
PHYSICAL REVIEW B 85, 085132 (2012)

Isotropic Landau levels of Dirac fermions in high dimensions
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We generalize the Landau levels of two-dimensional Dirac fermions to three dimensions and above with the
full rotational symmetry. Similarly to the two-dimensional case, there exists a branch of zero energy Landau
levels of fractional fermion modes for the massless Dirac fermions. The spectra of other Landau levels distribute
symmetrically with respect to the zero energy scaling with the square root of the Landau-level indices. This
mechanism is a nonminimal coupling of Dirac fermions to the background fields. This high dimensional relativistic
Landau-level problem is a square-root problem of its previous studied nonrelativistic version investigated in Li
and Wu [ arXiv:1103.5422 (2011)].
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I. INTRODUCTION

The integer quantum Hall effect in two-dimensional (2D)
electron gas arises from the quantized 2D Landau levels (LLs).
The nontrivial band-structure topology is characterized by
nonzero Chern numbers.1,2 Later on, quantum anomalous Hall
insulators based on Bloch-wave band structures were proposed
in the absence of Landau levels.3 In recent years, the study of
topological insulators (TIs) in both two and three dimensions
has become a major focus of condensed-matter physics.4–10

TIs maintain time-reversal (TR) symmetry, and their band
structures are characterized by the nontrivial Z2 index. As for
the 3D TIs, various materials with Bloch-wave band structures
have been realized and the stable helical surface modes have
been detected.11–19 Since LL wave functions have explicit
forms with elegant analytical properties, TIs based on high
dimensional LL structures would provide a nice platform for
further theoretical studies. In particular, interaction effects in
the flat LLs are nonperturbative, which could lead to nontrivial
many-body states in high dimensions.

The seminal work by Zhang and Hu20 generalizes LLs to
the compact S4 sphere with particles coupled to the SU(2)
gauge potential. The isospin of particles I scales as R2 where
R is the radius of the sphere. Such a system realizes the
four-dimensional integer and fractional TIs. The 3D and 2D
TIs can be constructed from the 4D TIs by dimensional
reduction.14 Further generalizations to other manifold have
also been developed.21–26 Recently, the LLs of nonrelativistic
fermions have been generalized to arbitrary dimensional
flat space RD by two of the authors.27 For the simplest
case of three dimensions, the SU(2) Aharanov-Casher gauge
potential replaces the role of the usual U(1) vector potential.
Depending on the sign of the coupling constant, the flat LLs
are characterized by either positive or negative helicity. In
the positive and negative helicity channels, the eigenvalues of
spin-orbit coupling term �σ · �L take values of l and −(l + 1),
respectively. Each LL contributes a branch of helical surface
modes at the open boundary. When odd numbers of LLs
are fully filled, there are odd numbers of helical Fermi
surfaces. Thus the system is a 3D strong topological insulator.
This construction can be easily generalized to arbitrary D

dimensions by coupling the fundamental spinors to the SO(D)
gauge potential.

Quantized LLs of 2D Dirac fermions have also been
extensively investigated in the field theory context known as
the parity anomaly.3,28–33 This can be viewed as the square-root
problem of the usual 2D nonrelativistic LLs. External magnetic
fields induce vacuum charges with the density proportional to
the field strength. The sign of the charge density is related
to the sign of the fermion mass. There is an ambiguity if
the Dirac fermions are massless. In this case, there appears a
branch of zero energy Landau levels. Each of them contributes
± 1

2 fermion charge. It is similar to the soliton charge in
the Jackiw-Rebbi model,34,35 which is realized in condensed-
matter systems of one-dimensional conducting polymer.36

Depending on whether the zero energy Landau levels are
fully occupied or empty, the vacuum charge density is ± 1

2πl′2
where l′ is the magnetic length. In condensed-matter physics,
the best known example of Dirac fermions is in graphene,
which realizes a pair of Dirac cones. The quantized LLs in
graphene have been observed which distribute symmetrically
with respect to zero energy. Their energies scale as the square
root of the Landau-level index. The observed Hall conductance
per spin component is quantized at odd integer values, which
reflects the nature of two Dirac cones in graphene for each
spin component.37–40

In this paper, we generalize the LLs with full rotational
symmetry of Dirac fermions to the three-dimensional flat space
and above. It is a square-root problem of the high dimensional
LLs investigated in Ref. 27. Our Hamiltonian is very simple:
replacing the momentum operator in the Dirac equation by the
creation or annihilation phonon operators, which are complex
combinations of momenta and coordinates. The LLs exhibit the
same spectra as those in the 2D case but with the full rotational
symmetry in D-dimensional space. Again the zero energy
Landau levels are half fermion modes. Each LL contributes
to a branch of helical surface mode at open boundaries.

This paper is organized as follows. In Sec. II, after a
brief review of the 2D LL Hamiltonian of Dirac fermions
in graphene, we construct the 3D LL Hamiltonian of Dirac
fermions. Reducing this 3D system to two dimensions, it

085132-11098-0121/2012/85(8)/085132(8) ©2012 American Physical Society

http://arXiv.org/abs/arXiv:1103.5422
http://dx.doi.org/10.1103/PhysRevB.85.085132


YI LI, KENNETH INTRILIGATOR, YUE YU, AND CONGJUN WU PHYSICAL REVIEW B 85, 085132 (2012)

gives rise to a 2D quantum spin Hall Hamiltonian of Dirac
fermions with LLs. In Sec. III, we further solve this 3D LL
Hamiltonian of Dirac fermions, and its edge properties are
discussed. For the later discussion of generalizing the 3D LL
Hamiltonian to arbitrary higher dimensions, in Sec. IV, we
briefly review some properties of D-dimensional spherical
harmonics and spinors. In Secs. V and VI, we extend the
solutions of LL Hamiltonians to arbitrary odd and even
dimensions, respectively. Conclusions are given in Sec. VII.

II. LANDAU-LEVEL HAMILTONIAN OF 3D DIRAC
FERMIONS

A. A brief review of the 2D LL Hamiltonian

Before discussing the LL problem of Dirac fermions in
three dimensions, we briefly review the familiar 2D case39,40 to
gain the insight on how to generalize it to high dimensions. The
celebrated condensed-matter system to realize the 2D Dirac
fermion is the monolayer of graphene,39,40 which possesses a
pair of Dirac cones with spin degeneracy. Here for simplicity,
we only consider a single 2D Dirac cone under a uniform
magnetic field Bẑ. The Landau-level Hamiltonian in the xy

plane reads

H2D,LL = vF

{(
px − e

c
Ax

)
σx +

(
py − e

c
Ay

)
σy

}
, (1)

where the Dirac fermion with momentum �p is minimally
coupled to the U(1) magnetic field with symmetric gauge
potentials

Ax = −B

2
y, Ay = B

2
x, (2)

satisfying ∇ × �A = Bẑ; the Fermi velocity vF is related to the
cyclotron frequency ω via the magnetic length l′ as

l′ =
√

h̄c

eB
, vF = l′ω√

2
. (3)

For later convenience, we define l0 = √
2l′, which will be

termed as cyclotron length below. The spectra of Eq. (1) consist
of a branch of zero energy LL, and other LLs with positive
and negative energies distributed symmetrically around zero
energy. The energy of each LL scales as the square root of the
Landau-level index. It is well known that Eq. (1) can be recast
in terms of creation and annihilation operators,

H2D,LL = h̄ω√
2

[
0 â

†
y + iâ

†
x

ây − iâx 0

]
, (4)

where âi(i = x,y) are the phonon annihilation operators along
the x and y directions, with the form as

âi = 1√
2

{
1

l0
ri + i

l0

h̄
pi

}
. (5)

In Eq. (4), two sets of creation and annihilation operators
combine with 1 and the imaginary unit i. In order to generalize
to three dimensions, in which there exist three sets of creation
and annihilation operators, we employ Pauli matrices to match
them as explained below.

B. Construction of the 3D LL Hamiltonian

We define the rotationally invariant operator B̂ as

B̂3D = −iσi âi = σi

1√
2

{
pil0

h̄
− i

ri

l0

}
, (6)

where the repeated index i runs over x,y and z; âi is the phonon
annihilation operator along the i direction; l0 is the cyclotron
length. We design the 3D Landau-level Hamiltonian of Dirac
fermions as

H3D = h̄ω

2

[
0 B

†
3D

B3D 0

]
. (7)

Equation (7) contains the complex combination of momenta
and coordinates, thus it can be viewed as the generalized Dirac
equation defined in the phase space. Using the convention of
α, β, and γ matrices defined as

αi =
[

0 σi

σi 0

]
, β =

[
I2×2 0

0 −I2×2

]
,

γi = βαi =
[

0 σi

−σi 0

]
,

γ5 = iγ0γ1γ2γ3 =
[

0 I2×2

I2×2 0

]
,

Eq. (7) is represented as

H3D = vF

∑
i=x,y,z

{
αipi + γiih̄

ri

l2
0

}
, (8)

where vF = 1
2 l0ω. A mass term can be added into Eq. (8) as

H3D,ms = �β =
(

�I2×2 0

0 −�I2×2

)
. (9)

A similar Hamiltonian was studied before under the name
of Dirac oscillator,41,42 which corresponds to Eq. (7) plus
the mass term of Eq. (9) with the special relation l0 =√

h̄c2/�ω. However, the relation between the solution of such
a Hamiltonian to the LLs and its topological properties were
not noticed before.

The corresponding Lagrangian of Eq. (8) reads

L = ψ̄{γ0ih̄∂t − ivγih̄∂i}ψ − vFh̄ψ̄iγ0γiψF 0i(r), (10)

where F 0i = xi/ l2
0 . Compared with the usual way that Dirac

fermions minimally couple to the U(1) gauge field, here they
couple to the background field in Eq. (10) through iγ0γi . It
can be viewed as a type of nonminimal coupling, the Pauli
coupling. Apparently, Eq. (7) is rotationally invariant. It is
also time-reversal invariant, and the time-reversal operation T

is defined as

T = γ1γ3K =
(

iσ2 0

0 iσ2

)
K, (11)

where K represents the complex conjugation operation, and
T 2 = −1.
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C. Reduction to the 2D quantum spin Hall Hamiltonian
of Dirac fermions with LLs

If we suppress the z-component part in the definition of
Eq. (6), we will arrive at double copies of the usual LL problem
of 2D Dirac fermions with Kramer degeneracy, which can be
considered as the Z2-topological insulator Hamiltonian arising
from LLs of 2D Dirac fermions. We define the operator B̂2D

as B̂2D = −iσxâx − iσyây , and Eq. (7) reduces to

√
2

2
h̄ω

⎛
⎜⎜⎜⎝

0 0 0 â
†
y + iâ

†
x

0 0 −â
†
y + iâ

†
x 0

0 −ây − iâx 0 0

ây − iâx 0 0 0

⎞
⎟⎟⎟⎠ ,

= vF

⎛
⎜⎜⎜⎝

0 0 0 p− − A−
0 0 p+ + A+
0 p− + A− 0 0

p+ − A+ 0 0 0

⎞
⎟⎟⎟⎠ ,

where p± = px ± ipy and A± = Ax ± iAy . It is reducible into
a pair of 2 × 2 matrices as

H2D,± = vF

(
0 p− ± A−

p+ ± A+ 0

)
, (12)

which are time-reversal partners to each other. Thus Eq. (12)
can be viewed as the quantum spin Hall Hamiltonian of 2D
Dirac fermions.

A similar situation occurs in the strained graphene systems
in which lattice distortions behave like a gauge field coupling.
Signatures of LLs due to strains have been observed in Ref. 43.
Due to the TR symmetry, the Dirac cones at two nonequivalent
vertices of the Brillouin zone see gauge fields with opposite
sign to each other. Such a coupling is also spin independent.
However, the TR transformation connecting two Dirac cones
satisfies T 2 = 1, thus LLs due to strain are not topologically
protected. They are unstable under intervalley scattering.

Equation (12) exhibits the standard minimal coupling to the
background U(1) gauge field. Its solutions are well known and
thus will not be repeated here. After all, there is no nonminimal
coupling in two dimensions. Each state of the zero energy LL is
actually a half fermion zero mode. Whether it is filled or empty
contributes the fermion charge ± 1

2 . As the chemical potential
μ = 0±, magnetic field pumps vacuum charge density ρ(r) =
± 1

2
e
hc

B. In the field theory context, this is an example of the
parity anomaly.3,28–33 Our 3D version and generalizations to
arbitrary dimensions exhibit similar effects as will be discussed
below.

III. BULK SPECTRA OF THE 3D DIRAC FERMION LLs

In this section, we will present the solution of the spectra and
wave functions of the 3D LL Hamiltonian for Dirac fermions,
which can be obtained based on the solutions of the 3D LL
problem of the nonrelativistic case.27 We start with a brief
review of the nonrelativistic case of the 3D LL problem.

A. 3D isotropic nonrelativistic LL wave functions

The 3D isotropic LL Hamiltonians for nonrelativistic
particles are just spin- 1

2 fermions in the 3D harmonic oscillator
plus spin-orbit coupling27 as

H3D,∓ = p2

2M
+ 1

2
Mω2 ∓ ω �L · �σ . (13)

Their eigenfunctions are essentially the same as those of the
3D harmonic oscillator of spin- 1

2 fermions organized in the
total angular momentum eigenbasis of j,jz as

ψnr ,j±,l,jz
(�r) = Rnr ,l(r)Yj±,l,jz

(�̂), (14)

where nr is the radial quantum number; j± = l ± 1
2 represent

positive and negative helicity channels, respectively; and l

is the orbital angular momentum. Please note that l is not
an independent variable from j±. We write it explicitly in
order to keep track of the orbital angular momentum. The
radial wave function can be represented through the confluent
hypergeometric functions as

Rnr ,l(r) = Nnr,l

(
r

l0

)l

F

(
−nr,l + 3

2
,
r2

l2
0

)
e−r2/2l2

0 , (15)

where F is the standard first kind confluent hypergeometric
function,

F

(
−nr,l + 3

2
,
r2

l2
0

)
=

∞∑
n=0


(−nr + n)


(−nr )



(
l + 3

2

)



(
l + 3

2 + n
)

× 1


(n + 1)

(
r2

l2
0

)n

. (16)

When nr is a positive integer, the sum over n is cut off at nr .
The normalization factor reads as

Nnr,l = l
−3/2
0



(
l + 3

2

)
√

2

(
l + nr + 3

2

)

(nr + 1)

. (17)

The angular part of the wave function is the standard spin-orbit
coupled spinor spherical harmonic function, which reads as

Yj±,l,jz=m+(1/2)(�̂) =
⎛
⎝ ±

√
l±jz+ 1

2
2l+1 Yl,m(�̂)√

l∓jz+ 1
2

2l+1 Yl,m+1(�̂)

⎞
⎠ . (18)

Depending on the sign of the spin-orbit coupling in Eq. (13),
one of the two branches of positive or negative helicity
states are dispersionless with respect to j , and thus are
dispersionless LLs. For H3D,−, the positive helicity states
become dispersionless LLs as

H3D,−ψnr ,j+,l,jz
= (

2nr + 3
2

)
h̄ωψnr ,j+,l,jz

, (19)

where nr serves as Landau-level index. However, the negative
helicity states are dispersive whose eigenequation reads

H3D,−ψnr ,j−,l,jz
= (

2nr + 2l + 5
2

)
h̄ωψnr ,j−,l,jz

. (20)

Similarly, we have the following eigenequations for the H3D,+:

H3D,+ψnr ,j−,l,jz
= (

2nr + 1
2

)
h̄ωψnr ,j−,l,jz

,
(21)

H3D,+ψnr ,j+,l,jz
= (

2nr + 2l + 3
2 ) h̄ωψnr ,j+,l,jz

.
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In this case, the negative helicity states become dispersionless
LLs with respect to j , while the positive ones are dispersive.

B. 3D LL wave functions of Dirac fermions

Now we are ready to present the spectra and the four-
component eigenfunctions of Eq. (8) for the massless case.
Its square is block diagonal, and two blocks become the
nonrelativistic 3D Landau-level Hamiltonians with opposite
signs of spin-orbit coupling studied in Ref. 27,

H 2
3D

1
2h̄ω

=
[

H− 0

0 H+

]

= p2

2M
+ 1

2
Mω2r2 − ω

{
�L · �σ + 3

2
h̄

} [
I 0

0 −I

]
,

(22)

where M is defined through the relation l0 = √
h̄/(Mω).

Its eigenfunctions can be represented in terms of nonrela-
tivistic Landau levels of Eq. (14) as presented in Sec. III A.
Equation (7) has a conserved quantity as

K =
[

�σ · �l + h̄ 0

0 −(�σ · �l + h̄)

]
. (23)

According to its eigenvalues, the eigenfunctions of Eq. (7) are
classified as

K�I
±nr ,j,jz

= (l + 1)h̄�I
±nr ,j,jz

,
(24)

K�II
±nr ,j,jz

= −lh̄�II
±nr ,j,jz

,

respectively. �I
±nr ,j,jz

is dispersionless with respect to j , while
�II

±nr ,j,jz
is dispersive, respectively. The dispersionless branch

is solved as

�I
±nr ,j,jz

(�r) = 1√
2

[
ψnr ,j+,l,jz

(�r)

±iψnr−1,j−,l+1,jz
(�r)

]
(25)

with the energy

E±nr ,j,jz
= ±h̄ω

√
nr . (26)

Please note that the upper and lower two components of
Eq. (25) possess different values of orbital angular momenta.
They exhibit opposite helicities of j±, respectively. The zeroth
Landau level (nr = 0) is special: only the first two components
are nonzero.

On the other hand, the wave functions of the dispersive
branch read

�II
±nr ,j,jz

(�r) = 1√
2

[∓iψnr ,j−,l+1,jz
(�r)

ψnr ,j+,l,jz
(�r)

]
, (27)

with the spectra solved as

E±nr ,j,jz
= ±h̄ω

√
nr + j + 1. (28)

These states are just discrete energy levels lying between two
adjacent LLs. For simplicity, let us only consider the positive
energy states. The degeneracy of these midgap states lying
between the nth and (n + 1)th Landau levels with n = nr +
j + 1

2 is finite, n(n + 1), due to finite combinations of nr and j .
In particular, between the zeroth LL and the LLs with nr = ±1,
these discrete states do not exist at all.

Because Eq. (8) satisfies βH3Dβ = −H3D , its spectra
are symmetric with respect to zero energy. If the zeroth
branch of Landau levels (nr = 0) are occupied, each of them
contribute a half fermion charge. The vacuum charge is
ρ3D(�r) = 1

2

∑
j,jz

�
†
0;j,jz

(�r)�0;j,jz
(�r), which are calculated as

ρ3D(�r) = 1

2l3
0

{ ∞∑
l=0

l + 1

2π

1



(
l + 3

2

)(
r2

l2
0

)l
}

e−r2/l2
0

= 1

2πl3
0

{
1√
π

e−r2/l2
0 +

(
r

l0
+ l0

2r

)
erf

(
r

l0

)}
,

−→ r

2πl4
0

, as r → +∞. (29)

In two dimensions, the induced vacuum charge density in
the gapless Dirac LL problem is a constant, ρ2D(r) = 1

2πl2
0

=
1

4π
e
h̄c

B, which is known as “parity anomaly.” However, in the
3D case, the vacuum charge density ρ3D(r) diverges linearly,
which is dramatically different from that in two dimensions.
This can be easily understood in the semiclassic picture. Each
Landau level with orbital angular momentum l has a classic
radius rl = √

2ll0. In two dimensions, between rl < r < rl+1,
there is only one state. However, in three dimensions there is
the 2j+ + 1 = 2l + 2-fold degeneracy, which is the origin of
the divergence of the vacuum charge density as r approaches
infinity. Generally speaking, in the case of D dimensions, the
degeneracy density scales as rD−2 as shown in Secs. V and VI.
The intrinsic difference between high D and two dimensions is
that the high dimensional LL problems exhibit the form of non-
minimal coupling. In two dimensions, due to the specialty of
Pauli matrices, this kind of coupling reduces back to the usual
minimal coupling. In Eq. (10), the background field is actually
a linear divergent electric field, not the magnetic vector poten-
tial. Equation (29) can be viewed as a generalization of “parity
anomaly” to three dimensions for nonminimal couplings.

Now we consider the full Hamiltonian with the mass term
Eq. (9). The mass term mixes the LLs in Eq. (25) with opposite
level indices ±nr but the same values of j and jz. The new
eigenfunctions become[

�
I,′
nr ,j,jz

�
I,′
−nr ,j,jz

]
=

[
cos θ − sin θ

sin θ cos θ

] [
�nr,j,jz

�−nr ,j,jz

]
, (30)

where cos2 θ = 1
2 [1 + √

nr/
√

nr + [�/(h̄ω)]2]. The spectra
are

E
I,ms
±nr ,j,jz

= ±
√

nr (h̄ω)2 + �2. (31)

The zeroth LL �I
nr=0,j,jz

(�r) singles out, which is not affected
by the mass term. Only its energy is shifted to �.

C. Gapless surface modes

As shown in Eq. (29), the 3D LL system of Dirac fermions
has a center, and does not have translational symmetry. Thus
how to calculate its topological index remains a challenging
problem. Nevertheless, we can still demonstrate its nontrivial
topological properties through the solution of its gapless
surface modes.
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We consider the surface spectra at a spherical boundary with
a large radius R 	 l0. The Hamiltonian Hr<R inside the sphere
takes the massless form of Eq. (8), while Hr>R outside takes
the mass term of Eq. (9) in the limit of |�| → ∞. Again the
square of this Hamiltonian (Hr<R + Hr>R)2 is just Eq. (22)
subject to the open boundary condition at the radius of R.
The spectra of the open surface problem of the nonrelativistic
3D LL Hamiltonian have been calculated and presented in
Fig. 3 in Ref. 27, in which the spectra of each Landau level
remain flat for bulk states and develop upturn dispersions as
increasing j near the surface. The solution to the Dirac spectra
is just to take the square root. Except the zeroth LL, each
of the nonrelativistic LL and its surface branch split into a
pair of bulk and surface branches in the relativistic case. The
relativistic spectra take the positive and negative square roots of
the nonrelativistic spectra, respectively. The zeroth LL branch
singles out. We can only take either the positive or negative
square root, but not both. Its surface spectra are upturned or
downturned with respect to j depending on the sign of the
vacuum mass. For the current Hamiltonian, only the first two
components of the zeroth LL wave function are nonzero, thus
it only senses the upper 2 × 2 diagonal block of vacuum mass
in Eq. (9), thus its surface spectra are pushed upturn.

IV. REVIEW OF D-DIMENSIONAL SPHERICAL
HARMONICS AND SPINORS

We will study the LL of Dirac fermions for general
dimensions in the rest of the paper. For later convenience, we
present here some background knowledge of the SO(D) group,
which can be found in standard group theory textbooks.44

The D-dimensional spherical harmonic functions Yl,{m}(�̂)
form the representation of the SO(D) group with the one-
row Young pattern, where l is the number of boxes and {m}
represents a set of D − 2 quantum numbers of the subgroup
chain from SO(D − 1) down to SO(2). The degeneracy of
Yl;{m} is

d[l][SO(D)] = (D + 2l − 2)
(D + l − 3)!

l!(D − 2)!
. (32)

Its Casimir is
∑

i<j L2
ij = l(l + D − 2)h̄2, where the orbital

angular momenta are defined as Lij = ripj − rjpi .
We also need to employ the 
 matrices. The 2 × 2

Pauli matrices are just the rank-1 
 matrices. They can
be generalized to rank-k 
 matrices, which contain 2k + 1
matrices anticommuting with each other. Their dimensions
are 2k × 2k . A convenient recursive definition is constructed
based on the rank-(k − 1) 
 matrices as



(k)
i =

[
0 
(k−1)

a


(k−1)
a 0

]
, 


(k)
2k =

[
0 −iI

iI 0

]
,

(33)



(k)
2k+1 =

[
I 0

0 −I

]
,

where i = 1, . . . ,2k − 1. For D = 2k + 1-dimensional space,
its fundamental spinor is 2k dimensional. The generators are
constructed Sij = 1

2

(k)
ij where



(k)
ij = − i

2

[



(k)
i ,


(k)
j

]
. (34)

For the D = 2k-dimensional space, there are two irreducible
fundamental representations with 2k−1 components. Their
generators are denoted as Sij and S ′

ij , respectively, which can

be constructed based on both rank-(k − 1)
(k−1)
i and 


(k−1)
ij

matrices. For the first 2k − 1 dimensions, the generators share
the same form as

Sij = S ′
ij = 1

2

(k−1)
ij , 1 � i < j � 2k − 1, (35)

while other generators Si,2k and S ′
i,2k differ by a sign as

Si,2k = S ′
i,2k = ± 1

2

(k−1)
i , 1 � i � 2k − 1. (36)

We couple Yl,{m} to the SO(D) fundamental irreducible spinors.
For simplicity, we use the same symbol s in this paragraph
to denote the fundamental spinor representation (Rep.) for
SO(D) with D = 2k + 1 and the two irreducible spinor Reps.
for SO(D) with D = 2k. The states split into the positive (j+)
and negative (j−) helicity sectors. The bases are expressed
as Yj±;s,l,{jm}(�̂), where {jm} is a set of D − 2 quantum
numbers for the subgroup chain. The degeneracy number of
Yj+;s,l,{jm}(�̂) is

dj+ = ds

(D + l − 2)!

l!(D − 2)!
, (37)

where ds is the dimension of the fundamental spinor repre-
sentation. Similarly, the degeneracy number of Yj−,;s,l,{jm}(�̂)
is

dj− = ds

(D + l − 3)!

(l − 1)!(D − 2)!
. (38)

The eigenvalues of the spin-orbit coupling term∑
i<j 
ijLij for the sectors of Yj+;s,l,{jm}(�̂) and Yj−;s,l,{jm}(�̂)

are lh̄ and −(l + D − 2)h̄, respectively. We present the
eigenstates of the D-dimensional harmonic oscillator with
fundamental spinors in the total angular momentum basis as

ψD
nr ,j±,s,l,{jm}(�r) = Rnr ,l(r)Yj±,s,l,{jm}(�̂), (39)

where the radial wave function reads

Rnr ,l(r) = ND
nr ,l

(
r

l0

)l

e−r2/2l2
g F

(
− nr,l + D

2
,
r2

l2
0

)
(40)

and the normalization constant reads

ND
nr ,l

= l
−D/2
0



(
l + 1

2D
)
√

2

(
nr + l + D

2

)

(nr + 1)

. (41)

V. LLs OF ODD DIMENSIONAL DIRAC FERMIONS

In this section, we generalize the 3D LL Hamiltonian for
Dirac fermions to an arbitrary odd spatial dimension D =
2k + 1. We need to use the rank-k 
 matrices, which contains
2k + 1 anticommutable matrices at the dimensions of 2k × 2k

denoted as 

(k)
i (1 � i � 2k + 1). The definition of 


(k)
i and the

background information of the representation of the SO(D)
group is given in Sec. IV.

We define B̂2k+1 = −i

(k)
i âi and the 2k + 1-dimensional

LL Hamiltonian of Dirac fermions H2k+1 in the same way as in
Eq. (7). Again the square of H2k+1 reduces to a block-diagonal
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form as

(H2k+1)2

1
2h̄ω

= p2

2M
+ 1

2
Mω2r2 − ω

{∑
i<j

Lij

(k)
ij

+ 2k + 1

2
h̄

}[
I 0

0 −I

]
, (42)

where 

(k)
ij = − i

2 [
(k)
i ,


(k)
j ]. Each diagonal block of Eq. (42)

is just the form the 2k + 1-D LL problem of nonrelativistic
fermions in Ref. 27.

Again we can define the following conserved quantity:

K =
[



(k)
ij Lij + (D − 2)h̄ 0

0 −(
ijLij + h̄)

]
; (43)

K divides the eigenstates into two sectors �I
±nr ,j,{jm} and

�II
±nr ,j,{jm},

K�I
±nr ,j,{jm} = h̄(l + D − 2)�I

±nr ,j,{jm},

K�II
±nr ,j,{jm} = −h̄l�II

±nr ,j,{jm}, (44)

respectively. As explained in Sec. IV, j represents the spin-
orbit coupled representation for the SO(D = 2k + 1) group,
and {jm} represents a set of good quantum numbers of the
subgroup chain from SO(D − 1) down to SO(2).

Similarly as before, the sectors of �
I,II
±nr ,j,{jm} are dispersion-

less and dispersive with respect to j , respectively. The concrete
wave functions are the same as those in Eqs. (25) and Eq. (27)
by replacing the 3D wave function to the D-dimensional
version of Eq. (39). The wave functions of �

I,II
±nr ,j,{jm} are given

explicitly as

�I
±nr ,j,jz

(�r) = 1√
2

[
ψD

nr ,s,j+,l,{jm}(�r)

±iψD
nr−1,s,j−,l+1,{jm}(�r)

]
,

(45)

�II
±nr ,j,jz

(�r) = 1√
2

[
∓iψD

nr ,s,j−,l+1,{jm}(�r)

ψD
nr ,s,j+,l,{jm}(�r)

]
.

The dispersion relation for the LL branch of �I
±nr ,j,{jm} still

behaves as E±nr ;j,{jz} = ±h̄ω
√

nr , while that for the branch of
�II

±nr ,j,{jm} reads as E±nr ;j,{jz} = ±h̄ω
√

nr + l + D
2 .

Again each occupied zero energy LL contributes to 1
2 -

fermion vacuum charge. If the zeroth LLs are fully filled, the
vacuum charge is still ρD(�r) = 1

2

∑
j,{jm} |�I

0,j,{jm}(�r)|2, which
is expressed as

ρD(r) = 1

lD0

{ ∞∑
l=0

1



(
l + D

2

)(
r

l0

)2l
gl(D)

�D

}
e−r2/l2

0 , (46)

where D = 2k + 1; gl(D) is the degeneracy of the positive
helicity sector of the fundamental spinor coupling to the lth
D-dimensional spherical harmonics, and its expression is the
same as dj+ given in Eq. (37); �D = DπD/2/
(D/2 + 1) is
the area of D-dimensional unit sphere. Equation (46) can be

summed analytically as

ρ(r) =
√

2

4

(
2

πl2
0

)D/2

F

(
D − 1,

D

2
,
r2

l2
0

)
e−r/l2

0

−→ 1

(2π )(D−1)/2lD0

1



(

D−1
2

)(
r

l0

)D−2

, as r → ∞. (47)

Similarly, if the D-dimensional version of the mass term
inside Eq. (9) is added, every wave function with the radial
quantum number nr hybridizes with its partner with −nr while
keeping all other quantum numbers the same. The pair of
new eigenvalues becomes ±

√
(h̄ω)2nr + �2. Again, the zeroth

LL wave functions single out and remain the same, but their
energies are shifted to �. For a similar open surface problem
to that in Sec. III C, each LL with nr 
= 0 develops a branch of
gapless surface mode with the upturn (downturn) dispersion
with respect to j for nr > 0 (nr < 0), respectively. The surface
mode from the zeroth LL develops either upturn or downturn
dispersions depending on the relative sign of the background
field coupling and the vacuum mass.

VI. LLS OF EVEN DIMENSIONAL DIRAC FERMIONS

The LL problem in the even dimensions with D = 2k is
more complicated. The SO(2k) group has two irreducible
fundamental spinor representations s and s ′. Each of them
is with the dimension of 2k−1. The construction of the SO(2k)
generators for the irreducible representations are introduced in
Sec. IV.

Now we define B̂2k = −i

(k)
i âi where i runs over 1 to

2k. Similarly to the 2D case, the counterpart of Eq. (7) in
the D = 2k dimensions HD=2k is reducible into two 2k × 2k

blocks as

H± = h̄ω

2

[
0 ±â

†
2k + i


(k−1)
i â

†
i

±â2k − i

(k−1)
i âi 0

]
, (48)

where the repeated index i runs over from 1 to 2k − 1. For each
one of the reduced Hamiltonians H±, each off-diagonal block
has only the SO(2k − 1) symmetry. Nevertheless, each of H±
is still SO(2k) invariant. If we combine the two irreducible
fundamental spinor representations s and s ′ together, the spin
generators are defined as

Sij ;s⊕s ′ = − i

4

[



(k)
i ,


(k)
j

]
. (49)

Both of H± commute with the total angular momentum
operators in the combined representation of s ⊕ s ′ defined as

Jij ;s⊕s ′ = Lij + Sij ;s⊕s ′ . (50)

We choose H+ as an example to present the solutions of
the LL wave functions in even dimensions. The K operator is
similarly defined as in Eq. (43) as

K+ =
[

2SijLij + (D − 2)h̄ 0

0 −(2S ′
ijLij + h̄)

]
, (51)

where i,j run from 1 to 2k, and Sij and S ′
ij are generators in the

two fundamental spinor representations given in Eqs. (35) and
(36), respectively. They again can be divided into two sectors
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of �+,I and �+,I I whose eigenvalues of K+ are h̄(l + D − 2)
and −h̄l, respectively. The dispersionless branch of �+,I can
be viewed as LLs, whose wave functions read

�
+,I
±nr ,j,{jm}(�r) = 1√

2

[
ψnr ,j+,s,l,{jm}(�r)

∓iψnr−1,j−,s ′,l+1,{jm}(�r)

]
. (52)

Their spectra are the same as before, E±nr ,j,{jm} = ±h̄ω
√

nr .
Please note that the upper and lower components involve the
s and s ′ representations, respectively. Similarly, the dispersive
solutions of �II become

�
+,I I
±nr ,j,{jm}(�r) = 1√

2

[∓iψnr ,j−,s,l+1,{jm}(�r)

ψnr ,j+,s ′,l,{jm}(�r)

]
, (53)

whose dispersions read E±nr ,j,{jm} = ±h̄ω
√

nr + l + D
2 . The solu-

tions to H− are very similar to Eqs. (52) and (53) by exchanging
the irreducible fundamental spinor representation indices s and
s ′.

Again, if the zeroth branch LLs are filled, the vacuum charge
ρD(�r) = 1

2

∑
j,{jm} |�I

0,j,{jm}(�r)|2 is calculated as

ρD(r) = 1

lD0

{ ∞∑
l=0

1



(
l + D

2

)(
r

l0

)2l
gl(D)

�D

}
e−r2/l2

0 , (54)

where D = 2k, �D , and gl(D) are defined similarly as in
Eq. (46). It can be summed over analytically as

ρD(r) = 1

4

(
2

πl0

)D/2

F

(
D − 1,

D

2
,
r2

l2
0

)
e−r2/l2

0 , (55)

which ρD(r) −→
√

π

(2πl2
0 )

D
2

1

[(D−1)/2] (

r
l0

)D−2, as r → +∞.

VII. CONCLUSION

In summary, we have generalized the LL problem of 2D
Dirac fermions to arbitrary higher dimensional flat spaces
with spherical symmetry. This problem is essentially the
square-root problem of its nonrelativistic LL problem with
spherical symmetry in high dimensions Ref. 27. The zero
energy LLs is a branch of 1

2 -fermion modes. On the open
boundary, each LL contributes one branch of helical surface
modes. This series of LL problems can be viewed as the
generalization of parity anomaly in two dimensions to arbitrary
dimensions in a spherical way. An open question is that of how
to experimentally realize the case of the 3D systems.

Note added. Near the completion of this paper, we became
aware that Eq. (8) plus Eq. (9) with a special relation between
the background field coupling constant and the mass term
was studied in Refs. 41 and 42 under the name of the Dirac
oscillator. We have studied a more general form from a
different perspective and identified its relation to the LLs.
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