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Universality and robustness of revivals in the transverse field XY model
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We study the structure of the revivals in an integrable quantum many-body system, the transverse field XY spin
chain, after a quantum quench. The time evolutions of the Loschmidt echo, the magnetization, and the single-spin
entanglement entropy are calculated. We find that the revival times for all of these observables are given by integer
multiples of Trev � L/vmax, where L is the linear size of the system and vmax is the maximal group velocity of
quasiparticles. This revival structure is universal in the sense that it does not depend on the initial state and the
size of the quench. Applying nonintegrable perturbations to the XY model, we observe that the revivals are robust
against such perturbations: they are still visible at time scales much larger than the quasiparticle lifetime. We
therefore propose a generic connection between the revival structure and the locality of the dynamics, where the
quasiparticle speed vmax generalizes into the Lieb-Robinson speed vLR.
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I. INTRODUCTION

The behavior of quantum many-body systems away from
equilibrium has recently become the object of intense ex-
perimental study. Ultra-cold atoms in optical lattices feature
both large phase coherence times and a high degree of
controllability, making it possible to observe quantum coherent
dynamics [1]. The potential technological implications are
profound because the manipulation of coherent quantum
dynamics is at the root of the possibility of building a quantum
computer.

In terms of theoretical description, systems away from
equilibrium are considerably more complicated than their
equilibrium counterparts. Whereas equilibrium systems can
be understood by means of standard methods like mean-
field theory and renormalization group, we lack analogous
methods for understanding nonequilibrium physics [2]. There
are no obvious generalizations of such standard methods at
equilibrium, and in particular, it is not clear to what extent
the nonequilibrium dynamics of quantum systems features
universality. An important example is the universality of the
Kibble-Zurek mechanism to compute the density of defects as
the external temperature is tuned in time [3].

Experiments on cold atomic gases give us the opportunity
to observe a genuine quantum evolution in a system that is
very close to being isolated. We can then address questions
like the possibility of equilibration in a system with unitary
evolution and the process of thermalization in a closed
quantum system. These topics have recently found a renewed
interest along with other fundamental problems in quantum
statistical mechanics [4,5]. In the case of such systems,
the nonequilibrium dynamics is obtained by making some
parameters of the system Hamiltonian time dependent and
hence casting the system off equilibrium. The time dependence
of the Hamiltonian can be adiabatically slow [6] or it can
change abruptly [7,8], in which case the process is called
a quantum quench. Among other applications, the paradigm
of the quantum quench has been recently used to study the
behavior of topological phases away from equilibrium [9].

The understanding of nonequilibrium dynamics of isolated
interacting quantum systems is of fundamental importance to
understanding quantum equilibration, a topic that has lately
experienced a new renaissance [4,5,10]. Due to unitary time
evolution, a finite quantum system with a nontrivial initial
state cannot converge to a steady state. However, it has been
shown in some remarkable papers [11,12] that thermalization
of a finite subsystem is possible in the infinite size limit. The
system can be coarse grained by choosing a partial set of
local or macroscopic observables, and the expectation values
of these observables can in principle converge to the ones
in thermal equilibrium. In particular, an integrable system
does not thermalize: even local or macroscopic observables
undergo oscillations, or at best relax to equilibrium values
that are generally not the same as those predicted by the
microcanonical ensemble [13,14]. Even for a nonintegrable
system, thermalization does not always occur: in some cases
there is only relaxation to a nonthermal state depending on the
initial conditions [15].

The equilibration process has several characteristic time
scales. The largest one is the recurrence time Trec at which
the system gets infinitesimally close to its initial state. It only
exists for finite systems, and diverges at least exponentially
as a function of the system size. The smallest time scale is
the relaxation time Trel at which a given observable relaxes
to its long-term average value. Furthermore, there is a third
important time scale Trev in between at which revivals occur:
these are brief detachments from the average value of an
observable. Revivals typically last for a very short time only (in
comparison to the spacing between them), and their magnitude
decays in time as the equilibration process nears completion.

In this paper we investigate the structure of the revivals for
an integrable model, the transverse field XY spin chain. Our
main result is that this structure is universal in the sense that it
does not depend on the details of the quench and on the initial
state. By applying nonintegrable perturbations to the system
and finding that the revival structure is surprisingly robust
against such perturbations, we argue that the revival structure
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is a universal nonequilibrium property which follows from the
locality of the Hamiltonian.

II. FORMALISM OF THE QUANTUM QUENCH

We consider a closed quantum system whose Hamiltonian
H (λ1, . . . ,λR) depends on parameters λi representing the
coupling strengths of interactions and external fields. A
quantum quench is a sudden change in the Hamiltonian
of the system. The quantum system is originally prepared
in the ground state ρ0 of H (λ(1)), and at time t = 0 we
switch the parameters to different values λ(2). The system
then evolves unitarily with the quench Hamiltonian H (λ(2))
according to ρ(t) = Ut (ρ0), where we define the superoperator
Ut (X) ≡ exp(−iH t)X exp(iH t). Unitary evolution implies
that a finite system cannot converge to a steady state ρ, even
weakly. The limit of ρ(t) for t → ∞ does not exist unless
the initial state ρ0 is trivial, for example, an eigenstate. On the
other hand, the time average ρ = limt→∞ t−1

∫ t

0 ρ(s)ds always
exists and is given by the ρ0 totally dephased in the eigenbasis
�n = |En〉〈En| of the Hamiltonian: ρ = ∑

n �nρ0�n. For a
finite system, equilibration means that the expectation values
of macroscopic observables spend most of their time very close
to their average values.

An important quantity describing the time evolution is the
Loschmidt echo (LE) defined as L(t) = |tr[exp(−itH )ρ0]|2
which gives a measure of the distance between the time evolved
state ρ(t) and the initial state ρ0. When the system undergoes
a recurrence at t = Trec we have L(Trec) � 1. The general
expression for the LE can be written as

L(t) =
∑
n,m

pnpme−i(En−Em)t , (1)

where pn are the populations of the Hamiltonian eigenstates
for the initial state. It follows that the time average of the LE is
L = tr(ρ2) = ∑

n p2
n. The LE typically decays in a short time

Trel from 1 to its average value L around which it oscillates.
The relaxation time Trel is O(1) for an off-critical quench,
while it scales like O(Lζ ) with the system size L for a critical
quench, that is, if λ(2) is a critical point, showing a critical slow
down of the system [16,17].

Revivals are also visible in the LE as deviations from
the average value L. We define revivals as time instances
at which the signal L(t) differs from L by more than three
standard deviations. According to Eq. (1), this happens when
an exceptionally large number of weights pn get partially back
in phase. It is not straightforward to understand directly from
Eq. (1) when such a situation can occur in a generic quantum
system, therefore we consider the particular case of a simple
one-dimensional spin chain.

III. REVIVALS IN THE XY MODEL

A. Exact solution by free fermions

In this section we consider an integrable (exactly solvable)
model, the one-dimensional XY model of N spins one half
in a transverse magnetic field. Since the model is exactly
solvable, we can obtain the whole spectrum and the eigenstate
decomposition of the initial state. This leads to an exact
expression for the LE, and the revival times can be extracted
by inspecting its time dependence.

The Hamiltonian of this spin chain is given by

H = −1

2

N∑
l=1

(
1 + η

2
σx

l σ x
l+1 + 1 − η

2
σ

y

l σ
y

l+1 + hσ z
l

)
, (2)

where η is the anisotropy parameter, and h is the external
transverse magnetic field. We assume cyclic boundary condi-
tions σN+1 = (−1)qσ1. The periodic (q = 0) and antiperiodic
(q = 1) boundary conditions differ in O(1/N) terms and this
difference usually does not affect the phase diagram or other
quantities in the thermodynamic limit. However, it can be
important in the LE that is typically exponentially small in
N . In the following we shall see that the boundary conditions
can have a dramatic effect in the case of the critical quench.
Note that the XY model reduces to the quantum Ising model
for η = 1, and to the isotropic XX model for η = 0. The
Hamiltonian exhibits two regions of criticality: the XX model
at η = 0 has a critical region for h ∈ (−1,1), while the XY
regions of criticality are the lines h = ±1.

The XY model can be diagonalized by a standard procedure
[18]. In the first step we map σl to spinless fermions by using
a Jordan-Wigner transformation:

σ z
l = 1 − 2c

†
l cl, σ−

l = (σ+
l )

† = c
†
l e

iπ
∑l−1

j=1 c
†
j cj . (3)

The translational symmetry is then exploited by the Fourier
transform cl = 1√

N

∑N
l=1 eiklck , where the momenta are quan-

tized according to kn = π (2n + 1 − q)/N . Finally, after the
Bogoliubov transformation ck = cos θkγk + i sin θkγ

†
−k , we

obtain a Hamiltonian describing noninteracting fermionic
degrees of freedom γk:

H =
∑
k>0

�k(γ †
k γk + γ

†
−kγ−k − 1). (4)

The dispersion relation of these fermionic quasiparticles
is given by �k =

√
ε2
k + η2 sin2 k with εk ≡ h − cos k, and

the angle θk appearing in the Bogoliubov transformation is
θk = tan−1[(η sin k)/(εk + �k)].

B. Loschmidt echo and revival times

In a quantum quench, the system is prepared in the
ground state of H (λ(1)), and then evolved with H (λ(2)) at
t > 0. It is useful to write the ground state |ψ(0)〉 of the
initial Hamiltonian in terms of the eigenstates of the quench
Hamiltonian:

|ψ(0)〉 =
∏
k>0

(cos χk − i sin χkγ
†
k γ

†
−k)|0k〉, (5)

where χk ≡ θ
(2)
k − θ

(1)
k , and |0k〉 is the vacuum state defined by

γk|0k〉 = γ−k|0k〉 = 0. The time evolution then reads |ψ(t)〉 =
exp(−iH t)|ψ(0)〉, and the LE takes the form

L(t) =
∏
k>0

[1 − Aksin2(�kt)], (6)

where the coefficient Ak ≡ sin2(2χk) is a slowly varying
positive function of the momentum k.

Now we show how the revivals in the LE can be derived
from the dispersion relation �k of the quasiparticles. We first
take the logarithm of Eq. (6) to transform the product into a
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sum over momentum k:

lnL(t) =
∑
k>0

ln[1 − Aksin2(�kt)]. (7)

Since each k > 0 term has a periodicity π/�k in time,
and Ak varies sufficiently slowly with k, this expression
shows that nearby k modes separated by �k = 2π/N add
up constructively whenever ��kt = pπ with p ∈ Z. This
rearranges to tk = 1

2pN |∂�k/∂k|−1, and in principle we could
expect a revival time tk corresponding to each k. However,
more modes can add up constructively if the dispersion relation
�k is closer to a straight line, therefore the most pronounced
revivals (in fact, the only revivals that stand out from the
background noise) are given by the stationary values of the
group velocity vg(k) ≡ |∂�k/∂k|. The first of these revivals
is the one corresponding to the maximal group velocity
vmax = maxk vg(k) and we can thus give the following estimate
for the revival time scale:

Trev � N

2 vmax
= N

2

∣∣∣∣∂�k

∂k

∣∣∣∣
−1

max

. (8)

The maximum group velocity vmax can be computed exactly
from the dispersion relation �k . It takes a particularly simple
form in the case of the Ising model (η = 1): vmax = h when
h < 1 and vmax = 1 when h � 1.

In Fig. 1(a) the LE for a critical quench (h2 = 1) with
antiperiodic boundary conditions (q = 1) is plotted. The Trev

predicted by Eq. (8) is in perfect agreement with the data.
The same critical quench with periodic boundary conditions
(q = 0) is interesting. At the odd revivals there is no signal in
the LE due to a destructive (vanishing) contribution from one
of the k modes in the product of Eq. (6). Only the even revivals
are spotted.

Figures 1(b) and 1(d) verify that the revival times scale
like O(L), where L ∼ N is the linear size of the system. The
quench in Fig. 1(b) is noncritical, and the parameters of the
quench Hamiltonian are far away from any phase boundaries.
This means that the system is gapped, and a simple spectral
analysis would imply that Trev is of O(1). However, even if
there is a small reconstruction of the wave function at a time
scale 1/� (where � is a difference between any two energy
levels), the weight involved is not sufficiently large to make
the corresponding revival strong enough. Visible revivals are
governed by Eq. (8).

In Fig. 1(c) the system is quenched from different ground
states corresponding to different parameter values λ(1). As one
can see, the details of the evolution and the average values
L are different, but the structure of the revivals is the same
for all the quenches, and the revival times are consistent with
those predicted by Eq. (8). This is the promised universality
of the revival structure: the initial state and the size of the
quench are unimportant. The parameters λ(2) determine vmax

and therefore Trev but not the fact that revivals happen at time
instances spaced evenly at intervals that are linear in system
size: tp = pL/vmax.

C. Magnetization and entanglement entropy

Although the behavior of the LE is illuminating for theoret-
ical arguments, it is hardly of experimental relevance because

(a) (b)

(c) (d)

FIG. 1. (Color online) Loschmidt echo for the quenched XY
model with antiperiodic boundary conditions (q = 1). (a) Critical
quench with η1 = η2 = 2.0, h1 = 0.5, h2 = 1.0, N = 400, and
vmax = 2.0. Equation (8) gives Trev = 100.0, and from the plotted
data we get Trev ≈ 99.7. (b) Noncritical quenches for different system
sizes: η1 = η2 = 2.0, h1 = 0.7, h2 = 0.8, N ∈ {200,400,800,1600},
and vmax ≈ 1.77. The equilibrium value of the LE decreases with
system size. Equation (8) gives Trev ≈ 112.7 for N = 400, and
from the data we get Trev ≈ 113.0. (c) Quenches of different size:
η1 = η2 = 2.0, h1 ∈ {0.5,0.6,0.7}, h2 = 0.8, and N = 400. Group
velocities and revival times match those in (b). (d) Linear scaling
of the revival times with system size. The lines represent the values
given by Eq. (8). Parameters used: 1: those in (a), 2: those in (b). In
each plot the red horizontal lines represent average values and three
standard deviations thereof.

the amplitude of the signal is zero in the thermodynamic limit.
On the other hand, it is expected that a revival in the LE
corresponds to revivals in macroscopic observables as well.
To demonstrate this we study the time evolution of the order
parameter (magnetization) μ(t) [19] and of the single-spin
entanglement entropy S(t). If we consider a subsystem A con-
sisting of a single spin, the von Neumann entropy between sub-
system A and the rest of the system is S = −Tr(ρA log2 ρA),
where ρA is the reduced density matrix of subsystem A.

When the initial state of the quenching process in Eq. (5)
is expanded in position basis rather than momentum basis,
one finds that the excitations are pairwise correlated between
different lattice sites due to the fermionic anticommutation
relations. This implies that ρA is diagonal, and then we can
use translational invariance to establish

S(t) = −μ(t) log2 μ(t) − [1 − μ(t) log2 (1 − μt)], (9)

where the average magnetization is given by

μ(t) = 1

N

∑
l

〈c†l cl〉 = 1

N

∑
k

〈c†kck〉,

〈c†kck〉 = sin2(θk)cos2(χk) + cos2(θk)sin2(χk)

− 2 sin(θk)cos(θk)sin(χk)cos(χk)cos(2�kt). (10)
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FIG. 2. (Color online) A small quench with q = 1, η1 = η2 =
2.0, h1 = 0.7, h2 = 0.8, N = 200, and vmax ≈ 1.77. From top to
bottom: Loschmidt echo L(t), magnetization μ(t), and single-spin
entanglement entropy S(t). Equation (8) gives Trev ≈ 56.37, and from
the plotted data we get Trev ≈ 56.58. The horizontal lines represent
average values and three standard deviations thereof.

The entanglement entropy S and the average magnetization μ

are thus governed by the interference of the same modes as
in Eq. (6) with their frequencies given by the same dispersion
relation �k . This means that they share the same time scales
as the LE. The results are illustrated in Fig. 2. In fact, since
the magnetization is given as a sum rather than a product of
different oscillating modes it can be used instead of the LE to
determine Trev in the large N limit when the LE has a very small
average value. In practice, the magnetization is analogous to
the logarithmic Loschmidt echo used in [20].

D. Time evolution of a local disturbance

Now we investigate the time evolution after a local
disturbance in the spin chain. In particular, we consider a
single-spin flip at position l, which is represented by the
operator Fl = cl + c

†
l . The time evolution of the resulting local

disturbance is best studied in the Heisenberg picture, where the
operator Fl becomes time dependent and takes the form

Fl(t) =
∑

l′
[�l−l′ (t)cl′ + �∗

l−l′ (t)c
†
l′],

(11)

�l−l′ (t) = 1

N

∑
k

eik(l−l′)[ei�kt sin2 θk + e−i�kt cos2 θk

+ i(e−i�kt − ei�kt ) sin θk cos θk].

This expression shows that nearby modes at momentum k add
up constructively whenever ��kt = 2pπ ± �k|l − l′| with
p ∈ Z. Due to �k = 2π/N , this condition can be written
as t = (pN ± |l − l′|)|∂�k/∂k|−1, and one verifies that the
disturbance travels with the group velocity vg(k) = |∂�k/∂k|.
Once again, more such modes can add up constructively if
the second derivative of �k vanishes, therefore we expect
visible wave packets to travel with the stationary values of
vg(k). Indeed, Fig. 3(a) shows that the different wave packets

(a)

(b)

η

h

FIG. 3. (Color online) (a) Time evolution of a local distur-
bance (local quench) |�l(t)|2 with q = 1, η1 = η2 = 2.0, h1 = 0.7,
h2 = 0.8, and N = 200. The maximum speed is vmax ≈ 1.77. The
corresponding global quench is illustrated in Fig. 1(b) for comparison.
(b) Maximal group velocity vmax as a function of η and h.

corresponding to the local extrema of vg(k) propagate through
the lattice while maintaining their respective wave forms.

The fastest wave packets travel with the maximal group
velocity vmax, and the first revivals can be interpreted as
constructive interferences between them. Since we assume
cyclic boundary conditions, one can think of the spin chain
as a closed ring. In this picture the fastest wave packets first
meet halfway in the ring at time t = N/2vmax, which indeed
coincides with the first revival time in Eq. (8).

IV. NONINTEGRABLE PERTURBATIONS

In the previous section we showed that the structure of the
revivals is governed by the maximal speed of quasiparticles
in the system. We found that as long as the quasiparticles
exist, the details of the quench are not relevant. There is
universality within the integrable behavior of the system. At
this point we wonder whether there is universality beyond
the quasi-free system. The local physics induced by the local
Hamiltonian might imply that as long as information is not
completely lost—as in the case of an infinite system—revivals
can be observed due to the recombination of the fastest signals
even when these are not point-like and do not correspond to
quasiparticles. To investigate this possibility, we now study
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(a) (b)

FIG. 4. (Color online) Loschmidt echo for the quenched XZ spin
chain with periodic boundary conditions in the integrable case g2 =
0 (a) and the nonintegrable case g2 = 0.3 (b). The other quench
parameters are η1 = η2 = 1.0, h1 = 10.0, h2 = 4.0, and g1 = 0.0 in
both parts. Since N = 40 and vmax = 1, Eq. (8) gives Trev = 20.

the robustness of the revival structure against nonintegrable
perturbations.

A. XZ spin chain

We start by considering the XZ spin chain, which contains
an additional σ z

l σ z
l+1 coupling with respect to the quantum

Ising model (η = 1):

H = −1

2

N∑
l=1

(
σx

l σ x
l+1 + gσ z

l σ z
l+1 + hσ z

l

)
. (12)

This Hamiltonian is nonintegrable, and we simulate the quan-
tum quench by exact numerical diagonalization. To achieve
a relatively large system size (N � 50), we take the limit of
large field (h � 1), restricting the effective Hilbert space to
states where almost all spins are aligned with the field.

As shown in Fig. 4, the structure of the revivals is clearly
visible for |g| � 0.5, and hence this structure is universal for
a range of the nonintegrability parameter g. The revival times
scale linearly with N , and the range of visibility is largely
independent of both the system size N and the magnetic field
h. We find that pronounced revivals gradually disappear in
the range 0.3 < |g| < 0.7 for all 20 � N � 50 when h = 4
is fixed, and for all 2 � h � 100 when N = 20 is fixed.
Since vmax ∼ 1 in the Ising model for h � 1, we see that
the nonequilibrium dynamics is dominated by the σx

l σ x
l+1

term in Eq. (12). The XZ spin chain is therefore significantly
nonintegrable for |g| ∼ 0.5, even in the h → ∞ limit. This
claim is further supported by the fact that the visibility range
in g does not depend on h. We finally note that the equilibrium
(long-term average) value of the magnetization is strongly
dependent on the initial state and so this equilibration is not
thermalization, even though the system is nonintegrable [15].

B. Random disorder in the field

Now we consider another integrability breaking pertur-
bation to the XY spin chain. We introduce a site-dependent
external field component el to the Hamiltonian that explicitly
breaks the translational invariance and the integrability of the
model. The total site-dependent field is hl = h + el , where el is
randomly picked from a uniform distribution with a maximum
amplitude ε in the sense −ε < el < ε.

(a) (b)

FIG. 5. (Color online) Loschmidt echo for the transverse field
Ising model when the external field has a small site-dependent
component of varying magnitude: η1 = η2 = 1.0, N = 13, periodic
boundary conditions. (a) Noncritical case: h1 = 0.5, h2 = 0.8, ε1 =
0.0, ε2 = e. Equation (8) gives Trev = 8.12 for ε = 0.0. (b) Critical
case: h1 = 0.5, h2 = 1.0, ε1 = 0.0, ε2 = e. Equation (8) gives Trev =
6.5 for ε = 0.0.

Using exact diagonalization and exploiting the fact that the
Hamiltonian decomposes to subspaces of odd and even number
of spins, we can assess the effect of the site-dependent field
disturbance for modest sized systems N � 13. The simulations
run on such systems give supporting evidence that the revival
structure is essentially unchanged for a range of the amplitude
ε. In Fig. 5 the Loschmidt echo for a critical and a noncritical
system is plotted with various values of ε to illustrate this
observation.

V. DISCUSSION

We found in Sec. III that the transverse field XY model
exhibits a universal structure of revivals that is independent of
the initial state and the size of the quench. Since the XY model
is integrable and its exact solution is in terms of free fermionic
quasiparticles, there is a straightforward interpretation for the
phenomenon of revivals. The information propagates around
the system via wave packets of quasiparticles, and the first
revival occurs when the wave packets traveling with the
maximal group velocity vmax meet. This interpretation explains
the universality of the revival structure since vmax only depends
on the dispersion relation of the quasiparticles associated with
the quench Hamiltonian (and nothing which would be related
to the initial state).

On the other hand, the robustness against nonintegrable
perturbations found in Sec. IV suggests something more
generic than the quasiparticle interpretation. The quasiparticles
of the perturbed system are no longer free, but there is a
finite interaction between them. For the XZ spin chain, this
interaction is on the order of g as can be verified by looking
at the exact eigenvalues for finite systems. This implies that
the quasiparticles decay on the time scale of 1/g, and hence
one would not expect to see revivals at time scales much larger
than 1/g. However, the evidence is on the contrary: at N = 50
and g ∼ 0.5, revivals are still clearly visible at t ∼ 50, which
is an order of magnitude larger than 1/g ∼ 2.

It appears that the revival structure is a nonequilibrium
property that is beyond integrability and the existence of stable
quasiparticles. Here we provide a more generic interpretation
in terms of locality. Quantum many-body physics is generally
described by Hamiltonians that can be written as sums of
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local operators. The locality of the Hamiltonian has profound
consequences on the dynamics of the system [21]: there exists
an emergent light cone for the propagation of information
such that signals outside the light cone are exponentially
suppressed. The characteristic speed of the light cone gives the
maximal speed of information in the system, and it is called
the Lieb-Robinson speed vLR. In general, it depends on both
the graph of the system and the strengths of the interactions
in the Hamiltonian.

We speculate that the revival structure described in the
previous sections is much more generic and valid whenever a
many-body quantum system has local dynamics, as long as the
integrability breaking is not too strong and hence information
is not completely lost in the system. Since the propagation of
information is governed by vLR, the revival time scale becomes
Trev � L/vLR in general. In the integrable case, vLR reduces to
the quasiparticle speed vmax, and hence we recover the revival
time scale in Eq. (8). On the other hand, the locality of the
dynamics is intact in the nonintegrable case as well, providing
a natural explanation for the robustness of the revival structure.

VI. SUMMARY

In this paper we studied the phenomenon of revivals after a
quantum quench in the transverse field XY model, and found
a nontrivial revival structure that cannot be obtained from a
simple spectral analysis. It was shown that this structure is

universal in the sense that it does not depend on the initial
state and the size of the quench. Revivals were shown to be
related to quasiparticles propagating around the system with a
finite maximum speed vmax, and a corresponding estimate for
the revival time scale was established.

We also investigated the effect of nonintegrable pertur-
bations on the structure of the revivals. In particular, we
considered the XZ spin chain and a random disorder in the
magnetic field. It was found that the revival structure is clearly
visible at time scales far beyond the lifetime of quasiparticles,
implying that something more generic than integrability is
behind the phenomenon of revivals. In perspective of this,
we proposed a generic connection between revivals and
locality, where the quasiparticle speed vmax generalizes into
the Lieb-Robinson speed vLR. We believe that a thorough
understanding of this important connection requires further
study of nonintegrable systems, for example, studying how
the entanglement production in the subsystem is related to the
loss of the revival structure.
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