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Proposal for observing non-Abelian statistics of Majorana-Shockley fermions in an optical lattice
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Besides the conventional bosons and fermions, in synthetic two-dimensional (2D) materials there could exist
more exotic quasiparticles with non-Abelian statistics, meaning that the quantum states in the system will be
transformed by noncommuting unitary operators when we adiabatically braid the particles one around another.
Here, we propose an experimental scheme to observe non-Abelian statistics with cold atoms in a 2D optical lattice.
We show that the Majorana-Schockley modes associated with line defects can be braided with non-Abelian
statistics through adiabatic shift of the local potentials. We also demonstrate that the braiding operations are
robust against typical experimental imperfections and the readout of topological qubits can be accomplished by
local measurement of the atom number.
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I. INTRODUCTION

Majorana fermions are exotic particles which, unlike elec-
trons and positrons, constitute their own antiparticles [1] and
exhibit non-Abelian statistics [2]. They are important not only
because of their fundamental role in condensed matter [2–4]
and high energy physics [1,5], but also because of their promis-
ing practical applications in topological quantum information
processing tasks, such as the synthesis of a fault-tolerant quan-
tum computer [6,7] or a certifiable random number generator
[8]. However, in spite of extensive exciting progresses [9–16],
the unambiguous detection of Majorana fermions and the
probe of their non-Abelian statistical properties remain one
of the foremost ongoing goals in current physics.

Laser controlled cold atoms provide a powerful experimen-
tal platform to realize exotic states of matter [17–19]. Several
proposals have been made to observe non-Abelian statistics
based on control of vortex states in a p + ip superfluid
[20–22]. A vortex in a p + ip superfluid of odd vorticity traps
a zero-energy mode corresponding to a Majorana fermion.
The Majorana fermions in different vortices are found to obey
non-Abelian statistics [23–25]. An intriguing proposal has
been made to braid the vortex Majorana fermions in a cold
atomic gas by a focused laser beam [21,22]. An experimental
implementation of this proposal, however, is still challenging
for several reasons: first, besides the Majorana mode a vortex
also traps a number of other in-gap states [21]. The small
energy difference between these states and the zero-energy
Majorana mode sets a tough requirement for the relevant
energy and time scales. Second, moving the vortex by a focused
laser beam may change its trapped modes, and a quantitative
understanding of this process is still lacking. Finally, a natural
way to realize the p + ip superfluid is based on the p-wave
Feshbach resonance [26], but the latter is difficult to stabilize
in free space [27,28]. Very recently, another nice idea has
been suggested to braid Majorana modes associated with
dislocations in an optical lattice [29]. Insertion of dislocations
requires a change of structure of the optical lattice, which is
experimentally challenging and yet to be demonstrated.

In this paper, we propose an experimental scheme to
observe non-Abelian statistics with cold atoms in an optical
lattice in a vortex-free configuration. A p-wave superfluid

based on the Feshbach resonance could be stabilized in
an optical lattice due to the quantum Zeno effect [28,30].
The recent remarkable experimental advance has allowed
single-site addressing in a two-dimensional (2D) optical lattice
[31–35]. With this capability, we can create a line defect in a
2D lattice simply by shifting the chemical potential along the
line. Different from dislocations, this line defect requires no
structure change of the underlying optical lattice and is ready
to be implemented in current experiments [31–35]. Recently,
it was found that a pair of zero-energy modes shall emerge at
the edges of this line defect [36] by the Shockley mechanism
[37]. The exchange statistics of these modes, however, remains
unresolved [36]. A challenge that may render the statistics
uncertain and difficult to detect is the fact that braiding of
these modes will inevitably involve conjoining and cutting
the line defects hosting them. Motivated by recent works on
braiding of nanowires [38], here we utilize exact numerical
methods to demonstrate that the Majorana-Shockley modes
associated with these line defects in a 2D superfluid obey
non-Abelian statistics and their braiding can be achieved by
tuning of only the local chemical potential. This tuning is
significantly simpler compared with the braiding of nanowires
[38] or dislocations [29], which requires site-by-site tuning
of the pairing interaction and the tunneling rates [38,39].
We also demonstrate robustness of the braiding operation
against practical noise and propose a scheme to measure
the topological qubits using local measurement of the atom
number. The proposed scheme fits well with the state of the art
of the experimental technology in a 2D optical lattice [31–35].

II. SYSTEM AND HAMILTONIAN

We consider cold atoms in a 2D optical lattice, which are
prepared into the p + ip superfluid phase. This superfluid
phase can be achieved, for instance, through the p-wave
Feshbach resonance [26]. The instability associated with the
p-wave Feshbach resonance in free space [27] could be
overcome in an optical lattice through the quantum Zeno
effect [28]. Alternatively, an effective p + ip superfluid phase
for cold atoms can also be achieved by a combination of the
s-wave Feshbach resonance and the light induced spin-orbital
coupling [22,40,41].
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In the momentum k space, the Bogoliubov–de Gennes
(BdG) Hamiltonian describing the p + ip superfluid phase
on a square optical lattice has the form H = ∑

k ψ
†
kH(k)ψk,

with ψ
†
k = (c†k,c−k) and

H(k) = dx(k)σx + dy(k)σy + dz(k)σ z, (1)

where dx(k) = � sin kxa, dy(k) = � sin kya,dz(k) = μ −
J (cos kxa + cos kya), σ x,y,z denote the Pauli matrices, a is
the lattice constant, μ is the chemical potential, J is the
neighboring hopping rate, and � is the pairing strength. The
topological property of this Hamiltonian is characterized by
the first Chern number C1 = − 1

2π

∫
BZ dkxdkyFxy(k) with the

Berry curvature Fxy(k) = ∂kx
Ay(k) − ∂ky

Ax(k) and the Berry
connection Aν(k) = 〈u−(k)|i∂kν

|u−(k)〉 (ν = x,y), where
|u−(k)〉 denotes the lower band Bloch eigenstate of H(k) and
the integration in C1 is over the first Brillouin zone (BZ). The
phase of the Hamiltonian H is topologically nontrivial with
C1 = sgn(μ) in the parameter regime 0 < |μ| < 2J (taking �

as the energy unit) and topologically trivial with C1 = 0 when
|μ| > 2J . A topological phase transition occurs at |μ| = 2J .

III. CREATION AND BRAIDING OF
MAJORANA-SHOCKLEY FERMIONS

With single-site addressing, the potential shift of each
lattice site can be individually adjusted in experiments [31–35].
We create a line defect in a 2D optical lattice by tuning
the chemical potential μd along a chain of atoms to make
it different from that of the background lattice (denoted by μ0)
so that they reside in topologically distinct phases [illustrated
in Fig. 1(a)]. For a certain range of μd that depends on μ0, a
pair of zero-energy Majorana-Shockley fermion (MSF) modes
appear at the two edges of the line defect [36]. We choose μ0

in the topologically trivial phase with μ0 > 2J so that there
are no other zero-energy modes on the boundary of the finite
2D lattice.

Under a typical size of the 2D optical lattice with a line
defect, we solve exactly the eigenmodes of the Hamiltonian
(1) under open boundary conditions, and the eigenspectrum
is shown in Fig. 1(b). Clearly, there are a pair of zero-energy
MSF modes that are separated from other defect modes and
bulk states by a minimum gap about J . The MSFs are described
by anticommuting real fermion operators γj with γj = γ

†
j and

γjγk + γkγj = 2δjk . A pair of MSF modes γ1 and γ2 together
represents a conventional fermion mode cm = (γ1 + iγ2) /2,
with the eigenstates of c

†
mcm = 1

2 (iγ1γ2 + 1) encoding a
topological qubit. The eigenfunctions of the MSF modes γ1

and γ2 are shown in Fig. 1(c), which are well localized at the
edges of the line defect.

IV. PROOF OF NON-ABELIAN STATISTICS

To examine the exchange statistic of the MSF modes,
we adiabatically deform the line defect with steps shown
in Figs. 2(a)–2(f). Each step is achieved through site-by-
site tuning of the chemical potential from μd to μ0 (to
shorten the line defect) or from μ0 to μd (to extend the line
defect). We simulate the time evolution of the MSF modes
in the Heisenberg picture. Under the adiabatic evolution, the
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FIG. 1. (Color online) Creation and manipulation of the MSFs
in an optical lattice. (a) Cold fermionic atoms are loaded into a 2D
optical lattice. J and � denote the nearest neighbor hopping rate and
pairing strength. A line defect with different local chemical potential
binds two zero-energy MSFs γ1 and γ2 (red circles) at its edges.
(b) Energy spectrum of the Hamiltonian H on a square lattice of size
18a × 10a with open boundaries. The length of the line defect is 14a.
The zero-energy MSFs have tiny energy splitting due to the small size
of the line defect, which is numerically found to be <10−10J for our
parameters. (c) The amplitude of the mode function for γ1 and γ2.
The black line indicates the line defect with chemical potential μd .
The parameters are chosen as � = J , μ0 = 10J , and μd = 0.1J.

Hamiltonian always remains gapped at any time as shown
in Fig. 2(g), which protects the MSF modes from mixing
with other modes. The evolution of the MSF modes γ1 and
γ2 and their correlation are shown in Fig. 2(h). After the
whole evolution with time T , apparently we have γ1 (T ) =
γ2(0) and γ2 (T ) = −γ1(0). The correlation 〈γ1 (T ) γ2 (T )〉 =
− 〈γ2 (0) γ1 (0)〉 = 〈γ1 (0) γ2 (0)〉. This transformation of the
MSF modes occurs in a similar way when we adiabatically
braid the edges associated with different line defects. In
Fig. 3(a), we illustrate the adiabatic braiding of two edge modes
γ2 and γ3 of different line defects along a T-junction path. This
braiding involves joining and cutting of two line defects and we
need to choose parameters appropriately to avoid appearance
of accidental near-zero-energy modes. In general, the four
zero-energy MSF modes are still well protected by a significant
energy gap. Their evolution and the associated correlations are
shown in Fig. 3(b). The results indicate that γ2 (T ) = γ3(0) and
γ3 (T ) = −γ2(0) for the two braided modes. The other modes
remain unchanged with γ1 (T ) = γ1(0) and γ4 (T ) = γ4(0).

The above transformation rule generalizes straightfor-
wardly to the case of 2N MSF modes. The rule is exactly
the same as the case of Majorana fermions bound to vortices
[24]. For 2N modes γj (j = 1,2, . . . ,2N ), when we braid
γj and γj+1, the transformation is described by a unitary
operator Uj = eπγj+1γj /4 which transforms γj → γj+1 and
γj+1 → −γj . As Uj and Uj+1 do not commute, the exchange
statistics of the MSF modes is non-Abelian and belongs to the
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FIG. 2. (Color online) Braiding of two MSFs bound to the same
line defect. (a) The black line indicates the line defect with chemical
potential μd . Sequentially tuning the local chemical potentials at one
end from μd to μ0 shortens the line defect and transports γ1 along the
x direction. The red arrow shows the moving direction of the MSF.
Similar operations along a T-junction path realize adiabatic exchange
of γ1 and γ2, with steps illustrated in (a)–(f). (g) The evolution of the
energy gap Eg throughout the braiding process. The system is always
gapped with the minimum gap Eg > 0.5J . (h) Time evolution of the
MSF modes γ1,γ2 and their correlations (see Appendixes A and B).
All the parameters are the same as in Fig. 1. The total evolution time
T ∼ 1.44 × 104J .

so-called Ising anyon class according to the classification of
non-Abelian anyons [42].

V. ROBUSTNESS TO REALISTIC IMPERFECTIONS

The unitary operation Uj from topological braiding of
the MSF modes is robust against noise and experimental
imperfections. To verify that, we examine several sources of
noise typical for atomic experiments. First, with imperfect
single-site addressing, when we tune the chemical potential of
one site, we may change the potentials of the neighboring sites
as well, modeled by a spreading ratio of 1 − α. Second, there
is a global weak harmonic trap for cold atom experiments, with
an additional trapping potential Vtrap = VT

2(L2
x+L2

y )

∑
r d2

r c
†
rcr,

where Lx (Ly) is the lattice dimension along the x (y)
direction, and dr is the distance from the trap center. Typically,

(a)

Time

−1

0

1

〈γ
2
(0)|γ

3
(t)〉

〈γ
3
(0)|γ

2
(t)〉

i〈γ
1
γ
2
〉
t

−i〈γ
1
γ
3
〉
t

−i〈γ
2
γ
4
〉
t

i〈γ
3
γ
4
〉
t

    

  

 

(b)

FIG. 3. (Color online) Braiding of two MSFs bound to different
line defects. (a) Illustration of braiding two MSFs from different
line defects along the T-junction path. (b) Time evolution of the
MSF modes γ1,γ2,γ3,γ4 and their correlations. The MSFs γ2 and
γ3 are braided. The parameters are taken as follows: the lattice size
12a × 36a, two horizontal line defects each of length 9a and distance
16a, � = 0.91J , μ0 = 10�, and μd = 0.1�. The energy gap is
also maintained during the braiding process Eg > 0.5J . The total
evolution time T ∼ 1.92 × 104J .

VT ranges from 0.1J to J . Finally, there is unavoidable
small disorder potential in experiments which adds random
fluctuations to the chemical potential with magnitude denoted
by λR . We recalculate the evolution of the MSF modes and their
correlations, incorporating contribution of all these sources
of noise. The results are shown in Fig. 4, which are almost
indistinguishable from the corresponding results shown in
Fig. 2(h) under the ideal case. This demonstrates the robustness
of the braiding operations of the MSFs.

VI. DETECTION

To verify the non-Abelian braiding operations, we need to
detect the topological qubit encoded by two nonlocal MSF
modes γ1 and γ2. For the 1D nanowire, the parity of the total

−1

0

1
i〈γ1γ2〉t
〈γ1(0)|γ2(t)〉

〈γ2(0)|γ1(t)〉

α=0.5,VT=0.5,λR=0.05

Time

FIG. 4. (Color online) Robustness to experimental noise and
imperfections. The lattice size is 20a × 12a and other parameters are
the same as in Fig. 1. α,VT ,λR denote the parameters characterizing
respectively the laser beam crosstalk, the strength of the global
harmonic trap, and the magnitude of random fluctuation of the
chemical potential (see the main text). The total evolution time
T ∼ 1.76 × 104J .
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FIG. 5. (Color online) Detection of the topological qubit. (a) Two
MSFs γ1 and γ2 are fused through adiabatic shortening of the line
defect to a single lattice site r0. (b) Transformation of the MSF
modes γ1 and γ2 under adiabatic merging. For simplicity, we plot
evolution of the magnitude of the mode overlap between cr0 and
[γ1(t) + iγ2(t)]/2. At the end of merging, γ1 and γ2 are mapped
dominantly to the local modes c†r0

+ cr0 and i(c†r0
− cr0 ), respectively,

which enables detection of the initial nonlocal topological qubit by
a simple measurement of the atom number c†r0

cr0 on a single lattice
site after the adiabatic merging. All the parameters are the same as in
Fig. 1. The total evolution time T ∼ 1.04 × 104J .

particle number is a conserved property, which is different for
the two eigenstates of iγ1γ2 and thus can be used to detect the
topological qubit [38,39]. For our case, the line defect interacts
with the background lattice with tunneling and pairing terms
which in general do not conserve the parity of the total atom
number along the line; therefore, the parity detection does not
work. We propose a different method to detect the topological
qubit. The line defect is adiabatically shortened until it finally
reduces to a single lattice site r0 [illustrated in Fig. 5(a)] and
we examine evolution of the MSF modes γ1 and γ2 during
this process. As shown in Fig. 5(b), with a high fidelity
(about 99%), the mode γ1 (γ2) is mapped to γr0,A = c

†
r0 + cr0

[γr0,B = i(c†r0 − cr0 )], respectively. By a measurement of the
local atom number c

†
r0cr0 after the adiabatic merging, we thus

measure the topological operator iγ1γ2 with a high fidelity
(about 98%). This local measurement is actually more robust
compared with the nonlocal parity detection. Note that the
detection fidelity of the topological qubit in principle can
be improved to an arbitrary accuracy by using the quantum
nondemolition (QND) technique: to measure the topological
qubit iγ1γ2, we create an ancillary topological qubit (with
MSF modes γ3 and γ4), perform an effective controlled-NOT

gate between the topological qubits iγ1γ2 and iγ3γ4 through
the noise-resilient braiding operations [8], and then measure
the ancilla iγ3γ4 by the above method. As the qubit iγ1γ2

is not destroyed by the measurement, it can be repeatedly
measured through this QND technique and the detection error
is exponentially suppressed with increase of the detection
rounds.

VII. DISCUSSION AND CONCLUSION

Our analysis is based on a concrete BdG Hamiltonian
describing 2D p + ip superconductors in the symmetry
class D of the Periodic Table of topological insulators and
superconductors [43,44], which lacks time-reversal symmetry.
Ultracold atoms in optical lattices are capable of implementing
more exotic topological phases that might harbor Majorana

fermions. In the future, it might be interesting to explore
whether MSFs exist as well in other symmetry classes and
study their experimental realizations with cold atoms. In
particular, one possible direction is to study MSFs in the
DIII class, which has time-reversal symmetry and a Z2

topological classification. As a consequence, Majoranas in
this class should come in pairs at each end of the line
defect due to Kramers’s theorem and the braiding operations
should always exchange two pairs of Majoranas. Whereas
the non-Abelian statistics of Majorana Kramers’s doublets in
1D DIII-class superconductor was theoretically demonstrated
recently [45], the 2D case remains unexplored. Another
important direction is to study the Shockley mechanism in 3D
topological superconductors in symmetry class DIII and CI. In
3D, both DIII and CI class superconductors have time-reversal
symmetry and a Z classification [43,44]. This study might lead
to a promising experimental realization of 3D non-Abelian
statistics as introduced by Teo and Kane [46].

In summary, we have proposed a complete scheme to
observe non-Abelian statistics of the MSFs associated with line
defects in a 2D optical lattice. The MSFs are created, braided,
and fused all through adiabatic tuning of the chemical potential
for certain lattice sites. The detection of the topological qubit
is transformed to local measurement of the atom number
on a single lattice site. The required technology fits well
with the current status of the optical lattice experiments
[31–35]. Through numerical simulation, we have demon-
strated robustness of the non-Abelian braiding operations
under a typical experimental configuration with imperfections.
The scheme provides a viable approach for observation of
the exotic non-Abelian braiding statistics, which is a goal of
intense interest and a critical step for realization of robust
topological quantum information processing [6–8].
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APPENDIX A: TIME EVOLUTION

We first Fourier transform the Hamiltonian (1) into real
space, with the modes in real space denoted by cr. A line
defect has chemical potential μd instead of μ0. We define the
Majorana operators at each lattice site with γr,A = (c†r + cr)
and γr,B = i(c†r − cr). In terms of these Majorana operators,
the Hamiltonian has the following form:

H = i

2

∑

p,q

Hpqγpγq, (A1)

where p = (r,β) and q = (r′,β ′) (β,β ′ = A,B) are combined
indices and H is a 2N × 2N real skew-symmetric matrix with
N being the number of lattice sites.

By locally and adiabatically tuning μ along a T-junction
path, MSFs can be braided. During this process, the Majorana
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operators evolve according to the following equation in the
Heisenberg picture [47]:

γp → γp(t) = Uγp(0)U † =
∑

q

Oqpγq (0) , (A2)

where U = T exp[i
∫ t

0 H (τ )dτ ] and O =
T exp[−i

∫ t

0 H(τ )dτ ] is an element of the special orthogonal
group O ∈ SO(2N ); T is the time-ordering operator.

In our numerical simulation, we first diagonalize H at
time t = 0 to obtain the zero-energy eigenmodes γi(0) =∑

p ηipγp(0), where the coefficients ηip represent the mode
function and are localized at the ends of the line defects. During
the braiding process, the zero-energy eigenmodes evolve as
γi(t) = Uγi(0)U † = ∑

p ηipγp(t), where γp(t) are calculated
via Eq. (A2). Using this method, we obtain the time evolution
of the zero-energy MSF modes with the results plotted in the
main text.

APPENDIX B: MAJORANA CORRELATION FUNCTIONS

To calculate the Majorana correlations, we use the method
introduced in Ref. [48]. Let us define the density operator

ρ = N exp(−βH ) (N is the normalization constant and β

is the inverse temperature) and the antisymmetric covariance
matrix � with elements �pq = i

2 Tr[ρ(γpγq − γqγp)]. The
Hamiltonian H can be brought into block off-diagonal form
OHOT = ⊕N

j=1( 0 −εj

εj 0 ) by a special orthogonal matrix O ∈
SO(2N ), where εj characterizes the energy eigenspectrum
of the Hamiltonian. This matrix O also reduces � to a
block off-diagonal form O�OT = ⊕N

j=1( 0 ηj

−ηj 0 ) with ηj =
tanh(βεj/2). The covariance matrix �G corresponding to the
ground state of H is obtained by letting the inverse temperature
β → ∞, i.e., ηj → sgn(εj ). After we obtain �G, the Majorana
correlations can be computed by Wick’s theorem via the
equation:

i〈γpγq〉 = Pf(�
′
G), (B1)

where �
′
G = ((�G)pp (�G)pq

(�G)qp (�G)qq
) is a 2 × 2 submatrix of �G and

Pf(�
′
G) is the Pfaffian of �

′
G with Pf(�

′
G)2 = det(�

′
G). Once

we have obtained i〈γpγq〉 at time t = 0, the time evolution of
the MSF mode correlations i〈γiγj 〉t can be computed directly
using γi(t) = ∑

p ηipγp(t) = ∑
p,q ηipOqpγq (0).
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