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ABSTRACT

We propose a simple yet rich model to extend strategic
games to the quantum setting, in which we define quantum
Nash and correlated equilibria and study the relations be-
tween classical and quantum equilibria. Unlike all previous
work that focused on qualitative questions on specific games
of very small sizes, we quantitatively address the following
fundamental question for general games of growing sizes:

How much “advantage” can playing quantum strate-
gies provide, if any?

Two measures of the advantage are studied.

1. Since game mainly is about each player trying to max-
imize individual payoff, a natural measure is the increase of
payoff by playing quantum strategies. We consider natural
mappings between classical and quantum states, and study
how well those mappings preserve equilibrium properties.
Among other results, we exhibit a correlated equilibrium p
whose quantum superposition counterpart > /p(s)|s) is
far from being a quantum correlated equilibrium; actually a
player can increase her payoff from almost 0 to almost 1 in a
[0, 1]-normalized game. We achieve this by a tensor product
construction on carefully designed base cases. The result
can also be interpreted as in Meyer’s comparison [47]: In a
state no classical player can gain, one player using quantum
computers has an huge advantage than continuing to play
classically.

2. Another measure is the hardness of generating corre-
lated equilibria, for which we propose to study correlation
complezity, a new complexity measure for correlation gen-
eration. We show that there are n-bit correlated equilibria
which can be generated by only one EPR pair followed by
local operation (without communication), but need at least
log,(n) classical shared random bits plus communication.
The randomized lower bound can be improved to n, the
best possible, assuming (even a much weaker version of) a
recent conjecture in linear algebra. We believe that the cor-
relation complexity, as a complexity-theoretical counterpart
of the celebrated Bell’s inequality, has independent interest
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in both physics and computational complexity theory and
deserves more explorations.
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F.1.3 [Computation by Abstract Device]: Relations
among complexity measures; F.m [Theory of Computa-
tion]: Miscellaneous

General Terms
Theory
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1. INTRODUCTION
1.1 Game theory

Game theory is a branch of applied mathematics to model
and analyze interactions of two or more individuals, usu-
ally called players, each with a possibly different goal. Over
decades of development, game theory has grown into a rich
field and has found numerous applications in economics, po-
litical science, biology, philosophy, statistics, computer sci-
ence, etc. Many models have been proposed to study games,
among which the most popular and fundamental ones are
strategic games (or games in strategic or normal form) and
extensive games (or games in extensive form). In the former,
the players choose their strategies simultaneously, and then
each receives a payoff based on all players’ strategies. In the
latter, the players choose their strategies adaptively in turn,
and finally when all players finish their moves, each receives
a payoff based on the entire history of moves of all players.
Variation in settings exists. For instance, if before playing
the game, each player also receives a private and random in-
put, then they are playing a Bayesian game, which belongs
to the larger class of games with incomplete information. See
standard textbooks such as [25,54] for more details.

Motivated by the emergence of Internet and other sys-
tems with a huge number of players, various algorithmic
and complexity-theoretical perspectives from computer sci-
ence have been added as one more dimension for studying
games. Central concepts such as equilibria and important
areas such as mechanism design have been revisited with al-
gorithmic ingredients injected. See a recent textbook [58]
for more background on this emerging field of algorithmic
game theory.



Equilibrium as a central solution concept in game the-
ory attempts to capture the situation in which each player
has adopted an optimal strategy, provided that others keep
their strategies unchanged. Nash equilibrium [50,51,60]" is
the first and most fundamental concept of equilibrium. A
joint strategy is a pure Nash equilibrium if no player has
any incentive to change her strategy. If each player draws
her strategies from a probability distribution, and no player
can increase her expected payoff by switching to any other
strategy on average of other players’ strategies, then they
are playing a mixed Nash equilibrium. Note that here we
require no correlation between players’ probabilistic strate-
gies.

One important extension of Nash equilibrium is correlated
equilibrium introduced by Aumann [3], which relaxes the
above independence requirement. We can think of a cor-
related equilibrium as being generated by a Referee (or a
“Mediator”), who samples a joint strategy from the corre-
lated distribution and sends the i-th part to Player i. Given
only the ¢-th part, Player ¢ then does not have an incen-
tive to change to any other strategy. The concept of cor-
related equilibruma captures many natural scenarios that
Nash equilibrium fails to do, as illustrated by the following
two canonical examples.

The first example is a game called Traffic Light, in which
two cars, one heading east and the other heading north,
drive to an intersection at the same time. Both cars have
choices of passing and stopping. If both choose to pass, then
an accident would happen, in which case both players suffer
a lot. If exactly one car passes, then this car does not need
to wait and thus gets payoff 1, and the other car (which
chooses to stop) has payoff 0. If both cars stop then both
have payoff 0. The payoff is summarized by the following
payoff bimatrix, where in each entry, the first number is the
payoff for Player 1 (row player) and the second is for Player
2 (column player).

Cross Stop
Cross | (-100,-100) | (1,0)
Stop |___(0,1) | (0,0)

There are two pure Nash equilibria in this game, namely
(Cross,Stop) and (Stop,Cross). But neither of them is fair,
since it clearly prefers one to the other. Naturally, the two
cars have different preferences over these two Nash equilib-
ria. In the language of games, it is the issue of which equilib-
rium the players should agree on. There is actually a third
Nash equilibrium, which is a mixed one: Each car crosses
with probability 1/101. This solves the fairness issue, but
loses the efficiency: The expected total payoff is very small
(0) because most likely both cars would stop. Even worse,
there is a positive probability of car crash. The issue is easily
solved in the real world by introducing a traffic light, from
which each car gets a signal. Each signal can be viewed as a
random variable uniformly distributed on {red, green}. But
the two random signals/variables are designed to be per-
fectly correlated that if one is red, then the other is green.
This is actually a correlated equilibrium, i.e. a distribu-
tion over {Cross,Stop}x{Cross,Stop} with half probability

ntroduced by von Neumann and Morgenstern [60] who
showed existence of a Nash equilibrium in any zero-sum
game, existence later extended by Nash to any game with a
finite set of strategies [51].
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on (Cross,Stop) and half on (Stop,Cross). It is easy to ver-
ify that it simultaneously achieves high payoff, fairness, and
zero-probability of car accident.

The second example is a game called Battle of the Sezes,
in which a couple want to travel to a city in a vacation, and
Alice prefers A to B, while Bob prefers B to A. But both
would like to visit the same city together rather than going
to different ones separately. The payoffs are specified by the
following bimatrix.

A B
A | (24) | (0,0)
B | (0,0) | (4,2)

Again, there are two pure Nash equilibria and the two people
prefer different ones, thus resulting a “Battle” of the Sexes.
A good solution is to take the correlated equilibrium, (A, A)
with half probability and (B, B) with half probability, gen-
erated by a mediator flipping a fair coin.

Apart from providing a natural solution concept in game
theory as illustrated above, correlated equilibria also enjoy
computational amenity for finding and learning in general
strategic games as well as other settings such as graphical
games ([58], Chapter 4 and 7).

1.2 Quantum games

Since there is no reason to assume that people interacting
with quantum information are not selfish, quantum games
provide a ground for understanding and governing quantum
interactions of selfish players. There is a large collection of
literature under the name of “quantum games”, which can
be roughly divided into three tracks.

1. Nonlocal games. This is a particular class of Bayesian
games in the strategic form, such as GHZ game, CHSH
game, Magic Square game, etc. These games are mo-
tivated by the non-locality of quantum mechanics as
opposed to any classical theory depending on “hidden
variables”. In these games, each of the two or more par-
ties receives a private input drawn from some known
distribution, and the players output some random vari-
ables, targeting a particular correlation between their
outputs and inputs. The main goal of designing and
studying these games is to show that some correla-
tions are achievable by quantum entanglement but not
classical randomness, thus providing more examples in
the type of Bell’s theorem [6], which refutes Einstein’s
program of modeling quantum mechanics as a classi-
cal theory with hidden variables. See [10] for a more
comprehensive survey (with an emphasis on connec-
tions to communication complexity). In recent years
non-local games also found connections to multi-prover
interactive proof systems in computational complexity
theory; see, for example, [15,33,35-38].

2. Quantization of strategic games. Unlike the first track
of research motivated by physics (and computational
complexity theory), the second track of work aims at
quantizing classical strategic game theory. The basic
setting for a classical strategic game of k players is
as follows. Player i has a set S; of strategies and a
utility function u;; when the players take a joint strat-
egy s = (s1,...,sk), namely Player i takes strategy s;,
each Player i gets a payoff of u;(s). There are various
models proposed to quantize this classical model. The
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basic approach is to extend each Player i’s strategy

space from S; to the Hilbert space H; = span(S;), and 1

to allow the player to take quantum operations on H;. s s'

Eventually a measurement in the computational basis
is made to get a (random) classical joint strategy s,
which decides the payoff of the players by the classical

F functi Figure 2: Classical strategic games: Referee samples
payoff functions w;.

a joint strategy s and send the i-th part to Player
The approach was implemented in the seminal pa- i, who then applies a classical operation C; resulting
per [22] as follows; see Fig 1. There is an extra party, in a possibly different strategy s;.

called Referee, who applies a unitary operation J on |0)

(in the Hilbert space of dimension ). |S;|), and parti-

tions the state J|0) into k parts for the k players. The Our goal is to study quantitative problems of general strate-

players then perform their individual quantum opera- gic games of size n in a natural quantization model. To this

tions on their own spaces, after which Referee collects end, we first give an arguably more natural model, and then

these parts, performs the inverse operation J~!, and study two measures of quantum advantages.

finally measures the state in the computational basis

to get a random joint strategy s. Players ¢ then gets 1.3.1 Model

payoff u;(s). Despite of the prevalence, the EWL-model also drew con-
troversies. The main result in [22] was that a quantum strat-

The EWL-model [22] unleashed a sequence of following o . . =l .
studies under the same model [8, 20,21, 23, 24, 43, 55]. egy can “escape” the Prisoner’s dilemma, and this was ob-
P tained on the assumption that each player is only allowed to

apply a specific subset of unitary operations. As pointed out
in [7], the assumption does not seem to “reflect any physi-
cal constraint (limited experimental resources, say) because
this set is not closed under composition”. Also shown in
the paper [7] is that without the assumption, namely if the

Despite the rapid accumulation of literature on the
same or similar model, controversy also exists. As
pointed out in [13], there are “ad hoc assumptions and
arbitrary procedures scattered in the field”. We will
elaborate on this shortly.

3. Quantum extensive games. In a seminal work [47], players are allowed to use arbitrary local unitary operations,
Meyer showed that in the classical Penny Matching the proposed strategy in [22] is not a quantum Nash equilib-
game, if (1) Player 1 is allowed to use quantum strate- rium any more. For this reason, we do not want to restrict
gies but Player 2 is restricted to classical strategies, players’ possible actions if.l any way; we allgw each player
and (2) the sequence of moves is (Player 1, Player 2, to take any quantum admissible operation (i.e. any TPCP
Player 1), then Player 1 can win the game for sure. map).' ) )
This demonstrates the power of using quantum strate- A bigger difference of the EWL-model and ours, illus-
gies under some particular restriction on the other trated in Figure 3, is that we remove operation J ! in the
player’s strategies as well as the sequence of moves. EWL-model. We ﬁpd that this corr(?sponds t.o the class.i—
Gutoski and Watrous [28] initializes studies of the gen- cal model more precisely. Recall that in a classical strategic
eral refereed game in the extensive form. The model game, illustrated in Figure 2, Referee samples a joint strat-
adopted there is very general, easily encompassing all cey s = (51,...,8k) € S from a classical diStI‘ibl.ltiOIl ponls,
previous work (and the model in our paper) as special and gives s; to Player ¢, who may apply a cla?swal operator
cases. It has interesting applications such as a very C; and output a possibly different strategy s;. The players
short and elegant proof of Kitaev’s lower bound for then receive payoffs u;(s, ..., s;,). Note that different than
strong coin-flipping. The generality makes the frame- in the EWL-model, Referee in the classical model does not
work and techniques potentially useful in a broad range undo the initial sampling.
of applications, though probably also admits less struc- A related question is why not going to the more general
tures or at least makes it challenging to discover strong setting by letting Referee apply another joint operation K
properties. Other examples of quantum extensive games before the final measurement?? Because classically Referee

include [29], which has a very small number of rounds. ?The same question in another form: Why not allow a gen-

eral measurement instead of the measurement in the com-
1.3 Our Results putational basis?

Ly
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Figure 3: Our model for quantization of strate-
gic games: No action of Referee after the players’
moves, and the operations by Referee and the play-
ers are general quantum admissible ones.

does not do any joint re-sampling after players’ actions as
well — Referee’s role is simply to sample and recommend
strategies to players. Another advantage of not having K
is that now fundamental concepts such as quantum equilib-
rium (that we shall define next) will be only of the classical
game under quantization, rather than also of an extra in-
troduced quantum operator K. Last, if one really prefers
to have K, then which K to choose? In many games such
as the two canonical examples in Section 1, Nature gives
the payoff and Nature does not perform any joint measure-
ment. (Consider for example the Traffic Light game: After
the two cars get the signals and decide their moves, they
do not send their pass/stop decision to any Referee for any
joint measurement — They simply perform the actions and
then naturally face the consequences.) So even if one likes
to study various K’s, the case of K = I should be probably
the first natural one to consider.

Besides the above “categorial” reason not to have K, we
can also give the following “consequential” justification: Stud-
ies of the more general model allowing K can be easily car-
ried out by studies of our simple model without K. Indeed,
for any game with utility functions u;, we define a new game
with utility functions wj(s) = u;(K(|s))), where K(|s)) is
just the state obtained by applying operation K on |s) (and
u;(K(]s))) = Eg[ui(s")] where s’ is drawn from the distri-
bution of measuring K(|s)) in the computational basis). It
is immediate that studies on p in the original game {u;} (in
the model with K) translates to studies on p in the new
game {u;} (in our model without K). For instance, p is a
quantum correlated equilibrium in game {u;} in the modle
with K if and only if p is a quantum correlated equilibrium
in the game {u;} in our model.

A final remark about the generality of the model: It is
admitted that there are may be ways to further generalize
our model. But models should not be simply measured by
generality, otherwise Nash equilibrium should not have been
separately studied because it has so many (naturall) gener-
alizations, and strategic games should not have been sepa-
rately studied because they are just a special case of exten-
sive games (as two-move imperfect extensive games). Our
goal was never to identify the most general model (which
probably does not exist at all), but to propose a model
which is natural, simple, fundamental, and hopefully rich
in interesting questions — like the model of classical strate-
gic games.

So our model finally looks like the one in Figure 3: Referee
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applies a joint operator ¥ on a all-zero state to create a
quantum state p, and gives the i-th part of it to Player i, who
applies ®; followed by a measurement in the computational
basis. The players then receive their payoffs according to
the functions u;.

Without the referee’s action J !, our model is simpler. In
[8], three criteria were raised for an ideal quantization of clas-
sical strategic games: (a) S; is generalized to H; = span(S;),
(b) strategies in H are to be entangled, and (c) the resulting
game generalizes the classical game. Note that despite being
simpler than the EWL model, ours easily satisfies all of them
as well. One may wonder whether ours is too simple to be of
any mathematical interest. It turns out, as will be shown in
the following sections, that our model has many interesting
mathematical questions with connections to communication
complexity, non-convex optimization and linear algebra.

The concept of equilibria can be naturally extended to
the quantum case. Recall that in a classical game, a joint
strategy s = (s1,...,8k) € S is sampled from a classical
distribution p on S and Player i receives an expected payoff
Esplui(s)]. A classical distribution p is an equilibrium if
no player can increase her expected payoff by any classical
local operation. Now our model admits an almost word-
by-word translation of the above definition to the quantum
case: A joint strategy s = (s1,...,8%) € S is measured
from a quantum mixed state p on H, and Player i receives
an expected payoff Esc p[u;(s)]. A quantum state p is an
equilibrium if no player can increase her expected payoff by
any quantum local operation. Here the measurement is in
the computational basis S, only on which the utility function
is defined in the first place.

1.3.2  Question

Other than the model, what also distinguishes the present
work from previous ones is the generality of the classical
games under quantization. Most of the previous work focus
on particular games, usually of small and fixed sizes. For
example, [12,20-22,55] considered the Prisoner’s Dilemma
game, [46] considered the Battle of the Sexes game, and [47]
considered the Penny Matching game, and there are many
other studies on specific 2 X 2 or 3 x 3 games, e.g. [17,17,23,
24,32], just to name a few.

In addition, most of the previous work focused on quali-
tative questions such as whether playing quantum strategies
has any advantage. While it is natural to start at qualitative
questions on specific and small examples, it is surely desir-
able to have a systematic study on quantitative properties
for general games. In particular, our aim is to understand
the following fundamental question on general games of k
players with n strategies for each player.

Central Question: How much advantage can play-
ing quantum strategies provide, if any?

Depending on how the advantage is measured, we study
the question in two ways, summarized as follows.

1.3.3  Quantum advantage 1: Increase of payoff

Since games are all about players trying to get maximum
payoffs, the first measure (of advantage) we naturally take is
the increase of payoffs. We shall consider natural mappings
between classical and quantum states, and study how well
those mappings preserve the equilibrium properties. Recall



that a quantum state p in space H = ®; H; is a quantum cor-
related equilibrium if no Player i can increase her expected
payoff by any local operation. If further p = ®;p; for some p;
in H;, then it is a quantum Nash equilibrium. The definition
encompasses the classical correlated and Nash equilibria as
special cases.

Under this definition, we relate classical and quantum
equilibria in the following ways. Given a quantum state,
the most natural classical distribution it induces is given by
the measurement in the computational basis S. That is, p
induces p where p(s) = ps,s. Not surprisingly, one can show
that if p is a quantum Nash (or correlated) equilibrium then
p is a classical Nash (or correlated) equilibrium.

The other direction, namely transition from classical to
quantum, is more complicated but interesting. A classi-
cal distribution p over S has two natural quantum counter-
parts: 1) classical mizture: p(p) = >, p(s)|s)(s|, the mix-
ture of the classical states, and 2) quantum superposition:
[¥(p)) = >, +/p(s)|s). We regard the second mapping as
more important because firstly, this is really quantum — the
first mapping is essentially the classical state itself — and
secondly, this mapping is the most commonly used quan-
tum superposition of a classical distribution in known quan-
tum algorithms, such as starting state in Grover’s search [27]
and the states to define the reflection subspaces in Szegedy’s
quantization of random walks [57]. It so happens that it is
also the most intriguing case of our later theorems.

One can also consider the broad class of quantum states
p satisfying p(s) = ps,s, including the above two concrete
mappings as special cases. Now the question is, do these
transformations keep the Nash/correlated equilibrium prop-
erties? Note that if the answer is yes, then analysis of quan-
tum games largely reduces to that of classical games, and a
quantum game designer that wants quantum equilibria with
some specific properties can easily first find classical equilib-
ria and then use these mappings to get quantum equilibria
automatically.

It turns out that one needs to be very careful about which
map to use: The classical mixture mapping keeps both Nash
and correlated equilibrium properties, but the quantum su-
perposition mapping only keeps the Nash equilibrium prop-
erty. As to the general class of correspondence, no equilib-
rium is guaranteed to be kept.

Based on these answers, it is more desirable to study them
quantitatively: After all, if [¢)(p)) is not an exact correlated
equilibrium but always an e-approximate one, in the sense
that no player can increase her payoff by more than a small
amount ¢, then the interest of using quantum strategies sig-
nificantly drops, or the tasks for a quantum game designer
is still easy as long as she can tolerate a small € inaccuracy.
Therefore, we are facing the following question. (For proper
comparison, assume that all games are [0,1]-normalized, i.e.
all utilities take values from [0,1].)

Question 1: In a [0,1]-normalized game, what is
the largest gain of payoff by playing a quantum
strategy on a quantum counterpart state of a clas-
sical equilibrium?

The question can naturally be formulated as a non-convex
program, which is notoriously hard to analyze in general.
Actually even the simple case of n = 2 is already quite
nontrivial to solve. The maximum gain turns out to be a
small constant close to 0.2, but neither the analysis nor the
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solution admits a generalization to higher dimensions in any
straightforward way. For general n, there is no clue what
the largest gain should be. Nevertheless, we could show the
following, among other results.

THEOREM 1.1. 1. There exists a correlated equilibrium p
in a [0,1]-normalized (n x n)-bimatriz game s.t.

ur(|#(p))) = O(1/ logn), (1)

and

ur (19 (p))) =1 - O(1/logn), (2)

for some local quantum operation ®,.> There is also a cor-

related equilibrium p with the multiplicative factor

u(®1(|9(p)) _ 10585
wi([y(p) : (3)

2. There exists a Nash equilibrium p in a [0, 1]-normalized
(n X n)-bimatriz game, and a quantum state p with pss =
(

p(s), s.t.

w(p)=1/n  and ui(®:(p) =1, (4)

for some local quantum operation ®1. The additive increase
of 1—1/n and the multiplicative increase of n are the largest
possible even for all correlated equilibria p.

Note that the optimality proved in the second part also gives
an upper bounds of the maximum additive and multiplica-
tive gains for |¢(p)) in the first part. Closing the gaps be-
tween the lower bounds provided in the first part and the
general upper bounds in the second part is left open.

The main approach for the result in the first part of the
above theorem is to construct large games from smaller ones.
What we need for the construction is to preserve the equilib-
rium and to increase the “quantum gain”, the gain by play-
ing quantum strategies. It turns out that the tensor product
preserves the equilibrium property, and can increase the gain
for small games if some parameters are set properly. The de-
sign of the base games is also not straightforward: Taking
the optimal solution to the n = 2 case does not work be-
cause taking power on that game actually decreases the gain.
In the final solution, the base game itself has a very small
quantum gain, but when taken power, the classical-strategy
utility drops much faster than the quantum-strategy utility,
creating a gap almost as large as 1.

The results in the theorem can also be interpreted as a
comparison in the sense similar to [47]. Imagine that a quan-
tum state p is given to the two players, who are both classical
in the sense that once they take p, it collapses to the compu-
tational basis. Since the distribution given by pss is a CE,
no player has incentive to deviate. But if the first player
becomes quantum, then she may significantly improve her
payoff from 1/n (almost nothing) all the way to 1 (the max-
imum).

1.3.4  Quantum advantage 2: Correlation generation

We also study the quantum advantage from a complexity-
theoretical perspective. As we have mentioned, correlated
equilibria possess game theoretical usefulness and enjoy bet-
ter computational tractability. But to really use such a good
equilibrium, someone has to generate it, which makes the
hardness of its generation an interesting question. For this,

30 hides a poly(loglog(n)) factor.



we propose a new complexity measure, called correlation
complexity, defined as follows.

Take two-party case, for simplicity, where Alice and Bob
alm to generate a correlation. Since local operation cannot
create correlation, they start from some “seed”, which can be
either a shared classical randomness or a quantum entangled
state. Then they perform local operations and finally output
the target correlation. We are concerned with the following
question.

Question 2: To generate the same correlation,
does quantum entanglement as a seed have any
advantage compared to the classical shared ran-
domness? If yes, how much?

Note that this question is, in spirit, not new. Actually the
entire class of non-local games study questions of the same
flavor. However, a crucial part in non-local games is that
the two parties are given private (and random) inputs, which
are necessary for differentiating the power of classical hidden
variable and that of quantum entanglement in previous non-
local game results.

Without the private inputs, our model is simpler and
thus more basic. An immediate question is whether such a
bare model still admits any separation of classical and quan-
tum powers in generating correlations. This paper gives a
strongly affirmative answer.

THEOREM 1.2. For anyn > 2, there are correlations (X,Y)

which take at least n classical bits to generate classically, but
only need one EPR pair to generate quantum mechanically.

In proving the classical lower bound, we identify the non-
negative rank as the correct measure to fully characterize the
randomized correlation complexity. The nonnegative rank
is a well-studied measure in linear algebra and it has many
applications to statistics, combinatorial optimization [65],
nondeterministic communication complexity [44], algebraic
complexity theory [53], and many other fields [14].

The hidden asymptotic lower bound for randomized corre-
lation complexity of a size-n correlation is actually Q(logn).
The bound can be improved to n, the largest possible, as-
suming a recent conjecture in linear algebra [5]. We actually
have a bold conjecture that, with probability 1, a random
correlation that can be generated by one EPR pair has the
randomized correlation complexity of n. Note that n always
suffices since for any fixed correlation (X,Y’), the two par-
ties can simply share this very same correlation as the seed
and output it. So “1 ws. n” is the largest possibly separa-
tion; this is in contrast to Bell’s inequality that even infinite
amount of classical shared randomness cannot simulate one
EPR pair. In this sense, the correlation complexity can be
viewed as a sublinear complexity-theoretical counterpart of
previous non-local games.

Coming back to the setting of games, two scenarios can
happen depending on whether the local operations are trusted
or not. In the first scenario, consider the a generalized Bat-
tle of the Seres game, where Alice and Bob are not in the
same city but want to generate some correlation p = (X,Y).
There is a publicly trusted company C, which can help to
generate p. Company C has a central server which generates
a seed and send to its local servers A and B, distributed close
to Alice and Bob, respectively. The local servers A and B
apply the local operations to generate a state which is then
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sent to Alice and Bob. Here the local operations are carried
out by the trusted servers A and B. And the complexity
that we care is the size of the seed, which is also the com-
munication between the central server to the two distributed
servers A and B. The separation of classical and quantum
correlation complexities directly applies to this scenario.

In the second scenario, the mediator sends the seed di-
rectly to Alice and Bob, who are then supposed to apply
the local operations ®; and ®» to generate the CE (X,Y).
But since now the local operations are under the control of
the players, they can apply some other local operations ®}
and ®5. So the process is an equilibrium if no player has an
incentive to apply any other local operation. The above sep-
aration can still be adapted to separate the minimum sizes
of classical and quantum seeds in some games, but in gen-
eral this scenario is more complicated and less understood,
leaving a good direction for future exploration.

1.4 More related work

The last decade has witnessed the advance of our un-
derstandings of the hardness to find a Nash equilibrium in
strategic games [11, 18]. There has also been some stud-
ies for communication complexity of finding a Nash equilib-
rium [16,31], when each player only knows her own utility
function.

In [34], Jain and Watrous also considered quantum strate-
gic games. Different than ours, their paper is concerned with
algorithmic issues (mainly on efficient parallel approximate
algorithms) and it only considers Nash equilibria in zero-sum
games, whereas our focus is in game theoretical questions,
and we consider general games, with main focus on corre-
lated equilibria.

The problem of correlation generation in the asymptotic
setting is considered in [64] for the classical case and [63]
for the quantum case. The paper [30] also studies the com-
munication complexity for generating a correlation (X,Y).
But the model there takes an average-case measure: Sup-
pose Alice samples z - X and tries to let Bob sample from
Y|(X = x), then what is the ezpected communication needed
(where the expectation is over the randomness of protocol
as well as the initial sample x +— X)? For comparison, ours
is a worst-case measure requiring that for each possible z,
Bob samples from Y|(X = z). And also note the essential
difference that protocols in [30] uses a large amount of pub-
lic coins, which is exactly the resource we hope to save. See
the last section for more discussions on this.

After an earlier version of the present paper was finished
and circulated, Yaoyun Shi firstly pointed out the paper
[2], which studies communication complexity of correlation
generation. The correlations studied there, however, are a
particular type, arising from communication complexity of
Boolean functions, while ours considers general correlations.
The second difference is that [2] only considers the com-
munication complexity, but ours also considers correlation
complexity, the minimum shared resource (public random-
ness or entanglement) for generating the correlation without
any communication. It turns out that in the trusted local
operation setting, correlation complexity is the same as com-
munication complexity, both classically and quantumly. In
the randomized case, we characterize them by nonnegative
rank. The measures in the untrusted local operation setting
are of a totally different story: While correlation complex-
ity is still sublinear, there may not even be any equilibrium



communication protocol to generate the correlation. Last,
the main body in [2] studies a bounded-error generation, and
showed an exponential separation (O(logn) versus Q(y/n)),
while ours aims to generate the exact target correlation, and
showed an “infinite” separation (1 versus log, n uncondition-
ally, and 1 versus n assuming a conjecture).

Studies of computational issues of probabilistic distribu-
tions instead of Boolean functions has recently be advocated
by Viola [45,59]. It is our hope that studies of the corre-
lation complexity of distributions later help to sharpen our
understandings of various complexity questions for Boolean
functions.

After the present work posted in arXiv:1012.5141 in 2010
and presented in QIP’11, Meyer brought his work [48] to
our attention, in which he studied in a model very similar to
ours, though in a limited scenario where the players share a
pure state. Meyer also observed the result in our Theorem
3.1 in the special case of p being a pure state?, and that if
p is a NE then |¢),) is a QNE, which we mentioned at the
beginning of Section 3.3. But note that these observations
are just a small part of the present work — our focus is
quantitative studies of the quantum advantage as the two
theorems in Section 1 illustrate.

Subsequent work

The paper has caused some interest leading to further devel-
opments. While the correlation complexity can be viewed as
minimizing Referee’s seed correlation, in [39], Kerenidis and
Zhang completely removed the referee and let the players
reach a correlated equilibrium via communications among
themselves. In [56], Shi and Zhang studied the correlation
and communication complexities of generating a quantum
state. Among other results, it completely solves the prob-
lem for the pure state bounded-error case, closing the gap
left in [2]. In [62], Wei and Zhang completely character-
ized the set of quantum correlated equilibria for an arbitrary
game. In [40], Klauck, Lee and Zhang give a separation of
log(n) v.s. Q(n) between quantum and randomized correla-
tion complexities.

Organization

The rest of paper is organized as follows. In Section 2, after
reviewing model for classical strategic games and the defi-
nitions of Nash and correlated equilibria, we introduce the
quantum model and define quantum Nash and correlated
equilibria. Other notation is also set up in the section. In
Section 3, we show how natural maps between classical and
quantum states preserves equilibrium properties, giving the
proof of Theorem 1.1. Section 4 is devoted to the correla-
tion complexity, where we show proof of Theorem 1.2. In
the last section, we point out quite a number of problems
and directions for future research.

2. PRELIMINARIES, QUANTUM MODEL,
AND NOTATION

Suppose X and Y are two (possibly correlated) random
variables on sample spaces X and ), respectively. The size
of bivariate distribution p = (X,Y), denoted by size(p), is
defined as ([log,(|X|)] + [log,(|Y])])/2. Here we take the

“Meyer extended the result to mixed states in a manuscript
in 2007, which unfortunately has not been published (or
posted online).
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factor of half because we shall talk about a correlation as
a shared resource. It is consistent with the convention that
when Y = X = R, we say that they share a random variable
R of size [log,(|X])]. For a two-party quantum state p in
H' @ H? for Hilbert spaces H' of dimension D;, we also
say that the size of the p, as a shared quantum state, i
(Tlogs(D1)] + [ogy(D2)1)/2

Sometimes we view a bivariate distribution p as a matrix,
denoted by the capital P for emphasis, where the row space
is identified with X and the column space with ).

A matrix A is called nonnegative if each entry is a nonneg-
ative real number. For a nonnegative matrix A, its nonneg-
ative rank, denoted by rank, (A), is the minimum number
r such that A can be decomposed as the summation of r
nonnegative matrices of rank 1.

Suppose that in a classical game there are k players, la-
beled by {1,2,...,k}. Each player 7 has a set S; of strate-
gies. To play the game, each player i selects a strategy s;
from S;. We use s = (s1,...,sk) to denote the joint strategy
selected by the players and S = S7 X ... X Sk to denote the
set of all possible joint strategies. Each player 7 has a utility
function w; : S — R, specifying the payoff or utility u;(s) to
player i on the joint strategy s. For simplicity of notation,
we use subscript —i to denote the set [k] — {i}, so s_; is
(S1y+-+ySi—1,8i+1,...,8k), and similarly for S_;, p_;, etc.

A game is [0, 1]-normalized, or simply normalized, if all
utility functions have the ranges in [0, 1].

2.1 Classical equilibria

Nash equilibrium is a fundamental solution concept in
game theory. Roughly, it says that in a joint strategy, no
player can gain more by changing her strategy, provided that
all other players keep their current strategies unchanged.
The precise definition is as follows.

DEFINITION 2.1. A pure Nash equilibrium is a joint strat-
egy s = (s1,...,8K) € S satisfying that
wi(si,5-4) > wi(s;,5-4) (5)
for alli € [k] and all s; € S;.
Pure Nash equilibria can be generalized by allowing each
player to independently select her strategy according to some

probability distribution, leading to the following concept of
mized Nash equilibrium.

DEFINITION 2.2. A (mixed) Nash equilibrium (NE) is a

product probability distribution p = p1 X ... X pi, where each
pi 1s a probability distributions over S;, satisfying that

Zp S_ Zul sl,s i >Zp

for alli € [k], and all s;,s; € S; with p;(s;) > 0.

s—i)ui(s, 5-i), (6)

Informally speaking, for a mixed Nash equilibrium, the
expected payoff over probability distribution of s_; is max-
imized, ie. Es_,[ui(si,s-:)] > BEs_,[ui(si,s-:)]. A fun-
damental fact is the following existence theorem proved by
Nash.

THEOREM 2.3  (NasH, [51]). Every game with a finite
number of players and a finite set of strategies for each
player has at least one mizxed Nash equilibrium.



There are various further extensions of mixed Nash equi-
libria. Aumann [3] introduced a relaxation called correlated
equilibrium. This notion assumes an external party, called
Referee, to draw a joint strategy s = (s1, ..., sk) from some
probability distribution p over S, possibly correlated in an
arbitrary way, and to suggest s; to Player ¢. Note that Player
i only sees s;, thus the rest strategy s_; is a random variable
over S_; distributed according to the conditional distribu-
tion pls,, the distribution p conditioned on the i-th part
being s;. Now p is a correlated equilibrium if any Player 1,
upon receiving a suggested strategy s;, has no incentive to
change her strategy to a different s} € S;, assuming that all
other players stick to their received suggestion s_;.

DEFINITION 2.4. A correlated equilibrium (CE) is a prob-
ability distribution p over S satisfying that

ZP(Si, S—i)ui(8i,8-5) > Zp(si, s_i)ui(siys—i),  (7)

for all i € [k], and all s;,s; € S;.

The above statement can also be restated as
Esﬂ'gu\si [ui(sia S*i)] > Esfif*ﬂ‘si [ui (827 S*Z)} (8)

where p|s; is the distribution p conditioned on the i-th com-
ponent being s;. Notice that a classical correlated equilib-
rium p is a classical Nash equilibrium if p is a product dis-
tribution.

Correlated equilibria captures natural games such as the
Traffic Light and the Battle of the Sexes mentioned in Sec-
tion 1. The set of CE also has good mathematical properties
such as being convex (with Nash equilibria being some of
the vertices of the polytope). Algorithmically, it is compu-
tationally benign for finding the best CE, measured by any
linear function of payoffs, simply by solving a linear pro-
gram (of polynomial size for games of constant players). A
natural learning dynamics also leads to an approximate CE
([58], Chapter 4) which we will define next, and all CE in a
graphical game with n players and with log(n) degree can
be found in polynomial time ([58], Chapter 7).

Another relaxation of equilibria changes the requirement
of absolutely no gain (by deviating the strategy) to gaining
a little, as the following approximate equilibrium defines.

DEFINITION 2.5. An e-additively approximate correlated
equilibrium is a probability distribution p over S satisfying
that

B plus(5(s1)5-)] < Baplui(s)] + €, (9)

for any i and any function s; : S; — S;. For such distri-
butions p, we say that the mazimum additive incentive (to
deviate) is the minimum e with the above inequality satisfied.
Furthermore, the distribution p is called an e-additively ap-
proximate Nash equilibrium if it is a product distribution
pP1 X ... X Pg.

An m-multiplicatively approximate correlated equilibrium
is a probability distribution p over S satisfying that

Escplui(si(si)s—i)] < m - Byeplui(s)), (10)

for any i and any function s; : S; — S;. For such distri-
butions p, we say that the maxrimum multiplicative incen-
tive (to deviate) is the minimum m with the above inequal-
ity satisfied. Furthermore, the distribution p is called an

46

e-multiplicatively approximate Nash equilibrium if it is a
product distribution p1 X ... X pi.

Note that one can also define a stronger notion of approxima-
tion by requiring that the gain is at most € for each possible
s; in the support of p. Definition 2.5 only requires the gain
be small on average (over s;), but it is usually preferred
because of its nice properties, such as the aforementioned
result of being the limit of a natural dynamics of minimum
regrets ([58], Chapter 4).

2.2 Quantum equilibria

In this paper we consider quantum games which allows
the players to use strategies quantum mechanically. We as-
sume the basic background of quantum computing; see [52]
and [61] for comprehensive introductions. The set of ad-
missible super operators, or equivalently the set of com-
pletely positive and trace preserving (CPTP) maps, of den-
sity matrices in Hilbert spaces Ha to Hpg, is denoted by
CPTP(Ha,Hp). We write CPTP(H) for CPTP(H, H).

For a strategic game being played quantumly, each player
¢ has a Hilbert space H; = span{s; : s; € S;}, and a joint
strategy can be any quantum state p in H = ®;H;. Since
we want to quantize classically defined games rather than
creating new rules, we respect the utility functions of the
original games. Thus we only talk about utility when we get
a classical joint strateg