The scheme differs here in that an additional atomic state (not coupled to the atom-field interaction) is

10341 " qubit 1 is encoded

used for the controlled—Z gate. Besides, the scheme uses the asymmetric encoding'
inl g) and| e) , while qubit 2 is encoded in| g) and | s) : 1 g), =10),,le),=11),,1 g),=10),,
| s), =1 1),. The important feature of such type of asymmetric encoding is that the evolution for the gate
operation is within the null-excitation and single-excitation subspaces.

For the input state | ¥(0)) =l 000) ® (| g), +1e),) ® (| g), + 1 s),)/2. The aim of the
controlled—Z gate is to perform the unitary transformation that produces the output sate | ¥,) =l 000) ®
(lg), gy, +lg), sy, +ley l g, +1e) | s),)/2. Notethat if the input basis state is| 000) | g),
| g),orl 000) | g), | s),, the system will not evolve as such bases are completely decoupled. Whereas the
system in the basis state | 000) | ), | g), will evolve within the single—excitation subspace ¥, e {1 000)
ley, | g),,1100)1 g), 1 g>,, 1001)1 g), 1 g),,1 01001 g), | g),,1000)1 g),1 e),}; while if the
system is in the basis state | 000) | ), | s),, it will evolve within another single—excitation subspace V .. e
{1000) 1 ey, 1 sy,, 1 100)1 g), 1 s),,1001)1 g), | s)y,,1010)1 g), 1 s),}. The realization of the gate
operation is to figure out the common time 7" at which the evolutions for the state bases | 000) | e), | g), and
[ 000) | e), | s),that are dominated by the Hamiltonian (3) approach to| ¥ _(T) > =1000)1e), | g),and
| W . (T)) =e™1000) | e), | s),, respectively.

The idea'""’ has been generalized to the more complex case where two distant qubits interact with the local

31 Besides, based on such a method of

quantized fields that are coupled through a set of bosonic field modes'
asymmetric encoding of quantum logic operation, the distributed controlled—Z gates for NV atomic qubits held in

separate cavities coupled by optical fibers can be achieved ™.
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4.2 Virtual-excitation processes

In this section, we turn to another scheme proposed by Zheng'®', for which the controlled—Z gate is
achieved without excitation of photons in the cavities and fibers. The scheme also considers two atoms trapped
in distant cavities coupled by an optical fiber, as shown in Fig.3. Each atom has one excited state | e) and
two ground states | f) and | g) , where | f) and | g) are used for quantum information encoding, i. e. ,
| f>] = | 0>j, and | g>j = | 1>j . The transition | e)<> | g) is coupled to the local cavity mode with the
coupling strength g and a classical laser field with the Rabi frequency (2. The detunings of the cavity mode
and classical field are A and A — 8 , respectively. The state | ) is auxiliary and decoupled from the atom—field
interaction. In the interaction picture, the Hamiltonian describing the atom—cavity—laser and the fiber—cavity

interaction 1s

el + 0T e) (gl +H.C.} +v[b(af +a;) +H.C.]. (20)

Fig.3 Atomic levels and laser driving setup for virtual excitation scheme of CPHASE gate

Under the large—detuned condition A>.2v, § , and {2, the atoms do not exchange energy with the cavity
modes, fiber modes, and laser fields. As the atoms are initially populated in the ground states due to the
preset ground state encoding, they cannot exchange excitation with each other through virtual excitation of the
cavity modes and they remain in the ground state during the the operation. In order to gain deep physics into
such an interaction mechanism, we use the canonical transformations in Eq. (13) and introduce three normal
bosonic modes ¢ and c¢-. Notice here that by such a transformation, the interaction of the system turns to the
case where the three bosonic modes can be coupled to each other as well as to the classical fields through the

virtual excitation of the atoms.

- _ﬁg() 1 1 _gQ 1 1 _gz 1 1 B

Deflne)\o - 4 A +A —6) ’)\1,2_ 4 <A iﬁv+A _5) ,50— 4(A +ﬁy+A _ﬁv)’glsz =

ﬁgz(]i + L) . If the conditions & , V2v, 8 =2v > A,, A &,,€, , are further satisfied, the
4 "A+2p A ’ ’ 0s M2y S0sS12 s

bosonic modes cannot exchange energy with each other and with the laser fields. The nonresonant couplings

between the bosonic modes and the classical fields lead to energy shifts depending on the number of atoms in

the state | g) . Besides, the nonresonant couplings between the bosonic modes result in energy shifts

depending on both the excitation numbers of the modes and the number of atoms in state | g) . Assume that

the cavities and fiber are initially in the vacuum state (the thermal photons are negligible, as it is reasonable

at optical frequencies). As the quantum numbers of the bosonic modes are conserved they remain in the

vacuum state during the evolution. In such a case, the system can be finally described by the effective
Hamiltonian

H.o=(m +my) (1), (gly +1g),(gl1,)" +
ro (1) Cgly =1 g), <g|2)2 -0l g) (gl +1 g),<gl,), (21)
Ap AL,

where u, = 30, M= %7 and 9 =% . The Hamiltonian (21) describes the nonlinearity in the number
+/2u
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of the atoms in the ground states | g) due to the nonresonant couplings between the laser fields and vacuum
bosonic modes induced by the virtual excitation of the atoms.

For the input| Y(0)) =(l g), +1 f),) ® (I g), +1 f),)/2, the unitary transformation dominated by
the Hamiltonian (21) produces the output state | W,) = [e /(#1422 | o | g 4 e st mi(] o)
Ly, w11 g)y) +1 )1 f),]1/2. After the single—qubit phase shift; | g>_fﬂei(”‘+“2+”"7")l | g); , it gives
the two—qubit controlled—Z gate, which gains a phase factor — 2(u, +u, — g, ) if and only if the two atomic
qubits are in | g), | g),.

The idea'”’ can be generalized to the more general case which allows coherent control of arbitrary two

distant qubits across a quantum network based on such type of linking cavity arrays''%.

S Decoherence and experimental challenge

In the previous sections, we only considered the ideal case without decoherence. In fact, the decoherence
is crucial for the quality of the quantum gates. The decoherence sources include the atomic spontaneous
emission and photon leakage out of the cavities and fibre. In order to solve the problem, we use the master
equation in the Markovian limit"""’. The master equation of motion for the density matrix of the entire system
may be written as

2 2
p=-ilHp] + 72 Llalp +BLLb]p + KZ [207po; - o/oip-poio]], (22)

i i
where L[ 0 ]p = 20po" —0'op —po’o , and k , y and B are rates, respectively, for spontaneous emission of the
atoms, photon leakage out of the cavity and fibre. The master equation can be solved by the numerical

method®’ .

It is found that for resonant schemes, the high fidelity quantum gates can only be possible if g/(«,y,8)

is larger than 10"’ | which is practical at the present experimental conditions**™'.

[23]

We can use Ramman transition to adiabatically eliminate the exited state of atoms'”', or use multi-

8401 " By adiabatically

atomic scheme to increase the effective coupling between atoms and the cavity mode
eliminating excited states, the atomic spontaneous emission can be suppressed. The virtual excitation schemes
can also be used to decrease the effects of photon loss™®'. In real experiments, the parameters are different for
different experimental setups. Therefore, we should choose different schemes for different experiments. In
order to realize the distributed quantum information processes with fiber coupled cavity QED systems, high
efficiency coupling between fiber and cavity modes is also needed. In the passed several years, there are some

0] Trapping atoms in cavity is also necessary, but

[45-46

experimental progresses on this direction
43-44]

. Therefore, we may choose solid spin qubit instead, such as quantum dots

47-48
vacancy centers' ! and et al.

challenging' *, Nitrogen—

6 Conclusion

In summary, we have reviewed how to realize distributed quantum information processing in fiber—coupled
cavity QED systems. We discussed the basic model of fiber—coupled cavity QED systems at first. Then we
summarized the schemes based on kinds of dynamics for realizing quantum information processing, such as
quantum state transfer, entanglement generation, and quantum controlled—phase gate. We also discussed the
effects of dissipation on the quantum gates. It was found that the schemes are practical for the present
experimental conditions. And the different types of the schemes should be used for different experimental

conditions.
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