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Preface

Theory and Applications of Models of Computation 2011 (TAMC 2011) was held
May 23–25 in Chofu, Tokyo. After six years of successful meetings in China, the
seventh TAMC was held in Prague, Czech Republic, in 2010. This eighth meeting
was the second to be held outside China. The conference has a strong focus on
computational models. In 2011, there were 136 submissions, out of which 51
papers were selected by the Program Committee. The conference had invited
talks by two world-renowned scholars, Tetsuo Asano of the Japan Advanced
Institute for Science and Technology and Richard Lipton of the Georgia Institute
of Technology.

May 2011 Mitsunori Ogihara
Jun Tarui
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Designing Algorithms with Limited Work Space

Tetsuo Asano

Japan Advanced Institute of Science and Technology (JAIST)
1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan

t-asano@jaist.ac.jp

Abstract. Recent progress in computer systems has provided program-
mers with virtually unlimited amount of work storage for their programs.
This leads to space-inefficient programs that use too much storage and
become too slow if sufficiently large memory is not available. Thus, I
believe that space-efficient algorithms or memory-constrained algo-
rithms deserve more attention.

Constant-work-space algorithms have been extensively studied
under a different name, log-space algorithms. Input data are given on a
read-only array of n elements, each having O(log n) bits, and work space
is limited to O(log n) bits, in other words, a constant number of point-
ers and counters, each of O(log n) bits. This memory constraint in the
log-space algorithms may be too severe for practical applications. For
problems related to an image with n pixels, for example, it is quite rea-
sonable to use O(

√
n) work space, which amounts to a constant number

of rows and columns.
I will start my talk with a simple algorithm for detecting a cycle in

a graph using only some constant amount of work space (more exactly,
O(log n) bits in total) and then its applications. Then, I will introduce
some paradigms for designing such memory-constrained algorithms and
their applications to interesting problems including those in computa-
tional geometry and computer vision.

M. Ogihara and J. Tarui (Eds.): TAMC 2011, LNCS 6648, p. 1, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Group-Theoretic Lower Bounds for the

Complexity of Matrix Multiplication

Alexey Pospelov�

Saarland University, Computer Science Department
Campus E1.3, 66123 Saarbrücken, Germany

pospelov@cs.uni-saarland.de

Abstract. The complexity of multiplication in group algebras is closely
related to the complexity of matrix multiplication. Inspired by the recent
group-theoretic approach by Cohn and Umans [10] and the algorithms by
Cohn et al. [9] for matrix multiplication, we present conditional group-
theoretic lower bounds for the complexity of matrix multiplication. These
bounds depend on the complexity of multiplication in group algebras.

Using Bläser’s lower bounds for the rank of associative algebras we
characterize all semisimple group algebras of minimal bilinear complex-
ity and show improved lower bounds for other group algebras. We also
improve the best previously known bound for the bilinear complexity
of group algebras by Atkinson. Our bounds depend on the complexity
of matrix multiplication. In the special if the exponent of the matrix
multiplication equals two, we achieve almost linear bounds.

Keywords: Bilinear complexity, group algebras, complexity of matrix
multiplication, lower bounds.

1 Introduction

The complexity of multiplication in algebras is an important problem in the
algebraic complexity theory and computer algebra. The goal is to compute the
coefficients of the product of two vectors with the minimal number of algebraic
operations. The required coefficients are bilinear forms of the coefficients of the
input vectors. Naturally, the model and the complexity measure for this prob-
lem which received particular attention in the literature are the bilinear model
and the bilinear complexity resp., the latter also called the rank of multiplica-
tion [16], [7, Chap. 4]. In a bilinear computation, all multiplications other than
by constants are of the form �(a) · �′(b), where a and b are the input vectors, and
�, �′ are some linear forms. An O

(
(dim A)2

)
upper bound is straightforward to

prove, and all currently known lower bounds for the general case are Ω(dim A)
[7, Chap. 17].

This research is motivated by the recent group-theoretic approach [10] and
the following group-theoretic algorithms [9] for matrix multiplication. It was
� This work was supported through funds provided by the Cluster of Excellence

“Multimodal Computing and Interaction” at Saarland University.

M. Ogihara and J. Tarui (Eds.): TAMC 2011, LNCS 6648, pp. 2–13, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Group-Theoretic Lower Bounds for the Complexity of Matrix Multiplication 3

shown that finite groups with special properties can be used for the design of
fast matrix multiplication algorithms. Our goal is to explore the structure of
the group algebras and investigate further the complexity relations between the
group algebras and the matrix algebra. We put the group-theoretic approach
into a different light by showing that the group algebras of the most promising
groups for the group-theoretic approach have roughly the same bilinear com-
plexity as the matrix multiplication itself. For the bilinear complexity of a wide
class of group algebras the lower bounds depend on the exponent of the matrix
multiplication denoted in the literature by ω [7, Introduction].

Another motivation for this work was the search for the algebras of high
bilinear complexity. Over the complex field there exist algebras of arbitrarily
high dimensions with bilinear complexity higher than (dimension of the algebra)2

27 [6],
[7, Ex. 17.20]. However, no explicit example is known. This situation is sim-
ilar to a classical problem in the logical synthesis theory. It is known that
the circuit complexity in a full basis B of almost all Boolean functions of
n variables is c 2n

n (1 + o(1)) [14] where the constant c depends solely on B.
For B = {f1, . . . , fn}, where each fν is of mν variables (with no fictitious
dependencies) and has weight wν ,

c = min
1≤ν≤n,
mν≥2

wν

mν − 1
.

E.g., for B = {∨, &, ¬}, with unit weights, c = 1. However, no explicit function
of n variables is known to have a superlinear lower bound on the number of gates
in a full finite functional circuit basis.

Algebraic preliminaries. In what follows k will always denote a field, and algebra
(or k-algebra) will always stand for a finite dimensional associative algebra with
unity 1 over k. A basis of an algebra is a basis of the underlying vector space.
The dimension of the algebra A, dim A is the dimension of the underlying vector
space. We call a basis {ei}n

i=1 of a k-algebra A a group basis if the vectors ei

form a group with respect to the multiplication in algebra. If A contains a
group basis, it is called a group algebra. Given a finite group G = {g1, . . . , gn},
and k we can always build a group algebra k[G] as an n-dimensional vector
space over k with a basis {gi}n

i=1 and the multiplication in k[G] defined as
(
∑n

i=1 αigi) · (
∑n

j=1 βjgj) =
∑n

�=1(
∑

gigj=g�
αiβj)g�.

The direct product of algebras A and B over k is the algebra A × B over k
which consists of all pairs (a, b), a ∈ A, b ∈ B, and where all operations are
performed component-wise: (a1, b1) ◦ (a2, b2) = (a1 ◦ a2, b1 ◦ b2), ◦ ∈ {+, −, ·},
and λ · (a, b) = (λa, λb), where λ ∈ k, and ai ∈ A, bi ∈ B, for i = 1, 2.

B ⊆ A is called a subalgebra of A, if it is a linear subspace of A, which is closed
under the multiplication in A. A subalgebra I of A is called a left (a right) ideal
of A, if for all a ∈ A, x ∈ I, the product ax ∈ I (xa ∈ I resp.) A left ideal which
is at the same time a right ideal is called a two-sided ideal. A two-sided ideal is
called maximal if it is not contained in any other proper two-sided ideal of the
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algebra. An ideal I is called nilpotent if Im = {0} for some m > 0.1 The smallest
m with this property is called the nilpotence index of I. The sum of all nilpotent
left ideals of the algebra A is called the radical of A and is denoted by rad A. The
intersection of all maximal two-sided ideals of A is called the Jacobson radical
of A and is denoted by J(A). In an algebra, radA = J(A), see [17, §98].

A is called a division algebra if every a ∈ A has a multiplicative inverse
a−1 ∈ A. A is called semisimple if rad A = 0, and simple if it does not contain
any proper twosided ideals except {0}. The structure of the semisimple and
simple algebras is described by Wedderburn’s theorem [17]. It states that every
finite dimensional semisimple k-algebra is isomorphic to a finite direct product
of simple algebras; every finite dimensional simple k-algebra is isomorphic to an
algebra Dn×n for an integer n ≥ 1 and a k-division algebra D, where the integer
n and the algebra D are uniquely determined by A (D—up to isomorphism).

Model of computation. Let A be a k-algebra. A bilinear algorithm for the multi-
plication in A is a sequence φ = (u1, v1, w1; . . . ; ur, vr, wr), where uρ, vρ ∈ A∗,
wρ ∈ A, such that for all x, y ∈ A, x · y =

∑r
ρ=1 uρ(x)vρ(y)wρ. r is called the

length of φ, and the minimal length of all bilinear algorithms for the multiplica-
tion in A is called the rank or the bilinear complexity of A, and is denoted by
rk A. Trivially, rk A ≤ (dim A)2, and rk A×B ≤ rk A + rk B. However, it is not
known if the converse of the latter holds, see [7, p. 360, Strassen’s Direct Sum
Conjecture].

Let A = {A1, A2, . . . } be a family of algebras over k. We define the rank-
exponent of A, ωA = inf{τ : rk An = O

(
(dim An)τ) for all n ≥ 1}. Trivially,

1 ≤ ωA ≤ 2. Note that this definition makes only sense if A contains algebras
of arbitrarily high dimensions. This notion is very similar to the well-known
exponent of the matrix multiplication ωk = inf{τ : rk kn×n = O(nτ )}.2 However,
ωk is defined with respect to n and dim kn×n = n2. It can be easily verified that
the exponent of the matrix multiplication equals twice its rank-exponent.

The rank-exponent is a rather crude estimate. For example, rk An = dim An,

or rk An = (dim An) · 2
⌈√

log dim An

⌉
, both imply ωA = 1. On the other hand,

for the complexity of matrix multiplication, the exponent (or twice the rank-
exponent) is only known to be within 2 ≤ ω < 2.376 [7, 15.13 Notes] and the
exact value is a long-standing open problem.

Structure of group algebras. For a finite group G, the group algebra k[G] is
semisimple iff chark � �G. In this case

k[G] ∼= Dn1×n1
1 × · · · ×Dnt×nt

t , (1)

where Dτ is a division algebra over k, dim Dτ = dτ for 1 ≤ τ ≤ t. Each Dnτ×nτ
τ

is called an irreducible representation of G over k. n1, . . . , nt are called the
character degrees of G. If k is algebraically closed then all Dτ

∼= k and dτ = 1.

1 For a set S with multiplication and a positive integer r, Sr denotes the set of all
possible products of r elements of S: {s1 · · · sr : sρ ∈ S, 1 ≤ ρ ≤ r}.

2 As usually, we will write just ω when k is clear from the context.
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If char k = p, and �G = nps, for p � n, then k[G] has a nontrivial radical. We
have k[G]/J(k[G]) ∼= Dn1×n1

1 ×· · ·×Dnt×nt
t , and

∑t
τ=1 n2

τdτ +dim J(k[G]) = �G.
If a Sylow p-subgroup of G is normal (and therefore is the Sylow p-subgroup of
G), then dim J(k[G]) = n(ps − 1). If the Sylow p-subgroups of G are not normal,
it is known that J(k[G]) contains all ideals generated by all J(k[H ]), where H is
a normal p-subgroup of G. In particular, this holds when H is the intersection
of all the p-Sylow subgroups of G.

For more on the representation theory of finite groups we refer to [18].

Lower bounds for the bilinear complexity. The only general lower bound for the
bilinear complexity of associative algebras is based on the following fact: if A and
B are associative algebras over k and t(A) is the number of maximal twosided
ideals of A, then [1]

rk A×B ≥ 2 dim A− t(A) + rk B. (2)

In particular, rk A ≥ 2 dim A − t(A). Algebras for which the latter holds as an
equality are called the algebras of minimal rank. Their structure was completely
defined in [5]. We mention here that a semisimple algebra is not of minimal rank
if it contains at least one simple factor of format m×m, for m ≥ 3.

The next two lower bounds are from [3]:

Theorem 1. Let A be a k-algebra, A/ radA ∼= A1 × · · · ×At with Aτ = Dnτ×nτ
τ

for all τ , where Dτ is a k-division algebra. Assume that each Aτ is noncommu-
tative, that is, nτ ≥ 2 or Dτ is noncommutative. Then

rk A ≥ 5
2

dim A− 3
t∑

τ=1

nτ .

Theorem 2. Let A be a finite dimensional k-algebra. For all m, n ≥ 1,

rk A ≥ dim A− dim
(
(rad A)m+n−1)+ dim

(
(rad A)m)+ dim

(
(rad A)n). (3)

Our results. We first show an O(N
ω
2 +ε) upper bound for the rank of a group

algebra of order N , for any ε > 0. This improves the best previously known upper
bound of O(N

3
2 ) [2]. We show how one can do better with an extra knowledge

about the group.
Using Bläser’s classification of all algebras of minimal rank [5] we give a cri-

terion for a semisimple group algebra over an algebraically closed field to be
an algebra of minimal rank. Under different assumptions we prove 5

2 ·dimension-
and 3·dimension-lower bounds for the rank of group algebras.

For groups having not “too many” different irreducible representations, we
deduce from Schönhage’s τ -theorem [7, Asymptotic Sum Inequality (15.11)] a
lower bound for the rank of group algebras, which is superlinear if ω 	= 2. We
show that this lower bound holds for the group algebras of full symmetric groups
and finite general linear groups. We prove therefore that the group algebras
of some of the promising groups for the group-theoretic approach for matrix
multiplication have essentially the same complexity as the matrix multiplication
itself.
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2 Lower Bounds for the Complexity of Matrix
Multiplication

The complexity of the multiplication in group algebras is closely related to the
complexity of matrix multiplication (1). We will use the following simple fact.

Proposition 1. Let n1, . . . , nt > 0 and α ≥ 1. Then
∑t

τ=1 nα
τ ≤

(∑t
τ=1 nτ

)α
.

Proof. The statement follows from the convexity of xα for x ≥ 0 and α ≥ 1. 
�
For monotonically growing functions f(n) and g(n) we will write f(n) � g(n), if
for every δ > 1, f(n) = O

(
(g(n))δ). G and Gi will always stand for finite groups,

and �G will denote the order of G.

Theorem 3. Let G = {G1, G2, . . . } be a family of finite groups, �Gi < �Gi+1.
Assume that k is algebraically closed, and char k = 0, or chark � �Gi, for each
i ≥ 1. Then for G ∈ G,

rk k[G] � (�G)
ω
2 , (4)

where ω is the exponent of matrix multiplication over k, and

ω ≥ 2 lim sup
n→∞

log rk k[Gn]
log �Gn

. (5)

Proof. We have (1) for k[G], with all Dτ
∼= k, and rk k[G] ≤ ∑t

τ=1 rk knτ×nτ .
Furthermore, rk knτ×nτ � nω

τ , and by Proposition 1,

rk k[G] �
t∑

τ=1

nω
τ =

t∑
τ=1

(n2
τ )

ω
2 ≤

(
t∑

τ=1

n2
τ

)ω
2

= (�G)
ω
2 ,

which proves (4).
From (4) we have that for every ε > 0, there exists a constant C = C(ε), such

that rk k[Gn] < C · (�Gn)(1+ε) ω
2 . This implies ω > 2 log rk k[Gn]

log �Gn
− 2 log C

log �Gn
− 2ε,

for all n. Since �Gn →∞, it also implies that ω > 2 lim supn→∞
log rk k[Gn]

log �Gn
− 2ε.

The latter holds for every ε > 0, and (5) follows. 
�
Corollary 1. If for all group algebras k[Gn] from the family {k[G1], k[G2], . . . },
rk k[Gn] = Ω

(
(�Gn)1+ε) for arbitrary but fixed ε > 0, then the exponent of matrix

multiplication ω > 2.

Theorem 4. Let G = {G1, G2, . . . } be a family of finite groups, �Gi < �Gi+1,
and k is algebraically closed with char k = 0 or char k � Gi for every i. Let f(N)
be an integer function such that for each G ∈ G, all character degrees of G over
k are less or equal than f(�G). Then for G ∈ G,

rk k[G] � �G (f(�G))ω−2+ 4
ω+2 = �G (f(�G))

ω2
ω+2 ≤ �G (f(�G))ω−1

, (6)
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where ω is the exponent of matrix multiplication. If, additionally, for all n,
rk k[Gn] > �Gn and lim supn→∞ f(�Gn) = ∞, then for Fn = log rk k[Gn]−log �Gn

2 ,

ω ≥ lim sup
n→∞

(
Fn +

√
F 2

n + 4Fn log f(�Gn)
)

, (7)

Proof. Let n1 ≥ · · · ≥ nt be the irreducible character degrees of G over k
and h(N) > 0 be an arbitrary integer function. Let j(N) be the number of nτ

greater than h(N). Then �G =
∑t

τ=1 n2
τ ≥ j(�G) (h(�G))2 and j(�G) ≤ �G

(h(�G))2
.

This implies:

rk k[G] �
(

j(�G) (f(�G))ω +
t∑

τ=j(�G)+1

nω
τ

)
≤ �G

(f(�G))ω

(h(�G))2
+ �G (h(�G))ω

.

We finally obtain (6) by setting h(N) = (f(N))1−
2

ω+2 < f(N). The last inequal-
ity in (6) follows from the fact that ω ≥ 2.

(7) is proved by a bit more involved but similar argument as in the proof
of (5) in Theorem 3. 
�
Corollary 2. 1. If f(�G) = O(1), then rk k[G] is linear. If for every ε > 0,

f(�G) = o((�G)ε), then ωk[G] = 1.
2. If for some {k[G1], k[G2], . . . }, lim supn→∞

rk k[Gn]
�Gn·f(�Gn) > 1, then the expo-

nent of matrix multiplication ω > 2.

Remark 1. The upper bound of (6) is better than of (4), and the lower bound
of (7) is better than the lower bound of (5), if f(�Gn) = o

(
(�Gn)

1
2− 2

ω2
)
. Accord-

ing to the best known upper bound ω < 2.376 [7, Notes 15.13], this is currently
the case when f(�Gn) = o

(
(�Gn)0.1457).

Theorem 3 can be generalized to the case of a not algebraically closed fields.

Theorem 5. Let G = {G1, G2, . . . }. Assume that char k = 0, or k is finite.
Then for all G ∈ G, rk k[G] � (�G)

ω
2 , where ω is the exponent of matrix multi-

plication over k. In the same way, ω ≥ 2 lim supn→∞
log rk k[Gn]

log �Gn
.

Proof. Assume first that char k = 0. In this case k[G] is semisimple, (1) holds,
and Q ⊆ k is the prime subfield. Let K be the algebraically closed extension
of k. It is known [12, Theorem 11.4, Chap. XVIII] that every representation
of G over K is definable over Q(ζm) where m is the exponent of G, i.e., the
minimal μ such that gμ = 1 for every g ∈ G, and ζm ∈ K is a primitive
m-th root of unity. Therefore, it is definable over k(ζm). Any irreducible rep-
resentation of G over k is a simple k[G]-module by Maschke’s Theorem [12,
Theorem 1.2, Chap. XVIII]. Therefore, it is isomorphic to Dn×n, where D is
a k-division algebra. ζm is algebraic over D since it is algebraic over k ⊆ D
and D ∼= D′ ⊆ k(ζm). The latter holds since all irreducible representations of G
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over k(ζm) are isomorphic to matrix algebras over k(ζm). Thus, D is a subalgebra
of k(ζm), and D ∼= k(ζ�) for some � | m, and for all τ , rk Dτ ≤ 2dτ − 1 since k is
infinite. Therefore, we obtain

rk k[G] �
t∑

τ=1

nω
τ (2dτ − 1) < 2

t∑
τ=1

nω
τ dτ ≤ 2

(
t∑

τ=1

n2
τdτ

)ω
2

= 2 (�G)
ω
2 .

The lower bound for ω is proved exactly as in the proof of Theorem 3.
Note that the proof remains valid for chark > 0, whenever the division al-

gebras in (1) of k[Gi] have linear ranks. By Wedderburn’s Little Theorem [13,
Theorem 2.55], a finite dimensional division algebra over a finite field k is an
extension field of k. Its rank is linear due to Chudnovskys’ algorithm, see [8,15],
[7, Theorem 18.20], and the statement holds also for finite k. 
�

3 Lower Bounds for the Bilinear Complexity of Group
Algebras

Let G = {G1, G2, . . . } be a family of finite groups so that �Gi < �Gi+1. If
chark = 0, or chark = p, and for every i ≥ 1, p � �Gi, G is called a semisimple
(over k) family of finite groups. If chark = p and for some i ≥ 1, p | �Gi then G
is called a modular family.

From the Hölder’s inequality we have:

Lemma 1. Let n1, . . . , nt ≥ 0 and δ ≥ 1. Then
∑t

τ=1 nτ ≤ t1−
1
δ

(∑t
τ=1 nδ

τ

) 1
δ .

We will denote by ti(G) the number of the irreducible characters of G over
k whose degree equals to i. Obviously, ti(G) = 0 if i >

√
�G. We will fur-

ther denote Ti(G) =
∑∞

j=i tj(G). By definition, Ti(G) ≥ Tj(G), if i < j and
ti(G) = Ti(G)− Ti+1(G). Note that the number of the maximal twosided ideals
of k[G] is exactly T1(G) = t, where t is the number of factors in (1).

Theorem 6. Let G be a finite group and let k be an algebraically closed field of
chark = 0 or char k � �G. Let t be as in (1).

1. T3(G) = 0 iff k[G] is of minimal rank. In this case rk k[G] = t1(G) + 7t2(G).
2. If T3(G) > 0, then rk k[G] ≥ 2�G− t + max

(
9
2T7(G), 1

)
.

3. Let G = {G1, G2, . . .} be a semisimple family of groups. Assume that the
number of irreducible representations of each G ∈ G over k is o(�G).3 Then
for all G ∈ G, rk k[G] ≥ 5

2 �G− o(�G).

Proof. Consider the decomposition (1) for k[G] (here all Dτ
∼= k). Assume

w.l.o.g. that n1 ≤ · · · ≤ nt. Let A be the direct product of all matrix alge-
bras from (1) of order 1×1 or 2×2, and let B be such that k[G] = A×B. Then
dim A = t1(G) + 4t2(G) = T1(G) + 3T2(G) − 4T3(G),

rk A = t1(G) + 7t2(G) = 2 dim A− (t1(G) + t2(G)), (8)
3 o(�G) means that for any ε > 0, there exists such N = N(ε) > 0, that if G ∈ G

and �G > N , then the number of irreducible representations of G over k is less than
ε · �G.
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since rk k2×2 = 7, see [7, (17.10)]. The number of the maximal twosided ideals
in A is t1(G) + t2(G), and (8) follows.

1. If T3(G) = 0, then t = t1(G) + t2(G), and the statement follows from (8).
2. If T3(G) > 0, then rk k[G] = 2 dim A− (T1(G)−T3(G))+rk B ≥ 2�G− t+1,

by (2). k[G] is not of minimal rank [5]. Let B = B1 × B2, so that B1

consists of all matrix algebras from (1) of order ≤ 6. The number of max-
imal twosided ideals in B1 is t3(G) + · · ·+ t6(G) = T3(G)− T7(G). By (2)
we have rk B ≥ 2 dim B1 − (T3(G)− T7(G)) + rk B2. If B2 is not empty, then
nt−T7(G)+1 ≥ 7, since n1 ≤ · · · ≤ nt. From Theorem 1 we obtain

rk B2 ≥ 5
2

t∑
τ=t−T7(G)+1

n2
τ − 3

t∑
τ=t−T7(G)+1

nτ ≥ 2 dim B2 +
7
2
T7(G),

Gathering it all together, we come up to

rk k[G] ≥ 2 dim A+2 dimB1+2 dimB2−T1(G)+ 9
2T7(G) = 2�G−t+ 9

2T7(G).

which proves the second claim of the theorem.
3. Let k[G] = kt1(G)×C, dim C = n2

t−T2(G)+1 + · · ·+n2
t . By (2) and Theorem 1,

rk k[G] = rk kt1(G) + rk C ≥ t1(G) + 5
2 dim C − 3

∑t
τ=t−T2(G)+1 nτ . By using

Lemma 1 for the dimensions of the factors of C, and setting δ = 1
2 , we

obtain
∑t

τ=t−T2(G)+1 nτ ≤
√

T2(G) dim C ≤ √
t�G = o(�G). On the other

hand, t1(G) ≤ t = o(�G). Thus, dim C = �G − t1(G) = �G − o(�G), and
rk k[G] ≥ 5

2 �G− o(�G). 
�
Remark 2. The lower bound in case 2 can be improved for some groups using
the lower bound due to Bläser: for n ≥ 3, rk kn×n ≥ 2n2 +n−2 [4]. The best we
can do in this case is to employ the Alder-Strassen lower bounds for all matrix
algebras in (1) except for one of the highest dimension, for which we will use the
Bläser’s lower bound: if n1 ≤ · · · ≤ nt, and nt ≥ 3, then rk k[G] ≥ 2�G+nt−t−1.

Corollary 3. Let k be algebraically closed of char k = 0, p be an arbitrary fixed
prime, and pn be the n-th prime number. Let G = {Gn}n≥1, where Gn is

1. Sn, full symmetric group of order n!, or
2. GL(2, pn), general linear group of nonsingular 2× 2 matrices over Fpn , or
3. SL(2, pn), special linear group of 2×2 matrices over Fpn whose determinant

equals 1, or
4. Fn, a Frobenius group of order pn(pn− 1), generated by a, b ∈ Fn, such that

apn = bpn−1 = 1, b−1ab = au, where u is a primitive element of Z∗
pn

, or
5. A non-abelian pn-group with an abelian subgroup of index pn.

Then rk k[Gn] ≥ 5
2 �Gn − o(�Gn).

The statements follow from Theorem 6 and the well-known upper bounds on the
number of different irreducible representations of the mentioned groups.
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Schönhage’s τ -theorem [7, (15.11)] in its weakened form states that if the rank
of kn1×n1 × · · · × knt×nt is at most r, and n1 · · ·nt > 1, then nω

1 + · · ·+ nω
t ≤ r,

where ω is the exponent of matrix multiplication over k. Note that Strassen’s Di-
rect Sum Conjecture implies that rk k[G] = rk kn1×n1 + · · ·+ rk knt×nt , in case
of an algebraically closed k. It turns out that an insignificantly weaker version
of the corresponding lower bound can be proved independently of the validity of
the Direct Sum Conjecture.

Theorem 7. Let G = {G1, G2, . . .} be a semisimple family of finite nonabelian
groups over an algebraically closed field k.

1. Let f(�G) be a lower bound for the largest irreducible character degree of
G ∈ G. Then rk k[G] ≥ (f(�G))ω, where ω is the exponent of matrix multi-
plication. If for all n, f(�Gn) > 1, then

ω ≤ lim sup
n→∞

log k[Gn]
log f(�Gn)

.

2. Let t(�G) be an upper bound for the number of different irreducible represen-

tations of G ∈ G. Then rk k[G] ≥ (�G)
ω
2

(t(�G))
ω2
4 − ω

2
. If for all n, t(�Gn) > 1, then

for Qn = 1 + log �Gn

log t(�Gn) ,

ω ≥ lim sup
n→∞

(
Qn +

√
Q2

n −
log rk k[Gn]
log t(�Gn)

)
(9)

Proof. rk k[G] ≥ f(�G)ω follows trivially from (1) and the observation that for
any algebras A, B over one field rk A×B ≥ max{rk A, rk B}. The related lower
bound for ω is obtained by taking logarithms of both sides of the inequality.

Since G is not abelian, at least one nτ > 1 in (1). By Schönhage’s τ -theorem,
nω

1 + · · ·+ nω
t ≤ rk k[G]. On the other hand, by Lemma 1,

t∑
τ=1

nω
τ =

t∑
τ=1

(n2
τ )

ω
2 ≥

(
t1−

ω
2 ·

t∑
τ=1

n2
τ

)ω
2

≥ (�G)
ω
2

(t(�G))
ω2
4 −ω

2

.

It follows, that ω2 − 2Qnω + log rk k[Gn]
log t(�Gn) > 0. Since ω > 0, the solution is

ω ≥ Qn +
√

Q2
n − log rk k[Gn]

log t(�Gn) . This holds for all n, therefore (9) follows. 
�
Corollary 4. 1. If t(�Gn) = o

(
(�Gn)ε) for every ε > 0, then ωk[G] = ω

2 .4 If
additionally ω > 2, then ωk[G] > 1.

2. If ω > 2 and �Gn = o
(
(f(�Gn))ω), then ωk[G] > 1. One promising family of

finite groups which can help to achieve ω = 2 in [10] has f(�Gn) = (�Gn)
1
2−ε

for some fixed ε > 0. It follows from Theorem 7, that one should look for
ε ≥ 1

2 − 1
ω , since otherwise the lower bound is superlinear unless ω = 2, and

for ε > 0.079 to improve the Coppersmith-Winograd upper bound for ω.
4 For a family of finite groups G = {G1, G2, . . . } we denote by k[G] the family of

group algebras {k[G1], k[G2], . . . }.
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3. If ω > 2 and t(�Gn) = o
(
(�Gn)

2
ω
)
, then ωk[G] > 1. In particular, this holds

if t(�Gn) = o
(
(�Gn)0.841).

4. Let k be an algebraically closed field of characteristic 0, q be a fixed prime
power, G1 = {Sn}n≥1, G2 = {GL(n, q)}n≥1. Then ωk[Gi] = ω

2 , for i = 1, 2.

Proof. Items 1–3 are trivial. Item 4 for G1 follows from Corollary 3, and for G2—
from the fact that GL(n, q) contains an irreducible representation of dimension
(�GL(n, q))

1
2−o(1) [11]. 
�

We conclude with an extension of the lower bounds to the more difficult case of
non-semisimple group algebras. Let k be an algebraically closed field of character-
istic p, and let G be a finite group of order N = npd, where p � n. We will assume
that G has the normal Sylow p-subgroup P of order pd. In this case rad k[G] is
generated by all vectors

∑
h∈P xhh, with

∑
xh = 0, and dim rad k[G] = pd(n− 1).

We will further assume that P is abelian and is isomorphic to a direct product
of cyclic p-groups:

P = Zps1 × · · · × Zpsr , s1 ≤ · · · ≤ sr, d = s1 + · · ·+ sr. (10)

Theorem 8. Let k be a field of characteristic p, and G = {G1, G2, . . . } be a
modular family of groups. Let G ∈ G, and �G = npd, where p � n, and d is as
in (10). Assume that

– P = Z(G)5 is the Sylow p-subgroup of G;
– For any D > 0 there exists G ∈ G with d > D;
– For any ε > 0 and for all G ∈ G with �G > N0 = N0(ε), sr − s1 ≤ 1

2 logp εr.

Then rk k[G] ≥ (2 + 1
n

)
�G− o(�G).

Proof. We will denote the elements of P by hi1, ..., ir , 0 ≤ iρ < psρ , for all
1 ≤ ρ ≤ r, so that

hi1, ..., ir · hj1, ..., jr = h(i1+j1) mod ps1 , ..., (ir+jr) mod psr .

For 0 ≤ ρ ≤ r, let
xρ = hu1, ..., ur − h0, ..., 0,

where uρ = 1 and uκ = 0 for κ 	= ρ. R := rad k[G] is generated by x1, . . . , xr. It
is easy to check that xpsρ

ρ = 0 and for m ≥ 1, the system{
xi1

1 · · ·xir
r | i1 + · · ·+ ir ≥ m, 0 ≤ iρ < psρ

}
is linearly independent and generates Rm. For

am−1 = �
{

(i1, . . . , ir) : i1 + · · ·+ ir ≤ m− 1, 0 ≤ iρ < psρ
}
,

dim Rm = n(pd − am−1).
5 Z(G) is the center of G, i.e., the set of elements of G that commute with all the

elements of G.
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Let Eξ be the expectation of a discrete random variable ξ which can assume
only finite number of values. If ξ takes value ai ∈ R with probability pi ≥ 0 for
1 ≤ i ≤ n,

∑n
i=1 pi = 1, then Eξ =

∑n
i=1 aipi. Dξ = E(ξ − Eξ)2 denotes the

variance of ξ.
The exponent of P is psr = o(�P ) by the third condition of the theorem. Thus

the parameter r is unbounded among all groups from G. According to (3),

rk k[G] ≥ �G + dim Rm + dim Rm − dim R2m =
(

2 +
a2m−1 − 2am−1

npd

)
�G.

We will choose m in such a way that a2m−1
pd → 1, am−1

pd → 0 when r →∞.
This following elegant argument is due to B. Chokayev. Consider the indices

{iρ}r
ρ=1 as independent random variables, iρ taking each value in [0, psρ−1] with

probability 1
psρ . Then Eiρ = psρ−1

2 , Diρ = p2sρ−1
12 , and denoting ξr = i1+ · · ·+ir,

Eξr =
1
2

r∑
ρ=1

psρ − r

2
, Dξr =

1
12

r∑
ρ=1

p2sρ − r

12
.

Note that ξr takes each value in [0,
∑r

σ=1 psρ − r] with probability am−am−1
pd .

Now consider m = 2
3Eξr as a function of r. By Chebyshev’s inequality,

am−1

pd
= P(ξr ≤ m− 1) ≤ P(|ξr − Eξr | ≥ Eξr −m + 1)

≤ Dξr

(Eξr −m + 1)2
≤ 3p2sr−2s1

4r
−−−→
r→∞ 0,

a2m−1

pd
= P(ξr ≤ 2m− 1) ≥ P(|ξr − Eξr| ≤ 2m− 1− Eξr)

≥ 1− Dξr

(2m− 1− Eξr)2
≥ 1− 3p2sr−2s1

4r
−−−→
r→∞ 1.


�
Corollary 5. Let k be a field of characteristic p and G = {G1, G2, . . . } be a
family of finite groups such that

1. For all i ≥ 1, �Gi < �Gi+1,
2. For every i ≥ 1, the only Sylow p-subroup of Gi coincides with Z(Gi), and

Z(Gi) = Zni × · · · × Zni ,
3. lim supn→∞ �Z(Gi)/(�Gi) > 0.

Then there exists such N that the family of group algebras k[G] does not contain
algebras of minimal rank of dimension greater than N .

4 Conclusion

We extended the group-theoretic approach and algorithms for matrix multipli-
cation by showing that there are tight relations between the lower bounds for
the rank of matrix multiplication and the rank of group algebras.
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The first possible improvement would be a further generalization of Theorem 5
for the case of arbitrary semisimple group algebras. This would link the ranks
of group algebras and of the matrix algebra over more fields. On the other
hand, relaxing the conditions of Theorem 8 may shed more light on the possible
complexity issues that arise in the group algebras with radical which are not
related to the complexity of matrix multiplication.
Acknowledgements. I would like to thank M. Bläser, the anonymous reviewers for
many helpful comments and suggestions, and V. Alekseyev for introducing me
into this topic. Many thoughtful remarks came from D. Khovratovich, M. Fouz
and R. Rao.

References

1. Alder, A., Strassen, V.: On the algorithmic complexity of associative algebras.
Theoret. Comput. Sci. 15, 201–211 (1981)

2. Atkinson, M.D.: The complexity of group algebra computations. Theoret. Comput.
Sci. 5(2), 205–209 (1977)
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Abstract. The master theorem provides a solution to a well-known
divide-and-conquer recurrence, called here the master recurrence. This
paper proves two cook-book style generalizations of this master theorem.
The first extends the treated class of driving functions to the natural class
of exponential-logarithmic (EL) functions. The second extends the result
to the multiterm master recurrence. The power and simplicity of our ap-
proach comes from re-interpreting integer recurrences as real recurrences,
with emphasis on elementary techniques and real induction.

1 Introduction

Techniques for solving recurrences are among the standard repertoire of algo-
rithmic textbooks [13,5,16,4,1]. A proto-typical recurrence arising in the analysis
of efficient recursive algorithms is

T (n) = aT (n/b) + d(n) (1)
where a > 0 and b > 1 are arbitrary real numbers, and d(n) ≥ 1 is the driving
function. We call (1) the master recurrence since theorems providing its
solution are widely known as “master theorems”. The solutions depend on the
nature of d(n). The case where d(n) is multiplicative is treated in [1, p. 301]. In
an influential note, Bentley, Haken and Saxe [3, Table 1, p.39] proved a master
theorem under a fairly general hypothesis on d(n). Recurrence (1) generalizes to

T (n) =
k∑

i=1

aiT (n/bi) + d(n) (2)

where ai > 0 and bi > 1 are arbitrary real constants (k ≥ 2). We call (2) the
multiterm master recurrence. E.g., the 2-term recurrences T (n) = T (n/b1)+
T (n/b2) + n and T (n) = T (n/2) + T (n/4) + log n arise (respectively)
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in fast median algorithms [4, p. 240] and in conjugate search tree analysis in
Computational Geometry [6].

To discuss the literature, it is useful to begin with the “standard” master
theorem for (1). This is Proposition 1 in the next Section. It has two kinds
of generalizations: (A) The first kind, as in Verma [19], extends the class of
driving functions d(n) that are captured by the master theorem. Verma’s main
result [19, Theorem 13] provided integral bounds on solutions when the driving
functions d(n) satisfy some growth properties. (B) The second kind comes from
extending the master recurrence itself. Wang and Fu [20, Theorem 3.5] gave
integral bounds for a parametric form of (1) where a, b are now functions of n. Of
course, the multiterm recurrence (2) is also a generalization of the second kind.
An early treatment of multiterm recurrences is found in Purdom and Brown
[16]. Multiterm master theorems are given by Kao [11], Akra and Bazzi [2],
and Roura [18, Theorem 2.3]. Leighton [14] provides an exposition of [2]. We
remark that obtaining generalized bounds in the form of integrals, by itself,
is not satisfactory: our goal is to achieve “cookbook style” theorems [12] as
exemplified by the master theorem.

¶1. Contributions and Overview. Our main contribution is two cookbook style
generalizations of the master theorem, Theorems A and B. They are natu-
ral extensions, and completions, of known results. They serve to unify many
complexity analysis of individual algorithms: thus, no previous master theorems
capture the analysis of Schönhage-Strassen’s multiplication algorithm [13], but
this is now an application of Theorem A. Similarly, the conjugate tree analy-
sis of Edelsbrunner and Welzl [6] is a consequence of Theorem B. Furthermore,
Theorem B shows that the conjugate tree exponent, α = lg(φ − 1) ∼ 0.695
where φ = 1.618 . . . is the golden ratio, can be systematically obtained, and that
this bound is tight to Θ-order. Our second contribution is the introduction of
rigorous elementary techniques for these derivations. In particular, we provide
summation formulas for Exponential-Logarithmic (EL) functions. Elementary
techniques are possible because we exploit bounds which are tight to (only)
Θ-order.

Section 2 will review the master theorem and extensions. Section 3 states our
two main results: Theorem A is a master theorem that allows the driving func-
tion d(n) to be any EL-function. Theorem B is a multiterm master theorem.
Section 4 introduces elementary summation techniques. Section 5 addresses ele-
mentary sums and proves Theorem A. Section 6 introduces real induction and
proves Theorem B. We conclude in Section 7.

¶2. Approach of Paper. Our approach has two emphases. The first is on real
recurrences: in the recurrences (1) and (2), we treat n as a real variable, T (n)
as a real function and all constants a, b, ai, bi are real. In contrast, most of the
literature regards n as an integer variable. E.g., Kao [11] treats this multiterm
recurrence:
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T (n) =
{

c · nα · logβ n +
∑k

i=1 aiT (�bin�) for n ≥ n0

cn for n < n0
(3)

where n and k are positive integers, c, cn, ai are positive constants, α, β are non-
negative constants, bi ∈ (0, 1) and n0 ≥ maxk

i=1
1

1−bi
. Similar viewpoints are seen

in Wang-Fu, Akra-Bazzi and Roura. But most driving functions such as d(n) =√
n and d(n) = n log n are naturally real functions. Hence our real extension

remains well-defined if we simply omit the (troublesome) integer-valued functions
such as ceiling or floor. A standard approach to avoid ceiling/floor functions is
“domain restriction”. E.g., restricting the domain of T (n) in recurrence (1) to
positive powers of b ([4, p. 145, Problem 4.44] or [19]) and requiring b to be
integer. Finally, to restore n to range over all integers, we need special arguments
(e.g., [5, pp. 81–84]) or smoothness assumptions on T (n). Although the idea of
real recurrences is nascent in several of the papers (e.g., [2,19,18]), it seldom
takes on a full-blown form. In this paper, we develop basic tools to rigorously
treat real recurrences.

Our second emphasis is the use of elementary methods. Here “elementary”
means the avoidance of calculus [10], not that the results are trivial or easy to
come by. It is conventional wisdom in algorithmics to solve T (n) up to Θ-order
because it yields robust conclusions about complexity (e.g., [3]). But it is seldom
noted that Θ-order analysis lends itself to elementary techniques. E.g., below
we give elementary Θ-bounds on sums that are usually treated by the Euler-
Maclaurin formula [8, p. 217]. Authors also fail to exploit problem simplifications
from Θ-order analysis [19,20,18]. For instance, up to Θ-order, most solutions
are insensitive to the initial conditions. So we need not explicitly specify initial
conditions. Instead, this paper assumes the following default initial condition
(DIC):

T (n) = C, (n ≤ n0) (4)

for some constant C ≥ 0 and real n0; the recurrence equation is assumed to be
operative for n > n0. Usually C = 0 is simplest and easily justified. Thus,
using real recurrences under DIC, Kao’s recurrence (3) greatly simplifies to
T (n) = nα logβ n +

∑k
i=1 aiT (bin). Roura [18] and Leighton [14] also discuss

robustness issues. The pedagogical advantage of avoiding calculus for computer
science students is obvious. Also our driving function d(n) need not be differen-
tiable (Lipschitz type bounds suffice).

These two emphases (real and elementary) explain the title of this paper. The
simplicity and power of the real approach will hopefully be evident.

2 On Master Theorems

The “standard” master theorem provides the motif for generalizations. Relative
to the master recurrence (1), we define a watershed constant

α := logb a (5)
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and an associated watershed function w(n) := nα. The master theorem is a
trichotomy based on a comparison between d(n) and w(n):

Proposition 1 (Standard Master Theorem). The solution to (1) is

T (n) = Θ

⎧⎨⎩
nα if d(n) = O(w(n)n−ε) for some ε > 0 [CASE (−)]
nα log n if d(n) = Θ(w(n)) [CASE (0)]
d(n) if “d(n) = Ω(w(n)nε)” for some ε > 0 [CASE (+)].

(6)

This is taken from Cormen et al [5, p. 73], except n is now a real variable and
a > 0 (not a ≥ 1). The trichotomy amounts to d(n) being (resp.) polynomially-
slower than, Θ-order of, and polynomially-faster than w(n). The condition for
polynomially-faster [CASE (+)] in (6) is written in quotes because the original
Ω-notation in [3, p. 39] was non-standard. This was replaced in [5] by the weaker
regularity condition: for some C > 1,

d(n) ≥ C · a · d(n/b) (ev. n) (7)
where the qualification “(ev. n)” reads as “eventually n”, meaning that the
statement holds for large enough n. Our real approach affords a “two-line proof”
of Prop. 1: by induction, T (n) = ai+1T

(
n/bi+1

)
+
∑i

j=0 aj · d ( n
bj

)
, for i =

0, 1, . . .. Setting i = m := �logb n�, and using DIC (with C = 0) in (4), we obtain

T (n) =
m∑

j=0

ajd(n/bj). (8)

The 3 cases follow by plugging in the corresponding bounds for d(n). Q.E.D.
¶3. Extended Master Theorem. It is well-known that Prop. 1 does not cover
many useful driving functions such as d(n) = w(n) logδ n (δ 	= 0). By applying
the general techniques of domain and range transformations [4, pp. 130-137],
we get:

Proposition 2 (Extended Master Theorem). The solution to (1) is

T (n) = Θ

⎧⎪⎪⎨⎪⎪⎩
d(n) if d(n) satisfies the reg. cond. (7) [CASE (+)] ,

d(n) log n if d(n) = Θ(nα logδ n) for some δ > −1 [CASE (0)] ,
d(n) log n log log n if d(n) = Θ(nα logδ n) where δ = −1 [CASE (1)] ,

nα if d(n) = O(nα logδ n) for some δ < −1 [CASE (−)] .

Prop. 2 generalizes the master theorem (6) since the original CASEs (−)&(0)
are subsumed by the new ones; CASE (+) is unchanged but CASE (1) is new.
Prop. 2 is from Brassard and Bratley [4, p. 145] (cf. [5, p.84, Ex.4.4-2]), slightly
sharpened here: we state CASE (+) in terms of the regularity condition. Further
[4] assumes n = n0b

i for integers n0 ≥ 1 and b ≥ 2. Wang and Fu’s version of
Prop. 2 is in [20, §4.3 and Table 1]. Roura’s version [17] missed CASE (1). Case
3 in Verma’s version [19, Theorem 1] is weaker than CASE (0) as he assumes
δ ≥ 0. Still, our Prop. 2 is silent when the driving functions are, for example:

d0(n) := nα log n log log n
d1(n) := nα(log log n)r

d2(n) := nα (log log log n)s

log n log log n

⎫⎬⎭ (9)
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for non-zero r, s. Note that d0(n) arise in the Schönhage-Strassen’s algorithm
[13] with α = 1. It turns out that the solutions for T (n) under the driving
functions (9) are (resp.)

Θ(nα · log2 n log log n), Θ(nα · log n(log log n)r), Θ(nα(log log log n)s+1). (10)

The last case assumes s > −1; different solutions arise if s = −1 or if s < −1.
Theorem A in the next section will provide these solutions, and much more.

3 Two Generalized Master Theorems

This section will state our two main results: Theorems A and B. Both are ex-
tensions of Prop. 2. We begin with Theorem B since Theorem A requires a bit
more development to formulate.

¶4. We need the multiterm analogues of (5) and (7): the watershed constant
for (2) is the unique α satisfying the characteristic equation

∑k
i=1

ai

bα
i

= 1 (see
[11,2]). Say d(n) satisfies the regularity condition of (2) if, for some 0 < c < 1,

k∑
i=1

aid

(
n

bi

)
≤ c · d(n). (11)

Theorem B – Multiterm Master Theorem
The solution to (2) satisfies

T (n)=Θ

⎧⎪⎪⎨⎪⎪⎩
d(n) if d(n) satisfies the reg. cond. (11) [CASE (+)],
d(n) lg n if d(n) = Θ(nα lgδ n) for some δ > −1 [CASE (0)],
d(n) lg n lg lg n if d(n) = Θ(nα lgδ n) where δ = −1 [CASE (1)],
nα if d(n) = O(nα lgδ n) for some δ < −1 [CASE (−)].

All previous versions of Theorem B have 3 cases, as in Prop. 1. Our CASE
(1) is new, and in some sense it completes this line of analysis. Kao [11] gave
an inductive proof for the case k = 2 only. Roura [18, Theorem 2.3] treats more
general driving functions; like Kao, the treatment is for integer recurrences. Akra
and Bazzi [2] deduced their result from a general integral bound, which Leighton
[14] simplified.

¶5. On EL-functions. We now introduce the family1 of “EL-functions” which
will serve as driving functions for Theorem A. The iterated logarithm func-
tion (for k ∈ N) is defined as ��gk(x) := lg(lg(· · · (lg(x)) · · ·))︸ ︷︷ ︸

k times

where lg := log2 is

the “computer science logarithm”. E.g., ��g0(x) = x, ��g1(x) = lg x, ��g2(x) =
lg lg x. We may extend the index k to all integers where, for k ∈ N, ��g−(k+1)(x)

1 EL is mnemonic for Exponential-Logarithmic.
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:= 2��g−k(x). Thus ��g−1(x) = 2x and ��g−2(x) = 22x

. An exponent se-
quence is a function e : Z → R with finite support, i.e., e(i) = 0 for all
but finitely many i’s. We normally write ei for e(i). Call e trivial if ei = 0
for all i ∈ Z. For nontrivial e, the smallest index i such that ei 	= 0 is called
its order, and ei its leading power; these are denoted Ord(e) and Pow(e)
(resp.). Given k, � ∈ N, if ei = 0 for all i < −k and i > �, we may repre-
sent e (non-uniquely) as the sequence e = (e−k, . . . , e−1, e0; e1, . . . , e�) where
the semi-colon “;” between e0 and e1 indicates the “origin” of the bidirec-
tional sequence. An elementary function is a partial function f(x) of the
form ELe(x) :=

∏
i∈Z

��gei

i (x) where ��ga
k(x) :=(��gk(x))a is the a-th power of

��gk(x). E.g., EL(−2;0,π)(x) = x−2(lg lg(x))π .
We need one more concept to state Theorem A. Any driving function d(n)

of the form ELe(n) where Ord(e) = 0 and Pow(e) = α (watershed constant)
is just “at the cusp” between CASES (+) and (−), and so we call such e a
cusp exponent. The cusp order of any e is the largest index h ≥ 1 such that
e(i) = −1 for i = 1, 2, . . . , h−1; also call e(h) the cusp power. Cusp exponents
have form e = (α;−1,−1, . . . ,−1, β, . . .) where β 	= −1 is the cusp power.

Theorem A – Generalized Master Theorem
Let the driving function be d(n) = ELe(n) with k = Ord(e) and c = Pow(e).
Also let the cusp order and cusp power of e be h and β respectively. The solution
T (n) to the master recurrence (1) with watershed constant α = logb a satisfies

T (n) = Θ

⎧⎨⎩
d(n) if (k < 0 ∧ c > 0) or (k ≥ 0 ∧ e(0) > α), [CASE (+)]
d(n)LLh(n) if (k = 0 ∧ e(0) = α ∧ β > −1), [CASE (h − 1)]
nα otherwise [CASE (−)]

(12)

where LLh(n) :=
∏h

i=1 ��gi(n) = lg n · lg lg n · ��g3(n) · · · ��gh(n).
This theorem has infinitely many cases, one for each h ≥ 1. For h = 1 and 2,

we reproduce CASEs (0) and (1) of Prop. 2. Verma [19, Theorem 13] has driving
functions not covered here. To make Theorem A fully comparable to Prop. 1,
we could re-formulate CASE (+) using the regularity condition. An interesting
corollary of Theorem A is this: when the driving function is an EL-function, the
solution to the master recurrence is, up to Θ-order, another EL-function.

To see Theorem A in action, recall the driving functions d0(n), d1(n), d2(n) in
(9). The exponent sequence for them are (resp.)

(α; 1, 1), (α; 0, r), (α;−1,−1, s)

For d0(n) and d1(n), their cusp order h and cusp power β are (resp.) (h, β) =
(1, 1) and (1, 0). As these cusp powers are > −1, they are both fall under CASE
(0) which has solution T (n) = Θ(d(n)LL1(h)). This yields the first two solutions
in (10). For d2(n), we have three possibilities: If s > −1, then (h, β) = (3, s) and
the solution falls under CASE (2) with solution T (n) = Θ(d(n)LL3(n) as given
by the third bound in (10). If s = −1, then (h, β) = (4, 0) and it falls under
CASE (3) with solution T (n) = Θ(d(n)LL4(n)) = Θ(nα��g4(n)). If s < −1,
then (h, β) = (3, s) but it falls under CASE (−) with solution T (n) = Θ(nα).
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4 Elementary Summation Techniques

A complexity function is a partial function f : R → R where f(x) is defined
for x large enough. Standard asymptotic notations (big-Oh, big-Omega, Theta,
etc) can be extended to partial functions [21]. Define two kinds of sums on f -
values between real limits a, b ∈ R:∑b

x≥a f(x) := f(b) + f(b− 1) + · · ·+ f(b− �b− a�), (descending)∑b
x=a f(x) := f(a) + f(a + 1) + · · ·+ f(a + �b− a�) (ascending)

}
(13)

Both sums are 0 for b < a; else the descending (ascending) sum will include
the term f(b) (f(a)). The two versions are distinguished by way we write their
lower limits: “

∑
x≥a” versus “

∑
x=a”. Such sums are always well-defined as any

undefined summand f(x) is replaced by 0. Our manipulations below exploits:

b∑
x≥0

f(x) ≡
b∑

x=0

f(b− x). (14)

Our main focus will be descending sums of the form Sf (n) :=
∑n

x≥1 f(x) for real
values of n. This sum is traditionally bounded with the Euler-Maclaurin formula.
But we now provide elementary method based on “growth-types”:

• f is polynomial-type if f ≥ 0, f is non-decreasing, and for some K > 0,
f(x) ≤ Kf(x/2) (ev.).
• f increases exponentially if f > 0 and for some C > 1 and k > 0, f(x) ≥
C · f(x− k) (ev.).
• f decreases exponentially if f > 0 and for some 0 < c < 1 and k > 0,
f(x) ≤ c · f(x− k) (ev.).

We say that f is exponential-type if it increases or decreases exponentially.
Polynomial-type functions corresponds to Verma’s “slowly growing functions”
[19]. These growth-types are non-exhaustive: for instance, it can be shown that
the function xln x is not captured. Our next result is relatively easy but useful
because it reduces estimating Sf (n) to the easier problem of determining the
growth type of f .

Theorem 1 (Summation Rules)

Sf (n) = Θ

⎧⎨⎩
nf(Θ(n)) if f is polynomial-type,
f(n) if f increases exponentially,
1 if f decreases exponentially.

To determine the growth-type of f , we can exploit simple closure properties of
growth types (e.g., each type is closed under addition, multiplication, raising to
a positive power, etc). Moreover, an EL-functions f (say f(x) = ELe(()x)) is
exponential-type if Ord(e) < 0; otherwise, either f or f−1 is polynomial-type.
We exploit such properties in our proofs.
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5 Elementary Sums and Proof of Theorem A

Our goal is to bound elementary sums, i.e., Sf (n) where f is an EL-function.
Such sums may be denoted by Se(n) :=

∑n
x≥1 ELe(x).

¶6. Error Notation. We write “x = y ± z” to mean that x = y + θz for some θ
where |θ| ≤ 1. The general convention [21] is that in any numerical expression,
each occurrence of the symbol “±” stands for a sequence “+θ” where θ is an
anonymous variable satisfying |θ| ≤ 1. Like the big-Oh notation, this is a very
useful variable hiding device. Thus, the following holds for any continuous f :

n∑
i=1

f(n± c) = nf(n± c). (15)

We need 3 operators on e. The shift operator σ is: σ(e)(i) = e(i + 1) for all i.
E.g., ELσ(e)(n) = ELe(2n). For c ∈ R, let e′ (resp., e + c) denote the exponent
sequence where we zero out (resp., add c to) the component e(0): e′(0) = 0 and
(e + c)(0) = c + e(0), and e′(i) = (e + c)(i) = e(i) (i 	= 0). Usually, c = 1.
Another result we need is this: if Ord(e) ≥ 0 and c ∈ R,

ELe(2n±c) = ELσ(e)(n± c) = Θ(ELσ(e)(n)) = Θ(ELe(2n)). (16)

The next transformation of elementary sums is the key.

Lemma 1 (Key Transformation). If Ord(e) ≥ 0, Se(n) = Θ(Sσ(e+1)(lg n)).

Up to Θ-order, we will show Se(n) = Θ(f(n)) for some elementary function
f . The goal (next Theorem) is to determine the exponent of f . Note that all
asymptotic notations assume a fixed e. We need a variant notion of cusp order
from Section 3: for any e, its augmented cusp order is 0 if e(0) 	= −1; else
it is the cusp order of e. Also e(h) is the augmented cusp power if h is the
augmented cusp order. If e(0) = −1, then the augmented concepts agree with
the original ones.

Theorem 2 (Elementary Sums). Let k := Ord(e), c := Pow(e). Also, let the
augmented cusp order and power of e be h and β, respectively. Then

Se(n) = Θ

⎧⎨⎩
ELe(n) if (k ≤ −1 ∧ c > 0), [CASE (+)]
ELe(n)LLh+1(2n) if (k ≥ 0 ∧ β > −1), [CASE (h)]
1 else [CASE (−)]

(17)

The proof uses repeated application of the key transformation, Lemma 1. To
see the power of Thm. 2, note that it implies Sf (n) = Θ(��gh(n)) when f(x) =
1/LLh(2x) (for any h ∈ N). Goursat [9, p. 349] has the calculus analogue of this.
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¶7. Proof of Theorem A. Let n = bm. From (8), we have

T (n) =
∑m

i=0 aid(n/bi) =
∑m

i≥0 am−id(bi) (by (14))
= nα

∑m
i≥0 a−id(bi) = nα

∑m
i≥0 a−iELe(bi). (18)

If k ≤ −1, the function F (i) := a−iELe(bi) is increasing (decreasing) exponen-
tially when c > 0 (c < 0). Applying our summation rules (Thm. 1) to (18),

T (n) = nα ·Θ
{

a−mELe(bm)
1 = Θ

{
ELe(n) if c > 0,
nα if c < 0.

(19)

This proves our theorem for k ≤ −1. Next assume k ≥ 0. Writing e0 = e(0),

T (n) = nα
m∑

i≥0

a−iELe(bi) = nα
∑m

i≥0(be0/a)i · ELe′
(bi). (20)

But (be0/a) is > 1 (= 1, < 1) depending on whether e0 > α (= α, < α). So the
sum (20) is exponential-type (polynomial-type) when e0 	= α, (e0 = α). So:

T (n) = nα ·Θ
⎧⎨⎩

a−mELe(bm),∑m
i≥0 ELe′

(bi),
1

= Θ

⎧⎨⎩
ELe(n) if e0 > α,

nα ·∑m
i≥0 ELσ(e′)(i lg b) if e0 = α,

nα if e0 < α.

(21)

We are done with the case k ≥ 0 and e0 	= α. For k = 0 and e0 = α, (21) gives

T (n) = Θ(nα ·∑m
i≥0 ELσ(e′)(i lg b))

= Θ(nα ·∑m
i≥0 ELσ(e′)(i)) (lg b is const. in a poly.-type sum)

= Θ(nα · Sσ(e′)(m)) (definition of Sσ(e′))

= Θ

{
nα · ELσ(e′)(m)LLh(2m) if β > −1
nα if β < −1

(by Thm. 2)

In applying Thm. 2, we use the fact that Ord(σ(e′)) ≥ 0 and the augmented cusp
order of σ(e′) is equal to h−1. The case β < −1 falls under CASE (−). Case β >

−1 falls under CASE (h) because nα ·ELσ(e′)(m)LLh(2m) = Θ(ELe(n)LLh(n))
because m = Θ(lg n). This proves Theorem A.

6 Real Induction and Proof of Theorem B

The principle of natural induction, or induction on N, is well-known. To prove
Theorem B, we need induction on R, or real induction. Real induction is
rarely discussed in the literature although it is needed in areas such as automatic
correctness proofs of programs involving real numbers, timing logic [15], and in
the programming language Real PCF [7]. We give a simple formulation here:
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Principle of (Archimedean) Real Induction

Let P (x) be a real predicate. Then P (x) is valid provided there exist real numbers
x1 (cutoff constant) and γ > 0 (gap constant) such that:

(RB) Real Basis: For all x < x1, P (x) holds.
(RI) Real Induction: For all y ≥ x1, if (∀x ≤ y − γ)P (x) then P (y).

The derived predicate “P+(y) ≡ (∀x ≤ y − γ)P (x)” in (RI) is called the real
induction hypothesis (RIH). Thus (RI) says P+(y) ⇒ P (y). This principle
is “Archimedean” because it exploits the Archimedean property of the reals:
for any x ∈ R, there is a smallest n(x) ∈ N such that x ≤ x1 + n(x)γ. Our
principle is easily justified by a strong induction on the natural number n(x).
As an application of real induction, we can prove that the multiterm regularity
condition (11) implies d(n) = Ω(nα+ε) for some ε > 0.

¶8. Proof of Theorem B. We use the Principle of Real Induction. First we prove
the real induction (RI) part of each case in our theorem:

CASE (+): This is the easiest case. The lower bound T (n) = Ω(d(n)) is trivial.
For the upper bound, we will show T (n) ≤ D1d(n) (ev.), for some D1:

T (n) = d(n) +
∑k

i=1 aiT
(

n
bi

)
≤ d(n) +

∑k
i=1 aiD1d(n/bi) (by RIH)

≤ d(n) + D1cd(n) (by regularity cond. (11))
≤ D1d(n) (choosing D1 ≥ 1/(1− c))

CASE (0): Assume that d(n) = nα lgδ n for some δ > −1. We first show T (n) ≤
D1d(n) lg n. We have, eventually,

T (n) = d(n) +
∑k

i=1 aiT
(

n
bi

)
≤ nα lgδ n +

∑k
i=1 aiD1

(
n
bi

)α

lgδ+1
(

n
bi

)
(by RIH)

= nα lgδ n + D1n
α lgδ+1 n

[∑k
i=1

ai

bα
i

(
1− lg bi

lg n

)δ+1
]

= D1n
α lgδ+1 n

[
1

D1 lg n +
∑k

i=1
ai

bα
i

{
1− (δ + 1) lg bi

lg n (1 + o(1))
}]

= D1n
α lgδ+1 n

[
1 + 1

lg n

{
1

D1
− (δ + 1)

∑k
i=1

ai lg bi

bα
i

(1 + o(1))
}]

≤ D1n
α lgδ+1 n

provided D1 is sufficiently large to verify 1
D1

< (δ + 1)
∑k

i=1
ai lg bi

bα
i

. Here the
condition δ > −1 is necessary. Similarly, we show the lower bound T (n) ≥
D2d(n) lg n using the same derivation above, but with reversed inequalities. The
provision is that D2 is small enough to verify 1

D2
> (δ + 1)

∑k
i=1

ai lg bi

bα
i

.

CASE (1): Assume that d(n) = nα/ lg n. We first show T (n) ≤ D1d(n) lg lg n.
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T (n) = d(n) +
∑k

i=1 aiT
(

n
bi

)
≤ nα

lg n +
∑k

i=1 aiD1

(
n
bi

)α

lg lg
(

n
bi

)
(by RIH)

= D1n
α
[

1
D1 lg n +

∑k
i=1

ai

bα
i

lg
{

(lg n)
(

1− lg bi

lg n

)}]
= D1n

α
[

1
D1 lg n +

∑k
i=1

ai

bα
i

{
lg lg n + lg

(
1− lg bi

lg n

)}]
= D1n

α
[
lg lg n + 1

D1 lg n +
∑k

i=1
ai

bα
i

lg
(

1− lg bi

lg n

)]
= D1n

α
[
lg lg n + 1

D1 lg n −
∑k

i=1
ai

bα
i

lg bi

lg n (1 + o(1))
]

= D1n
α
[
lg lg n + 1

lg n

{
1

D1
−∑k

i=1
ai lg bi

bα
i

(1 + o(1))
}]

≤ D1n
α lg lg n

provided D1 is large enough to verify 1
D1

<
∑k

i=1
ai lg bi

bα
i

. Similarly, the lower
bound T (n) ≥ D2n

α lg lg n uses the above derivation with inequalities reversed,
and D2 small enough to verify 1

D2
>
∑k

i=1
ai lg bi

bα
i

.

CASE (−1): This is the trickiest. By assumption, 0 ≤ d(n) ≤ nα lgδ n (ev.) for
some δ < −1. To show T (n) = O(nα), the hypothesis T (n) ≤ D1n

α will not
do. Instead, use the stronger hypothesis T (n) ≤ D1n

α
[
1−K lgδ+1 n

]
(ev.) for

some D1, K > 0. Eventually,

T (n) = d(n) +
k∑

i=1

aiT

(
n

bi

)
≤ nα lgδ n +

∑k
i=1 aiD1

(
n
bi

)α [
1−K lgδ+1

(
n
bi

)]
(by RIH)

= D1n
α

[
lgδ n
D1

+ 1−K lgδ+1 n
∑k

i=1
ai

bα
i

(
1− lg bi

lg n

)δ+1
]

= D1n
α
[
1−K lgδ+1 n

{
− 1

KD1 lg n +
∑k

i=1
ai

bα
i

(
1− (δ + 1) lg bi

lg n

)
(1 + o(1))

}]
= D1n

α
[
1−K lgδ+1 n

{
1− 1

lg n

(
1

KD1
+ (δ + 1)

∑k
i=1

ai lg bi

bα
i

(1 + o(1))
)}]

≤ D1n
α
[
1−K lgδ+1 n

]
provided KD1 is small (sic) enough to verify 1

KD1
> −(δ +1)

∑k
i=1

ai lg bi

bα
i

(recall
δ < −1). The introduction of K is crucial. For the lower bound, we also use a
strengthened hypothesis, T (n) ≥ D2n

α(1+lgδ+1 n). The derivations is essentially
the same, except inequalities are reversed. This completes the four cases.

We now provide the real bases (RB) for each of the above cases: first choose
n0 so that d(n) is defined and the recurrence (2) for T (n) holds nonvacuously
(∀n ≥ n0). Choose γ = γ(n0) as shown in the Appendix. Ensure the cutoff n1 is
≥ n0/γ, so that RIH holds nonvacuously.

CASE (+): Choose n1 = n0/γ and ensure D1 ≥ T (n)/d(n) for all n ∈ [n0, n1].
CASEs (0) and (1) are omitted in this abstract. CASE (−): For upper bound, we
first choose the product KD1 to equal the reciprocal of −(δ + 1)

∑k
i=1

3ai lg bi

2bα
i

.
Choose n1 ≥ n0/γ to be large enough so that the o(1) term has absolute value
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< 1/2, and for n ≥ n1, the function f(n) = nα− (KD1) lgδ+1 n is increasing and
≥ 1. Finally, choose D1 as supn0≤n≤n1

{T (n)/f(n)}. Note that f(n) ≤ D1n
α(1−

K lgδ+1 n) and hence T (n) ≤ f(n) ≤ D1n
α(1−K lgδ+1 n) for n ∈ [n0, n1].

The proof of Theorem B is complete.

7 Conclusion

Cormen et al [5, p. 90] noted that some generalized master theorems are not
easy to use. This echoes Karp’s wish for “cookbook theorems” to recurrences
[12]. That is the appeal of the standard master theorem. Our Theorem B has
similar qualities. Although Theorem A is also cookbook, the generality of its
driving function calls for some unavoidable deciphering of the notations. Further
generalizations of Theorems A and B are possible: for instance, one could extend
Theorem B to driving functions that are general EL functions. Another direction
is to treat robustness issues of such solutions – we address this in the full paper.

Features that detract from cookbook property include bounds left in an in-
tegral form, tedious details involving integrality assumptions, and tracking of
(essentially) arbitrary initial conditions. We have shown that much of this can
be removed if we exploit Θ-robustness and embrace real recurrences whole-
heartedly. Real induction is another useful tool that ought to be used more
widely in this context. We feel our ideas are pedagogically sound. For instance,
the summation rules for the various growth-types are easily taught in intro-
ductory algorithms. Indeed, our perspectives have developed out of classroom
teaching.
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Abstract. In this paper we study energy efficient deadline scheduling on
multiprocessors in which the processors consumes power at a rate of sα

when running at speed s, where α ≥ 2. The problem is to dispatch jobs
to processors and determine the speed and jobs to run for each processor
so as to complete all jobs by their deadlines using the minimum energy.
The problem has been well studied for the single processor case. For the
multiprocessor setting, constant competitive online algorithms for special
cases of unit size jobs or arbitrary size jobs with agreeable deadlines have
been proposed [4]. A randomized algorithm has been proposed for jobs of
arbitrary sizes and arbitrary deadlines [13]. We propose a deterministic
online algorithm for the general setting and show that it is O(logα P )-
competitive, where P is the ratio of the maximum and minimum job size.

1 Introduction

Energy efficient deadline scheduling. Energy consumption has become an im-
portant concern in the design of modern processors, not only for battery-operated
mobile devices with single processors but also for server farms or laptops with
multi-core processors. A popular technology to reduce energy usage is dynamic
speed scaling (see e.g., [4, 7, 8, 21]) where the processor can vary its speed dy-
namically. The power consumption is modelled by sα when the processor runs at
speed s, where α is typically 2 or 3 [11, 20]. Running a job slower saves energy,
yet it takes longer to finish the job. The challenge arises from the conflicting
objectives of providing good “quality of service” (QoS) and conserving energy.
Deadline feasibility is a common QoS measure for job scheduling. Jobs with ar-
bitrary sizes and deadlines arrive at unpredictable times and they are to be run
on some processor. Preemption is allowed with no penalty.

The study of speed scaling was initiated by Yao et al. [21]. They studied
deadline scheduling on a single processor in which jobs with arbitrary sizes and
deadlines arrive online and the aim is to finish all jobs by their deadlines using the
minimum amount of energy. The decision at any time is to determine which job
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to run and at what speed. They gave an optimal offline algorithm and a simple
online algorithm AVR which is 2α−1αα-competitive and they also proposed an
online algorithm OA. Bansal, Kimbrel and Pruhs [8] later showed that OA is
αα-competitive. They also gave a 2(α/(α−1))αeα-competitive algorithm, which
is called the BKP algorithm and is better than OA when α > 5. The result is
further improved to 4α/(2

√
eα)-competitive by the qOA algorithm [7].

The problem of energy efficient scheduling has also been studied for other
QoS measures. The problem of minimizing flow time and energy has attracted a
lot of attention [3, 5, 6, 9, 13, 18, 19]. Energy efficient scheduling has also been
extended to the setting with sleep states [14, 16, 17]. The literature also contains
results on other aspects of energy efficient scheduling, see [1, 2, 15].

Energy efficient multiprocessor scheduling. The problem of energy efficient
deadline scheduling becomes NP-hard in the multiprocessor setting, even when
all the jobs have the same arrival times and deadlines. In the multiprocessor set-
ting, in addition to determining processor speeds, a job dispatching algorithm is
required to assign jobs to processors. Albers et al. [4] have extended the study
to the multiprocessor setting and they study the special cases of unit-size jobs
or jobs with agreeable deadlines (jobs arriving earlier have earlier deadlines).
If jobs have unit-size and agreeable deadlines, Round Robin (RR) is optimal.
For the case of unit-sized jobs with arbitrary deadlines or arbitrary-sized jobs
with agreeable deadlines, they gave an αα24α-competitive algorithm. Their algo-
rithm, called Classified Round Robin (CRR) first classifies jobs according to the
density of the job (the ratio of the job size to the duration between arrival and
deadline), and then schedules jobs in each class independently using RR. All jobs
(of different classes) dispatched on a processor are run at a speed determined by
AVR. The case for jobs of arbitrary sizes and arbitrary deadlines is left as an
open question.

Recently, Greiner, Nonner and Souza [13] have shown that any β-competitive
algorithm for a single processor yields a randomized βBα-competitive algorithm,
where Bα is the αth Bell number [10] and this result holds for jobs of arbitrary
size and arbitrary deadlines. This means that the existing algorithms [7, 8, 21]
for single processors lead to randomized online algorithms in the multiprocessor
setting. Yet it is still an open question to have a competitive deterministic algo-
rithm for the general case of jobs with arbitrary sizes and arbitrary deadlines.

Our contribution. In this paper we study the generalized problems in the mul-
tiprocessor setting where jobs have arbitrary sizes and arbitrary deadlines and
give a deterministic online algorithm. We first show that the Classified Round
Robin algorithm (CRR) [4] does not scale well when jobs have arbitrary sizes
and deadlines. The competitive ratio is at least mα−1, where m is the num-
ber of processors. We then consider a natural extension of CRR and propose
a non-migratory deterministic job dispatching algorithm, called Dual-Classified
Round Robin (DCRR), which classifies jobs in terms of both density and sizes.
We show that DCRR coupled with AVR is 24α(logα P + αα2α−1)-competitive
where P is the ratio between the maximum and minimum job size. Note that
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the competitive ratio is independent of m and holds even against an optimal
migratory offline algorithm.

Roughly speaking, to analyze the performance of DCRR, we round the den-
sity and size of a job to the boundaries that define the classes, and show that
the performance on the general set is no more than a constant factor of that on
such a “nice” job set. This idea is similar to the proof in [4], which rounds only
the density of the jobs. We further show that for a nice job set, the classification
of DCRR means that the jobs in the same class satisfy the property of agree-
able deadlines, making the analysis easier. We are then able to show that the
competitive ratio of DCRR depends on the number of classes, which is related
to log P .

Organization of the paper. The rest of the paper is organized as follows. In
Section 2, we define the problem and give some preliminary results. In Section 3,
we review an existing algorithm CRR and show that it does not work well for
jobs of arbitrary sizes and deadlines. In Section 4, we describe and analyze our
algorithm DCRR. Finally, we conclude in Section 5.

2 Preliminaries

We are to schedule a set of jobs onto m processors M0, M1, · · · , Mm−1. Pre-
emption is allowed without penalty. The speed of each processor can be varied.
When running at speed s, a processor processes s units of work and consumes
sα units of energy in each time unit, where α ≥ 2.

We denote the release time, deadline and size of a job j as r(j), d(j), and
w(j), respectively. The span of job j is span(j) = d(j) − r(j) and the density
den(j) = w(j)

d(j)−r(j) . A job j is called active at time t if r(j) ≤ t ≤ d(j).
The problem is to dispatch the jobs to processors, and for each processor, to

determine which job and at what speed to run at any time. The objective is to
complete all jobs by their deadlines using the minimum energy.

Consider any job set J . For any algorithm A, we overload the symbol
A(J ) to mean both the schedule of A on J and the energy required by
the schedule. Let OPT1 and OPTm denote the optimal schedule on a sin-
gle processor and m processors, respectively. In [4], it has been shown that
OPT1(J )/mα−1 ≤ OPTm(J ). We further lower bound the value OPTm(J ).
At any time t, the speed of AVR on a processor is the sum of the densities of
all active jobs at t scheduled on this processor. It has been shown in [21] that
AVR1(J ) ≤ αα2α−1OPT1(J ), implying AVR1(J ) ≤ αα2α−1mα−1OPTm(J ).
Let MIN(J ) be the minimum energy to run each job of J independently of
other jobs, i.e., MIN(J ) =

∑
j∈J (den(j))αspan(j). Then, we have MIN(J ) ≤

OPTm(J ). We summarize these bounds on OPTm(J ) in the following lemma.

Lemma 1 ([4]). Consider any job set J . (a) OPTm(J ) ≥ OPT1(J )/mα−1.
(b) (i) MIN(J ) ≤ OPTm(J ); (ii) AVR1(J ) ≤ αα2α−1mα−1OPTm(J ).
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M0
M0

M1

M1

M2

Mm−1
Mm−1

(a) (b)

Fig. 1. In the adversary, all jobs have density 1. The span and size of the m large jobs
is k and the m2 − m small jobs is ε. (a) CRR schedules all the large jobs to processor
M0 and m small jobs to each of M1, · · · , Mm−1. (b) The optimal schedule dispatches
one large job and m − 1 small jobs to each processor.

3 Classified Round Robin (CRR)

In this section, we review the algorithm CRR which is αα24α-competitive for
the special case in which jobs are of unit size, or jobs are of arbitrary sizes but
agreeable deadlines [4]. We show that CRR is no longer constant competitive
when the jobs have arbitrary sizes and arbitrary deadlines.

Let Δ be the maximum density of the jobs in J . CRR classifies jobs with
density Δ into density-class-0, and jobs with density in [Δ/2k, Δ/2k−1) into
density-class-k, for some positive integer k. Jobs within each class are dispatched
to processors by round-robin independently. For each processor, the speed is
the sum of the densities of the unfinished jobs dispatched to that processor
(i.e., AVR) and the processor processes these jobs by splitting the speed equally
among them.

The following theorem shows a lower bound for CRR when jobs are of ar-
bitrary sizes and deadlines. Figure 1 shows the CRR schedule and the optimal
schedule for the adversary.

Theorem 1. For arbitrary size jobs with arbitrary deadlines, CRR has a com-
petitive ratio of at least mα−1.

Proof. Let ε > 0 be a small positive value and k > 0 be an arbitrary large value.
Given m processors, define a job set J of m2 jobs such that for any 1 ≤ i ≤ m2,
the release time of job ji is iε. For all jobs ji with i mod m 	= 0, we set the span
of the job to be ε. For all jobs ji with i mod m = 0, we set the span of the jobs
to be k. We further set the sizes of all jobs to be the same as their span, in other
words, all jobs have density 1.

Algorithm CRR classifies all m2 jobs into the same class C0 since they have
the same density and dispatches jobs according to round robin by their release
time. Thus the first processor receives the m jobs of large span k and large size
k. The energy used by the first processor is therefore kmα as ε → 0 and the
energy of the remaining processors approaches 0.
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On the other hand, we can dispatch one large span job and m− 1 small span
jobs to each processor. As ε tends to 0, the energy used by each processor is k
and the total energy of the schedule is km. Therefore, the competitive ratio of
CRR is at least mα−1. 
�

We note that even if we classify jobs according to their sizes, such a classification
plus round robin still does not perform well. We give a similar adversary with
m2 jobs of the same size, m of them having a small span (thus large density) and
the rest with very large span. One job of small span arrives followed by m − 1
large span jobs and this repeats for m times. Then CRR assigns all the small
span jobs to the same processor, dominating the energy used by the algorithm.
The optimal offline algorithm can dispatch one small span job to each processor,
distributing the energy used much better and thus the same lower bound can be
obtained.

4 Dual-Classified Round Robin (DCRR)

4.1 The Algorithm

We now describe our algorithm DCRR (Dual-Classified Round Robin). In addi-
tion to classifying jobs into density classes, DCRR also classifies jobs according
to sizes. Let Γ be the maximum job size of a job set J . Jobs with size in
(Γ/2h+1, Γ/2h] are classified into size-class-h, for some integer h ≥ 0 (note the
difference from the definition of density-classes). We then define the set Ck,h to
be the set of jobs in density-class-k and size-class-h. For simplicity, we assume
that Δ and Γ are known in advance1. With the definition of Ck,h, DCRR dis-
patches jobs in the same Ck,h in a round robin manner, independent of other
classes. Then all jobs (of different classes) dispatched to the same processor are
run using a speed determined by AVR (see Algorithm 1).

4.2 Framework of the Analysis and Nice Job Sets

To analyze the performance of DCRR, we transform job set J to a nice job
set J ∗ (to be defined) and show that such a transformation only increases the
energy usage modestly. Furthermore, we show that for a nice job set J ∗, we
can bound DCRR(J ∗) by OPTm(J ∗) and in turn by OPTm(J ). Then we can
establish the competitive ratio of DCRR.

A job set J ∗ is said to be a nice job set if every job j∗ in J ∗ satisfies the
following properties.

1 If Δ and Γ are not known in advance, the class definition could be modified slightly.
Specifically, the first job which arrives will define the initial density and size classes
Δ′ and Γ ′. New jobs may have larger sizes or density than these Δ′ and Γ ′ and
thus we may have classes with a negative index, but the analysis can be seen to still
hold and increasing the competitive ratio by at most a factor of 2, see [4] for further
details.
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Algorithm 1. Algorithm DCRR
Let Δ and Γ be (respectively) the maximum density and maximum size of all jobs.

Classification: A job is classified into Ck,h if its density is in [Δ/2k, Δ/2k−1) and its
size is in (Γ/2h+1, Γ/2h].

Job dispatching: Jobs of the same class Ck,h are dispatched (upon their arrival) to
the m processors using a round-robin strategy, i.e., the i-th job in Ck,h is dispatched
to processor-(i mod m), and different classes are handled independently.

Speed running: The speed of each processor is determined by AVR on the jobs
dispatched to that processor and the speed is split equally among these jobs (note that
this gives a feasible schedule).

– The density den(j∗) = Δ/2k, for some positive integer k.
– The size w(j∗) = Γ/2h, for some positive integer h.

Given a job set J , we transform each job j ∈ J into a job j∗ as follows. Suppose
j is in class Ck,h.

– We set the release time of j∗ to be the same as j, i.e., r(j∗) = r(j).
– We round up the size of j to the maximum in the class Ck,h, i.e., w(j∗) =

Γ/2h. Then, we have w(j) ≤ w(j∗) ≤ 2w(j).
– We round down the density of j to the minimum in the class Ck,h, i.e.,

den(j∗) = Δ/2k. Then, we have den(j)/2 ≤ den(j∗) ≤ den(j).
– Effectively, we set the deadline d(j∗) = r(j∗) + ( Γ

2h · 2k

Δ ).

In other words, job densities only decrease and sizes only increase. The following
lemma relates the optimal schedule for J and J ∗, as well as the DCRR schedule
for J and J ∗. The implication of the lemma is that we can focus on analyzing
the performance of DCRR on nice job set J ∗.

Lemma 2. For any job set J and its corresponding nice job set J ∗, we have
(a) 2αOPTm(J ) ≥ OPTm(J ∗); (b) DCRR(J ) ≤ 2αDCRR(J ∗).

Proof. (a) We construct from OPTm(J ) a feasible schedule S for J ∗, and show
that this increases the energy slightly. The dispatching of S follows the dis-
patching of OPTm(J ). For any processor, at any time t, S runs at double the
speed that OPTm(J ) does. S is feasible for J ∗ because w(j∗) ≤ 2w(j) and
span(j) ≤ span(j∗), the latter implies that whenever j is run, it is within the
span of j∗. Because of the double speed, S = 2αOPTm(J ). As S is a feasible
schedule for J ∗, we have S ≥ OPTm(J ∗). Then the statement follows.

(b) First we notice that a job j and its corresponding j∗ belong to the same
class. The release time of j∗ is also kept the same as j. Therefore, j∗ will be
dispatched to the same processor as j. In the schedule of DCRR(J ∗), at any time
when the job j∗ is active, it contributes den(j∗) to the speed of that processor.
If we consider a schedule S′ that runs double the speed at any time and on any
processor as AVR(J ∗) does, the job j∗ contributes 2 × den(j∗) to the speed.
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As for energy usage, S′ = 2αDCRR(J ∗). On the other hand, in DCRR(J ), at
any time that j is active, it contributes den(j) to the speed of that processor.
Since 2 den(j∗) ≥ den(j) and span(j∗) > span(j), for any processor, the schedule
S′ runs at least the same speed as DCRR(J ), and probably higher. Therefore,
S′ ≥ DCRR(J ), and the statement follows. 
�

4.3 Analysis of DCRR

With Lemma 2, the analysis of DCRR on a general job set J can be done via the
analysis of DCRR on J ∗. Recall that MIN(J ) is the minimum energy to run each
job of J independently of other jobs, i.e., MIN(J ) =

∑
j∈J (den(j))αspan(j).

First, we show in Lemma 3 a property about how DCRR dispatches jobs in
a class to the m processors. Then, in Lemma 4, we relate the sum of energy
usage of AVR on jobs DCRR dispatched to each machine with MIN(J ) and
AVR1(J ). Finally, together with Lemma 2, we can then conclude in Theorem 2
the competitive ratio of DCRR.

The following is a modification to a lemma from [4]. Since all spans within a
class are identical, they have agreeable deadlines and the same proof follows as
is shown in [4].

Lemma 3. For any time t, DCRR assigns to each processor at most
�Ck,h(t)/m� jobs from J ∗, where Ck,h(t) is the set of jobs from Ck,h active
at time t.

Let J ∗
i be the subset of J ∗ that is dispatched to processor i by DCRR. Then

DCRR(J ∗) =
∑

1≤i≤m AVR1(J ∗
i ). We now relate

∑
1≤i≤m AVR1(J ∗

i ) with
MIN(J ∗) and AVR1(J ∗).

Lemma 4. For any nice job set J ∗, the following inequality holds∑
1≤i≤m

AVR1(J ∗
i ) ≤ 22α((logα P ∗) MIN(J ∗) + AVR1(J ∗)/mα−1)

where P ∗ = max {w(j)|j∈J ∗}
min {w(j)|j∈J ∗} .

Proof. We adapt the proof of CRR in [4]. Let Ck,h,i(t) for 1 ≤ i ≤ m be the
set of jobs from class Ck,h assigned to processor i active at time t dispatched
by DCRR. Let si(t) denote the speed of the average rate AVR algorithm on
processor i at time t. Since the speed of AVR is the sum of densities of all active
jobs at each time point, we see that:

si(t) =
∑
k≥0

∑
h≥0

|Ck,h,i(t)|Δ2k
. (1)

Running jobs according to the Earliest Deadline First policy yields a feasible
schedule. Let s(t) denote the speed of AVR for the whole job set J ∗. Then
s(t) =

∑
k≥0

∑
h≥0 |Ck,h(t)|Δ/2k.
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Fix a time t ≥ 0 and a processor 1 ≤ i ≤ m. Let K1 be the set of job class
indices (k, h) such that |Ck,h,i(t)| = 1 and K2 be the indices (k, h) such that
|Ck,h,i(t)| ≥ 2. Define k1 = min{k|(k, h) ∈ K1} for some h ≥ 0 and P ∗ =
max {w(j)|j∈J ∗}
min {w(j)|j∈J ∗} . Using Equation (1) and Lemma 3, we see that

si(t) =
∑

(k,h)∈K1

Δ

2k
+

∑
(k,h)∈K2

|Ck,h,i(t)|Δ2k

≤ (log P ∗)
Δ

2k1−1
+

∑
(k,h)∈K2

⌈ |Ck,h(t)|
m

⌉
Δ

2k
(by Lemma 3)

≤ (log P ∗)
Δ

2k1−1
+

∑
(k,h)∈K2

2|Ck,h(t)|
m

Δ

2k

≤ 4 ·max
{

(log P ∗)
Δ

2k1
,
s(t)
m

}
(2)

We shall integrate si(t)α first over all t when the first term of Equation (2) is
dominating to give an upper bound on required energy of:

(4 log(P ∗))α
∑
k≥0

∑
h≥0

|Ck,h ∩ J ∗
i |
(

Δ

2k

)α(
2k−h Γ

Δ

)
Integrating si(t)α when the second term of Equation (2) is dominating gives(

4
m

)α AVR1(J ∗). Summing over 1 ≤ i ≤ m shows that
∑m

i=1 AVR1(J ∗
i ) ≤

4α((logα P ∗)MIN(J ∗) + m1−αAVR1(J ∗)) as required. 
�
Together with Lemma 2, we can conclude the competitive ratio of DCRR in the
following theorem.

Theorem 2. For an arbitrary job set J , the competitive ratio of algorithm
DCRR is at most 24α(logα P + αα2α−1), where P is the ratio between the max-
imum and minimum job size.

Proof. By Lemma 4, we know that:∑
1≤i≤m

AVR1(J ∗
i ) ≤ 22α((logα P ∗) MIN(J ∗) + AVR1(J ∗)/mα−1).

Since MIN(J ∗) ≤ OPTm(J ∗) and AVR1(J ∗) ≤ αα2α−1mα−1OPTm(J ∗) by
Lemma 1 (b) (ii), we therefore conclude that

DCRR(J ∗) ≤
∑

1≤j≤m

AVR1(J ∗
j ) ≤ 22αOPTm(J ∗)((logα P ∗) + αα2α−1).

By Lemma 2 (a) and (b) above, DCRR(J ) ≤ 2αDCRR(J ∗) and OPTm(J ∗) ≤
2αOPTm(J ). Then, we have

DCRR(J ) ≤ 24αOPTm(J )((logα P ∗) + αα2α−1).

Note that from the proof of Lemma 4, log P ∗ is essentially the number of size
classes used by DCRR which does not change under J or J ∗, therefore log P
and log P ∗ can be taken to be equal and the theorem holds. 
�
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5 Conclusion

We extend the study of energy efficient deadline scheduling on multiprocessor
to jobs with arbitrary sizes and deadlines. We analyze the performance of the
deterministic algorithm DCRR. In the proof of Theorem 2, the log P factor
comes in the case K1, yet we note that this bound is rather loose and we believe
that this can be improved. On the other hand, one may consider how DCRR
can be coupled with OA instead of AVR to improve the results. Another open
question is to consider speed bounded processors [12], in which case, not all the
jobs can be completed by their deadlines. The concern becomes to maximize
the throughput (number of jobs completed by their deadlines) and to minimize
the energy used to achieve this throughput. The problem has been considered
in the single processor setting [5, 12]. It would be interesting to derive algo-
rithms that are competitive both in throughput and energy in the multiprocessor
setting.
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Abstract. We study the approximation complexity of the Minimum
Edge Dominating Set problem in everywhere ε-dense and average ε̄-dense
graphs. More precisely, we consider the computational complexity of ap-
proximating a generalization of the Minimum Edge Dominating Set prob-
lem, the so called Minimum Subset Edge Dominating Set problem. As a
direct result, we obtain for the special case of the Minimum Edge Dom-
inating Set problem in everywhere ε-dense and average ε̄-dense graphs
by using the techniques of Karpinski and Zelikovsky, the approximation
ratios of min{2, 3/(1 + 2ε)} and of min{2, 3/(3− 2

√
1 − ε̄)}, respectively.

On the other hand, we show that it is UGC-hard to approximate the
Minimum Edge Dominating Set problem in everywhere ε-dense graphs
with a ratio better than 2/(1 + ε) with ε > 1/3 and 2/(2 −√

1 − ε̄) with
ε̄ > 5/9 in average ε̄-dense graphs.

Keywords: Edge Dominating Set, Minimum Maximal Matching, Dense
Instances, Approximation Algorithms, Approximation Lower Bounds.

1 Introduction

In this paper, we consider the computational complexity of approximating the
Minimum Subset Edge Dominating Set problem which generalizes the Minimum
Edge Dominating Set problem. As a direct result, we obtain improved upper
bounds for the Minimum Edge Dominating Set problem in everywhere and aver-
age dense graphs, i.e. graphs with bounded minimum and average vertex degree,
respectively.

1.1 Problem Statement

An edge dominating set (for short EDS) of a finite undirected graph G = (V, E)
is a subset M ⊆ E of edges such that each edge in E shares an endpoint with
some edges in M . The Minimum Edge Dominating Set problem (for short MEDS
problem) asks to find an edge dominating set of minimum cardinality |M |.

For given graph G = (V, E), the Minimum Maximal Matching problem (for
short MMM problem) asks for a subset M ⊆ E of non adjacent edges with
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minimal cardinality such that each edge in E shares an endpoint with some edge
in M .

It has been noted that the Minimum Edge Dominating Set and the Minimum
Maximal Matching problem admit optimal solutions of the same size and that
an optimal solution of the MEDS problem can be transformed in polynomial
time into an optimal solution of the MMM problem (cf. [20]), and vice versa.

The Minimum Subset Edge Dominating Set problem (for short MSED prob-
lem) is a generalization of the MEDS problem and is defined as follows: given a
graph G = (V, E) and a subset S ⊆ V , find a minimum cardinality EDS M of
G with the property S ⊆ ⋃e∈M e.

For some ε, ε̄ > 0, we call a graph G = (V, E) everywhere ε-dense if any vertex
in G has at least ε|V | neighbors, and we call a graph G = (V, E) average ε̄-dense if
the average degree of a vertex in G is at least ε̄|V |, i.e. (

∑
v∈V deg(v))/|V | ≥ ε̄|V |.

1.2 Related Work

The MEDS problem is already referred to in Garey and Johnson [11]. Even for
planar or bipartite graphs of maximum degree 3 the MEDS problem remains
NP -hard [20] in the exact setting. An inapproximability result was obtained by
Chleb́ık and Chleb́ıková ([7]), who claimed that it is NP -hard to approximate
the MEDS problem within any factor better than 7/6. They further showed that
the MEDS problem is NP -hard to approximate within any constant less than
(7 + ε)/(6 + 2ε), in graphs with minimum degree at least εn. In the unweighted
case, finding an arbitrary maximal matching M provides 2-approximation for
the MEDS problem, since each edge in the optimal solution can cover at most
two edges of M . The first nontrivial approximation algorithm is due to Gotthilf
et al. ([12]) and achieves an approximation ratio of 2− c log(n)/n, where c is an
arbitrary positive constant and n is the number of vertices in the graph.

Density parameters such as the number of edges ε̄ and the minimum degree ε
have been used in approximation ratios for various optimization problems (see
[15] for a detailed survey, [17,14,2,3] for covering and related problems).

Currently, the best parameterized ratios for the Vertex Cover problem with
parameters ε̄ and ε are 2/(2−√1− ε̄) and 2/(1+ε), respectively ([17]). Imamura
and Iwama ([14]) later improved the former result, by generalizing it to depend
on both ε̄ and Δ := maxv∈V {deg(v)}.

As for lower bounds, Clementi and Trevisan ([8]) as well as Karpinski and
Zelikovsky ([16]) proved that the Vertex Cover problem restricted to everywhere
and average dense graphs remains APX-hard. Later, Eremeev ([9]) showed that
it is NP-hard to approximate the Vertex Cover problem in everywhere ε-dense
graphs within a factor less than (7 + ε)/(6 + 2ε). Finally, Bar-Yehuda et al.
([2]) prove that if the Vertex Cover problem cannot be approximated within a
factor strictly smaller than 2 on arbitrary graphs, then it cannot be approximated
within factors smaller than 2/(2−√1− ε̄)−o(1) and 2/(1+ε)−o(1), respectively,
on average and everywhere dense graphs.
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For the MEDS problem, Cardinal et al. achieved the first upper bound smaller
than 2 for sufficiently dense graphs. More precisely, the obtained approxima-
tion ratio is asymptotic to min{2, 1/ε} in everywhere ε-dense graphs and to
min{2, 1/(1−√1− ε̄)} in average ε̄-dense graphs ([4]). More recently, Cardinal,
Langerman, and Levy provided an improved bound on the approximation ratio
for the MEDS problem in average dense graphs. This bound is asymptotic to
1/(1−√(1− ε)/2), which is smaller than 2 when ε is greater than 1/2 ([5]).

1.3 Our Contributions

This work is the first best to our knowledge studying the approximation com-
plexity of the MSED problem. We give an approximation algorithm that achieves
the approximation ratio at most min{2, 3/(1 + 2|S|/|V |)}. For the special case
of the MEDS problem in dense graphs, it yields by using the techniques of
Karpinski and Zelikovsky for the dense Minimum Vertex Cover problem ([17])
an approximation ratio of min{2, 3/(1 + 2ε)} for everywhere ε-dense graphs and
min{2, 3/(3− 2

√
1− ε̄)} for average ε̄-dense graphs, respectively.

On the other hand, we use an approximation preserving reduction due to
Karpinski and Zelikovsky ([16]) from the Minimum Vertex Cover problem to
the Minimum Vertex Cover problem in dense graphs to obtain hardness result
for the MEDS problem in dense graphs. We show that it is UGC-hard (cf. [18])
to approximate the MEDS problem in everywhere ε-dense graphs with a ratio
better than 2/(1 + ε) with ε > 1/3 and 2/(2−√1− ε̄) with ε̄ > 5/9 in average
ε̄-dense graphs. The same reduction shows that the MSED problem is UGC-hard
to approximate within any constant better than 2/(1 + |S|/|V |) with 3|S| > |V |.

2 Subset Edge Dominating Set Problem

We start by introducing some basic notations and tools which are used in our
algorithms. Afterwards we state our approximation algorithm for the MSED
problem and prove the claimed result.

2.1 Definitions and Notations

Given a finite graph G = (V, E) and a subset S ⊆ V , the induced subgraph G[S]
is defined as (S, {e ∈ E | e ⊆ S}). For a given set M ⊆ E we introduce the
notation V (M) :=

⋃
e∈M e.

The maximal matching heuristic is a standard algorithm that provides a 2-
approximation for the Minimum Edge Dominating Set problem. It is perhaps one
of the simplest and best-known approximation algorithm. It consists in finding
a collection of disjoint edges (a matching) that is maximal (with respect to edge
inclusion) by iteratively removing adjacent vertices until no more edges are left
in the graph.

In the Maximum Subset Matching problem (for short MSM problem), which
generalizes the Maximum Matching problem, we are given a graph G = (V, E)
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and S ⊂ V . The goal is to determine the maximum number of vertices of S that
can be matched in a matching of G. Alon and Yuster considered this problem
and introduced a randomized algorithm in [1]. The Maximum Subset Matching
problem can be reduced to the Maximum Weighted Matching problem. Just
assign to every vertex with both endpoints in S weight 2, and edges from S to
V \S weight 1. The currently fastest algorithm for maximum weighted matchings
in general graphs is the algorithm of Gabow and Tarjan (see [10]).

In our setting, it runs in Õ(
√|V |(|E| + |S|2)) time. For a given graph G =

(V, E), S ⊆ V and U ⊆ V \S, let us denote by MSM(G, S, U) the set of edges
of a maximum subset matching in the graph G[S ∪ U ] and S.

An important theorem for many problems related to the Minimum Vertex
Cover problem was proven by Nemhauser and Trotter (cf. [19]). It enables us to
reduce the problem to instances in which the value of a minimum vertex cover
is at least |V |/2 together with other nice properties. Here, we use a generalized
version of the NT-Theorem given by Chleb́ık and Chleb́ıková.

Theorem 1. (Optimal Version of the NT-Theorem [6])
There exists a polynomial time algorithm that partitions the vertex set V of any
graph G into three subsets (V0, V1, V1/2) with no edges between V0 and V1/2 or
within V0 such that

1. for any vertex cover V C of G[V1/2] it holds |V C| ≥ |V1/2|/2
2. every minimum vertex cover C for G satisfies V1 ⊆ C ⊆ V1 ∪ V1/2 and

C ∩ V1/2 is a minimum vertex cover for G[V1/2].

Such a partition can be constructed by computing maximum matching of a
specially constructed bipartite graph. The algorithm of Hopcroft and Karp is
currently the fastest algorithm for maximum matching in bipartite graphs and
runs in time O(|E|√|V |) (see [13]).

2.2 Algorithm ASEDS

In order to explain the intuition behind the algorithm, notice that the set S needs
to be covered with edges and we want to achieve it by a maximum matching
which covers the whole set S. Clearly, we cannot expect that there always exists a
perfect matching in G[S]. Instead we compute a maximum subset matching with
endpoints in V1 ∪ V1/2 for which we hope to have good vertex cover properties
in G[V \S]. The remaining vertices of S will be covered greedily. Finally, we take
care of the remaining graph by applying the maximal matching heuristic (MMH).

We now present our main algorithm (see Figure 1).

2.3 Analysis of ASEDS

We now formulate our main theorem.

Theorem 2. Given a graph G = (V, E) and S ⊆ V , the algorithm ASEDS has
an approximation ratio at most min {2, 3/(1 + 2|S|/|V |)}.
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Input: Graph G = (V, E), S ⊆ V

Set M1 := ∅;
If |S| > |V |

4
Then

Compute the NT-Partition (V0, V1, V1/2) of G[V \S];
If |V0| < 2|V1| Then

Compute M1 := MSM(G, S, V \S);
Else

Compute M1 := MSM(G, S, V1 ∪ V1/2);
EndIf

EndIf
Cover the remaining vertices of S greedily with edges Mr;
Compute the remaining graph G′ := G[V \V (M1 ∪ Mr)];
Construct a maximal matching M2 in G′ by applying the MMH;

Output: M1 ∪ Mr ∪ M2

Fig. 1. Algorithm ASEDS

Proof. Let OPT denote some optimal solution for the MSED problem and
EDSA the solution produced by algorithm ASEDS. First, we concentrate on
the case |S| ≤ |V |/4. Then, we show that ASEDS computes a solution with ap-
proximation ratio 3/(1 + 2|S|/|V |) which is better than 2 if |S| > |V |/4 holds.
We start with

Lemma 1. If |S| ≤ |V |/4 holds, then the algorithm ASEDS has an approxima-
tion ratio at most 2.

Proof. The algorithm covers the vertices of S greedily with edges, which means
that we use at most |S| edges. Since the maximal matching heuristic computes a
solution as well for the MEDS problem as for the Minimum Vertex Cover problem
(by choosing the endpoints of the constructed matching) with approximation
ratio 2, our solution for the graph G[V \S] has at most as many edges as the
cardinality of an optimal vertex cover V COPT of G[V \S] . Consequently, the
approximation ratio of the algorithm is bounded by

|EDSA|
|OPT | ≤

|S|+ |V COPT |
1
2 (|S|+ |V COPT |)

= 2.


�
In the remaining part of the proof, we will restrict ourselves to instances (G, S)
with |S| > |V |/4.

For the sake of the analysis, let us now consider a maximum subset
matching M∗ := MSM(G∗, S, V (OPT ) ∩ V ′) of the restricted graph G∗ =
(V (OPT ), OPT ), where V ′ is a subset of V \S. We denote by M∗

R the edges
contained in OPT to cover the remaining vertices in S\V (M∗), i.e. M∗

R := {e ∈
OPT | e ∩ (S\V (M∗)) 	= ∅}. We prove a simple lemma.
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Lemma 2. Let M be a maximum subset matching MSM(G, S, V ′) and Mr ⊆
E(G) be the edges which are greedily chosen to cover the remaining vertices in
S\V (M). Then we have |Mr| ≤ |M∗

R|.
Proof. Since OPT is contained in E(G) and by definition of a maximum subset
matching, it is clear that |S∩V (M∗)| ≤ |S∩V (M)| holds. Therefore, we conclude
|S\V (M∗)| ≥ |S\V (M)| which implies |Mr| ≤ |M∗

R|. 
�
Let us assume that |S| > |V |/4 holds, we now show that ASEDS has an approx-
imation ratio at most 3/(1 + |S|/|V |). We will consider two cases separately.

Case |V0| < 2|V1|
First of all, the algorithm ASEDS computes a maximum subset matching M1 :=
MSM(G, S, V \S) of G and then covers the remaining vertices of S greedily with
edges Mr.

Let M∗ := MSM(G∗, S, V (OPT )\S) be a maximum subset matching of the
restricted graph G∗ = (V (OPT ), OPT ) and denote by M∗

R the edges contained
in OPT to cover the vertices in S\V (M∗). From Lemma 2 we know that |Mr| ≤
|M∗

R| holds.
We analyze the cardinality of EDSA, the solution produced by ASEDS , and

OPT separately. The maximum subset matching MSM(G, S, V \S) covers in
the worst case all the vertices of the remaining graph G[V \S] and |S| − |Mr|
vertices of S. Therefore, we can bound the cardinality of EDSA as follows:

2|EDSA| ≤ (|S| − |Mr|) + |V \S|+ 2|Mr| ≤ |V |+ |Mr| ≤ |V |+ |M∗
R|

Now we give a lower bound on the optimal solution. Notice that the cardinality
of V (OPT )\S is at least |V1|+ 1

2 |V1/2|, since |V1|+|V1/2|/2 is a lower bound on the
cardinality of an optimal vertex cover of G[V \S]. Therefore, we can assume that
a matching in OPT covers the |V1|+ 1

2 |V1/2| vertices in G[V \S] and |S| − |M∗
R|

vertices in S. The remaining vertices in S are covered by |M∗
R| edges. Hence, we

get the following:

2|OPT | ≥ (|S| − |M∗
R|) + |V1|+ 1

2
|V1/2|+ 2|M∗

R| ≥ |S|+ |V1|+ 1
2
|V1/2|+ |M∗

R|

We are ready to analyze the approximation ratio of ASEDS by combining the
upper and lower bounds. In (�) we use the property of the case |V0| < 2|V1|.

2|EDSA|
2|OPT | ≤

|V |+ |M∗
R|

|S|+ |V1|+ 1
2 |V1/2|+ |M∗

R|
≤ |V |
|S|+ |V1|+ 1

2 |V1/2|
≤ 3

3|S|+3|V1|+ 3
2 |V1/2|

|V |
≤
(�)

3
|S|+3|V1|+|V1/2|
|S|+3|V1|+|V1/2| + 2|S|+ 1

2 |V1/2|
|V |

≤ 3

1 + 2 |S|
|V |

Case |V0| ≥ 2|V1|
Unlike the previous case, the algorithm ASEDS computes a maximum subset
matching MSM(G, S, V1 ∪ V1/2) of G. As before Mr and M∗

R are the sets of
edges to cover the remaining vertices of S, where V (M∗

R)∩S are the vertices left
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uncovered by a maximum subset matching M∗ := MSM(G∗, S, (V1 ∪ V1/2) ∩
V (OPT )) of G∗ := (V (OPT ), OPT ). From Lemma 2 we know that |Mr| ≤ |M∗

R|
holds.

As before, we analyze EDSA and OPT separately. This time the algorithm
ASEDS computes a maximum subset matching MSM(G, S, V1 ∪ V1/2) which
contains in the worst case only the vertices in S\V (Mr). Afterwards, the maximal
matching heuristic produces a matching which covers 2|V1| + |V1/2| vertices of
the remaining graph G[V \S]. In this way, we derive the following:

2|EDSA| ≤ (|S| − |Mr|) + 2|V1|+ |V1/2|+ 2|Mr|
≤ |S|+ 2|V1|+ |V1/2|+ |Mr| ≤ |S|+ 2|V1|+ |V1/2|+ |M∗

R|
Now we analyze the cardinality of OPT . In contrast to the previous case, the

independent set G[V0] is sufficiently large. Some of the vertices of V (M∗
R) ∩ V0

could be used to cover edges between V0 and V1. Nevertheless, the number of
such edges is bounded by |V1|, since |V1| + |V1/2|/2 is a lower bound on the
cardinality of an optimal vertex cover of G[V \S]. The crucial fact |M∗

R| ≥ |V1|
will be used later on to attain (��). We give a lower bound on the cardinality of
OPT .

2|OPT | ≥ (|S| − |M∗
R|) +

1
2
|V1/2|+ 2|M∗

R| = |S|+ 1
2
|V1/2|+ |M∗

R|

By combining the deduced upper and lower bounds, we analyze the approxi-
mation ratio of ASEDS .

2|EDSA|
2|OPT | ≤

|S|+ 2|V1|+ |V1/2|+ |M∗
R|

|S|+ 1
2 |V1/2|+ |M∗

R|
≤

(��)

|S|+ 2|V1|+ |V1/2|+ |V1|
|S|+ 1

2 |V1/2|+ |V1|
≤ 3

3(|S|+|V1|+ 1
2 |V1/2|)

|S|+3|V1|+|V1/2|
≤ 3

1 + 2|S|+ 1
2 |V1/2|

|V |
≤ 3

1 + 2 |S|
|V |


�

3 Dense Instances of the MEDS Problem

In this section, we consider the Minimum Edge Dominating Set problem in dense
graphs. Firstly, we start with a observation of fundamental importance to our
analysis.

Oberservation 1. Given a connected graph G = (V, E) and an optimal EDS
M of G. There is a vertex v ∈ V with N(v) ⊆ V (M).

Proof. If M covers the whole vertex set V , then we have nothing to show. Oth-
erwise the whole neighborhood of a vertex v ∈ V \V (M) belongs to V (M) to
cover the edges incident to v. 
�
This observation gives us a simple proof of the analysis of the approximation
ratio of the maximal matching heuristic in dense graphs studied by Cardinal et
al. (see [4]). Since the cardinality of an optimal EDS of an everywhere ε-dense
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graph G = (V, E) can be lower bounded by minv∈V {|N(v)|}/2 ≥ ε|V |/2 and the
worst case solution of the maximal matching heuristic is a maximum matching,
the approximation ratio is bounded by min{2, (|V |/2)/(ε|V |/2)}.

Next, we want to derive an equivalent statement for average ε̄-dense graphs.
We need a lemma which was proven by Karpinski and Zelikovsky.

Lemma 3. [17] Given an ε̄-average dense graph G = (V, E) and let W be the
set of (1 −√1− ε̄)|V | vertices with highest degree. Then every vertex of W has
degree at least |W |.
As a direct consequence, we get the following

Corollary 1. Given an ε̄-average dense Graph G = (V, E). The cardinality of
an optimal EDS M is at least (1−√1− ε̄)|V |/2.

Proof. If the whole set W of (1−√1− ε̄)|V | vertices with highest degree belongs
to V (M), we have nothing to show. Otherwise the neighborhood of a vertex
v ∈ W\V (M) is a subset of V (M). According to Lemma 3 the degree of this
vertex v is at least (1−√1− ε̄)|V |. Therefore, the cardinality of M can be lower
bounded by |N(v)|/2 ≥ (1−√1− ε̄)|V |/2. 
�

Analogously, one can easily deduce similarly to Observation 1 that the maximal
matching heuristic computes an EDS in average ε̄-dense graphs with approxi-
mation ratio at most min{2, (1−√1− ε̄)−1} as analyzed in [4].

We are ready to state the algorithm for the dense MEDS problem:

Input: Graph G = (V, E)

ForAll v ∈ V
compute ASEDS(G, N(v));

EndForAll
Let M1 be the solution with smallest cardinality among {ASEDS(G, N(v)) | v ∈ V };
Let W be the set of (1 −√

1 − ε̄)|V | vertices with highest degree;
Compute M2 := ASEDS(G, W );
ForAll v ∈ W

compute ASEDS(G, N(v));
EndForAll
Let M3 be the solution with smallest cardinality among {ASEDS(G, N(v)) | v ∈ W};

Output: The best solution among M1, M2 and M3

Fig. 2. Algorithm ADEDS

Corollary 2. The algorithm ADEDS has an approximation ratio at most
min{2, 3/(1 + 2ε)} for ε-everywhere dense graphs and at most min{2, 3/(3 −
2
√

1− ε̄)} for ε̄-average dense graphs. ADEDS has a better approximation ratio
than 2 if ε > 1/4 or ε̄ > 7/16.
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Proof. Given an ε-everywhere dense graph G = (V, E) and an optimal EDS
M , V (M) contains always the neighborhood N(v) of a vertex v ∈ V because
of Observation 1. By exhaustive search we find the right vertex v and use the
algorithm ASEDS for the MSED problem. In case of ε ≤ 1/4, we know from
Theorem 2 that ASEDS produces a solution with approximation ratio at most 2.
Restricted to ε-everywhere dense graphs with ε > 1/4, we get a solution with an
approximation ratio at most 3

1+2|N(v)|/|V | ≤ 3
1+2ε|V |/|V | .

In the case of ε̄-average dense graphs, we have to consider two cases. If there
is a vertex v ∈ W , which does not belong to V (M), then we use the same
argumentation as before. Since the smallest degree of a vertex in W is at least
(1−√1− ε̄)|V |, the approximation ratio can be bounded as follows:

3
1 + 2|N(v)|/|V | ≤

3
1 + 2(1−√1− ε̄)

=
3

3− 2
√

1− ε̄

Otherwise the whole set W belongs to V (M). Since the cardinality of W is
(1−√1− ε̄)|V |, the corollary follows from Theorem 2. 
�

4 Approximation Hardness Results

Assuming the Unique Game Conjecture (see [18]), we provide new lower bounds
on efficient approximability for everywhere ε-dense (resp. average ε̄-dense) in-
stances of the MEDS problem with 1/3 < ε (resp. with 5/9 < ε̄). The starting
point of our proof is the hardness result of Khot and Regev [18]. Then we show
that the approximation preserving reduction from the Minimum Vertex Cover
problem to the dense Vertex Cover problem due to Karpinski and Zelikovsky [16]
can be used to derive the claimed inapproximability result for the dense MEDS
problem.

We now formulate our inapproximability result.

Theorem 3. For every δ > 0, it is UGC-hard to approximate the everywhere
ε-dense MEDS problem for every constant ε, ε̄ with ε > 1

3 (resp. average ε̄-dense
MEDS problem with ε̄ > 5

9) to within 2
1+ε − δ (resp. 2

2−√
1−ε̄

− δ).

Proof. Khot and Regev ([18]) showed that for every δ > 0 there are instances
G = (V, E) of the Vertex Cover problem such that it is UGC-hard to decide
whether |OPTV C | > (1 − δ)|V | or |OPTV C | ≤ (1/2 + δ)|V C|. We set δ ∈
(0, ε/(1− ε)− 1/2). Given such an instance, we densify it by joining all vertices
of a clique of size ε/(1 − ε)|V | with all vertices of G. The same reduction was
used by Karpinski and Zelikovsky ([16]) to prove that the dense Vertex Cover
problem is APX-hard. This new instance G′ is ε-dense, since every vertex of G′

has a vertex degree at least

ε

1− ε
· n =

ε

1− ε
· n′

1 + ε
1−ε

=
ε

1− ε
· n′

1−ε
1−ε + ε

1−ε

= ε · n′.

If the optimal solution of the vertex cover problem ≤ (1/2 + δ)|V |, then we can
match every vertex in the optimal solution with some vertices in the clique K
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which is of size εn/(1 − ε) > (1/2 + δ)n. Since K is a clique, every remaining
vertex in K can be matched by edges in E(K) (We can double the graph G and
join it with a twice larger clique K ′ to obtain a perfect matching in G′[OPTV C∪
V (K ′)]). Therefore, the optimal solution for dense MEDS problem is≤ n/2(1/2+
ε/(1− ε) + δ). If the optimal solution of the Vertex Cover problem is larger than
n(1 − δ), we know that the optimal solution of the dense MEDS problem must
be at least n/2(1 + ε/(1 − ε) − δ), since V (OPTEDS) is a vertex cover of the
graph G′.

Hence, we get the following UGC-hard decision question:

OPTEDS

n
≥ 1

2
+

1
2

ε

1− ε
− δ

2
or

OPTEDS

n
≤ 1

4
+

1
2

ε

1− ε
+

δ

2

This decision question implies directly the following inapproximability factor:(
1
2

+
1
2

ε

1− ε
− δ

2

)(
1
4

+
1
2

ε

1− ε
+

δ

2

)−1

≤ 1− ε + ε

2(1− ε)
· 4(1− ε)

1− ε + 2ε
− δ′

≤
(���)

2
1 + ε

− δ′

In the case of average ε̄-dense instances of the Minimum Edge Dominating
Set problem, we set ε := 1 − √1− ε̄ and the claimed inapproximability factor
follows from (� � �). It remains to verify that the resulting graph G′ is ε̄-dense:

∑
v∈V ′

deg(v)
|V ′|2 ≥ ε|V ′|

deg︷ ︸︸ ︷
(|V ′|) +n

deg︷ ︸︸ ︷
(ε|V ′|)

|V ′|2 = (1 − ε)ε + ε = ε(1− ε + 1)

= (1 −√1− ε̄)(1 +
√

1− ε̄) = 1− 1 + ε̄ 
�
Using the same reduction for the MSED problem with S = V (K), we get the
following

Corollary 3. For every δ > 0 and 3|S| ≥ |V |, it is UGC-hard to approximate
the MSED problem within 2

1+|S|/|V | − δ.
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Abstract. Let G be an edge-weighted hypergraph on n vertices, m edges
of size ≤ s, where the edges have real weights in an interval [1, W ]. We
show that if we can approximate a maximum weight matching in G within
factor α in time T (n, m, W ) then we can find a matching of weight at least
(α − ε) times the maximum weight of a matching in G in time (ε−1)O(1)×
max

1≤q≤O(ε
log n

ε
log ε−1 )

maxm1+...mq=m

∑q
1 T (min{n, smj}, mj , (ε−1)O(ε−1)).

We obtain our result by an approximate reduction of the original problem to

O(ε
log n

ε
log ε−1 ) subproblems with edge weights bounded by (ε−1)O(ε−1). In

particular, if we combine our result with the recent (1 − ε)-approximation
algorithm for maximum weight matching in graphs due to Duan and Pettie
whose time complexity has a poly-logarithmic dependence on W then we obtain
a (1 − ε)-approximation algorithm for maximum weight matching in graphs
running in time (ε−1)O(1)(m + n).

1 Introduction

A hypergraph G consists of a set V of vertices and a set of subsets of V called edges
of G. In particular, if all the edges are of cardinality two then G is a graph. A matching
of G is a set of edges of G without common vertices. If real weights are assigned to
the edges of G then a maximum weight matching of G is a matching of G whose total
weight achieves the maximum.

The problem of finding a maximum weight matching in a hypergraph is a funda-
mental generalization of that of finding maximum cardinality matching in a graph. The
latter is one of the basic difficult combinatorial problems that still admit polynomial-
time solutions. For hypergraphs the decision version of the maximum weight matching
problem is NP-hard even if the edges are of size O(1) since it is a generalization of
the problem of maximum weight independent set for bounded degree graphs [15]. On
the other hand, polynomial-time algorithms yielding (d − 1 + 1/d)-approximation of
maximum weight matching in hypergraphs with edges of size d are known [3].

The fastest known algorithms for maximum weight matching in graphs have sub-
stantially super-quadratic time complexity in terms of the number n of vertices of the
input graph G [11,12,20]. For these reasons, there is a lot of interest in designing faster
approximation algorithms for maximum weight matching [4,5,6,14,18,19].

M. Ogihara and J. Tarui (Eds.): TAMC 2011, LNCS 6648, pp. 48–57, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Recently, even fast approximation schemes for maximum weight matching in graphs
have been presented 1. The fastest known in the literature is due to Duan and Pettie [7].
It yields a (1 − ε)-approximation in time O(mε−2 log3 n) for a connected graph on n
vertices and m edges with real edge weights. The approximation scheme from [7] is a
composition of a (1−ε)-approximate reduction of the problem in general edge weighted
graphs to that in graphs with small edge weights and an efficient (1 − ε)-approximate
algorithm for graphs with small edge weights.

1.1 Our Contributions

LetGbe an edge-weighted hypergraph onnvertices,m edges of size≤ s,where the edges
have real weights in an interval [1, W ]. We show that if we can approximate a maximum
weight matching in G within factor α in time T (n, m, W ) then we can find a matching of
weight at least α− ε times the maximum weight of a matching in G in time (ε−1)O(1)×
max

1≤q≤O(ε
log n

ε
log ε−1 )

maxm1+...mq=m

∑q
1 T (min{n, smj}, mj, (ε−1)O(ε−1)). We ob-

tain our result by an approximate reduction of the original problem to O(ε log n
ε

log ε−1 ) sub-

problems with edge weights bounded by (ε−1)O(ε−1).
This reduction of maximum weight matching in hypergraphs with arbitrarily large

edge weights to that in hypergraphs with small edge weights is incomparable to the
aforementioned similar reduction for graphs from [7]. In particular, if we combine
our reduction with the aforementioned (1 − ε)-approximation algorithm for maximum
weight matching in graphs from [7] whose time complexity has a poly-logarithmic de-
pendence on W then we obtain a (1−ε)-approximation algorithm for maximum weight
matching in graphs running in time (ε−1)O(1)(m + n). In comparison with the approx-
imation scheme from [7], our approximation scheme is more truly linear in m + n, as
free from the poly-logarithmic in n factor at the cost of larger polynomial dependence
on ε−1.

As another corollary from our approximate edge-weight reduction for hypergraphs,
we obtain also some results on approximating maximum weight independent set in
graphs of bounded degree.

1.2 Other Related Results

As the problem of finding maximum weight matching in graphs is a classical problem
in combinatorial optimization there is an extensive literature on it. It includes such
milestones as an early algorithm of Kuhn [17] just in the bipartite case and an algorithm
of Edmond and Karp [8] running in time O(nm2), where n is the number of vertices
and m is the number of edges in the input graph. Hungarian algorithm [17] can be
implemented in time O(mn + n2 log n) with the help of Fibonacci heaps [9] and this
upper bound can be extended to include general graphs [10].

Assuming integer edge weights in [−W, W ] and RAM model with
log(max{N, n})-bit words, Gabow and Tarjan established O(

√
nm log(nW ))

1 In a preliminary version of this paper presented at SOFSEM Student Forum held in January
2010 (no proceedings), an O(nω log n)-time approximation scheme for maximum weight
matching in bipartite graphs has been presented.
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and O(
√

n log nm log(nW )) time-bounds for maximum weight matching respectively
in bipartite and general graphs [11,12].

More recently, Sankowski designed an O(nωW )-time algorithm for the weighted
matching problem in bipartite graphs with integer weights, where ω stands for the expo-
nent of fast matrix multiplication known to not exceed 2.376 [20]. His result asymptot-
ically improved an earlier upper-time bound for maximum weight matching in bipartite
graphs with integer weights of the form O(

√
nmW ) due to Kao [16].

There is also an extensive literature on fast approximation algorithms for maxi-
mum weight matching in graphs [4,5,6,14,18,19]. Typically they yield an approxi-
mation within a constant factor between 1

2 and almost 4
5 , running in time of order

m logO(1) n. Already the straightforward greedy approach yields 1
2 -approximation in

time O(m log n).
The maximum weight matching problem in hypergraphs is known also as a set

packing problem in combinatorial optimization [15]. By duality it is equivalent to
maximum weight independent set and hence extremely hard to approximate in poly-
nomial time [13]. The most studied case of maximum weight matching in hypergraphs
is that for d-uniform hypergraphs where each edge is of size d. Then a polynomial-time
(d−1 + 1/d)-approximation is possible [3]. By duality, one obtains also a polynomial-
time (d − 1 + 1/d)-approximation of maximum weight independent set in graphs of
degree d (cf. [15]).

2 Simple Edge Weight Transformations

In this section, we describe two simple transformations of the edge weights in the in-
put hypergraph G such that an α-approximation of maximum weight matching in the
resulting hypergraph yields an (α− ε)-approximation of maximum weight matching of
G. We assume w.l.o.g. throughout the paper that G has n vertices, m edges, and real
edge weights not less than 1. The largest edge weight in G is denoted by W.

Lemma 1. Suppose that there is an α-approximation algorithm for maximum weight
matching in G running in time T (n, m, W ). Then, there is an O(n + m)-time transfor-
mation of G into an isomorphic hypergraph G∗ with edge weights in the interval [1, n

ε ]
such that the aforementioned algorithm run on G∗ yields an (α − ε)-approximation of
maximum weight matching in G in time T (n, m, n

ε ).

Proof. We may assume w.l.o.g that W > n
ε . Note that the total weight of maximum

weight matching in G is at least W. Hence, if we transform G to a hypergraph G′ by
raising the weight of all edges in G of weight smaller than Wε

n to Wε
n then the following

holds:

1. the maximum weight of a matching in G′ is not less than that in G;
2. any matching in G′ induces a matching in G whose weight is smaller by at most

εW.

To find an α-approximation of maximum weight matching in G′, we can simply rescale
the edge weights in G′ by multiplying them by n

Wε . Let G∗ denote the resulting
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graph. Now it is sufficient to run the assumed algorithm on G∗ to obtain an (α − ε)-
approximation of maximum weight matching in G. Note that the application of the
algorithm will take time T (n, m, n

ε ). 
�
Lemma 2. Suppose that there is an (α − ε)-approximation algorithm for maximum
weight matching in G running in time T ′(n, m, W, ε). By rounding down each edge
weight to the nearest power of 1 + ε and then running the (α − ε)-approximation al-
gorithm on the resulting graph, we obtain an (α − O(ε))-approximation of maximum
weight matching in G in time T ′(n, m, W, ε) + O(n + m).

Proof. Let e be any edge in G. Denote its weight in G by w(e) and its weight in the
resulting graph by w′(e). We have w′(e)(1 + ε) ≥ w(e). Consequently, we obtain
w′(e) ≥ w(e) − εw′(e) ≥ (1 − ε)w(e). It follows that a maximum weight matching
in the resulting graph has weight at least 1 − ε times the weight of a maximum weight
matching in G. Thus, if we run the assumed (α − ε)-approximation algorithm on the
resulting graph then the produced matching with edge weights restored back to their
original values will yield an (α− 2ε)-approximation. 
�

3 A Transformation into an (α − ε)-Approximation Algorithm

A sub-hypergraph of a hypergraph H is any hypergraph that can be obtained from H
by deleting some vertices and some edges. Once a vertex is removed all edges contain-
ing it are also removed. A class C of hypergraphs such that any subhypergraph of a
hypergraph in C also belongs to C is called hereditary.

In this section, we present a transformation of an hypothetical α-approximation algo-
rithm for maximum weight matching in a hereditary family of hypergraphs with edges
of size O(1) into a (α− ε)-approximation algorithm. The running time of the (α− ε)-
approximation algorithm is close to that of the α-approximation algorithm in case the
largest edge weight is ε−O(ε−1).

Theorem 1. Suppose that there is an algorithm for a maximum weight match-
ing in any hypergraph having edges of size ≤ s and belonging to the same
hereditary class as G running in time T (n′, m′, W ′) = Ω(n′ + m′), where
n′, m′ are respectively the number of vertices and edges, and [1, W ′] is the
interval to which all edge weights belong. There is an (α − ε)-approximation
algorithm for a maximum weight matching in G running in time (ε−1)O(1)×
max

1≤q≤O(ε
log n

ε
log ε−1 )

maxm1+...mq=m

∑q
1 T (min{n, smj}, mj, (ε−1)O(ε−1)).

Proof. We may assume w.l.o.g that W = O(n/ε) and any edge weight is a nonnegative
integer power of 1 + ε by Lemmata 1, 2. Order the values of the edge weights in G
in the increasing order. Set k = O(ε−1) and l = �log1+ε

2
ε �. By the form of the edge

weights and the setting of l, the following holds.

Remark 1: For any two different edge weights w1 and w2, if the number of w1 is
greater than that of w2 by at least l in the aforementioned ordering then ε

2w1 ≥ w2.
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In order to specify our (α − ε)-approximation algorithm, we partition the ordered
edge weights into consecutive closed basic intervals, each but perhaps for the last, con-
taining exactly l consecutive edge weights, see Fig. 1.

0(1+ ε) 2(1+ ε) (1+ ε) 4(1+ ε)(1+ ε) (1+ ε) (1+ ε)

l=3 l=3

log
n
ε31

Fig. 1. Partitioning of edge weights (l = 3)

Next, we group k-tuples of consecutive basic intervals into large intervals composed
of k − 1 consecutive basic intervals followed by a single basic interval called a gap.
This partition corresponds to the situation when the so called shift parameter x is set to
0. For x ∈ {1, .., k− 1}, the partition into alternating large intervals and gaps is shifted
by x basic intervals from the right, so the first large interval from the right is composed
solely of k − 1 − x basic intervals, see Fig. 2. The maximal subgraph of G containing
solely edges with weights in the large intervals in the partition is denoted by Gx.

            l              l              l               l              l               l             l             l 

            l              l              l               l              l               l             l             l 

            l              l              l               l              l               l             l             l 

k-1

2  shift

1  shift

0  shift

gap gap gap
k-1 k-1k-1

k-2
gap gap

gap

gap

k-1 k-1

k-1

gap

k-1

Fig. 2. An example of shift x from 1 to 3 with k=3

For our (α − ε)-approximation algorithm for a maximum weight matching in G see
Fig. 3. We shall assume the definitions of the subgraphs G′

x, Gx,j, Mx given in the
algorithm.
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Algorithm 1

1. for x ← 1 to k − 1 do
2. Mx ← ∅;
3. G′

x ← Gx;
4. for j ← 1 to O(log1+ε

n
ε
) do

5. begin
6. Set Gx,j to the sub-hypergraph of G′

x induced by the edges whose weights
7. fall in the jth interval from the right;
8. Run the α-approximation algorithm for maximum weight matching Mx,j of Gx,j ;
9. Mx ← Mx

⋃
Mx,j ;

10. Remove all edges incident to Mx,j from G′
x;

11. end
12. Return the heaviest among the matchings Mx

Fig. 3. The (α − ε)-approximation algorithm

Since the union of the gaps over all shifts covers all edge weights, in particular all
edge weights occurring in an optimal matching of G, there must be a shift where the
gaps cover at most 1

k of the weight of the optimal matching of G. Hence, there must
be a shift x such that the weight of an optimal matching in Gx is at least (1 − 1/k) of
the weight of an optimal matching of G. Thus, it is sufficient to show that Mx closely
approximates an α-approximate weight matching of Gx.

Consider a maximum weight matching OMx of Gx and the α-approximation Mx,j

of a maximum weight matching of Gx,j , respectively. Note that Mx,j has total weight
not smaller than α times the total weight of OMx restricted to the edges in Gx,j. On
the other hand, each edge e in Mx,j can eliminate at most O(1) edges of OMx from
all Gx,i for i > j. The total weight of the at most O(1) edges is only at most the ε
fraction of the weight of e by Remark 1. Let EOMx denote the set of all edges in OMx

eliminated by Mx =
⋃

j Mx,j . The following two inequalities follow:

weight(Mx) + weight(EOMx) ≥ α× weight(OMx)

ε× weight(Mx) ≥ weight(EOMx)

Consequently, we obtain:

weight(Mx) ≥ α× weight(OMx)− ε× weight(Mx)

≥ (α − ε)× weight(OMx)

Thus, Mx approximates a maximum weight matching of Gx within (α−ε), and con-
sequently the heaviest of the matchings Mx approximates a maximum weight match-
ing of G within (1 − ε)(1 − 1/k). By setting k = Ω(1

ε ), we obtain an (1 − O(ε))-
approximation of the optimum.

It remains to estimate the time complexity of our method. Note that the weight of
heaviest edge in Gx,j is at most

(1 + ε)lk = O(ε−1)O(ε−1) = (ε−1)O(ε−1)
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times larger than that of the lightest one. Let mx,j denote the number of edges in Gx,j .
Next, let nx,j denote the number of vertices in the sub-hypergraph of Gx,j induced by
the edges of Gx,j. Note that nx,j ≤ min{n, smx,j} by our assumption on the size of
edges in G.

Hence, by rescaling the weights in Gx,j , we can find Mx,j in time
T (min{n, smx,j}, mx,j, (ε−1)O(ε−1)) for j = 1.., O(log1+ε

n
ε /lk) and x = 0, ..., k −

1. Note that log1+ε
n
ε = log n

ε

log 1+ε = Θ(ε−1 log n
ε ) and similarly lk = log1+ε

2
ε Θ(ε−1) =

Θ( log 2
ε

log 1+ε ε
−1) = Θ(ε−2 log ε−1). It follows that for a given x, the largest value of j,

i.e., the number of the subgraphs Gx,j is O(ε log n
ε

log ε−1 ).
Note that

∑
j mx,j ≤ m since each edge of G belongs to at most one hypergraph

Gx,j. Thus, the total time taken by finding all Mx,j for j = 1, ..., O(ε log n
ε

log ε−1 ), for

a fixed x is max
1≤q≤O(ε

log n
ε

log ε−1 )
maxm1+...mq=m

∑q
1 T ({n, smj}, mj , (ε−1)O(ε−1)).

Recall that x ranges over O(ε−1) possible values.
By the assumed form of the edge weights in G, we can apply a standard radix sort

with O(ε−1 log n
ε ) buckets to sort the edges of G by their weights in time O(m +

ε−1 log n
ε ). The latter is also O(ε−2T (n, m, (ε−1)O(ε−1))) by the assumptions on T.

In order to efficiently construct the graphs Gx,j , the sorted edge list is kept in array
and there are double links between an occurrence of an edge in the adjacency lists rep-
resenting G and its occurrence in the sorted edge list. To determine the edges inducing
Gx,j , we just scan a consecutive fragment of the sorted list from left to right. Given a
list of edges of Gx,j , an adjacency representation of the sub-hypergraph can be con-
structed in time O(n + m) = O(T (n, m, (ε−1)O(ε−1))) by using the aforementioned
double links.

To remove an edge from G′
x, we locate it on the sorted edge list by using the

double links with the adjacency lists and then link its predecessor with its succes-
sor on the sorted list. We conclude that the updates of G′

x take time O(m) =
O(T (n, m, (ε−1)O(ε−1))).

Summarizing, our upper time-bound on finding Mx,j for all j and x dominates our
upper time-bounds for the remaining steps which yields the theorem. 
�

4 Applications

There are at least two known exact algorithms for maximum weight matching in bipar-
tite graphs with integer edge weights for which the upper time bounds on their running
time in linear fashion depend on the maximum edge weight W [16,20]. Recently, Duan
and Pettie have provided substantially more efficient 1− ε approximation algorithm for
maximum weight matching in general graphs with integer edge weights, whose running
time also depends on W in linear fashion [7]. Furthermore, their final approximation
scheme for this problem in fact exhibits poly-logarithmic dependence on W.

Fact 1 (Duan and Pettie, see the proof of Theorem 1 in [7]). An (1 − ε)-approximation
of maximum weight matching in a connected graph on m edges and positive integer
weights not exceeding W can be found deterministically in time O(ε−2m log3 W ).
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We can trivially generalize the upper time bound of Fact 1 to include a non-necessarily
connected graph by extending it by an additive factor of O(n).

There is one technical difficulty in combining Fact 1 with Theorem 1. In the theorem
we assume that there is available an α-approximation algorithm for maximum weight
matching for graphs belonging to the same hereditary class as G with arbitrary real
edge weights not less than 1 whereas the algorithm of Fact 1 assumes integer weights.
In fact, even if the input graph got positive integer weights the preliminary edge weight
transformations in the proof of Theorem 1 would result in rational edge weights. There
is a simple remedy for this. We may assume w.l.o.g that ε is an inverse of a positive
integer and through all the steps of our approximation scheme round down the edge
weights to the nearest fraction with denominator O(ε−1) and then multiply them by the
common denominator to get integer weights. This will increase the maximum weight
solely by O(ε−1) and will preserve close approximability.

Hence, Fact 1 combined in this way with Theorem 1 yield our main application result
by straightforward calculations.

Theorem 2. There is an approximation scheme for a maximum weight matching in a
graph on n vertices and m edges running in time (ε−1)O(1)(m + n).

5 Extensions

Note that Theorem 1 includes as a special case the problem of finding a maximum
weight independent set in a graph G of maximum degree d which is equivalent to the
problem of finding a maximum weight matching in the dual hypergraph with edges
corresponding to the vertices of G and vice versa.

Several combinatorial algorithms for maximum independent set achieving the ap-
proximation ratio of O(d), where d is the maximum or average degree are known in the
literature [15]. In the appendix, we demonstrate that by using the method of Theorem
1 they can be simply transformed into good approximation algorithms for maximum
weight independent set.

6 Final Remark

In earlier versions of our paper, we presented a simpler formula on the time complexity
of our reduction (see Theorem 1) with a single term T (n, m, ...), which resulted in an
additional logarithmic factor in the application to maximum weight graph matching.
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Appendix: Approximation Algorithms for Maximum Weight
Independent Set in Bounded Degree Graphs

Note that Theorem 1 includes as a special case the problem of finding a maximum
weight independent set in a graph G of maximum degree d which is equivalent to the
problem of finding a maximum weight matching in the dual hypergraph with edges
corresponding to the vertices of G and vice versa.

Several combinatorial algorithms for maximum independent set achieving the ap-
proximation ratio of O(d), where d is the maximum or average degree are known in
the literature [15]. Here, we demonstrate that by using the method of Theorem 1 they
can be simply transformed into good approximation algorithms for maximum weight
independent set.

Lemma 3. Suppose that there is an α(d)-approximation algorithm for maximum inde-
pendent set in a graph on n vertices and maximum (or average degree, respectively)
degree d running in time S(n, d), where the function S is non-decreasing in both argu-
ments. There is an α(dW )-approximation algorithm for maximum weight independent
set in a graph on n vertices, maximum (or average degree, respectively) degree d, pos-
itive integer vertex weights not exceeding an integer W, running in time S(nW, dW ).

Proof: Let G be the input vertex weighted graph G. We form the auxiliary unweighted
graph G∗ on the base of G as follows. In G∗, we replace each vertex v in G with
the number of its copies equal to the weight of v. We connect each copy of v by an
edge with each copy of each neighbor of v. Next, we run the assumed algorithm for
maximum unweighted independent set on G∗. Note that any maximal independent set
in G∗ is in one-to-one correspondence with an independent set in G since whenever
a copy of v is in the independent set then all other copies of v can be inserted into it
without any conflicts. 
�
The drawback of Lemma 3 is that the approximation factor and/or the running time of
the resulting algorithm for the weighted case can be very large in case the maximum
weight W is large. However, we can plug Lemma 3 in the method of Theorem 1 to
obtain much more interesting approximation algorithms in the weighted case.

Theorem 3. Suppose that there is an α(d)-approximation algorithm for maximum in-
dependent set in a graph on n vertices and maximum degree d running in time S(n, d),
where the function S is non-decreasing in both arguments and S(n, d) = Ω(nd log n).
There is an (α(dε−1)O(ε−1)) − dε)-approximation algorithm for maximum weight in-
dependent set in a graph on n vertices, with maximum degree d, positive integer vertex
weights, running in tim O(ε log(n/ε)

log ε−1 S(n(ε−1)O(ε−1), d(ε−1)O(ε−1))).

Proof. sketch. Recall that the problem of maximum (weighted or unweighted) inde-
pendent set is equivalent to the problem of maximum (weighted or unweighted, respec-
tively) matching in the dual hypergraph. In the dual hypergraph, the edges have size
not exceeding the maximum vertex degree in the input graph. We run the method of
Theorem 1 on the dual hypergraph using as the black box algorithm the result of the
application of Lemma 3 to the assumed algorithm and its adaptation to the maximum
matching problem in the dual hypergraph. 
�
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Abstract. The subset sum problem is a well-known NP-complete prob-
lem in which we wish to find a packing (subset) of items (integers) into a
knapsack with capacity so that the sum of the integers in the packing is
at most the capacity of the knapsack and at least a given integer thresh-
old. In this paper, we study the problem of reconfiguring one packing into
another packing by moving only one item at a time, while at all times
maintaining the feasibility of packings. First we show that this decision
problem is strongly NP-hard, and is PSPACE-complete if we are given a
conflict graph for the set of items in which each vertex corresponds to an
item and each edge represents a pair of items that are not allowed to be
packed together into the knapsack. We then study an optimization ver-
sion of the problem: we wish to maximize the minimum sum among all
packings in the reconfiguration. We show that this maximization prob-
lem admits a polynomial-time approximation scheme (PTAS), while the
problem is APX-hard if we are given a conflict graph.

1 Introduction

Reconfiguration problems arise when we wish to find a step-by-step transforma-
tion between two feasible solutions of a problem such that all intermediate results
are also feasible. Recently, Ito et al. [7] proposed a framework of reconfiguration
problems, and gave complexity and approximability results for reconfiguration
problems derived from several well-known problems, such as independent set,
clique, matching, etc. In this paper, we study two reconfiguration problems
derived from the subset sum problem.

The subset sum problem is a well-known NP-complete problem, defined as
follows [9]. Suppose that we are given a knapsack with a nonnegative integer
capacity c, and a set A of items a1, a2, . . . , an, each of which has a nonnegative
integer size s(ai), 1 ≤ i ≤ n. We call a subset A′ of A a packing if the total size
of A′ does not exceed the capacity c, that is,

∑
a∈A′ s(a) ≤ c. Given an integer
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A0

At

A1

At’5, 6, 8

5, 6

6, 8

5, 8

5, 11

8, 11

6, 11 11

Fig. 1. All packings of total size at least k = 10 for A = {5, 6, 8, 11} and c = 20

threshold k, the subset sum problem is to find a packing A′ whose total size
is at least k, that is, k ≤∑a∈A′ s(a) ≤ c. For a knapsack with capacity c = 20
and a set A = {5, 6, 8, 11}, there are 8 packings of total size at least k = 10, as
illustrated in Fig.1, where each packing is surrounded by a box. Our definition
of subset sum is known as the decision version of the maximum subset sum

problem in which we wish to find a packing whose total size is maximum [9]1.
Suppose now that we are given two packings A0 and At, both of total size

at least k, and we are asked whether we can transform one into the other via
packings by moving (namely, either adding or subtracting) a single item to/from
the previous one without ever going through a packing of total size less than k.
We call this decision problem the subset sum reconfiguration problem.
For two packings A0 = {5, 6} and At = {6, 8} in Fig.1, the answer is “yes”
since they can be transformed into each other via A1 = {5, 6, 8}; in Fig.1, two
packings (boxes) are joined by a line if and only if one packing can be obtained
from the other by moving a single item.

Obviously, we cannot always find such a transformation. For example, there
is no transformation between A0 = {5, 6} and A′

t = {6, 11} in Fig.1 if we are
allowed to use only packings of total size at least k = 10. On the other hand, the
answer is always “yes” if k = 0: we first remove all items of A0, and obtain the
empty packing; and then, add all items of At to the knapsack. In turn, we can
get a natural optimization problem if we wish to maximize the minimum total
size among all packings in a transformation between A0 and At. We call this
maximization problem the maxmin subset sum reconfiguration problem.
The sequence of packings emphasized by thick lines in Fig.2 is an optimal solution
for A0 = {5, 6} and A′

t = {6, 11}; its objective value is 8.
Reconfiguration problems have been studied extensively in recent literature

[2,5,6,7,8], but reconfiguration problems for subset sum have not been studied
yet. One can easily imagine a variety of practical scenarios, where a packing (e.g.,
representing a feasible display of electronic advertisements on a Web browser)
needs to be changed (to show other advertisements) by individual changes (ap-
pealing to the user by showing one by one) while maintaining both threshold
and capacity of the allowed area on the Web browser (in order to maintain both
advertiser and user satisfactions during the transformation). Reconfiguration
problems are also interesting in general because they provide a new perspective
1 Note that subset sum in [4] is slightly different from our definition: subset sum in

[4] is defined as the problem of finding a packing whose total size is exactly k.
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A0

At’

5, 6, 8

5, 6

6, 8

5, 8

5

8

6

5, 11

8, 11

6, 11 11

φ

Fig. 2. All packings for A = {5, 6, 8, 11} and c = 20

and deeper understanding of the solution space and of heuristics that navigate
that space.

For the (ordinary) subset sum and maximum subset sum problems, sev-
eral variants have been studied [9]. In particular, maximum subset sum with
“conflict graph” [10] is an important variant, because this variant has been stud-
ied for several other problems, such as bin packing [3] and scheduling under
makespan minimization [1]. In the variant, we are given a conflict graph for a
set A of items in which each vertex corresponds to an item in A, and each edge
represents a pair of items in A that are not allowed to be packed together into
the knapsack. It is known that the (ordinary) maximum subset sum problem
with conflict graph is strongly NP-hard [10].

In this paper, we first show that subset sum reconfiguration is strongly
NP-hard, and is PSPACE-complete for the variant of conflict graph. We then
show that maxmin subset sum reconfiguration with conflict graph is APX-
hard, and hence there is no polynomial-time approximation scheme (PTAS) for
this variant unless P = NP. In contrast, we give a PTAS for the original version
of maxmin subset sum reconfiguration. Note that, since this maximization
problem is strongly NP-hard, the problem does not admit a fully polynomial-
time approximation scheme (FPTAS) unless P = NP; in this sense, a PTAS is
the best approximation algorithm we can expect for the problem [11, p. 72].

Our main result of this paper is a PTAS for maxmin subset sum recon-

figuration. The strategy of our PTAS is the following: we divide a set A of
items into two groups, one is the set of items having “large” sizes, and the other
consists of items having “small” sizes; and we deal with the two groups sepa-
rately. Because such an approximation technique is fairly standard, especially for
maximum subset sum and bin packing [9,11], one might think that our PTAS
could be obtained also straightforwardly by extending several known FPTAS or
PTAS [9,11]. However, this is not the case, because the focus of reconfiguration
problems is different from the ordinary problems: we seek the reachability be-
tween two feasible solutions, and hence the placement of items is the central
matter. For example, two packings {5, 6} and {11} in Fig.1 have the same total
size 11, and hence we can regard them as an “equivalent” packing in the ordi-
nary subset sum problem. However, we cannot identify these two packings in
the reconfiguration problems; for example, {11} can be transformed into {6, 11},
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but {5, 6} cannot, when k = 10. (See Fig.1.) We thus introduce a “configura-
tion graph” which represents the placements of items and their connectivity. (A
formal definition will be given in Section 3, but an example is already shown in
Fig.2.) Our main idea is to approximate the configuration graph appropriately.

2 Complexity and Inapproximability

Before showing our results, we introduce some terms and define the problems
more formally. In the Introduction, we have defined a packing Ai as a subset
of items in a set A such that the total size of Ai is at most the capacity c of a
knapsack; the total size of a packing Ai is denoted by s(Ai), that is, s(Ai) =∑

a∈Ai
s(a). Note that a packing does not necessarily satisfy a threshold k. We

say that two packings Ai and Aj of A are adjacent if their symmetric difference
is of cardinality 1, that is, |Ai � Aj | =

∣∣(Ai \ Aj) ∪ (Aj \ Ai)
∣∣ = 1; the item a

in Ai � Aj is said to be moved between Ai and Aj . A reconfiguration sequence
between two packings A0 and At is a sequence of packings A0, A1, . . . , At such
that Ai−1 and Ai are adjacent for i = 1, 2, . . . , t. For a reconfiguration sequence
P , we denote by f(P) the minimum total size among all packings in P , that is,
f(P) = min{s(Ai) : Ai ∈ P}. Then, for two packings A0 and At, let

OPT(A0, At)=max{f(P) |P is a reconfiguration sequence between A0 and At}.

Given an integer threshold k and two packings A0 and At with s(A0) ≥ k and
s(At) ≥ k, the subset sum reconfiguration problem is a decision problem
to determine whether OPT(A0, At) ≥ k. On the other hand, its optimization
version is defined as follows: Given two packings A0 and At, the maxmin subset

sum reconfiguration problem is to compute OPT(A0, At). Note that we are
asked simply to compute the optimal value OPT(A0, At), and we need not to
find an actual reconfiguration sequence.

We first have the following theorem, whose proof is omitted from this extended
abstract.

Theorem 1. Both subset sum reconfiguration and maxmin subset sum

reconfiguration are strongly NP-hard.

We then consider the variant with conflict graph. Notice that every feasible
packing of A induces an independent set of the conflict graph. Therefore, we
have the following theorem.

Theorem 2. Subset sum reconfiguration with conflict graph is PSPACE-
complete.

Proof. It is easy to see that the problem is in PSPACE. Therefore, we show that
subset sum reconfiguration with conflict graph is PSPACE-hard by giving
a polynomial-time reduction from the independent set reconfiguration

problem [7].
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Given a graph G of n nodes, an integer threshold k′, and two independent sets
I0 and It of G, both of cardinality at least k′, the independent set reconfig-

uration problem asks whether we can transform I0 into It via independent sets
of G, each of which results from the previous one by either adding or subtracting
a single node of G, without ever going through an independent set of cardinality
less than k′ − 1. This problem is known to be PSPACE-complete [7].

We now construct the corresponding instance of subset sum reconfigu-

ration with conflict graph. The set A contains n items, and let s(a) = 1 for
all items a in A. Each item in A corresponds to a node of G, and the conflict
graph for A is connected as G. The knapsack is of capacity c = n, and let the
threshold k = k′ − 1. Finally, the two packings A0 and At consist of the items
which correspond to the nodes in I0 and It, respectively; and hence both A0 and
At are of total size at least k′ = k + 1.

Since every feasible packing of total size at least k induces an independent
set in G of cardinality at least k = k′ − 1, it is obvious that there is a desired
transformation between I0 and It if and only if OPT(A0, At) ≥ k. 
�
We finally have the following inapproximability result, whose proof is omitted
due to the page limitation.

Theorem 3. Maxmin subset sum reconfiguration with conflict graph is
APX-hard, and cannot be approximated within any constant factor unless P = NP.

3 PTAS

Since maxmin subset sum reconfiguration with conflict graph is APX-hard,
this variant does not admit a PTAS unless P = NP. However, in this section,
we give a PTAS for the original version. Remember that, since we have shown
in Theorem 1 that the problem is strongly NP-hard, there is no FPTAS for
the problem unless P = NP; in this sense, a PTAS is the best approximation
algorithm we can expect for the problem. We have the following theorem.

Theorem 4. There is a polynomial-time approximation scheme for maxmin

subset sum reconfiguration.

In the remainder of this section, as a proof of Theorem 4, we give an algorithm
which actually finds a reconfiguration sequence P between two given packings
A0 and At such that f(P) ≥ (1− ε′)OPT(A0, At) in time polynomial in n (but,
exponential in 1/ε′) for any fixed constant ε′, 0 < ε′ < 1, where n is the number of
items in the set A. Therefore, our approximate objective value APPRO(A0, At)
is f(P), and hence the error is bounded by ε′OPT(A0, At), that is,

OPT(A0, At)−APPRO(A0, At) = OPT(A0, At)− f(P) ≤ ε′OPT(A0, At).

As we have mentioned in the Introduction, the placement of items is the central
matter in the reconfiguration problem. Therefore, we construct an edge-weighted
graph, called a configuration graph, which represents all (feasible) packings to-
gether with their adjacency. For a set A of items and a knapsack of capacity c,
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a configuration graph C = (V , E) is defined as follows: each vertex in V corre-
sponds to a packing Ai, and two vertices are joined by an edge e in E if and only
if the corresponding two packings Ai and Aj are adjacent; the weight ω(e) of e
is defined as follows: ω(e) = min{s(Ai), s(Aj)}. Notice that the weight ω(e) of
an edge e corresponds to the objective value f(Pi,j) for the reconfiguration se-
quence Pi,j = {Ai, Aj} along e. Figure 2 illustrates the configuration graph for a
set A = {5, 6, 8, 11} and a knapsack of capacity c = 20, where each vertex is drawn
as a box and each edge as a line. From now on, we may call a packing simply a ver-
tex of a configuration graph if it is clear from the context. Since there is a vertex
corresponding to the empty packing, a configuration graph is always connected.
Then, maxmin subset sum reconfiguration can be seen as the problem of
maximizing the minimum edge-weight in a path between A0 and At in C. It is
easy to see that the problem can be solved in time polynomial in |V| + |E| by
the following naive algorithm: delete all edges having the smallest weight from
C, and check whether the two vertices A0 and At remain in the same connected
component of the resulting graph; if so, let C be the resulting graph and repeat.
Note that, however, the size |V|+ |E| of C can be an exponential in n.

We now briefly explain our PTAS together with the organization of this sec-
tion. For a fixed constant ε′, 0 < ε′ < 1, let

ε =
1
2
ε′. (1)

(The reason why the coefficient above is 1/2 will be explained in Section 3.4.)
Given a set A of items and a fixed constant ε, 0 < ε < 1/2, we divide the items
of A into two groups: an item a is called a large item if s(a) ≥ εc/2; otherwise
the item is called a small item. We show in Section 3.1 that the problem can be
optimally solved in polynomial time if A contains only large items; in this case,
the number of packings (and hence the number of vertices in the configuration
graph) can be bounded by a polynomial in n. In Section 3.2 we then explain
that small items can be moved greedily with only small error. In Section 3.3 we
finally deal with a general instance by combining the techniques above, without
losing the reachability and with keeping the small error. Section 3.4 gives the
analysis of our algorithm.

3.1 Large Items

In this subsection, we show that maxmin subset sum reconfiguration can
be optimally solved in polynomial time if the given set A contains only large
items. It suffices to show that we can construct the corresponding configuration
graph C = (V , E) in polynomial time for such an instance, and that the size
|V|+ |E| of C is a polynomial in n. Formally, we have the following lemma.

Lemma 1. For a fixed constant ε > 0, suppose that every item in the set A
is of size at least εc/2, where c is the capacity of the knapsack. Then, maxmin

subset sum reconfiguration can be optimally solved in polynomial time.
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Proof. Since s(a) ≥ εc/2 for each item a ∈ A, the number of items in any (fea-
sible) packing is bounded by �2/ε�. Let γ = �2/ε�, then γ is a fixed constant.
We denote by N the number of vertices (packings) in the corresponding config-
uration graph C = (V , E), that is, N = |V|. Since A contains n items and each
packing consists of at most γ items, it is easy to see that N can be bounded by(
n+γ

γ

)
. Therefore, N is a polynomial in n, and hence we can construct C in time

polynomial in n. Since the size |V|+ |E| of C is a polynomial in n, we can solve
the problem optimally in polynomial time. 
�

3.2 Small Items

Suppose in this subsection that the given set A may contain small items. Then,
the number of items in a packing cannot be bounded by a constant, and hence
the number N = |V| of vertices in the configuration graph C = (V , E) cannot
be always bounded by a polynomial in n; more specifically, N can be O(2n).
Therefore, we will later (in Section 3.3) construct an “approximate configuration
graph CA,” whose size is bounded by a polynomial in n.

We now explain how to find a reconfiguration sequence greedily when A0 � At

contains only small items for two given packings A0 and At. Let Lε be the set
of large items in A, that is, Lε = {a ∈ A | s(a) ≥ εc/2}, and let Sε = A \Lε. We
have the following lemma.

Lemma 2. Let A0 and At be an arbitrary pair of packings such that A0 � At ⊆
Sε. Then, there exists a reconfiguration sequence Ps between A0 and At such
that

(a) no item in Lε is moved in Ps; and
(b) f(Ps) ≥ (1− ε) min{s(A0), s(At)}.

Moreover, such a reconfiguration sequence Ps can be found in linear time.

Proof. We give an O(n)-time algorithm which finds a reconfiguration sequence
Ps between A0 and At satisfying (a) and (b), as follows.

Case (i): s(A0 ∪At) ≤ c.
In this case, we first add all items in At \A0 one by one, and obtain the packing
A0 ∪ At; and then, delete all items in A0 \ At one by one, and obtain At. Note
that At \ A0 ⊆ A0 � At ⊆ Sε and A0 \ At ⊆ A0 � At ⊆ Sε, and hence no item
in Lε is moved in this reconfiguration sequence Ps. We clearly have

f(Ps) = min{s(A0), s(At)} > (1− ε) min{s(A0), s(At)}.

Therefore, Ps satisfies both (a) and (b). Moreover, Ps can be found in linear
time since we move each item in A0 � At only once.

Case (ii): s(A0 ∪At) > c.
In this case, we first add items in At \A0 one by one in arbitrary order as many
as possible; let Aj be the current packing. Then, s(Aj) > (1 − ε

2 )c because,
otherwise, we can add more items to Aj since s(a) < εc/2 for all items a ∈ At\A0.
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We then delete items in A0 \At one by one in arbitrary order until we obtain a
packing A′

j such that

(1 − ε)c < s(A′
j) ≤

(
1− ε

2

)
c. (2)

Since s(a) < εc/2 for all items a ∈ A0 \ At, we can always find such a packing
A′

j . If s(A′
j ∪ At) ≤ c, then go to Case (i) above; otherwise, repeat Case (ii).

Note that, in this reconfiguration sequence Ps, every addition is executed for an
item in At \A0

(⊆ Sε

)
and every deletion is done for an item in A0 \At

(⊆ Sε

)
.

Thus, Ps satisfies (a). Furthermore, since each item in A0 � At is moved exactly
once, Ps can be found in linear time. We now show that (b) holds for Ps. By
Eq. (2) we have

f(Ps) ≥ min
{

(1− ε)c, min{s(A0), s(At)}
}

.

Since c ≥ min{s(A0), s(At)}, we have f(Ps) ≥ (1− ε) min{s(A0), s(At)}. 
�

3.3 General Instance

We finally deal with a general instance, that is, a set A may contain small items
and two packings A0 and At do not necessarily satisfy A0 � At ⊆ Sε. Our idea
is to construct an approximate configuration graph CA, as follows.

Step 1: Configuration graph for Lε

We first construct a configuration graph CLε = (VLε , ELε) for the large item set
Lε of A and the capacity c. Then, as in Lemma 1, CLε can be constructed in time
polynomial in n, and the size |VLε |+|ELε | of CLε can be bounded by a polynomial
in n. Figure 3(a) illustrates the configuration graph for Lε of A, where each box
corresponds to a packing consisting of only large items. Note that CLε contains
the vertex corresponding to the empty packing, and hence CLε is connected.

Step 2: Small items
We then expand CLε into the approximate configuration graph CA = (VA, EA),
as illustrated in Fig.3(b). For each edge in CLε joining two vertices AL

i and AL
j

(that consist only of large items), we replace it with an edge e that joins two new
vertices Ai,x and Aj,y , called gate vertices or gate packings, defined as follows.
Assume without loss of generality that AL

j = AL
i ∪ {a} for some large item a

in Lε, and hence AL
j can be obtained by adding one large item a to AL

i . To
extend AL

j to the gate packing Aj,y containing small items, we find a packing
AS

j ⊆ Sε of small items for the remaining space c − s(AL
j ) of the knapsack;

we employ an FPTAS for the ordinary maximum subset sum problem [9] for
the fixed constant ε. Then, let Aj,y = AL

j ∪ AS
j and let Ai,x = Aj,y \ {a}.

Note that Ai,x � Aj,y = {a} and hence Ai,x and Aj,y are adjacent. We call
the edge e = (Ai,x, Aj,y) an external edge, and the weight ω(e) is defined as
follows: ω(e) = min{s(Ai,x), s(Aj,y)} = s(Ai,x). In Fig.3(b), each gate packing
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A0At

(a)                                                                                                (b)

Ai Aj Ai, x Aj, y
L L

e

Fig. 3. (a) Configuration graph CLε for the large item set Lε of A, and (b) approximate
configuration graph CA for A

is represented by a circle, triangle, square, pentagon, or hexagon, colored with
white; all gate packings represented by the same symbol have the same placement
of large items; and each external edge is drawn as a (non-dotted) line.

For each vertex AL
i in CLε , we have thus created the number d(AL

i ) of new
gate vertices Ai,1, Ai,2, . . . , Ai,d(AL

i ), where d(AL
i ) is the degree of AL

i in CLε .
Clearly, Ai,x ∩ Lε = Ai,z ∩ Lε for every pair of vertices. The original vertex
AL

i is deleted, and we connect the d(AL
i ) gate vertices so that they form a

clique; for each pair of vertices Ai,x and Ai,z , the edge joining them is called
an internal edge; in Fig.3(b), each internal edge is drawn as a dotted line. It
should be noted that Ai,x and Ai,z are not necessarily adjacent although they
are joined by an internal edge. However, using Lemma 2 we can regard such an
internal edge as a reconfiguration sequence Ps between Ai,x and Ai,z such that
f(Ps) ≥ (1− ε) min{s(Ai,x), s(Ai,z)}. Therefore, the weight ω(e) of e is defined
as follows:

ω(e) =
{

min{s(Ai,x), s(Ai,z)} if Ai,x and Ai,z are adjacent;
(1− ε) min{s(Ai,x), s(Ai,z)} otherwise. (3)

Step 3: A0 and At

The current graph above does not always contain the vertices corresponding
to given packings A0 and At. If the graph does not contain A0, then we add
a new vertex A0 to the graph, and join it with each gate vertex having the
same placement A0 ∩ Lε of large items by an internal edge. (The case for At

is similar.) This completes the construction of the approximate configuration
graph CA = (VA, EA).

Clearly, a path between the two vertices A0 and At in CA corresponds to a
reconfiguration sequence between the two packings A0 and At. Since |VA| ≤
2|ELε |+2 and |ELε | is bounded by a polynomial in n, the size |VA|+ |EA| of CA is
bounded by a polynomial in n. Therefore, we can find in polynomial time a path
between A0 and At whose minimum edge-weight is maximum in CA; we choose
the corresponding reconfiguration sequence P as our approximate solution.
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A1,0 A1,t A2,0 A2,t Al,0 Al,t

(a) P *
A0 At
* *Ax
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*
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Ps,1 Ps,2 Ps,l
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* Al,0
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Fig. 4. Reconfiguration sequences P∗, P ′ and P ′′ between A0 and At

3.4 Analysis of the Algorithm

We have shown in Section 3.3 that our algorithm finds a reconfiguration sequence
P between A0 and At in polynomial time. In this subsection, we show that P
satisfies f(P) ≥ (1 − ε′)OPT(A0, At) for a fixed constant ε′, 0 < ε′ < 1, as
required.

Let P∗ = {A∗
0, A

∗
1, . . . , A

∗
t } be an arbitrary optimal reconfiguration sequence

between A0 and At, where A∗
0 = A0 and A∗

t = At. Figure 4(a) illustrates the
optimal reconfiguration sequence P∗, where each black symbol corresponds to
a packing A∗

i in P∗, and all packings represented by the same symbol have the
same placement of large items. Let A∗

min be a packing in P∗ whose total size is
minimum, and hence f(P∗) = s(A∗

min). Then, we have

s(A∗
min) = OPT(A0, At), (4)

and
s(A∗

i ) ≥ s(A∗
min) (5)

for each packing A∗
i , 0 ≤ i ≤ t.

From now on, we transform P∗ into another reconfiguration sequence P ′′

between A0 and At so that CA contains the path corresponding to P ′′. Remember
that our algorithm finds a reconfiguration sequence P between A0 and At which
is optimal in CA, and hence we have

APPRO(A0, At) = f(P) ≥ f(P ′′). (6)

We first transform P∗ into a reconfiguration sequence P ′ between A0 and At

such that the same placement of large items appears consecutively. This can be
done by the following algorithm: find the last packing A∗

x in P∗ such that A∗
x ∩

Lε = A∗
0 ∩ Lε; replace the subsequence {A∗

0, A
∗
1, . . . , A

∗
x} with a reconfiguration

sequence Ps between A∗
0 and A∗

x obtained by Lemma 2; set A∗
0 = A∗

x+1 and
repeat. We denote by P ′

s,i the reconfiguration (sub)sequence obtained by the ith
step of the algorithm above. (See Fig.4(b), where the intermediate packings in
P ′

s,i are represented by dotted symbols.) By Lemma 2(a) all packings in P ′
s,i have

the same placement of large items, and hence all intermediate packings in P ′
s,i
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are depicted by the same symbol in Fig.4(b). Moreover, from the construction,
every two reconfiguration subsequences P ′

s,i and P ′
s,j with i 	= j have different

placements of large items. Let � be the number of iterations of the algorithm,
and hence P ′ = P ′

s,1 ∪ P ′
s,2 ∪ · · · ∪ P ′

s,�. For each i, 1 ≤ i ≤ �, let A∗
i,0 and A∗

i,t

be the first and last packings in P ′
s,i, respectively. Then, from the construction,

the optimal reconfiguration sequence P∗ contains the packings A∗
i,0 and A∗

i,t,
1 ≤ i ≤ �, and hence they are depicted by black symbols in Fig.4(b). On the
other hand, intermediate packings are not necessarily contained in P∗, and hence
they are depicted by white dotted symbols. Note that A∗

1,0 = A0 and A∗
�,t = At.

We then transform P ′ into the reconfiguration sequence P ′′ between A0 and At

such that CA contains the path corresponding to P ′′. For each i, 1 ≤ i ≤ �−1, two
packings A∗

i,t and A∗
i+1,0 are adjacent; moreover, the item moved between them

is a large item a ∈ Lε. Therefore, CA contains the external edge e = (Ai,t, Ai+1,0)
which corresponds to moving the item a from the large item placement A∗

i,t∩Lε

to A∗
i+1,0 ∩ Lε. We may regard that the two endpoints (gate packings) Ai,t

and Ai+1,0 of e correspond to A∗
i,t and A∗

i+1,0, respectively. Of course, the gate
packings Ai,t and Ai+1,0 are not always the same as A∗

i,t and A∗
i+1,0, respectively,

and hence they are depicted by (non-dotted) white symbols in Fig.4(c). However,
it should be noted that A∗

i,t ∩Lε = Ai,t ∩Lε and A∗
i+1,0 ∩Lε = Ai+1,0 ∩Lε, and

hence Ai,t and Ai+1,0 in Fig.4(c) are depicted by the same symbols as A∗
i,t and

A∗
i+1,0, respectively. For the sake of notational convenience, let A1,0 = A∗

1,0 = A0

and A�,t = A∗
�,t = At. Since Ai,0 and Ai,t, 1 ≤ i ≤ �, have the same large item

placement and are contained in CA, there exists the internal edge es,i joining
them in CA; let P ′′

s,i be the reconfiguration subsequence between Ai,0 and Ai,t

corresponding to es,i. By Eq. (3) we have

f(P ′′
s,i) = ω(es,i) ≥ (1− ε) min{s(Ai,0), s(Ai,t)} (7)

for each i, 1 ≤ i ≤ �. Let P ′′ = P ′′
s,1∪P ′′

s,2∪· · ·∪P ′′
s,�, then f(P ′′) = min{f(P ′′

s,i) :
1 ≤ i ≤ �}. This completes the construction of P ′′.

We now show the following lemma, whose proof is omitted due to the page
limitation.

Lemma 3. s(Ai,0) > (1 − ε)s(A∗
i,0) and s(Ai,t) > (1 − ε)s(A∗

i,t) for each i,
1 ≤ i ≤ �.

Assume that P ′′
s,k contains the packing whose total size is minimum in P ′′. Then,

by Eq. (7) we have f(P ′′) = f(P ′′
s,k) ≥ (1 − ε) min{s(Ak,0), s(Ak,t)}. Therefore,

by Lemma 3 and Eqs. (4) and (5) we have

f(P ′′) > (1− ε)2 min{s(A∗
k,0), s(A∗

k,t)} ≥ (1− ε)2s(A∗
min)

> (1− 2ε)s(A∗
min) = (1− 2ε)OPT(A0, At). (8)

By Eqs. (1), (6) and (8) we have

APPRO(A0, At) ≥ f(P ′′) > (1− 2ε)OPT(A0, At) = (1− ε′)OPT(A0, At).

This completes the proof of Theorem 4. 
�
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4 Concluding Remark

In the ordinary knapsack problem [4,9], each item is assigned not only a
size but also a profit, and we wish to find a packing whose total profit is at
least a given threshold. Consider the two reconfiguration problems for knap-

sack, called knapsack reconfiguration and maxmin knapsack recon-

figuration, which are defined similarly as subset sum reconfiguration

and maxmin subset sum reconfiguration, respectively. Because they are
generalizations of our reconfiguration problems for subset sum, the complex-
ity and inapproximability results in Section 2 hold also for them. However, it
remains open to obtain a PTAS for maxmin knapsack reconfiguration.
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dominating set of G and induces a connected graph. Answering an open
question by S. Saurabh [The 2nd Workshop on Kernelization (WorKer
2010)], we provide a kernelization algorithm for this problem leading to a
problem kernel with 130k vertices, significantly improving the previously
best upper bound on the kernel size. To this end, we incorporate a vertex
coloring technique with data reduction rules and introduce for the first
time a distinction of two types of regions into the region decomposition
framework, which allows a refined analysis of the region size and could
be used to reduce the kernel sizes achieved by the region decomposition
technique for a large range of problems.

1 Introduction

The Dominating Set problem decides for a given graph G = (V, E) and a non-
negative integer k whether G has a dominating set of at most k vertices. The
problem is NP-complete [6] and has many applications in the fields such as ad-
hoc networks and voting systems. Moreover, from the viewpoint of parameterized
complexity theory, the problem is W[2]-complete, parameterized by k [5]. There-
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Equivalently, it is unlikely that the problem admits a kernelization algorithm. A
kernelization algorithm for a parameterized problem Q runs in polynomial time
and, for a given instance (G, k) of Q, produces another instance (G′, k′) of Q
such that (G, k) is a yes-instance if and only if (G′, k′) is a yes-instance, k′ ≤ k,
and the size (i.e., the number of vertices) of G′ is bounded by a function of k.
The graph G′ is called the problem kernel. If the size of G′ is linearly depend-
ing on k, we call G′ a linear kernel and the corresponding algorithm is called
a linear kernelization algorithm. See [2,9] for more background on kernelization
algorithms.

Recently, much attention has been focused on linear kernelization algorithms
for problems on planar graphs. In particular, the Planar Dominating Set (PDS)
problem has been extensively studied. Alber et al. [1] introduced the concept
of region decomposition and gave a linear kernel with 335k vertices for PDS,
which was later improved to 67k vertices by Chen et al. [4]. Motivated by [1],
Guo and Niedermeier [10] proposed a general framework to obtain linear kernels
for planar graph problems. Finally, Bodlaender et al. [3] formally showed the
existence of linear kernels for problems satisfying specific properties on bounded-
genus graphs. Note that the results from [3] serve mainly as a classification tool
and are infeasible for practical applications. Huge constants hide behind the
thereby achieved kernel sizes.

Here we study a well-known variant of the Dominating Set problem, namely,
the Connected Dominating Set problem, which requires further that the sub-
graph induced by the dominating set should be connected. Connected Domi-
nating Set is also NP-complete and has applications in various network design
settings [6]. The parameterized version of the Connected Dominating Set prob-
lem on general graphs is also W[2]-complete [5], parameterized by the solution
size k. However, if we restrict the input to planar graphs, we arrive at the main
problem of this paper, the Planar Connected Dominating Set (PCDS) problem,
where, given a planar graph G = (V, E) and a non-negative integer k, to decide
whether there exists a subset D ⊆ V with at most k vertices such that the graph
induced by D is connected and every vertex in V is either in D or adjacent to
at least one vertex in D.

Kernelization algorithms for PCDS have been studied recently. Lokshtanov
et al. [11] showed that the problem has a linear kernel with 3968187 · k ver-
tices, based on the method of “reduce or refine”. Gu and Imani [7] proposed an
improved kernel with 413k vertices for the problem. However, a careful exam-
ination shows that Gu-Imani’s construction in [7] misses some subtle cases of
the reduction rules and their revised version of the paper can be found in [8].
Recently, at the 2nd Workshop on Kernelization, Saket Saurabh [12] posed the
open question whether there exists a kernel for PCDS with size at most ck for a
constant c ≈ 100. Here, we answer this question by showing a kernel with 130k
vertices for PCDS, significantly improving the previous results. To this end, we
not only extend the reduction rules introduced in [7], but also present new rules
that color the vertices of a graph, which enable to reduce some “useless” edges.
Furthermore, while analyzing the kernel size based on the region decomposition
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framework, we distinguish two types of regions which allows to make use of some
structural characteristics of the regions, resulting in the improved kernel. We be-
lieve that the distinction of region types could be a promising extension to the
region decomposition framework and might lead to improved kernels for many
planar graph problems.

Due to lack of space, some proofs are deferred to the full paper.

2 Preliminaries

Basic graph notations. Let G = (V, E) be an undirected, simple, connected
graph, where n := |V |. For two vertices u, v ∈ V , the edge between them is
denoted by (u, v). The length of a path is the number of edges in the path.
For two vertices u, v ∈ V , let d(u, v) denote the distance between them, that
is, the length of the shortest path between u and v. For a vertex w and an
edge e = (u, v), let d(e, w) := min{d(v, w), d(u, w)} be the distance between e
and w. For a subset U ⊆ V , the graph induced by U is denoted by G[U ]. For
two vertices u, v ∈ V , if u = v or (u, v) ∈ E, then v dominates u. Given two
sets V1, V2 ⊆ V , if every vertex of V2 is dominated by some vertex of V1, then V1

dominates V2. Specially, if V2 = ∅, then V1 still dominates V2. For a vertex v ∈
V , let N(v) be the set of neighbors of v, that is, N(v) := {u | (v, u) ∈ E},
and N [v] := N(v) ∪ {v}. If a graph can be drawn in the plane without edge
crossings then it is called a planar graph. A plane graph is a planar graph with
a fixed embedding in the plane. Throughout this paper, we assume that we are
working with an arbitrary but fixed embedding of G in the plane; whenever this
embedding is of relevance, we refer to G as being plane instead of planar.

For a vertex v ∈ V , N(v) is partitioned into the following three subsets:

– N1(v) := {u | u ∈ N(v) and N(u) \N [v] 	= ∅},
– N2(v) := {u | u ∈ N(v) \N1(v) and N(u) ∩N1(v) 	= ∅}, and
– N3(v) = N(v) \ (N1(v) ∪N2(v)).

For two vertices v, w ∈ V , let N [v, w] := N [v] ∪N [w] and N(v, w) := N [v, w] \
{v, w}. We partition N(v, w) into the following three subsets:

– N1(v, w) := {u | u ∈ N(v, w) and N(u) \N [v, w] 	= ∅},
– N2(v, w) := {u | u ∈ N(v, w) \N1(v, w) and N(u) ∩N1(v, w) 	= ∅}, and
– N3(v, w) := N(v, w) \ (N1(v, w) ∪N2(v, w)).

Region and region decomposition. In the following, we introduce the region de-
composition framework.

Definition 1. [1] For a plane graph G = (V, E) and two vertices v, w ∈ V , a
region R(v, w) between v and w is a closed subset of the plane with the following
properties:

1. The boundary of R(v, w) is formed by two simple paths P1 and P2 between v
and w, and the length of each path is at most three.
2. All vertices strictly inside (that is, not on the boundary) the region R(v, w)
are from N(v, w).
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For a region R = R(v, w), v, w are called the endpoints of R. Let V [R] denote the
vertices in R, that is, V [R] = {u ∈ V | u sits strictly inside or on the boundary
of R}, and let V (R) := V [R] \ {v, w}. A vertex in V (R) is called simple, if it is
adjacent to both v and w; otherwise it is called non-simple.

Definition 2. [1] A region R = R(v, w) between two vertices v and w is called
simple, if all vertices in V (R) are common neighbors of both v and w, that is,
V (R) ⊆ N(v) ∩N(w).

Definition 3. A region R = R(v, w) between two vertices v and w is called
quasi-simple, if for every non-simple vertex x in R, x satisfies the following
conditions:

1. x sits strictly inside R and
2. x is adjacent to v but not adjacent to w, and is also adjacent to at least one
simple vertex in R.

Note that for a quasi-simple region R = R(v, w), it always holds V (R) ⊆ N(v)
but V (R) \ N(w) might be non-empty. In the following, the boundary of a re-
gion R will be denoted by ∂R.

Definition 4. [1] Let G = (V, E) be a plane graph and D ⊆ V . A D-region
decomposition of G is a set � of regions between pairs of vertices in D such that

1. for R(v, w) ∈ � no vertex from D is in V (R(v, w)) and
2. for two regions R1, R2 ∈ �, it holds (R1 ∩R2) ⊆ (∂R1 ∪ ∂R2).

For a D-region decomposition �, we define V [�] =
⋃

R∈� V [R]. A D-region
decomposition� is called maximal if there is no region R (R /∈ �) such that �′ :=
� ∪ {R} is a D-region decomposition with V [�] � V [�′].

Definition 5. [10] A graph problem P on G = (V, E) is said to admit a distance
property with constants cV and cE if

1. P asks for a set of vertices or edges satisfying a specified property and
2. for every solution set D with the vertex set V (D), it holds that ∀u ∈ V : ∃v ∈
V (D) : d(u, v) ≤ cV and ∀e ∈ E : ∃v ∈ V (D) : d(e, v) ≤ cE.

3 Data Reduction Rules

We present 7 data reduction rules for Planar Connected Dominating Set. Note
that the first 6 rules work also for general graphs. Some of these rules color
the vertices in G with two colors, black and white. Assigning the color white
to a vertex means that this vertex will be never included into the connected
dominating set sought for. Initially, all the vertices are colored black. During the
execution of the data reduction rules, if we find a vertex v such that there exists
a minimum connected dominating set excluding v, then we color v white. We
will show later that by incorporating this vertex coloring we can reduce some
“useless” edges and vertices. Finally, the output of our kernelization process is



74 W. Luo et al.

the “uncolored” version of the reduced, colored graph, that is, the same graph
without the vertex coloring. Note that we require that the minimum connected
dominating set of the input graph containing at least two vertices.

The first rule is a natural consequence of the definition of the coloring.

Rule 1. For two white vertices u and v, if N(u) ⊆ N(v), then remove v from G.
Then, we give a colored version of the first rule for Dominating Set introduced

in [1], which deals with the neighborhood of a single vertex.

Rule 2. For a black vertex v ∈ V , if N3(v) 	= ∅, then remove N2(v) ∪ N3(v)
from G, and add a new white vertex v′ to V and edge (v, v′) to E.

The next rule deals with the colors of the neighbors of a single vertex.

Rule 3. For a black vertex v ∈ V , if there exists a black vertex x ∈ N2(v)∪N3(v),
then color x white and remove the edges between x and other white vertices in G.

The next 3 rules consider the “joint neighborhood” N(v, w) of two vertices v
and w. Compared to the second rule for Dominating Set introduced in [1], more
cases have to be considered.

Rule 4. For two black vertices v, w with d(v, w) = 1, if N3(v, w) is not dominated
by a single vertex from N3(v, w) ∪N2(v, w), then we distinguish the following 4
cases:

Case 1. N3(v, w) is dominated by v and also dominated by w: remove N3(v, w)
and N2(v, w) ∩ N(v) ∩ N(w) from G; add a new white vertex z to V and
edges (v, z) and (w, z) to E.

Case 2. N3(v, w) is dominated by v but not dominated by w: remove N3(v, w)
and N2(v, w) ∩ N(v) from G; add a new white vertex v′ to V and edge (v, v′)
to E.

Case 3. N3(v, w) is dominated by w but not dominated by v: remove N3(v, w)
and N2(v, w) ∩N(w) from G; add a new white vertex w′ to V and edge (w, w′)
to E.

Case 4. N3(v, w) is not dominated by v and not dominated by w: re-
move N2(v, w) ∪ N3(v, w) from G; add two new white vertices v′ and w′ to V
and edges (v, v′) and (w, w′) to E.

In order to present Rule 5, we need some further notations: For two ver-
tices u, v ∈ V in a colored graph G = (V, E), let dblack(u, v) be the length of the
shortest path between u and v such that all vertices on this path with the only
exception of u and v are black. We further partition N3(v, w) for two vertices v
and w into the following 3 subsets:

Z := N3(v, w) ∩N(w) ∩N(v),
X := (N3(v, w) ∩N(v)) \ Z,

Y := (N3(v, w) ∩N(w)) \ Z.
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Rule 5. For two black vertices v, w with dblack(v, w) = 2, if N3(v, w) cannot be
dominated by at most two vertices from N2(v, w) ∪N3(v, w), then consider the
following 4 cases. Let p be any black vertex adjacent to both v and w.

Case 1. N3(v, w) can be dominated by at most two vertices from {v}∪N2(v, w)∪
N3(v, w) but cannot be dominated by at most two vertices from {w}∪N2(v, w)∪
N3(v, w): Set B := {x ∈ Z | N(x) ⊆ {v, w} ∪ Z ∪X}. If X ∪B \ {p} 	= ∅, then
remove X ∪B \ {p} and add a new white vertex v′ to V and edge (v, v′) to E.

Case 2. N3(v, w) cannot be dominated by at most two vertices from {v} ∪
N2(v, w) ∪ N3(v, w) but can be dominated by at most two vertices from
{w} ∪ N2(v, w) ∪ N3(v, w): Set B := {x ∈ Z | N(x) ⊆ {v, w} ∪ Z ∪ Y }.
If Y ∪B \ {p} 	= ∅, then remove Y ∪B \ {p} and add a new white vertex w′ to V
and edge (w, w′) to E.

Case 3. N3(v, w) cannot be dominated by at most two vertices from {v} ∪
N2(v, w) ∪ N3(v, w) and cannot be dominated by at most two vertices from
{w} ∪ N2(v, w) ∪ N3(v, w): Set B := {x ∈ Z | N(x) ⊆ {v, w} ∪ Z ∪ Y ∪ X}.
If |X ∪ Y ∪ B \ {p}| ≥ 2, then remove X ∪ Y ∪ B \ {p} and add new white
vertices v′ and w′ to V and edges (v, v′) and (w, w′) to E.

Case 4. N3(v, w) can be dominated by at most two vertices from {v}∪N2(v, w)∪
N3(v, w) and can be dominated by at most two vertices from {w} ∪N2(v, w) ∪
N3(v, w): Set B := {x ∈ Z | N(x) ⊆ {v, w}∪Z}. If B \{p} 	= ∅, then remove B \
{p} and add a new white vertex z and edges (v, z) and (w, z) to E.

The next rule requires a more refined analysis of the structure of N3(v, w).
Further subsets of X and Y are needed:
X1 := {x | x ∈ X, N(x) ∩N(w) = ∅}, X2 := X \X1,
Y1 := {y | y ∈ Y, N(y) ∩N(v) = ∅}, Y2 := Y \ Y1.

Further, X2 and Y2 are again partitioned into two subsets, respectively:

X ′
2 := {x | x ∈ X2, N(x) ∩N2(v, w) ∩N(w) = ∅}, X ′′

2 := X2 \X ′
2,

Y ′
2 := {y | y ∈ Y2, N(y) ∩N2(v, w) ∩N(v) = ∅}, Y ′′

2 := Y2 \ Y ′
2 .

Rule 6. For two black vertices v and w with d(w, v) ≤ 3 and dblack(w, v) ≥ 3,
if N3(v, w) cannot be dominated by at most three vertices from N2(v, w) ∪
N3(v, w), then distinguish the following 4 cases.

Case 1. N3(v, w) can be dominated by at most three vertices from {v} ∪
N2(v, w) ∪N3(v, w) and can also be dominated by at most three vertices from
{w}∪N2(v, w)∪N3(v, w): if Z 	= ∅, then remove Z from G and add a new white
vertex z to V and edges (z, v) and (z, w) to E.

Case 2. N3(v, w) cannot be dominated by at most three vertices from {v} ∪
N2(v, w) ∪ N3(v, w) and cannot be dominated by at most three vertices from
{w}∪N2(v, w)∪N3(v, w): if dblack(w, v) = 3, then set T := {p, q}, where p and q
are two black vertices making a path (v, p, q, w); otherwise, T := ∅. If |N3(v, w)\
T | ≥ 2, then remove N3(v, w) \ T from G and add two white vertices v′ and w′

to V and edges (v, v′) and (w, w′) to E.
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Case 3. N3(v, w) can be dominated by at most three vertices from {v}∪N2(v, w)∪
N3(v, w) but cannot be dominated by at most three vertices from {w}∪N2(v, w)∪
N3(v, w): let A1 = {x | x ∈ X ′

2, �y ∈ N(x) ∩ N(w): {x, y} dominates Y }; if
A1∪X1∪Z 	= ∅, then remove A1∪X1∪Z from G and add a new white vertex v′

to V and edge (v, v′) to E.

Case 4. N3(v, w) cannot be dominated by at most three vertices from {v} ∪
N2(v, w)∪N3(v, w) but can be dominated by at most three vertices from {w}∪
N2(v, w) ∪N3(v, w): let A2 = {y | y ∈ Y ′

2 , �x ∈ N(y) ∩N(v): {y, x} dominates
X}; if A2 ∪ Y1 ∪ Z 	= ∅, then remove A2 ∪ Y1 ∪ Z from G and add a new white
vertex w′ to V and edge (w, w′) to E.

Rule 7. For a quasi-simple region R = R(v, w) between two vertices v and w
in G where at least one of v and w is black, say v being black, let (v, y, w, z, v)
be the boundary of R. We consider then the following cases:

Case 1. One of y and z is black: If there is a simple black vertex strictly in-
side R dominating all non-simple vertices in R, then let p denote this vertex and
consider the following cases:

Case 1.1. If the non-simple vertices in R can be dominated by a single vertex
from {y, z}, then, for each black vertex x strictly inside R, color x white and
remove the edges between x and other white vertices in G.

Case 1.2. If the non-simple vertices in R cannot be dominated by a single vertex
from {y, z} but can be dominated by {y, z}, then, for each black vertex x strictly
inside R with x 	= p, color x white and remove the edges between x and other
white vertices in G.

Case 1.3. If the non-simple vertices in R cannot be dominated by {y, z}, then
set A := {x | x is a simple black vertex strictly inside R with x 	= p}. If A 	= ∅,
then remove A from G and add a new white vertex z′ to V and edges (z′, v)
and (z′, w) to E.

Case 2. Both y and z are white: If there is a simple black vertex strictly inside R
dominating all non-simple vertices in R, then let p be this vertex; otherwise, let p
be an arbitrary simple black vertex strictly inside R. For each black vertex x
strictly inside R with x 	= p, color x white and remove the edges between x and
other white vertices in G.

To show the correctness of these rules, it suffices to prove the following two
lemmas. Here, for a colored graph G, we call a connected dominating set of G
“black”, if all its vertices are black. Moreover, we use μ(G) to denote the size
of minimum connected dominating sets of G and μb(G) to denote the size of
minimum black connected dominating sets of G.

Lemma 1. Let G be a planar graph with all vertices being colored white or black
and let G′ be the graph resulting by one application of one of Rules 1-7 to G.
Then, 1. G′ is planar and 2. μb(G) = μb(G′).
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A graph G is said to be reduced, if every vertex in G is colored white or black,
and the application of any of Rules 1-7 does not change the color of any vertex
in G, nor does it change the structure of G.

Lemma 2. Let (G, k) be a given instance of Planar Connected Dominating Set
and G′ denote the reduced graph resulting by first coloring vertices in G with
black and exhaustively applying Rules 1-7. Then, μ(G) = μb(G′) = μ(G′).

The running time of the rules is clearly polynomial.

Theorem 1. Given an instance (G, k) of the Planar Connected Dominating Set
problem, we can construct in O(n5) time a reduced graph (G′, k) with respect to
Rules 1-7 such that G has a connected dominating set of size at most k if and
only if G′ has a connected dominating set that consists of at most k vertices.

Note that our kernelization algorithm outputs the “uncolored” version of G′

from Lemma 2. Due to Lemma 2, this output is equivalent to the input instance.
However, while analyzing the kernel size, it is more convenient to consider the
colored graph G′ and the same bound also holds for the uncolored output.

4 Improved Kernel for Planar Connected Dominating Set

Let G = (V, E) be a planar graph reduced with respect to Rules 1-7. Based
on the method of region decomposition [1,10], we show that Planar Connected
Dominating Set admits a kernel with at most 130k vertices. Firstly, we show
that there exits a maximal D-region decomposition � of G with at most O(k)
regions. Then, we upper-bound the number of vertices contained in the regions
of �. Finally, we upper-bound the number of vertices which do not belong to
any of the regions in �.

Since, the Connected Dominating Set problem admits the distance property
with cV = 1 and cE = 1, Lemma 1 from [10] provides an upper bound on the
number of regions in a D-region decomposition. However, for Connected Dom-
inating Set, as we will show later, the distance between the two endpoints of a
region has a great influence on the upper bound of the number of vertices con-
tained in this region. Hence, we extend the result in [10] and classify the regions
in a maximal D-region decomposition into two types, based on the distance
between their endpoints: regions with distance one between their correspond-
ing endpoints and regions with distance at least two between their endpoints.
By using the connectivity property of the problem solutions, we can bound the
number of the regions of the second type.

Lemma 3. Let G = (V, E) be a plane graph reduced with respect to Rules 1-7,
and D be a connected dominating set for G of size at most k. There exists a max-
imal D-region decomposition � of G containing at most 3k− 6 regions. Further-
more, � contains at most 2k − 5 regions R(v, w) for which it holds d(v, w) ≥ 2.
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Proof. The size bound on � follows easily from Lemma 1 in [10] and the distance
constants cV = 1 and cE = 1 for Connected Dominating Set. Let L denote the set
of regions R(v, w) ∈ � that satisfy d(v, w) ≥ 2. In order to prove |L| ≤ 2k − 5,
an auxiliary graph G′ = (D, E′

1 ∪ E′
2) is constructed as follows: For any two

vertices v, w ∈ D, if (v, w) ∈ E, then add (v, w) to E′
1. Further, if there is a

region R(v, w) ∈ � between v, w ∈ D with d(v, w) ≥ 2, then add (v, w) to E′
2.

Note that E′
1∩E′

2 = ∅ by definition. Thus, if G′ contains multiple edges between a
vertex pair, then all these edges must be from E′

2. Moreover, G′ must be a planar
graph due to the definition of region decompositions. As shown in [1, Lemma 5
and Proposition 1], we have |E′

1 ∪ E′
2| ≤ 3|D| − 6. Since G[D] is connected,

|E′
1| ≥ |D| − 1. It follows that |E′

2| ≤ (3|D| − 6)− (|D| − 1) = 2|D| − 5 ≤ 2k− 5.
The number of regions R(v, w) in � with d(v, w) ≥ 2 is bounded by 2k − 5. 
�

We now investigate the size bound of quasi-simple regions.

Lemma 4. Let G be a reduced plane graph. Let R = R(v, w) be a quasi-simple
region in G and (v, y, w, z, v) be the boundary of R. Assume v is black. Let L =
{x | x is a simple vertex in R or a non-simple vertex in R adjacent to y}.
Then |L| ≤ 4.

Proof. Let L1 denote the set of black simple vertices strictly inside R, L2 denote
the set of white simple vertices strictly inside R, and L3 denote the set of non-
simple vertices in R adjacent to y. Obviously L = L1∪L2∪L3∪{y, z}. Since L3 ⊆
N2(v)∪N3(v), by Rule 3, all vertices in L3 are white. By Rule 1 and the planarity
of G, |L3| ≤ 1. By Rule 7, |L1| ≤ 1. If L1 	= ∅ and L3 	= ∅, then L2 = ∅, since,
otherwise, Rule 1 or 7 would be applied, contradicting the fact that G is reduced.
If L1 	= ∅ and L3 = ∅, then |L2| ≤ 1, since, otherwise, Rule 1 or 7 would be
applied. If L1 = ∅ and L3 = ∅, then |L2| ≤ 2, since, otherwise, Rule 1 would be
applied. In summary, |L1 ∪ L2 ∪ L3| ≤ 2. It follows that |L| ≤ 4. 
�

Since a simple region is also quasi-simple, Lemma 4 holds also for simple regions.
Let R(v, w) be a region of �. Obviously V (R) ⊆ N(v, w). The following lemma
bounds |N3(v, w) ∩ V (R)|.
Lemma 5. Let G = (V, E) be a reduced plane graph and � be a maximal D-
region decomposition of G.

– For any two black vertices v, w ∈ V with d(v, w) = 1, |N3(v, w)| ≤ 9.
– For every region R(v, w) ∈ � between two black vertices v, w ∈ V with 2 ≤

d(v, w) ≤ 3, |N3(v, w) ∩ V (R)| ≤ 27.

Now we are ready to prove the maximal size of regions of a reduced graph. First
we consider the regions with two endpoints v and w satisfying d(v, w) > 1.

Lemma 6. Let G be a reduced plane graph with a connected dominating set D
excluding all white vertices. Let � be a maximal D-region decomposition of G.
For a region R = R(v, w) ∈ � with 2 ≤ d(v, w) ≤ 3, we have |V (R)| ≤ 41.
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Proof. Assume the boundary of R is determined by the two paths (v, v1, w1, w)
and (v, v2, w2, w). We will analyze |N1(v, w) ∩ V (R)|, |N2(v, w) ∩ V (R)|, and
|N3(v, w) ∩ V (R)| separately to bound |V (R)|.

Due to the definition of regions, N1(v, w) ∩ V (R) ⊆ {v1, v2, w1, w2}.
If N1(v, w) ∩ V (R) = ∅, then N2(v, w) ∩ V (R) ⊆ {v1, v2, w1, w2}; other-
wise, every vertex in N2(v, w) ∩ V (R) is adjacent to at least one vertex
in N1(v, w)∩V (R). We assume here N1(v, w)∩V (R) = {v1, v2, w1, w2}. For the
case that N1(v, w)∩V (R) ⊂ {v1, v2, w1, w2}, better bounds on |N2(v, w)∩V (R)|
can be achieved. The vertices in N2(v, w)∩V (R) can be divided into the following
groups:

– T1 := {x | x ∈ N2(v, w) ∩ V (R) and x is adjacent to v and v1, but not w1},
– T2 := {x | x ∈ N2(v, w) ∩ V (R) and x is adjacent to v and w1 },
– T3 := {x | x ∈ N2(v, w) ∩ V (R) and x is adjacent to v and w2 },
– T4 := {x | x ∈ N2(v, w) ∩ V (R) and x is adjacent to v and v2 },
– T5 := {x | x ∈ N2(v, w) ∩ V (R) and x is adjacent to w and w2, but not v2},
– T6 := {x | x ∈ N2(v, w) ∩ V (R) and x is adjacent to w and v2 },
– T7 := {x | x ∈ N2(v, w) ∩ V (R) and x is adjacent to w and v1 },
– T8 := {x | x ∈ N2(v, w) ∩ V (R) and x is adjacent to w and w1 }.

By planarity of G, one of T2 and T7 must be empty and one of T3 and T6 must
be empty. Without loss of generality, assume that T3 and T7 are empty. If one
of T2 and T6 is empty, then a better bound on |V (R)| can be obtained. Thus,
assume that T2 and T6 are not empty.

We first bound |T1| and |T2|. A quasi-simple region Q1 = R(v, w1) between v
and w1 is formed by the following vertices: the vertices in T1∪T2, the vertices in R
that are adjacent to v and to at least one vertex in T2 but are not adjacent to w1,
and the vertices {v, v1, w1}. Since v is black, by Lemma 4, |T1∪T2∪{v1}| ≤ 4. A
quasi-simple region Q2 = R(w, v2) between w and v2 is formed by the following
vertices: the vertices in T5 ∪ T6, the vertices in R that are adjacent to w and to
at least one vertex in T6 but are not adjacent to v2, and the vertices {w, w2, v2}.
Similarly, |T5 ∪ T6 ∪ {w2}| ≤ 4.

Next we show that |T4| ≤ 2. Assume there are three or more vertices in T4,
and without loss of generality, let a1, a2, and a3 be the three vertices in T4.
Note that v and v2 together with each of {a1, a2, a3} form a triangle and thus a
closed area of the embedding of G. Suppose that no vertex lies inside the area
formed by (v, a1, v2). Then, a1 is the only vertex in the area formed by (v, a2, v2),
and a1 and a2 are the only two vertices in the area formed by (v, a3, v2). Then, a1

and a2 must belong to N2(v) ∪ N3(v). Since v is black, it follows from Rule 3
that a1 and a2 must be white and there is no edge between a1 and a2, which
results in N(a1) ⊆ N(a2), contradicting the fact that Rule 1 is not applicable.
Therefore, |T4| ≤ 2. With the same argument, |T8| ≤ 2.

It is easy to get that (N2(v, w) ∪ N1(v, w)) ∩ V (R) consists of vertices in
T1∪T2∪{v1}, T5∪T6∪{w2}, T4, T8, and v2, w1. Therefore, |(N2(v, w)∪N1(v, w))∩
V (R)| ≤ 4+4+2+2+2 = 14. By Lemma 5, |N3(v, w)∩V (R)| ≤ 27. In conclusion,
|V (R)| = |V (R) ∩ (N1(v, w) ∪N2(v, w))| + |V (R) ∩N3(v, w)| ≤ 41. 
�
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Next we show the size bound on regions with adjacent endpoints.

Lemma 7. Let G be a reduced plane graph with a connected dominating set D
excluding all white vertices. Let � be a maximal D-region decomposition of G.
For a region R = R(v, w) ∈ � with d(v, w) = 1, we have |V (R)| ≤ 23.

Proof. By a similar argument as in the proof of Lemma 6, |V (R) ∩ (N1(v, w) ∪
N2(v, w))| ≤ 14. By Lemma 5, |V (R) ∩N3(v, w)| ≤ 9. Hence, |V (R)| ≤ 23. 
�
Finally we bound the number of vertices not in V [�].

Lemma 8. Let G = (V, E) be a reduced plane graph with a connected dominat-
ing set D excluding all white vertices and let � be a maximal D-region decom-
position of G. We have |V \ V [�]| ≤ 8|�|.
We summarize our findings in the following theorem.

Theorem 2. Let (G0, k) be an input instance of Planar Connected Dominating
Set. Let G=(V, E) be the reduced graph by applying Rules 1-7 to G0. If there
exists a connected dominating set for G0 of size at most k, then |V | ≤ 130k.

Proof. By Theorem 1, there exists a connected dominating set for G0 of size at
most k if and only if there exists a connected dominating set D for G that consists
of at most k black vertices. By Lemma 3, a maximal D-region decomposition �
of G with at most 3k−6 regions can be found. Note that for each region R(v, w) ∈
�, either d(v, w) = 1 or 2 ≤ d(v, w) ≤ 3. Lemma 3 upper-bounds the number
of regions R(v, w) in � with d(v, w) ≥ 2 by 2k − 5. Therefore, by Lemmas 6
and 7, |V (�)| ≤∑R(v,w)∈�,d(v,w)≥2 |V (R)|+∑R(v,w)∈�,d(v,w)=1 |V (R)| ≤ (2k−
5) · 41 + (k− 1) · 23 = 105k− 286. Therefore, |V [�]| ≤ 106k− 286. By Lemma 8,
we have |V \ V [�]| ≤ 8|�| ≤ 8 · (3k − 6) = 24k − 48. Therefore, |V | = |V [�]| +
|V \ V [�]| ≤ 130k. 
�
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Abstract. An L(2, 1)-labeling of a graph is a mapping from its vertex
set into nonnegative integers such that the labels assigned to adjacent
vertices differ by at least 2, and labels assigned to vertices of distance 2
are different. The span of such a labeling is the maximum label used, and
the L(2, 1)-span of a graph is the minimum possible span of its L(2, 1)-
labelings. We show how to compute the L(2, 1)-span of a connected graph
in time O∗(2.6488n). Previously published exact exponential time algo-
rithms were gradually improving the base of the exponential function
from 4 to the so far best known 3.2361, with 3 seemingly having been
the Holy Grail.

1 Introduction

An L(2, 1)-labeling of a graph is a mapping from its vertex set into nonnegative
integers such that the labels assigned to adjacent vertices differ by at least 2, and
labels assigned to vertices of distance 2 are different. The span of such a labeling is
the maximum label used and the minimum possible span of an L(2, 1)-labeling of
a graph G is denoted by λ(G). This variant of graph coloring is recently receiving
considerable attention (see [3,7,10,24] for some surveys on the problem and its
generalizations). It is motivated by the Frequency Assignment Problem whose
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task is to assign frequencies to transmitters in a broadcasting network while
avoiding undesired interference. In the L(2, 1)-labeling model the vertices of the
input graph correspond to transmitters of the network and the edges indicate
which pairs of transmitters are too close to each other so that interference could
occur even if the broadcasting channels were just one apart. The second condition
follows from a requirement that no transmitter should have two or more close
neighbors transmitting on the same frequency.

The concept of distance constrained graph labeling was introduced by Hale
[12] and, according to [11], Roberts [21] was the first one who suggested to
investigate the L(2, 1) case in particular. In their seminal paper [11], Griggs
and Yeh present first complexity results and several inspiring conjectures. Their
conjecture that λ(G) ≤ Δ(G)2 initiated intensive research and is still not fully
resolved. It is known to be true for many special graph classes and quite recently
has been proved for graphs of large maximum degree [14]. Yet it is interesting to
note that the Petersen and Hoffmann-Singleton graphs are the only two known
graphs that satisfy equality in this bound (for maximum degree greater than 2).

From the complexity point of view, Griggs and Yeh showed that determining
λ(G) is NP-hard and raised the question of computational complexity of deter-
mining λ(G) for trees. The latter was answered by Chang and Kuo by providing
a polynomial time algorithm in [4]. This has been later improved to a linear
time algorithm by Hasunuma et al. in [13]. For general graphs, Fiala et al. [6]
proved that deciding λ(G) ≤ k remains NP-complete for every fixed k ≥ 4,
Bodlaender et al. [2] proved NP-completeness for planar inputs for k = 8, and
Janczewski et al. [16] proved NP-completeness for planar inputs and k = 4.
The fact that distance constrained labeling is a more difficult task than ordi-
nary coloring is probably most strikingly documented by the NP-completeness
of deciding λ(G) ≤ k for series-parallel graphs [5] (here of course k is part of the
input).

Recent trend in algorithmic research is designing exact exponential time al-
gorithms for NP-hard problems while trying to minimize the constant which is
the base of the exponential running time function. Kratochv́ıl et al. [20] gave
an O∗(1.3161n)1 algorithm for L(2, 1)-labeling of span 4 (and this algorithm
was referenced as one of the examples of the Measure and Conquer branching
technique in [9]). A dynamic programming approach can be used to determining
the L(2, 1)-span (or, in other words, to decide λ(G) ≤ k even when k is part of
the input). The development in this area has been quite interesting. An exact
algorithm for the so called Channel Assignment Problem of Král’ [19] implies
an O∗(4n) algorithm for the L(2, 1)-labeling problem. This has been improved
by Havet et al. [15] to an O∗(3.8739n) algorithm by proving and using a bound
on the number of 2-packings in a connected graph. That paper concludes with
a conjecture on partitioning graphs into stars which would imply a better run-
ning time for the L(2, 1)-labeling problem when the minimum degree of the
input graph is high. This conjecture was later proved by Alon and Wormald [1],

1 Here we use the so called O∗ notation: f(n) = O∗(g(n)) if f(n) ≤ p(n) · g(n) for
some polynomial p(n).
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however, even for arbitrarily large minimum degree the running time is not bet-
ter than O∗(3n). In the meantime, Junosza-Szaniawski and Rza̧żewski [17,18]
modified the algorithm and refined the running time analysis and proved that
their algorithm runs in time O∗(3.2361n). A lower-bound of Ω(3.0731n) on the
worst-case running-time of their algorithm is also provided. The magic running
time of O∗(3n) still seemed hardly attainable. In this paper we provide a break-
through in this question by proving the following theorem.

Theorem 1. The L(2, 1)-span of a connected graph can be determined in time
O∗(2.6488n).

Our algorithm is based on a reduction of the number of operations performed in
the recursive step of the dynamic programming algorithm, which is in essence
similar to Strassen’s algorithm for matrix multiplication [23]. This trick itself
achieves running time O∗(3n). Further improvement is obtained by proving in
Section 2 an upper bound on the number of pairs of disjoint subset of the vertex
set, where one of the sets is a 2-packing. We believe that this bound and the
technique which is used for obtaining it are of interest on their own.

2 Auxiliary Combinatorial Results

Throughout the paper we consider finite undirected graphs without multiple
edges or loops. The vertex set (edge set) of a graph G is denoted by V (G)
(E(G), respectively). The open neighborhood of a vertex u in G is denoted by
NG(u). The set NG[u] = NG(u)∪{u} denotes the closed neighborhood of u. The
neighborhood of a set X of vertices in G is denoted by NG(X) =

⋃
v∈X NG(v)

and its closed neighborhood is denoted by NG[X ] = NG(X) ∪X . For a subset
X ⊆ V (G) we denote the subgraph of G induced by the vertices in X by G[X ].
The symbol n is reserved for the number of vertices of the input graph, which
will always be denoted by G. The distance distG(x, y) between two vertices u
and v in a graph G is the length of a shortest path joining v and v.

A subset S of the vertex set of G is called a 2-packing if the distance of any
two distinct vertices of S is at least 3 (i.e., S is an independent set and no two
vertices of S have a common neighbor in G). A pair (S, X) of subsets of V (G)
is called a proper pair if S ∩X = ∅ and S is a 2-packing in G. The number of
proper pairs in G will be denoted by pp(G) and by the definition, we have

pp(G) =
∑

S⊆V (G)
S is a 2-packing

2n−|S|.

Finally, we define
pp(n) = max pp(H)

where the maximum is taken over all connected graphs H with n vertices.

Theorem 2. The value of pp(n) is upper-bounded by O(2.6488n).
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Proof. Let G = (V, E) be a connected graph on n vertices such that pp(G) =
pp(n). We observe that if S is a 2-packing of G, then for any edge e of G, the
set S is also a 2-packing of G = (V, E \ {e}). Thus removing an edge does not
decrease the number of proper pairs and we can remove edges from the graph
as long as it stays connected. Hence without loss of generality, we assume that
G is a tree.

(∗) Suppose in G there are two leaves v1 and v2, which have a common neighbor
v3. Notice that every proper pair in G is proper in the graph H obtained
from G by removing the edge v1v3 and adding the edge v1v2 (see Figure 1).
Since this operation does not reduce the number of proper pairs, we can
assume that there are no two or more leaves with a common neighbor in G.

���
���
�

�

� � � �

v1

v2

v3
� � � � � � �

v1 v2 v3

Fig. 1. Transformation of two leaves with a common neighbor

It is easy to observe that pp(0) = 1, pp(1) = 3 and pp(2) = 8. Assume that
|V (G)| ≥ 3 and let P be a longest path in G. Let v be an end-vertex of the path
P , u its neighbor on P , and c a neighbor of u on P other that v (the third vertex
on P ). By the observation (∗) we can assume that deg(u) = 2.

(A) If deg(c) ≤ 2, we can partition all proper pairs (S, X) to two subsets: those
in which v /∈ S and those in which v ∈ S (see Figure 2).

� � � � � �

v u c

Fig. 2. Case (A) with deg(c) ≤ 2

Notice that if v /∈ S, then v can be in X or outside S ∪X . If v ∈ S, then none of
the vertices {u, c} can belong to S. Each of them can be in X or outside S ∪X .
Since the graphs G− v and G− {v, u, c} are connected, we obtain the following
recursion:

pp(n) ≤ 2 pp(n− 1) + 4 pp(n− 3). (1)

(B) If deg(c) > 2, then all vertices in the set {v ∈ V (G) : distG(v, c) = 2} except
at most one (the one belonging to the path P ) are leaves (since otherwise P is
not the longest path) and all neighbors of the vertex c except at most one are
of degree 2 (from (∗)). Hence one of the following two cases occurs:

(B0) No neighbor of c is a leaf in G (see Figure 3(a)).
(B1) There exists a vertex x ∈ N(c) which is a leaf in G (there can be at most

one such vertex by the observation (∗)) – (see Figure 3(b)).
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(a) Case (B0) with deg(c) > 2 and no
neighbor of c is a leaf
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for q ≥ 1
]

(b) Case (B1) with deg(c) > 2 and one
neighbor of c is a leaf

Fig. 3. Cases (B0) and (B1)

Let W = {w1, . . . , wq} = {w ∈ V (G) : w is a leaf in G and distG(w, c) = 2}
and U = N(W ) in the case (B0) and U = N(W ) ∪ {x} in the case (B1). We
can partition the set of proper pairs (S, X) to whose in which S ∩ (W ∪U) = ∅
and the others.

If S ∩ (W ∪ U) = ∅, each of the vertices in W ∪ U can be in X or outside
S ∪X .

If S∩(W ∪U) = Ŝ 	= ∅, Ŝ must be a 2-packing in G. Notice that the number
of proper pairs (Ŝ, X̂) in G[W ∪ U ∪ {c}], such that Ŝ 	= ∅ and c /∈ Ŝ is equal
to:

1. (3q − 2q)2q+1 + q · 3q−12q+1 = 3q−12q+1(3 + q)− 22q+1 for q ≥ 2 in the case
(B0).

2. (3q − 2q)2q+2 + q · 3q−12q+2 + 3q2q+1 = 3q−12q+1(9 + 2q)− 22q+2 for q ≥ 1
in the case (B1).

Each of the vertices in (W ∪ U ∪ {c}) \ Ŝ can be in X or outside S ∪X .
Since the graphs G − (W ∪ U) and G − (W ∪ U ∪ {c}) are connected, we

obtain the following recursions:

pp(n) ≤ 22q pp(n− 2q) + (3q−12q+1(3 + q)− 22q+1) pp(n− 2q − 1) (2)

pp(n) ≤ 22q+1 pp(n− 2q − 1) + (3q−12q+1(9 + 2q)− 22q+2) pp(n− 2q − 2). (3)

We shall prove by induction on n that for n ≥ 0 the following holds:

pp(n) ≤ 2 · τn (4)

where τ = 2.6487.. is the positive root of the equation τ5 = 16τ + 88.
It is easy to observe that the inequality (4) holds for n ≤ 2. Now assume

that the inequality holds for all values smaller than n.
Case (A)
pp(n) ≤ 2 pp(n − 1) + 4 pp(n − 3) ≤ 4τn−1 + 8τn−3 = 4(τ2 + 2)τn−3 <
2 · τ3 · τn−3 = 2 · τn
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Case (B0)
pp(n) ≤ 22q pp(n − 2q) + (3q−12q+1(3 + q) − 22q+1) pp(n − 2q − 1) ≤ 2(22q ·
τn−2q + (3q−12q+1(3 + q)− 22q+1) · τn−2q−1) = 2 · τn(22q · τ−2q + (3q−12q+1(3 +
q)− 22q+1) · τ−2q−1) = 2 · τn(( 2

τ )2q − ( 2
τ )2q+1 + 4(3+q)

τ3 ( 6
τ2 )q−1)

One can easily verify that the function h0(x) = ( 2
τ )2x − ( 2

τ )2x+1 +
4(3+x)

τ3 ( 6
τ2 )x−1 is decreasing for all real x > 2 and h0(2) = 1.

Hence pp(n) ≤ 2 · τn(( 2
τ )2q − ( 2

τ )2q+1 + 4(3+q)
τ3 ( 6

τ2 )q−1) ≤ 2 · τn.

Case (B1)
pp(n) ≤ 22q+1 pp(n − 2q − 1) + (3q−12q+1(9 + 2q) − 22q+2) pp(n − 2q − 2) ≤
2(22q+1τn−2q−1 + (3q−12q+1(9 + 2q) − 22q+2)τn−2q−2) = 2 · τn(( 2

τ )2q+1 −
( 2

τ )2q+2) + 4(9+2q)
τ4 ( 6

τ2 )q−1)
Since the function h1(x) = ( 2

τ )2x+1− ( 2
τ )2x+2 + 4(9+2x)

τ4 ( 6
τ2 )x−1 is decreasing

for all real x > 1 and h1(1) < 1, we obtain:
pp(n) ≤ 2 · τn(( 2

τ )2q+1 − ( 2
τ )2q+2 + 4(9+2q)

τ4 ( 6
τ2 )q−1) < 2 · τn.

We have shown that regardless of the structure of G, the function 2 · τn is
an upper bound on the number of proper pairs in G. Hence pp(n) = O(τn) =
O(2.6488n). 
�

One is inclined to conjecture that the worst case is attained in the case of a path
Pn on n vertices. A simple calculation shows that pp(Pn) = Θ(2.5943..n). The
following example shows that intuition fails in this case.

Theorem 3. The value of pp(n) is bounded from below by Ω(2.6117n).

Proof. We shall prove the theorem by showing a graph with Θ(2.6117..n) proper
pairs. Let us consider the following graphs:

� � �� � � � �

� � � � �

� � � � ��

1 2 3 4 k

Ak

� � �� � � � � �

� � � �

� � � �

�
1 2 3 k

Bk

� � �� � � � �

� � � �

� � � �

�
1 2 3 k

Ck

� � �� � � � �

� � � � �

� � � � �

����

�

1 2 3 4 k

Dk

Let ak, bk and ck denote the number of proper pairs in the graphs Ak, Bk and
Ck, respectively. Let dk denote the number of such proper pairs (S, X) in the
graph Dk, in which the 2-packing S does not contain the crossed out vertex.

Considering separately the number of proper pairs (S, X), in which S con-
tains and does not contain marked vertices, we obtain the following system of
recursions:



88 K. Junosza-Szaniawski et al.⎧⎪⎪⎨⎪⎪⎩
ak = 2bk−1 + 4ak−1

bk = 2ck + 2dk

ck = 2ak + 12dk−1

dk = 4dk−1 + 12ak−1

Solving this system we obtain the result ak = Θ(xk), where x = 17.8149.. is the
positive solution of the equation x3 = 16x2 + 576.

Since k = n/3, the graph Ak contains ak = Θ(17.8149..n/3) = Θ(2.6117..n)
proper pairs. 
�
The main tool in [15] was partitioning a connected input graph into stars of
orders at least 2. Our approach is to divide the computation into connected
subgraphs of large constant order. The star graph is an example showing that
one cannot always find such a partition. However, we can find a covering with a
small overlap of the connected subgraphs, as shown by the following result.

Theorem 4. Let G be a connected graph of order n and let k < n be a posi-
tive integer. Then there exist connected subgraphs G1, G2, . . . , Gq of G such that
(i) every vertex of G belongs to at least one of them, (ii) the order of each of
G1, G2, . . . , Gq−1 is at least k and at most 2k (while for Gq we only require
|V (Gq)| ≤ 2k), and (iii) the sum of the numbers of vertices of G′

is is at most
n(1 + 1

k ).

Proof. Assume G is rooted in an arbitrary vertex r and consider a DFS-tree T
of G. For every vertex v let T (v) be the subtree rooted in v. If |T (r)| ≤ 2k then
add G to the set of desired subgraphs and finish. If there is a vertex v such
that k ≤ |T (v)| ≤ 2k then add G[V (T (v))] to the set of desired subgraphs and
proceed recursively with G \ V (T (v)). Otherwise there must be a vertex v such
that |T (v)| > 2k and for its every child u, |T (u)| < k. In such a case find a subset
{u1, ..ui} of children of v such that k − 1 ≤ |T (u1)|+ .. + |T (ui)| ≤ 2k − 1. Add
G[{v} ∪ V (T (u1)) ∪ .. ∪ V (T (ui))] to the set of desired subgraphs and proceed
with the graph G \ (V (T (u1)) ∪ .. ∪ V (T (ui))). This procedure terminates after
at most n

k steps and in each of them we have left at most one vertex of the
identified connected subgraph in the further processed graph. 
�

3 Exact Algorithm for L(2, 1)-Labeling

One key ingredient in our algorithm are algebraic manipulations very similar to
fast matrix multiplication: If we have 2k × 2k-matrices A and B we can divide
them each into four block matrices of the same size. We can then compute AB
very easily by eight matrix multiplications of 2k−1 × 2k−1-matrices. Doing so
recursively leads again to a running time of O(n3) — just as the naive algorithm
itself. It is, however, possible to improve on the running time by using only
seven matrix multiplications to achieve the same result [23]. It turns out that
this technique alone does not work in our case, though. We have to use one
other trick: We jump between two representations of partial L(2, 1)-labelings in
the course of our dynamic programming algorithm. The idea to use different
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representations of the same data in dynamic programming is not new and was
used in a similar way before [22].

We define the partial function ⊕ : {0, 0̄, 1, 1̄}×{0, 1} → {0, 1, 1̄} via this table:

⊕ 0 0̄ 1 1̄
0 0 0 1 1
1 1̄ − − −

The entry “−” signifies that ⊕ is not defined on that input.
We generalize ⊕ to vectors via

a1a2 . . . an ⊕ b1b2 . . . bn =

⎧⎪⎨⎪⎩
(a1 ⊕ b1) . . . (an ⊕ bn) if ai⊕bi is defined for all

i ∈ {1, . . . , n},
undefined otherwise,

and to sets of vectors A ⊆ {0, 0̄, 1, 1̄}n, B ⊆ {0, 1}n via

A⊕B = { a⊕ b | a ∈ A, b ∈ B, a⊕ b is defined }.
In a nutshell our algorithm proceeds as follows: Given a graph G = (V, E) of

order n, with V = {v1, . . . , vn}, it computes tables T0, T1, . . . , T2n ⊆ {0, 0̄, 1, 1̄}n.
Table Tl contains a vector a ∈ {0, 0̄, 1, 1̄}n if and only if there is a partial labeling
ϕ : V → {0, . . . , l} such that :

1. ai = 0 iff vi is not labeled by ϕ and there is no neighbor u of vi with ϕ(u) = l,
2. ai = 0̄ iff vi is not labeled by ϕ and there is a neighbor u of vi with ϕ(u) = l,
3. ai = 1 iff ϕ(vi) < l, and
4. ai = 1̄ iff ϕ(vi) = l.

Once we have all tables Tl it is easy to find the smallest l such that Tl contains
at least one vector from {1, 1̄}n – such vectors correspond to solutions where all
vertices are labeled. We then know that such an l is the L(2, 1)-span of G.

Let P ⊆ {0, 1}n be the encodings of all 2-packings of G. Formally, p ∈ P if
and only if there is a 2-packing S ⊆ V such that for all i, 1 ≤ i ≤ n, pi = 1 iff
vi ∈ S.

Our strategy is to compute Tl+1 from Tl⊕P . This is not hard because Tl⊕P
is already almost the same as Tl+1: a ∈ Tl+1 iff there is an a′ ∈ Tl⊕P such that

1. ai = 0 iff a′
i = 0 and there is no vj ∈ N(vi) with a′

j = 1̄
2. ai = 0̄ iff a′

i = 0 and there is a vj ∈ N(vi) with a′
j = 1̄

3. ai = 1 iff a′
i = 1, and

4. ai = 1̄ iff a′
i = 1̄.

To compute Tl+1 from Tl ⊕ P is therefore easy: Look at each vector in Tl ⊕ P
and determine for each 0 whether it remains 0 or has to be changed into 0̄. What
remains is to find a method to compute Tl ⊕ P fast.

Towards this end let us fix a constant k (whose size will be specified later). Let
G1, . . . , Gq be a covering of G by connected subgraphs guaranteed by Theorem 4
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and let k′ be the order of G1. Hence, the relation k ≤ k′ ≤ 2k holds as long as
q > 1.

We need one more formalism: If w is a vector and A is a set of vectors, then

Aw = {v | wv ∈ A }

is the set of all vectors that fall into A after we prefix them with w. Here wv
denotes the concatenation of vectors w and v.

If A ⊆ {0, 0̄, 1, 1̄}n and B ⊆ {0, 1}n, where n > k′, we can compute A⊕B in
the following useful, though perhaps at first sight complicated, manner:

A⊕B =
⋃

u∈{0,0̄,1,1̄}k′

v∈{0,1}k′

s.t. u⊕v defined

(u⊕ v)(Au ⊕Bv)

=
⋃

v∈{0,1}k′

w∈{0,1,1̄}k′

w
[( ⋃

u∈{0,0̄,1,1̄}k′

s.t. u⊕v=w

Au

)
⊕Bv

]

Let us analyze how long it takes to compute A ⊕ B in this manner. We are
especially interested in the number of ⊕-operations on sets with vectors of
length n− k′. We can omit such a computation if the first set, i.e.,⋃

u∈{0,0̄,1,1̄}k′

s.t. u⊕v=w

Au (5)

is empty. So how many pairs v,w are there such that there is at least one u with
u ⊕ v = w? If we fix v, then obviously vi = 1 implies wi = 1̄. So for a fixed v
there are at most 2k′−||v|| many w’s, where ||v|| denotes the number of positions
i such that vi = 1.

The total number of pairs v,w such that w = v ⊕ u for some u and that
therefore produce a nonempty contribution in (5) is therefore at most∑

v∈{0,1}k′
2k′−||v||.

Thus, if we draw the v’s from a set of vectors that represent the 2-packings
of a connected graph, then we find at most pp(k′) such pairs and, hence, we
need to make only such many recursive computations of ⊕ on sets of vectors of
length n− k′.

Since we can cover the input graph by induced subgraphs of orders between
k and 2k, this is indeed possible. Theorem 4 implies that the total length of the
vectors is n′ ≤ n(1 + 1/k).

In each recursive computation we have to prepare up to pp(k′) many pairs
of sets of vectors of length n′ − k′, where k ≤ k′ ≤ 2k. Then we recursively
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compute ⊕ on these pairs. From the result we get the next table Tl+1 in linear
time. Preparing the recursive calls and combining their results takes only time
linear in the sizes of A and B. The size of B is at most O(n2n′

) bits and the size
of A is at most O(n pp(n′)) bits if we use only our tables Tl for A: The 1̄’s form
a 2-packing and for all other nodes there are only two possibilities, 1 or 0/0̄.

We arrive at the following recurrence for the running time:

tn ≤ O
(
n pp(n′) + pp(k′)tn′−k′

)
for k ≤ k′ ≤ 2k

It is not hard to see that the solution is tn = O∗(pp(n′)) = O∗(pp(n(1 + 1/k))).
We arrive at our main result by choosing the constant k so big such that pp(n(1+
1/k)) ≤ 2.6488n for large n, which is possible because actually pp(n) = O(τn) =
O((2.6488− ε)n) for some ε > 0.

4 Pseudocode of the Algorithm

For the sake of completeness, we provide in this section the pseudocode of the
algorithm described in Section 3.

Let G1, . . . , Gq be a covering of a given graph G by connected subgraphs as
ensured by Theorem 4. Let di be the order of Gi for 1 ≤ i ≤ q. We denote by n′

the sum d1 + · · · + dq. Let A ⊆ {0, 0̄, 1, 1̄}n′
and B ⊆ {0, 1}n′

. We first provide
Algorithm MUL which computes A⊕B using the methods from Section 3.

Algorithm MUL(A, B, d1, . . . , dq):

if q = 1 then return A ⊕ B fi;
k′ := d1;
for each v ∈ {0, 1}k′

do
R := ∅;
for each w ∈ {0, 1, 1̄}k′

do
A′ := ∅;
for each u ∈ {0, 0̄, 1, 1̄}k′

do
if w = u ⊕ v then A′ := A′ ∪ Au fi

od;
if A′ �= ∅ then R := R ∪ MUL(A′, Bv, d2, . . . , dq) fi

od
od;
return R

Obviously, the body of the innermost loop is executed exactly 24k′
times.

All operations can be carried out in constant time except set union and the
recursive calls to MUL. A set union X∪Y takes at most n(|X |+ |Y |) steps if we
implement sets as simple arrays and remember that we can sort them using radix-
sort. Not counting recursive calls the running time is therefore O(n(|A| + |B|))
if d1 = k′ = O(1). In the border case that q = 1 then a brute force attack to
compute A⊕B can be carried out in O(n · |A| · |B|) = O(n8k′

), which is constant
if d1 = k′ = O(1).
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Let (v1, . . . , vn′) be the vertices of G (with duplicates allowed) such that

(v1, . . . , vn′) = (u11, . . . , u1d1 , u21, . . . , u2d2 , . . . . . . , uq1, . . . , uqdq )

and Gi = (ui1, . . . , uidi). Let k be a constant large enough so that pp(1+1/k) =
τ1+1/k < 2.6488, where τ = 2.6487.. is the positive root of the equation τ5 =
16τ + 88 as provided in the proof of Theorem 2. As the proof of Theorem 4
is constructive and provides a polynomial-time algorithm to compute a cover
G1, . . . , Gq, we can arrange the decomposition of G into G1, . . . , Gq in such a
way that k ≤ di ≤ 2k for any 1 ≤ i < q. In addition, Theorem 4 ensure that
n′ ≤ n(1 + 1/k) + O(1). While the correctness of the following algorithm does
not depend on such an arrangement, it is crucial to the running time, which is
closely related to all pp(G[Gi])’s. We can only guarantee those to be small if
the G[Gi]’s are connected. We refer the reader to Section 3 for the running-time
analysis.

Finally the following Algorithm T computes tables T1, . . . , T2n.

Algorithm T (G, n, v1, . . . , vn′)

T0 := {0n′};
P := ∅;
for each x ∈ {0, 1}n′

do
if { vi | xi = 1 } is a 2-packing then P := P ∪ {x} fi

od;
for l = 1, . . . , 2n do

R := MUL(Tl−1, P, d1, . . . , dq);
Tl := ∅;
for each x ∈ R do

for i, j = 1, . . . , n′ do
if xi = 0, xj = 1̄ and vi ∈ N(vj) then xi := 0̄ fi

od;
Tl := Tl ∪ {x}

od;
od;
return T1, . . . , T2n
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Abstract. We study the problem of reconfiguring one list edge-coloring
of a graph into another list edge-coloring by changing only one edge
color assignment at a time, while at all times maintaining a list edge-
coloring, given a list of allowed colors for each edge. Ito, Kamiński and
Demaine gave a sufficient condition so that any list edge-coloring of a
tree can be transformed into any other. In this paper, we give a new
sufficient condition which improves the known one. Our sufficient condi-
tion is best possible in some sense. The proof is constructive, and yields
a polynomial-time algorithm that finds a transformation between two
given list edge-colorings of a tree with n vertices via O(n2) recoloring
steps. We remark that the upper bound O(n2) on the number of recolor-
ing steps is tight, because there is an infinite family of instances on paths
that satisfy our sufficient condition and whose reconfiguration requires
Ω(n2) recoloring steps.

1 Introduction

Reconfiguration problems arise when we wish to find a step-by-step transforma-
tion between two feasible solutions of a problem such that all intermediate results
are also feasible. Recently, Ito et al. [5] proposed a framework of reconfiguration
problems, and gave complexity and approximability results for reconfiguration
problems derived from several well-known problems, such as independent set,
clique, matching, etc. In this paper, we study the reconfiguration problem for
list edge-colorings of a tree, which was introduced by [6].

An (ordinary) edge-coloring of a graph G is an assignment of colors from a
color set C to each edge of G so that every two adjacent edges receive different
colors. In list edge-coloring, each edge e of G has a set L(e) of colors, called
the list of e. Then, an edge-coloring f of G is called an L-edge-coloring of G if
f(e) ∈ L(e) for each edge e, where f(e) denotes the color assigned to e by f .
Figure 1 illustrates three L-edge-colorings of the same graph with the same list L;
the color assigned to each edge is surrounded by a box in the list. Clearly, an
edge-coloring is merely an L-edge-coloring for which L(e) = C for every edge e
of G, and hence list edge-coloring is a generalization of edge-coloring.

� This work is partially supported by Grant-in-Aid for Scientific Research: 22700001.

M. Ogihara and J. Tarui (Eds.): TAMC 2011, LNCS 6648, pp. 94–105, 2011.
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{ c3 ,c4} {c3, c4 }

{c1,c2, c3 ,c4}

{ c2 }
{ c1 ,c3}{ c1 ,c4}

{ c3 ,c4} {c3, c4 }

{c1,c2,c3, c4 }

{ c2 }
{ c1 ,c3}{ c1 ,c4}

{ c3 ,c4} {c3, c4 }

{c1,c2,c3, c4 }

{ c2 }
{c1, c3 }{ c1 ,c4}

(a)                                                 (b)                                                (c)

Fig. 1. A sequence of L-edge-colorings of a graph

Suppose now that we are given two L-edge-colorings of a graph G (e.g., the
leftmost and rightmost ones in Fig.1), and we are asked whether we can trans-
form one into the other via L-edge-colorings of G such that each differs from
the previous one in only one edge color assignment. This decision problem is
called the list edge-coloring reconfiguration problem [6]. For the par-
ticular instance of Fig.1, the answer is “yes,” as illustrated in Fig.1, where the
edge whose color assignment was changed from the previous one is depicted by
a thick line. One can imagine a variety of practical scenarios where an edge-
coloring (e.g., representing a feasible schedule) needs to be changed (to use a
newly found better solution or to satisfy new side constraints) by individual color
changes (preventing the need for any coordination) while maintaining feasibility
(so that nothing goes wrong during the transformation). Reconfiguration prob-
lems are also interesting in general because they provide a new perspective and
deeper understanding of the solution space and of heuristics that navigate that
space.

Reconfiguration problems have been studied extensively in recent literature
[1,3,4,5,6]. It is known that list edge-coloring reconfiguration is PSPACE-
complete, even for planar graphs of maximum degree 3 and just six colors [6].
On the other hand, Ito et al. [6] gave a sufficient condition for which there exists
a transformation between any two L-edge-colorings of a tree. Specifically, for a
tree T , they proved that any two L-edge-colorings of T can be transformed into
each other if |L(e)| ≥ max{d(v), d(w)} + 1 for each edge e = vw of T , where
d(v) and d(w) are the degrees of the endpoints v and w of e, respectively. Their
proof yields a polynomial-time algorithm that finds a transformation between
two given L-edge-colorings of T via O(n2) intermediate L-edge-colorings, where
n is the number of vertices in T . In addition, they gave an infinite family of in-
stances on paths that satisfy their sufficient condition and whose transformation
requires Ω(n2) intermediate L-edge-colorings.

As the authors mentioned in [6], their sufficient condition is motivated by the
well-known “list coloring conjecture” [7]: it is conjectured that any graph G has
an L-edge-coloring if |L(e)| ≥ χ′(G) for each edge e, where χ′(G) is the chromatic
index of G, that is, the minimum number of colors required for an ordinary edge-
coloring of G. This conjecture has not been proved yet, but Borodin et al. [2]
proved that any bipartite graph, and hence any tree, has an L-edge-coloring if
|L(e)| ≥ max{d(v), d(w)} for each edge e = vw. In this sense, there is a gap
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between the two sufficient conditions [2] and [6]: from the sufficient condition of
[6] we cannot say anything about the reconfiguration if a given tree T has an
edge e = vw with |L(e)| = max{d(v), d(w)}, whereas T has L-edge-colorings.

In this paper, we give a new sufficient condition that improves the known
one [6]. In our sufficient condition, a given tree T can have edges e = vw with
|L(e)| = max{d(v), d(w)}, keeping the reachability of all L-edge-colorings of
T . We also show that our sufficient condition is best possible in some sense.
Our proof is constructive, and yields a polynomial-time algorithm that finds a
transformation between two given L-edge-colorings of T via O(n2) intermediate
L-edge-colorings, where n is the number of vertices in T . We remark that the
upper bound O(n2) on the number of intermediate L-edge-colorings is tight,
because the infinite family of instances requiring Ω(n2) recoloring steps, given
by [6], also satisfies our sufficient condition.

The rest of the paper is organized as follows. In Section 2, we first define some
terms, and give our sufficient condition formally in Theorem 2. In the same
section, we discuss the tightness of our sufficient condition. The constructive
proof of Theorem 2 will be given in Section 3.

2 Improved Sufficient Condition and Its Tightness

In this section, we first introduce some terms and give our main result formally.
We then show that our sufficient condition is best possible in some sense.

In Section 1, we have defined an L-edge-coloring of a graph G = (V, E) with
a list L. We say that two L-edge-colorings f and f ′ of G are adjacent if |{e ∈
E : f(e) �= f ′(e)}| = 1, that is, f ′ can be obtained from f by changing the
color assignment of a single edge e; we say that the edge e is recolored between
f and f ′. A reconfiguration sequence between two L-edge-colorings f0 and ft of
G is a sequence of L-edge-colorings f0, f1, . . . , ft of G such that fi−1 and fi are
adjacent for i = 1, 2, . . . , t. We also say that two L-edge-colorings f and f ′ are
connected if there exists a reconfiguration sequence between f and f ′. Clearly,
any two adjacent L-edge-colorings are connected. For a reconfiguration sequence
between two L-edge-colorings, its length is defined as the number of L-edge-
colorings contained in the reconfiguration sequence. For example, the length of
the reconfiguration sequence in Fig.1 is 3.

Let T be a tree with a list L. An edge e = vw is said to be tight if |L(e)| =
max{d(v), d(w)}; mild if |L(e)| = max{d(v), d(w)} + 1; and slack if |L(e)| ≥
max{d(v), d(w)} + 2. We assume that |L(e)| ≥ max{d(v), d(w)} for all edges
e = vw in T , and hence each edge in T is tight, mild or slack. For two edges e and
e′ in T , we denote by P (e, e′) the path between e and e′ (including themselves)
in T . Two tight edges e and e′ in T are neighboring if P (e, e′) contains no tight
edge other than e and e′.

We first restate the known sufficient condition, as in the following theorem.

Theorem 1 ([6]). Every two L-edge-colorings f and f ′ of a tree T are con-
nected if T contains no tight edge. Moreover, there is a reconfiguration sequence
of length O(n2) between f and f ′, where n is the number of vertices in T .



An Improved Sufficient Condition for Reconfiguration of List Edge-Colorings 97

We now give the main result of this paper.

Theorem 2. Every two L-edge-colorings f and f ′ of a tree T are connected if
either the following condition (a) or (b) holds:

(a) T contains at most one tight edge; or
(b) for every two neighboring tight edges e and e′ in T , the path P (e, e′) con-

tains at least one slack edge.
Moreover, there is a reconfiguration sequence of length O(n2) between f and f ′,
where n is the number of vertices in T .

Notice that Condition (a) above is an extension of Theorem 1, and hence our
sufficient condition improves the known one. We also remark that our sufficient
condition can be checked in linear time: we first delete all slack edges from T ,
and check whether each subtree contains at most one tight edge. By Condition
(b) above, it is obvious that no two tight edges share a vertex.

We will give a proof of Theorem 2 in Section 3. In the remainder of this
section, we show that our improved sufficient condition is best possible in the
sense that we cannot drop the condition of slack edges: we give an infinite family
of instances on paths such that a given path consists only of tight or mild edges
and two given L-edge-colorings are not connected.

Consider, as an example, the two L-edge-colorings f0 and ft in Fig. 2 for the
same path P of 5 edges with the same list L. The two end edges e0 and e4 of P
are tight, while all internal edges are mild. Therefore, P contains no slack edge.
Then, we cannot recolor any edge in f0, and hence f0 and ft are not connected.

We can construct such an instance for a path of an arbitrary length. Let
P = v0, v1, . . . , vn−1 be a path with n vertices, and let ei = vivi+1, 0 ≤ i ≤ n−2.
We first construct an ordinary edge-coloring f of P such that every two edges
with distance 2 receive different colors, that is, f(ei−1) �= f(ei+1) for each i,
1 ≤ i ≤ n − 3. Note that f is a proper edge-coloring, and hence every two
adjacent edges (i.e. with distance 1) receive different colors. The list L of P is
constructed as follows: L(ei) = {f(ei−1), f(ei), f(ei+1)} for each internal edge
ei, 1 ≤ i ≤ n − 3; L(e0) = {f(e0), f(e1)} and L(en−2) = {f(en−3), f(en−2)}.
Then, all internal edges are mild, and the two end edges e0 and en−2 are tight.
Moreover, f is an L-edge-coloring of P such that any edge in P cannot be
recolored. This implies that the condition of slack edges cannot be dropped from

v0 v1 v3v2 v4 v5e0 e1 e2 e3 e4

{ c1
 , c2} {c1

 , c3 }{c1
 , c2 , c4} {c1

 , c2 , c4 } { c1
 , c3 , c4} 

f
0

v0 v1 v3v2 v4 v5e0 e1 e2 e3 e4

{c1
 , c2 } {c1

 , c3 }{c1
 , c2 , c4 } { c1

 , c2 , c4} {c1
 , c3 , c4 }

ft

Fig. 2. Two L-edge-colorings f0 and ft of a path P which are not connected
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a sufficient condition if a tree contains more than one tight edge. (We note that
P has at least one L-edge-coloring other than f .)

3 Proof of Theorem 2

In this section, as a proof of Theorem 2, we give a polynomial-time algorithm
that finds a reconfiguration sequence of length O(n2) between two given L-edge-
colorings f0 and ft of a tree T if our sufficient condition holds.

3.1 Overview and Definitions

We first give an outline of our algorithm. Let T be a tree with a list L for which
our sufficient condition holds. We say that an edge e in T is fixed if our algorithm
decides not to recolor e anymore. Therefore, e must be colored with its target
color ft(e) when it is fixed. The algorithm fixes the edges one by one in a certain
order, and terminates when all the edges are fixed. The algorithm consists of the
following three steps:

Step 1: fix each tight edge without recoloring any other tight edges;
Step 2: modify the tree T so that the degree of each endpoint of all tight

edges is not two; and
Step 3: fix all mild and slack edges.

We will show later in Lemma 1 that every tight edge can be recolored to its
target color without recoloring any other tight edges (including non-fixed ones).
Therefore, we can fix the tight edges in an arbitrary order in Step 1. After Step
2, every tight edge is fixed, and each endpoint v of all tight edges is of either
d(v) = 1 or d(v) ≥ 3; this condition is required in Step 3. In Step 3, we choose an
arbitrary vertex r of degree 1, and regard T as a rooted tree whose root is r. We
order all the edges e1, e2, . . . , en−1 of T , roughly speaking, by the breadth-first
search starting from r, and fix the edges in this order if the edge is not fixed yet.
Therefore, ei is never recolored after the i-th sub-step of Step 3, while non-fixed
(mild or slack) edge ej with j > i may be recolored even if ej is colored with
ft(ej). We will show later using Lemma 2 that every non-tight edge of T can be
fixed in such a way, and hence we eventually obtain the target L-edge-coloring
ft. Our algorithm recolors each of non-fixed edges at most once for fixing an
edge e, and hence e can be fixed by recoloring O(n) edges. Thus, we obtain a
reconfiguration sequence of total length O(n2).

We then give some definitions. For a tree T , we denote by V (T ) and E(T )
the vertex set and edge set of T , respectively. We sometimes denote by d(v, T )
the degree of a vertex v in T . For an L-edge-coloring f of T and a vertex v of
T , we say that a color c is available on v in f if c �∈ {f(vx) : vx ∈ E(T )}, that
is, c is not assigned to any of the edges incident to v. For an L-edge-coloring f
of T , an edge e = vw of T and its endpoint v, we define a subset Cav(f, e, v) of
L(e), as follows:

Cav(f, e, v) = L(e) \ {f(vx) : vx ∈ E(T )}. (1)
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w0 w1 wj-1w2 wj wj+1

c0 c1 cj-1 cj
(a)   f

wl-1 wl

cl-1

e0 e1 ej-1 ej el-1

e0 e1 ej-1 ej el-1
w0 w1 wj-1w2 wj wj+1

c1 c2 cj cj+1
(b)   f ’

wl-1 wl

cl

Fig. 3. (a) Recoloring path P (f, w0, c0), and (b) L-edge-coloring f ′ obtained by recol-
oring the edges in P (f, w0, c0)

That is, Cav(f, e, v) is the set of all colors in L(e) that are available on v for
e. Therefore, Cav(f, e, v) ∩ Cav(f, e, w) is the set of all colors in L(e) that are
available for e = vw when we wish to recolor e from f(e).

For an L-edge-coloring f of a tree T , a vertex w0 of T and a color c0, a path
P (f, w0, c0) = w0, w1, . . . , wl in T is called a recoloring path (which will make
the color c0 available on w0) if the following four conditions (i)–(iv) hold (see
also Fig. 3(a)):

(i) every edge ej = wjwj+1, 0 ≤ j ≤ l − 1, in the path is not tight;
(ii) f(e0) = c0;
(iii) for each edge ej, 1 ≤ j ≤ l − 1, the color cj assigned to ej is available on

wj−1 for ej−1 in f , that is, f(ej) = cj ∈ Cav(f, ej−1, wj−1); and
(iv) there exists a color cl ∈ Cav(f, el−1, wl−1) ∩ Cav(f, el−1, wl).

Along the recoloring path P (f, w0, c0), we can obtain a reconfiguration sequence
from f to an L-edge-coloring f ′ of T in which the color c0 is available on w0,
as follows (see also Fig. 3(b)): at k-th recoloring step, 1 ≤ k ≤ l, we recolor the
edge el−k from the color cl−k = f(el−k) to cl−k+1. By the condition (i) above,
we do not recolor any tight edge of T in this reconfiguration sequence. For the
sake of convenience, a path P (f, w0, c0) = w0 is also called a recoloring path if
c0 is already available on w0 in f .

3.2 Algorithm

In this subsection, we precisely describe our algorithm and its analysis.

Step 1: Fix all tight edges
In Step 1, we fix all tight edges in a given tree T one by one. Let f be the current
L-edge-coloring of T ; initially, f = f0. Choose an arbitrary non-fixed tight edge
e = u0u

′
0 of T . (See Fig. 4.) Then, there are at most two edges, say u0u1 and

u′
0u

′
1, which are colored with ft(e) and sharing the endpoints u0 and u′

0 with e,
respectively. Therefore, we first make the color ft(e) available on each of u0 and
u′

0, and then recolor e to its target color ft(e). Formally, we have the following
lemma.

Lemma 1. For any L-edge-coloring f of T and an arbitrary tight edge e =
u0u

′
0 in T , there exist two recoloring paths P (f, u0, ft(e)) and P (f, u′

0, ft(e)).
Moreover, the two recoloring paths can be found in linear time.
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u
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el-1

e
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e
1

Fig. 4. Tight edge e = u0u
′
0, and a recoloring path P (f, u0, ft(e)) = u0, u1, . . . , ul

depicted by thick lines

Proof. We prove only for the endpoint u0, that is, there exists a recoloring path
P (f, u0, ft(e)). (The proof for the other endpoint u′

0 is similar.) Remember that
the path P (f, u0, ft(e)) consisting of a single vertex u0 is a recoloring path if
the color ft(e) is already available on u0 in f ; in this case, the lemma clearly
holds. Therefore, in the remainder of the proof, we may assume that ft(e) is not
available on u0 in f .

Let e0 = u0u1 be the edge which is colored with ft(e). (See Fig. 4.) Since
e is tight and no two tight edges are adjacent, e0 is either mild or slack. We
give the procedure RecolorPath which greedily constructs a recoloring path
P (f, u0, ft(e)). The procedure starts with RecolorPath(f, P1, e) where P1 =
u0, u1, and always maintains a path Pk = u0, u1, . . . , uk, k ≥ 1, in T starting
from u0 such that

(i) every edge ej = ujuj+1, 0 ≤ j ≤ k − 1, in the path Pk is not tight;
(ii) f(e0) = ft(e); and
(iii) for each edge ej, 1 ≤ j ≤ k − 1, the color cj assigned to ej is available on

uj−1 for ej−1 in f , that is, f(ej) = cj ∈ Cav(f, ej−1, uj−1).

Therefore, if there is a color ck in Cav(f, ek−1, uk−1) ∩ Cav(f, ek−1, uk), then Pk

is a recoloring path P (f, u0, ft(e)), as required. (This corresponds to Lines 3–5
of the procedure.)

Consider the case where Cav(f, ek−1, uk−1) ∩ Cav(f, ek−1, uk) = ∅, which
corresponds to Lines 7–16 of the procedure. By the condition (i) above, the
edge ek−1 = uk−1uk is either mild or slack, and hence we have |L(ek−1)| ≥
max{d(uk−1), d(uk)} + 1. By Eq. (1) we then have

|Cav(f, ek−1, uk−1)| ≥ ∣∣L(ek−1)
∣∣− ∣∣{f(uk−1x) : uk−1x ∈ E(T )}∣∣

≥ max{d(uk−1), d(uk)} + 1 − d(uk−1)
≥ 1.

Therefore, L(ek−1) contains at least one color in Cav(f, ek−1, uk−1), which is
available on uk−1 for ek−1. Since Cav(f, ek−1, uk−1) ∩ Cav(f, ek−1, uk) = ∅, each
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Procedure 1. RecolorPath(f, Pk, e)
1: Let Pk = u0, u1, . . . , uk, k ≥ 1
2: Let ej = ujuj+1, 0 ≤ j ≤ k − 1, be a mild or slack edge
3: if Cav(f, ek−1, uk−1) ∩ Cav(f, ek−1, uk) �= ∅ then
4: {The path Pk is a desired recoloring path P (f, u0, ft(e))}
5: return Pk

6: else
7: if Cav(f, ek−1, uk−1) contains a color assigned to a non-tight edge ukuk+1 then

{See Case (a) in the proof}
8: Let Pk+1 = u0, u1, . . . , uk, uk+1

9: RecolorPath(f, Pk+1, e)
10: else {See Case (b) in the proof}
11: {the color in Cav(f, ek−1, uk−1) is assigned to the tight edge uku′}
12: Let es−1 = us−1us be the slack edge in Pk closest to uku′

13: Let e′s = usu
′
s+1 be a non-tight edge in T such that u′

s+1 �= us+1 and f(e′s) ∈
Cav(f, es−1, us−1)

14: Let P ′
s+1 = u0, u1, . . . , us, u

′
s+1

15: RecolorPath(f, P ′
s+1, e)

16: end if
17: end if

color in Cav(f, ek−1, uk−1) is assigned to some edge incident to uk other than
ek−1. Then, there are the following two cases to consider.

Case (a): Cav(f, ek−1, uk−1) contains a color assigned to a non-tight edge ukuk+1.
In this case, the path u0, u1, . . . , uk, uk+1 satisfies the three conditions (i)–(iii)
above. Let Pk+1 = u0, u1, . . . , uk, uk+1, and we call RecolorPath(f, Pk+1, e)
recursively. This case corresponds to Lines 7–9 of the procedure.

Case (b): the color in Cav(f, ek−1, uk−1) is assigned to the tight edge uku′.
Since at most one tight edge is incident to a vertex, Cav(f, ek−1, uk−1) contains
exactly one color in this case. Remember that u0 is an endpoint of the tight
edge e. Since the path Pk contains no tight edge, the tight edges e and uku′

are neighboring. Then, by Condition (b) of the sufficient condition, the path
Pk = u0, u1, . . . , uk contains at least one slack edge. Let es−1 = us−1us be the
slack edge in Pk closest to uku′. Since |L(es−1)| ≥ max{d(us−1), d(us)} + 2, we
have

|Cav(f, es−1, us−1)| ≥ max{d(us−1), d(us)} + 2 − d(us−1) ≥ 2.

Therefore, Cav(f, es−1, us−1) contains at least two colors, one of which is assigned
to the edge es = usus+1 in Pk. Thus, we have a color c′s in Cav(f, es−1, us−1)
which is not assigned to the edge es. Let e′s = usu

′
s+1 be the edge in T such that

f(e′s) = c′s. Note that e′s is not tight; otherwise, since there must exist a slack
edge between e′s and uku′, the edge es−1 would not be the closest slack edge to
uku′. Then, the path P ′

s+1 = u0, u1, . . . , us, u
′
s+1 satisfies the three conditions

(i)–(iii) above. Thus, we recursively call RecolorPath(f, P ′
s+1, e).
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To complete the proof, we show that RecolorPath(f, P1, e) will terminate.
As in Cases (a) and (b) above, the procedure can always find a next edge
(either ukuk+1 or usu

′
s+1) for the path Pk, keeping the three conditions (i)–

(iii). Thus, it suffices to show that each slack edge is picked up in Line 12 of
the procedure at most once. Then, we eventually reach a vertex ul such that
Cav(f, el−1, ul−1)∩Cav(f, el−1, ul) �= ∅, because any vertex ul of degree 1 clearly
satisfies this condition. (See Fig. 4.)

Suppose for a contradiction that a slack edge es is picked up more than once,
for two tight edges e′ and e′′. By the condition (i), both P (es, e

′) and P (es, e
′′)

contain no tight edge except for e′ and e′′. Therefore, e′ and e′′ are neighboring.
But then, there must exist at least one slack edge in P (e′, e′′). Note that es is
not in P (e′, e′′). This contradicts the fact that es is the closest slack edge to both
e′ and e′′. �	

By Lemma 1 we can recolor the tight edge e from f(e) to ft(e) by recoloring
O(n) edges in total. Since a recoloring path does not contain any tight edge, e
can be fixed without recoloring any other tight edges. We can thus fix the tight
edges in an arbitrary order.

Step 2: Modify T so that the degree of each endpoint of all tight edges
is not two
Let f be the current L-edge-coloring of T after Step 1. Then, all tight edges are
fixed, and hence f(e) = ft(e) for each tight edge e in T . In Step 2, we modify T
so that d(v) �= 2 for each endpoint v of all tight edges in T .

Choose an arbitrary tight edge xy, at least one of whose endpoints is of degree
2, say d(y) = 2. Let z be the vertex adjacent to y other than x, as illustrated in
Fig. 5(a). We divide T into two subtrees Tx and Tz at y, where Tx and Tz are
the subtrees containing the edges xy and yz, respectively. (See Figs. 5(a) and
(b).) The list Lx of Tx is defined as the restriction of the list L to Tx, that is,
Lx(e) = L(e) for each edge e ∈ E(Tx). Then, since d(v, T ) ≥ d(v, Tx) for each
vertex v ∈ V (Tx), our sufficient condition holds for Lx of Tx. On the other hand,
the list Lz of Tz is defined as follows:

Lz(e) =
{

L(e) if e �= yz;
L(yz) \ {ft(xy)} if e = yz.

(2)

Fig. 5. (a) Tight edge xy with d(y) = 2, and (b) two subtrees Tx and Tz
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We now show that our sufficient condition holds for Lz of Tz. Since no two
tight edges are adjacent, yz was not tight in T . Therefore, we have |L(yz)| ≥
max{d(y, T ), d(z, T )} + 1, and hence by Eq. (2) we have

|Lz(yz)| ≥ max{d(y, T ), d(z, T )} ≥ max{d(y, Tz), d(z, Tz)}.
For any two neighboring tight edges e′ and e′′ in E(Tz)\{yz}, the path P (e′, e′′)
in Tz does not contain yz since d(y, Tz) = 1. Thus, our sufficient condition clearly
holds for Lz if |Lz(yz)| ≥ max{d(y, Tz), d(z, Tz)}+1, that is, yz is either mild or
slack in Tz. Suppose now that |Lz(yz)| = max{d(y, Tz), d(z, Tz)}, and hence yz is
tight in Tz. Since no two tight edges are adjacent, yz was mild in T . Then, since
xy is tight in T and d(y, Tz) = 1, it is easy to see that our sufficient condition
holds for Tz.

Since the edge xy is fixed and our sufficient condition holds for both Lx

and Lz, by Eq. (2) it suffices to find reconfiguration sequences for Tx and Tz

independently. We repeatedly apply Steps 1 and 2 to each subtree if the subtree
has either a non-fixed tight edge (which is newly made by Step 2) or a tight edge
one of whose endpoints is of degree 2.

Step 3: Fix all mild and slack edges
After Step 2, we may have a forest. However, by the construction, it suffices
to find a reconfiguration sequence for each subtree independently. Let T be a
subtree in the forest, and let f be the current L-edge-coloring of T . Then, every
tight edge e in T is fixed, and either d(v) = 1 or d(v) ≥ 3 for an endpoint v of e.

Choose an arbitrary vertex r of degree 1 in T , and regard T as a rooted tree
whose root is r. For an edge e = uv joining a vertex v ∈ V (T ) \ {r} and its
parent u, we denote by Te the subtree of T which is induced by the edge e = uv
and all descendants of v in T . (See Fig.6(a).) It should be noted that Te does not
include the edges incident to u other than e, and hence d(u, Te) = 1. Therefore,
Te consists of a single edge e = uv if v is a leaf of T .

We order all the edges e1, e2, . . . , en−1 of T by the breadth-first search starting
from r so that the following two conditions (1) and (2) hold: for each internal
vertex u,

v

r

u

(a)                                                                                  (b)

T

e
Te

u

ei e j

ei-1

u’
v

Fig. 6. (a) Subtree Te in the whole tree T , and (b) i-th sub-step of Step 3
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(1) if there exists a tight edge joining u and its child v, then the tight edge
uv appears before all the other edges joining u and its children; and

(2) if there exists a mild edge joining u and its child v to which a tight edge vw
is incident, then the mild edge uv appears before all the other (non-tight)
edges joining u and its children.

Note that, for each internal vertex u, there exists at most one mild edge satisfying
Condition (2) above. We fix the edges e1, e2, . . . , en−1 in this order if the edge is
not fixed yet.

We now have the following lemma, whose proof is omitted from this extended
abstract. (Remember that all tight edges are already fixed.)

Lemma 2. Let e = uv be an arbitrary non-tight edge in T such that all non-
tight edges in Te are not fixed yet, where u is the parent of v ∈ V (T ) \ {r}. Let
c be any color in Cav(f, e, u) which is not assigned to a tight edge incident to v.
Then, there exists an L-edge-coloring f ′ of T such that f ′(e) = c and f ′ can be
obtained by recoloring each non-tight edge in Te at most once.

Remember that Cav(f, e, u) = L(e) \ {f(ux) : ux ∈ E(T )}, and hence c is not
assigned to any of the edges incident to u in the whole tree T .

Suppose that we are now in the i-th sub-step of Step 3. Then, the edges
e1, e2, . . . , ei−1 are all fixed, and we wish to fix ei = uu′. (See Fig. 6(b).) If
ft(ei) ∈ Cav(f, ei, u) ∩ Cav(f, ei, u′), that is, the color ft(ei) is already available
on both endpoints u and u′ for ei, then we simply recolor ei to ft(ei) and fix it.

We now consider the case ft(ei) �∈ Cav(f, ei, u) for the endpoint u which is the
parent of u′. Then, the color ft(ei) is assigned to some edge ej = uv incident to
u. But, in the target L-edge-coloring ft, the color ft(ei) is not assigned to any
edge incident to u other than ei = uu′. Thus, the edge ej is not fixed yet, and
hence j > i and ej is either mild or slack. Moreover, all non-tight edges in the
subtree Tej are not fixed. If ej is mild, then we have

|Cav(f, ej , u)| ≥ max{d(u), d(v)} + 1 − d(u) ≥ 1.

Thus, Cav(f, ej , u) contains at least one color c. It is easy to see that there is no
tight edge incident to v; otherwise, uv satisfies Condition (2) in the breadth-first
search and hence uv must appear before the non-tight edge ei = uu′. (Remember
that only one edge satisfies the condition.) Therefore, any color in Cav(f, ej , u)
satisfies the assumption of Lemma 2. On the other hand, if ej is slack, then

|Cav(f, ej , u)| ≥ max{d(u), d(v)} + 2 − d(u) ≥ 2

and hence Cav(f, ej , u) contains at least two colors. Therefore, there exists at
least one color c ∈ Cav(f, ej , u) which is not assigned to a tight edge incident
to v. (Remember that at most one tight edge is incident to a vertex.) Thus,
regardless of mild or slack, we can apply Lemma 2 to the color c and the edge
ej = uv, and obtain an L-edge-coloring f ′ such that f ′(ej) = c. Since no edge
in T \ Tej is recolored to obtain f ′ and the color ft(ei) was assigned to ej = uv
in f , we thus have ft(ei) ∈ Cav(f ′, ei, u).
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We then consider the case where ft(ei) �∈ Cav(f, ei, u′). Let f ′ be the L-edge-
coloring of T obtained above; let f ′ = f if ft(ei) ∈ Cav(f, ei, u). Then, ft(ei) ∈
Cav(f ′, ei, u). Note that, since no edge in T \ Tej is recolored to obtain f ′, we
have Cav(f ′, ei, u′) = Cav(f, ei, u′). (See also Fig. 6(b).) In addition, ft(ei) is not
assigned to any fixed (and hence tight) edge incident to u′, and all non-tight edges
in Tei are not fixed yet. Therefore, we apply Lemma 2 to the color ft(ei) and
the edge ei = uu′, and obtain an L-edge-coloring f ′′ such that f ′′(ei) = ft(ei).
We can now fix the edge ei, as required.

Note that we recolor each non-tight edge in the subtrees Tei and Tej at most
once. Thus, the edge ei can be fixed by recoloring O(n) non-fixed edges in total.

We have shown that our polynomial-time algorithm correctly fixes all the
edges in a tree T , and hence it suffices to show that there exists a reconfiguration
sequence of length O(n2) between f0 and ft. As in Lemmas 1 and 2, our algorithm
fixes each edge by recoloring O(n) edges in total. Thus, all the edges can be fixed
via O(n2) recoloring steps, as required.

4 Conclusion

In this paper, we gave a new sufficient condition that improves the known one
[6]. We showed that our sufficient condition is best possible in the sense that
we cannot drop the condition of slack edges. Our proof yields a polynomial-time
algorithm that finds a reconfiguration sequence of length O(n2) between two
given L-edge-colorings of a tree T , where n is the number of vertices in T .
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Abstract. A naive encoding of ordered binary trees with n vertices
needs 2n bits for each tree, and it is asymptotically optimal. In this
paper we give a new simple encoding of unordered binary trees. The
encoding needs at most 4 + 1.4n bits for each tree. Our encoding and
decoding algorithms are simple and run in O(n) time.

Keywords: trees, coding, compact representation.

1 Introduction

Studying representation issues on graphs is very natural[7]. In this paper we
consider the problem of encoding a given unordered binary tree into a binary
string with fewer bits.

A rooted tree is ordered if the children of each vertex are ordered. A rooted tree
is (ordered )binary if each vertex has at most two children, that is, a possible
“left child” and a possible “right child”. Note that each only child must be
designated either as a left child or a right child, so ordered binary trees are
not just a subclass of ordered trees. A rooted tree is unordered binary if each
vertex has at most two children and the children of each vertex are unordered.
The expression trees which represent the arithmetic expressions are examples of
unordered binary trees. Those trees are among the most fundamental models of
computer sciences.

There are a lot of papers for encoding ordered trees and binary trees. For
example, see [3,4,1] and referred papers.

The well known naive encoding of ordered trees is as follows. Given an ordered
tree T we traverse T starting at the root in a depth first manner. Output an
open parenthesis (or “0”) when visiting a vertex for the first time, and output
a matching closing parenthesis (or “1”) when visiting a vertex for the last time.
Thus any ordered tree with n vertices has a code with 2n bits. One can easily
decode the code into the original ordered tree T .

The number of ordered trees with n ≥ 2 vertices is known as the Catalan
number Cn−1, and it is defined as follows[6, p.145].

Cn =
1

(n + 1)
(2n)!
n!n!

Since the Catalan number can be denoted as follows[2, p.495],

Cn =
4n

(n + 1)
√

πn
(1 − 1

8n
+

1
128n2

+
5

1024n3
− 21

32768n4
+ O(n−5))
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we need at least log Cn−1 = 2n − o(n) bits on average to encode an arbitrary
ordered tree, where n is the number of vertices. So the naive encoding with 2n
bits is asymptotically optimal.

Similarly the number of binary trees with n vertices is Cn. Since log Cn =
2n − o(n) holds, several known encodings with 2n bits are also asymptotically
optimal for binary trees.

On the other hand the number of unordered binary trees with n vertices can
be computed by a recursive equation and is reported at [8]. The numbers are
1, 1, 2, 3, 6, 11, 23, 46, 98, 207, 451, 983, 2179, · · ·, for n = 1, 2, · · ·, and those are
much less than the Catalan numbers. Thus there is a chance to design a code
for unordered binary trees with less than 2n bits.

In this paper we give a new encoding of unordered binary trees with at most
4+1.4n bits. Our encoding and decoding algorithms are simple and run in O(n)
time.

2 Pair-Single Decomposition

Let T be a given (ordered or unordered) binary tree. We define a partition of
the vertices of T into pairs and singles. Each pair consists of two vertices, while
each single consists of one vertices.

A pair consists of two vertices with the following condition (a) or (b).

(a) two sibling vertices � and r form a pair (�, r).
(b) If (i) two vertices � and r form a pair, (ii) � has exactly one child, say c�,

and (iii) r has exactly one child, say cr, then the two vertices c� and cr form
a pair (c�, cr).

Each vertex v of T belonging to no pair forms a single (v). Note that each vertex
belongs to either a pair or a single, and the partition is unique. See an example
in Fig. 1. Each pair and single is surrounded by an ellipse.

Fig. 1. An example of the pair-single partition
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Let T be a given unordered binary tree, and To the ordered binary tree de-
rived from T by Algorithm dfc(v) below. Then we compute the pair-single
decomposition of To. When we write a pair (�, r) in To we assume � is locating
to the left of r.

Algorithm 1. Algorithm dfc(v);
Input : An unordered binary tree;
Output: An ordered binary tree in which for each pair(�, r) the number

of children of � is smaller than or equal to the number of
children of r;

if v has no child then return ;1

if v has exactly one child, say vc, then2

dfc(vc) ;3

return ;4

end5

// now v has two children ;6

Set � as the left child of v;7

Set r as the right child of v;8

while (� has exactly one child) and (r has exactly one child) do9

� ← the child of � ;10

r ← the child of r ;11

// each pair in which both � and r have exactly one child is skipped ;12

end13

if � has more children than r has then exchange � and r;14

dfc(�);15

dfc(r);16

return ;17

We say a pair (�, r) is type(i, j) if � has exactly i children and r has exactly
j children. Now for each pair (�, r) in To, the number of children of � is smaller
than or equal to the number of children of r, since otherwise the algorithm has
swapped the pair. Thus we have the following six types for pairs; type(0, 0),
type(0, 1), type(0, 2), type(1, 1), type(1, 2), type(2, 2). Also a single (v) is type(i)
if v has exactly i children. We have the following three types for singles; type(0),
type(1), type(2).

We need more notations. For i = 0, 1, 2, let ni be the number of vertices in
To having exactly i children. Also for i = 0, 1, 2, let n

′
i be the number of singles

in To wity type(i). For i, j with 0 ≤ i ≤ j ≤ 2, let pij be the number of pairs in
To with type(i, j). Now we have the followings.

n = n0 + n1 + n2 (1)

n
′
0 = n0 − 2p00 − p01 − p02 (2)

n
′
1 = n1 − p01 − 2p11 − p12 (3)

n
′
2 = n2 − p02 − p12 − 2p22 (4)
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n0 = n2 + 1 (5)
n2 = p00 + p01 + p02 + p12 + p22 (6)

3 Encoding

Let T be a given unordered binary tree, and To the derived ordered tree from T
by Algorithm dfc, and (v1, v2, · · · , vn) the vertices of To in preorder. For each
single (vi) define �A(vi), �B(vi) and �C(vi) depending on its type as shown in
Table 1. Similarly for each pair (vi, v), define �A(vi), �B(vi) and �C(vi) depend-
ing on its type as shown in Table 2, and define �A(v) = �B(v) = �C(v) = ε (=
empty string ). By concatenating those bit strings we define three bit strings
LA(T ), LB(T ) and LC(T ) as follows. Later in Section 4 we show one can recon-
struct T from any of those three bit strings.

LA(T ) = �A(v1) + �A(v2) + �A(v3) + · · · + �A(vn)
LB(T ) = �B(v1) + �B(v2) + �B(v3) + · · · + �B(vn)
LC(T ) = �C(v1) + �C(v2) + �C(v3) + · · · + �C(vn)

The length of LA(T ) is as follows.

|LA(T )| = 2n
′
0 + 2n

′
1 + n

′
2 + 2p00 + 3p01 + 2p02 + 3p11 + 3p12 + 3p22

= 2n0 + 2n1 + n2 − 2p00 − p01 − p02 − p11 + p22 by equation (1)–(3)
= 2 + 2n1 + 3n2 − 2p00 − p01 − p02 − p11 + p22 by equation (4)
= 2 + 2n1 + p00 + 2p01 + 2p02 − p11 + 3p12 + 4p22 by equation (5)

Similarly we have the followings.

|LB(T )| = 2 + n1 + 3p00 + 3p01 + 3p02 + p11 + 3p12 + 3p22

|LC(T )| = 1 + 2n1 + 4p00 + 3p01 + 3p02 − 2p11 + 2p12 + p22

Table 1. Code for singles

type (0) type (1) type (2)

lA(vi) 10 11 0
lB(vi) 10 0 11
lC(vi) 0 10 11

Table 2. Code for pairs

type(0,0) type(0,1) type(0,2) type(1,1) type(1,2) type(2,2)

lA(vi) 00 100 01 101 110 111
lB(vi) 100 00 101 110 01 111
lC(vi) 100 101 110 00 111 01
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Now we show the shortest one among the three bit strings
LA(T ), LB(T ), LC(T ) has the length at most 2 + 1.4n.

Lemma 1. min{|LA(T )|, |LB(T )|, |LC(T )|} ≤ 2 + 1.4n

Proof. See Appendix A.

We need two bits to denote which bit string among the three to use, then append
the chosen bit string. The derived bit string is the code for T . We have the
following theorem.

Theorem 1. One can encode a given unordered binary tree with n vertices into
a bitstring of at most 4 + 1.4n bits. Encoding runs in O(n) time.

4 Decoding

Given LA(T ) one can reconstruct the original unordered binary tree T as follows.
Let To be the derived ordered tree from T by Algorithm dfc, and

(v1, v2, · · · , vn) the vertices of To in preorder.
Assume inductively we have reconstructed the subtree T

′
o of To induced by

(v1, v2, · · · , vi), and we know the pair-single decomposition of T
′
o and the type

of each pair and single. Assume also we have decoded LA(T ) upto some pre-
fix of LA(T ) corresponding to the codes for (v1, v2, · · · , vi), and LA(T )

′
is the

remaining code for (vi+1, vi+2, · · · , vn).
For each pair (�, r) of type(x, y) we say � is type(x) and r is type(y). We say

� is the left vertex of the pair (�, r). Also for each single (v) of type(x) we say
v is type(x).

Find the first leaf vertex v of T
′
o in preorder which is not type(0). Intuitively

this is the vertex from which a new branch to grow to the next vertex vi+1.
Now we can know the next vertex vi+1 to append belong to a pair or a single as
follows. We have the following three cases.

Case 1: v belong to a single.
If v is type(2) then the next vertex vi+1 belong to a pair. Otherwise v is type(1)
and the next vertex vi+1 belong to a single.

Case 2: v belong to a pair, and v is the left vertex of the pair.
If v belong to a pair with type(1, 1) then the next vertex vi+1 belong to a pair.
Otherwise v is type(1) or type(2). If v is type(2) then the next vertex vi+1 belong
to a pair. Otherwise the next vertex vi+1 belong to a single.

Case 3: v belong to a pair, and v is not the left vertex of the pair.
If v is type(2) then the next vertex vi+1 belong to a pair. Otherwise v is type(1)
and the next vertex vi+1 belong to a single.

Thus we can decide the next vertex vi+1 to append belong to a pair or a
single. Since the code in Table 1 and 2 are prefix code, we can easily cutoff a
suitable code for vi+1 from LA(T )

′
, and append a pair or single to T

′
o.
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In this way we can reconstruct the original unordered binary tree T from
LA(T ). Similarly we can reconstruct T from LB(T ) or LC(T ).

With a suitable data structure the encoding runs in O(n) time.

5 Conclusion

One can encode an unordered binary tree with n vertices into a bitstring of
4 + 1.4n bits. Both encoding and decoding run in O(n) time.
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Appendix A

Proof of Lemma 1
We prove a stronger result as follows. Note that the third term in the min
increased by one.

min{|LA(T )|, |LB(T )|, 1 + |LC(T )|} ≤ 2 + 1.4n

Remember the followings.

|LA(T )| = 2 + 2n1 + p00 + 2p01 + 2p02 − p11 + 3p12 + 4p22 (7)
|LB(T )| = 2 + n1 + 3p00 + 3p01 + 3p02 + p11 + 3p12 + 3p22 (8)

1 + |LC(T )| = 2 + 2n1 + 4p00 + 3p01 + 3p02 − 2p11 + 2p12 + p22 (9)

Define L
′
(T ) = min{|LA(T )|, |LB(T )|, 1 + |LC(T )|}.

Let X be an assignment such that n1 = 5n/15 and p00 = p01 = p02 = p11 =
p12 = p22 = n/15. We show L

′
(T ) has the maximum value at the assignment X .

http://oeis.org/
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Assume otherwise for a contradiction. Now L
′
(T ) has the maximum value at

some assignment Y �= X . Denote the assignment Y as follows.

n1 = 5n/15 + α1 (10)
p00 = n/15 + α00 (11)
p01 = n/15 + α01 (12)
p02 = n/15 + α02 (13)
p11 = n/15 + α11 (14)
p12 = n/15 + α12 (15)
p22 = n/15 + α22 (16)

(17)

By equations (1), (5), (6) we have the following.

n = 1 + n1 + 2(p00 + p01 + p02 + p12 + p22) (18)

By applying the assignment Y to (18) we have the following.

α1 + 2(α00 + α01 + α02 + α12 + α22) = 0
α00 + α01 + α02 + α12 + α22 = −α1/2 (19)

Since the assumption means the value of L
′
(T ) at Y is greater than the value

of L
′
(T ) at X , we have the following (a),(b) and (c).

(a) The value |LA(T )| at Y is greater than the value of |LA(T )| at X .

(b) The value |LB(T )| at Y is greater than the value of |LB(T )| at X .

(c) The value 1 + |LC(T )| at Y is greater than the value of 1 + |LC(T )| at X .

Since (b) holds, we have

α1 + 3(α00 + α01 + α02 + α12 + α22) + α11 > 0 (20)

By applying (19) to (20)

α1 + 3(−α1/2) + α11 > 0
α11 > α1/2 (21)

Since (a) and (c) hold, the value |LA(T )| + 1 + |LC(T )| at Y is greater than
the value |LB(T )| at X . Now we have the followings.

(2α1 + α00 + 2α01 + 2α02 − α11 + 3α12 + 4α22)
+(2α1 + 4α00 + 3α01 + 3α02 − 2α11 + 2α12 + α22) > 0

4α1 + 5(α00 + α01 + α02 + α12 + α22) − 3α11 > 0 (22)
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By applying (19) to (22) we have the followings.

4α1 + 5(−α1/2) − 3α11 > 0
3α1/2 > 3α11

α1/2 > α11 (23)

Equation (23) contradicts to (21). Thus L
′
(T ) has the maximum value at the

assignment X .
The following holds at the assignment X .

|LA(T )| = |LB(T )| = 1 + |LC(T )| = 2 + 1.4n

We have the following.

min{|LA(T )|, |LB(T )|, 1 + |LC(T )|} ≤ 2 + 1.4n
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Abstract. We investigate the possibility of embedding an n-point met-
ric space into a constant dimensional vector space with the maximum
norm, such that the embedding is almost isometric, that is, the distor-
tion of distances is kept arbitrarily close to 1. When the source metric
is generated by any fixed norm on a finite dimensional vector space, we
prove that this embedding is always possible, such that the dimension of
the target space remains constant, independent of n. While this possi-
bility has been known in the folklore, we present the first fully detailed
proof, which, in addition, is significantly simpler and more transparent,
then what was available before. Furthermore, our embedding can be com-
puted in deterministic linear time in n, given oracle access to the norm.

Keywords: computational geometry, low distortion metric embedding.

1 Introduction

It is a frequent situation in many applications/algorithms that data is repre-
sented by a large number of points in a metric space. In other words, the data
itself forms a finite metric space. In such situations it is very useful if we can sim-
plify the data by mapping the source points into a significantly simpler target
metric space, such that the pairwise distances between data points are (ap-
proximately) preserved. Such low distortion metric embeddings have provided
tremendous help in many algorithms and applications.

The task usually comes in two typical flavors. The first one is when the dis-
tance metric in the source space is too complicated, which often occurs in various
pattern recognition tasks, such as speech recognition, image recognition, finger-
print recognition etc. Here the main goal of the embedding is to replace the
complicated metric with a much simpler one, which is typically the �p metric
with p = 1, 2, or ∞. It may also happen that the data points themselves are not
structured (or we may not be interested in their intrinsic structure, so they can
be represented just by abstract labels), then the key information is carried solely
by the metric. In that case we are led to the task of embedding a general finite
metric space into �d

p, which is the d-dimensional real vector space Rd, equipped
with the �p norm.
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The other flavor is when the source data may reside in a space of simple struc-
ture, such as Rd with the Euclidean norm �2, but the dimension is excessively
high. Even if the metric is simple, the high dimension can dramatically slow
down algorithms that often have running times exponential in the dimension
(known as the “curse of dimensionality”). In this case the main goal of the em-
bedding is dimensionality reduction: the mapping into a much lower dimensional
space can provide significant help, even if the metric is not simplified.

Since finding good algorithms for metric embedding with low distortion is far
from trivial, it is one of the rare fields where clear practical importance meets
the intrinsic mathematical beauty of the question.

2 Previous Results

Embedding problems of finite metric spaces have been the subject of extensive
research for a very long time, yielding a large number of results. Below we briefly
review some fundamental results about low distortion embeddings of n-point
metric spaces into �d

p with d  n, as these cases relate most closely to our work.
A classic result is Bourgain’s Theorem [5], which says that any n-point finite

metric space can be embedded into an Euclidean space, with distortion O(log n).
Linial, London and Rabinovich [15] showed that it also works with target norm
�p for any p. The dimension of the target space was originally exponential in [5],
but was later reduced to O(log2 n) by Linial, London and Rabinovich [15] and
Matoušek [16]. The authors of [15] also proved an Ω(log n) lower bound for the
distortion. Further improvement was obtained by Abraham, Bartal and Neiman
[1], who reduced the target dimension to O(log n), which is optimal, and also
showed that the average (but not the worst case!) distortion can be made O(1).
A lesson from this chain of results is that when a general n-point metric space
is embedded into �d

p, then neither d, nor the distortion can remain bounded as
n grows.

Thus, if we hope to achieve the ideal case of almost isometric embedding into
bounded dimension, then we must impose some restriction on the source metric
space, rather than allowing an arbitrary source metric. A classic result in this
direction is the Johnson-Lindenstrauss Lemma [14], which says that for every
ε > 0, any n points from an �2 space can be embedded with 1+ ε distortion (i.e.,
almost isometrically) into �d

2, where d = O(log n/ε2). Since it is known (see, e.g.,
the survey of Indyk and Matoušek [13]) that the isometric embedding of the
same points is not possible into �d

2 with d < n − 1, therefore, it is an appealing
and extremely useful fact that allowing a very slight distortion can bring down
the target dimension to O(log n), resulting in exponential dimension reduction.
Another useful feature is that the embedding can be computed via a simple
random projection. On the other hand, it is not possible to reduce the target
dimension to a constant, as there is a known almost matching lower bound of
Ω(log n/(ε2 log(1/ε))) for the dimension, due to Alon [3], see also Matoušek [18].
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The lower bound on the dimension shows that we cannot achieve our ideal
goal with �2 target metric, when the source is an arbitrary normed space. How
about �1 as target metric? Then the situation is even worse, as Brinkman and
Charikar [6] proves that for every n, the embedding of an n-point �1 metric into
�d
1 with distortion c > 1 requires d = nΩ(1/c2) in the worst case.

Regarding �∞ as the target metric, Matoušek [17] showed that any n-point
metric can be embedded into �d

∞ with distortion c and of dimension d = O((c +
1)n2/(c+1) log n). Furthermore, an almost matching lower bound can be proved
[13], so the target dimension cannot remain bounded for a general source metric
with �∞ target.

One may ask at this point: is there any nontrivial embedding result with
constant target dimension, independent of the number of source data points?
While such results do exist, under special conditions, they are quite rare. A
folklore example (see the survey of Indyk [12]) is that �d

1 isometrically embeds
into �d′

∞ with d′ = 2d, regardless of the number of source points. Another example
is the theorem of Gupta, Krauthgamer and Lee [10], which says that every
doubling tree metric embeds into �d

p with constant d and constant distortion
(which may not be arbitrarily close to 1), for every p ∈ [1,∞]. Here a tree metric
is the shortest path metric on the vertices of a tree. A metric is called doubling,
if its doubling dimension is finite, where the doubling dimension is the smallest
integer k, such that every ball can be covered by 2k balls of half the radius.

Another embedding result into constant dimension is Assouad’s Theorem [4].
It says that if the source metric has constant doubling dimension, and 0 < γ < 1
is a constant, then there exist constants d, C, such that the “snowflake version”
of the source metric embeds into �d

2 with distortion C. Here the snowflake version
of the source metric is the original metric raised to the power of γ (which remains
a metric for 0 < γ < 1). The target dimension and the distortion in Assouad’s
Theorem depend on the doubling dimension and γ, but not on the number of
input points. On the other hand, the embedded metric is a modified version of the
source metric, not the original itself. Note that the difference between the original
and the snowflake version is not bounded for any 0 < γ < 1. Assouad conjectured
that the embedding also applies to the original source metric (corresponding to
γ = 1), but that was disproved by Semmes [20]. As a further step, Gottlieb and
Krauthgamer [9] extended Assouad’s Theorem by showing that if the source
metric is also Euclidean (beyond having constant doubling dimension), then the
embedding of the snowflake version into constant dimension can be done with
1 + ε distortion with arbitrary ε > 0. This again applies to the modified source
metric, not the original.

Apparently, the most general result so far on embedding the original n-point
source metric (not its snowflake version) into constant dimension is the theorem
of Abraham, Bartal and Neiman [2]. It says that any n-point metric space of
doubling dimension k can be embedded into �d

p with d = O(k/θ) and distortion
O(log1+θ n), where θ ∈ (0, 1]. While the target dimension is constant here, the
distortion grows to infinity with n.
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If, however, the source points are from a fixed finite dimensional normed space,
then they can be embedded into �d

∞ with distortion 1 + ε, and with d constant,
that is, independent of the number of points (but, of course, dependent on the
source space dimension). This is referred to as a folklore result in the survey of
Indyk [12]. Apparently, however, the proof has never been published in full detail,
and the claim does not seem easy to prove. The idea, as briefly outlined by Indyk
[12], goes as follows. One can first prove that any polyhedral norm, in which the
unit ball is a polyhedron with F faces, can be isometrically embedded into �F∞.
Then one can use a (rather nontrivial) theorem due to Dudley [7], which says
that any convex body of diameter 1, in dimension d, can be approximated by a
polyhedron that has O(1/ε)d/2 faces, such that the Hausdorff distance between
the convex body and the approximaitng polyhedron is not more than ε. Using
this, also applying another result called John’s Theorem1, one can derive the
desired embedding.

As mentioned above, the detailed proof of this embedding result, apparently
has never been published. The goal of our paper is to fill the gap by providing
a new, significantly simpler and more transparent proof of this result. Further-
more, we also address some of the related algorithmic aspects. We show that
the embedding is computable by a deterministic linear time algorithm, having
oracle access to the norm that induces the source metric.

Part of the mathematical idea is based on an earlier paper of the author,
co-authored with T. Linder and G. Lugosi [8], which used the idea for nearest
neighbor search, without explicitly targeting metric embeddings. It is interest-
ing to note that while [8] was published in 1993 (preceding many of the above
surveyed papers), it went unnoticed for 18 years that some of the ideas could be
used for deriving a metric embedding with desirable properties.

3 Preliminaries

We deal with metric spaces that are subsets of finite dimensional normed spaces.
As it is well known, norm is a function that assigns a nonnegative real number
‖x‖ to each vector x in a vector space, satisfying the following properties:

– Homogeneity: ‖cx‖ = |c| ‖x‖ for any vector x and scalar c.
– Triangle inequality: ‖x + y‖ ≤ ‖x‖ + ‖y‖ for every x, y.
– Separation of points: if ‖x‖ = 0, then x = 0, where 0 is the zero vector

(Equivalently, x �= y implies ‖x − y‖ > 0 for every x, y.)

A vector space with a norm is called a normed space. If the underlying vector
space is finite dimensional, then we call it a finite dimensional normed space. A
norm induces a distance by

d(x, y) = ‖x − y‖ (1)

so any subset of a normed space becomes a metric space with this metric. It is
clear that this distance and the norm uniquely determine each other, through
1 For an exposition and proof, see, e.g., Howard [11].



118 A. Faragó

(1) and ‖x‖ = d(x,0). Note, however, that not every distance on a vector space
is induced by some norm; for example, a distance metric does not have to be ho-
mogeneous. The restriction we impose is that we only deal with norm-generated
distances. Our target norm will be the maximum norm, denoted by �∞, and
defined as ‖v‖ = maxi{|v1|, . . . , |vd|} for v = (v1, . . . , vd) ∈ Rd.

One may suspect at this point that perhaps only the algorithmically “easy”
distances are generated by a norm, so by restricting ourselves to norm-generated
distances, we may exclude all the hard cases. This is, however, not so at all. The
reason is that a norm itself can also be hard to compute. Here is an example.
Let C be a convex set in a vector space, such that C contains the origin in
its interior. It is known [19] that the following construction generates a norm:
‖x‖ = inf{1/γ : γx ∈ C}. Now choosing the convex set C such that it is hard to
carry out the above optimization makes the norm hard to compute. For example,
we can create a norm that is NP-hard to compute, if we choose C as the convex
hull of the incidence vectors of cliques in a graph (with a small shifting to include
the origin in its interior).

If X and Y are two metric spaces, with metrics dX , dY , respectively, then an
embedding of X into Y is a mapping f : X �→ Y . For a real number D ≥ 1 the
embedding has distortion (at most) D, if for every x, y ∈ X

1
D

dX(x, y) ≤ dY (f(x), f(y)) ≤ DdX(x, y).

Naturally, we are looking for the smallest D that satisfies the requirement. If
D = 1, the embedding is called an isometry. If for every ε > 0 there is an
embedding with distortion D ≤ 1 + ε, then we say X can be embedded almost
isometrically into Y . (The mapping f may depend on ε.)

4 Results

Now we prove that an embedding that simultaneously satisfies the following
three requirements exists:

(1) The source metric, which is generated by an arbitrary fixed, finite
dimensional norm, is embedded into �d

∞, such that the dimension d is
constant, in the sense that it is independent of the number of source
points.

(2) The embedding is almost isometric, that is, the distortion is bounded
by 1 + ε for an arbitrarily small fixed ε > 0.

(3) The embedding applies to the original source metric, not merely a
modified version of it (such as the snowflake version).

Theorem 1. Let x1, . . . , xn be distinct points in an arbitrary finite dimensional
normed space S, and let ε > 0 be any real number. Then there exists an integer k,
independent of n, such that x1, . . . , xn can be embedded into �k∞ with distortion
at most D = 1 + ε.
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Proof. Let ‖.‖ be the norm in S, and let U be the closed unit ball in this
space, that is, U = {u ∈ S : ‖u‖ ≤ 1}. Fix ε > 0, such that D = 1 + ε is the
target distortion. Set α = 1/D. First we show that one can always find k vectors
z1, . . . , zk ∈ S, for some constant k, with

α‖x − y‖ ≤ max
i

| ‖x − zi‖ − ‖y − zi‖ | ≤ ‖x − y‖, ∀x, y ∈ U. (2)

The value of k, and the zi vectors themselves, may depend on ε and S, but not
on n, the number of input points.

To prove the above statement, let us define a new normed space on S2 = S×S,
by defining the operations and the norm on S2 componentwise: c(x, y) = (cx, cy),
(x1, y1)+(x2, y2) = (x1+x2, y1+y2), and the norm on S2 is ‖(x, y)‖ = ‖x‖+‖y‖.
One can directly check that this way again a finite dimensional normed vector
space is obtained. Now for each z ∈ S define the set Az ⊂ S2 by

Az =
{

(x, y) ∈ S2 : x �= y,
‖y − z‖ − ‖x − z‖

‖x − y‖ > α

}
where α = 1/D = 1/(1 + ε), yielding 0 < α < 1. Furthermore, let H ⊂ S2 be
the following set:

H = {(x, y) : ‖x‖ ≤ 2, ‖y‖ ≤ 1, ‖x − y‖ ≥ 1/2}.
We are going to use the following properties of these sets:

(i) H is closed and bounded;
(ii) Az is open;
(iii) H ⊂ ⋃z∈S Az .

Properties (i) and (ii) follow directly from the definitions. To see (iii), it is
enough to observe that x �= y implies (x, y) ∈ Ax, since with z = x we have

‖y − z‖ − ‖x − z‖
‖x − y‖ =

‖y − x‖
‖x − y‖ = 1 > α,

so any vector (x, y) ∈ S2 with x �= y satisfies the definition of some Az , namely
the one with z = x. Noting that the requirement ‖x− y‖ ≥ 1/2 in the definition
of H implies x �= y, we conclude that (iii) must hold.

Thus the family {Az, z ∈ S} of sets forms an open cover of H . As H is closed
and bounded, and the space S2 is also finite dimensional, it follows from the well
known Heine-Borel theorem that there exists a finite subcover. That is, there
must exist finitely many points z1, . . . , zk with H ⊂ ⋃k

i=1 Azi . This means, any
(x, y) ∈ H must satisfy the definition of at least one of these Azi , that is,

‖y − zi‖ − ‖x − zi‖
‖x − y‖ > α, for some i ∈ {1, . . . , k}. (3)

Note that the above reasoning, including all involved sets, depends only on the
space and α, but not on n. Consequently, the value of k, as well as the vectors
z1, . . . , zk themselves, can be chosen independently of n.
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So far we have shown that (3) holds for any (x, y) ∈ H . Now we prove that
(3) remains true for any x, y ∈ U , x �= y. (Recall that U is the closed unit ball
in S. Note that, by the definitions, x, y ∈ U does not imply (x, y) ∈ H .)

If x, y ∈ U and ‖x − y‖ ≥ 1/2, then (x, y) ∈ H , so then we already know (3)
holds. To handle the remaining case 0 < ‖x−y‖ < 1/2, take two points x, y ∈ U
at distance λ apart, for some 0 < λ < 1/2. That is, ‖x‖ ≤ 1, ‖y‖ ≤ 1, and
0 < ‖x − y‖ = λ < 1/2. Set

x′ =
1
λ

(x − (1 − λ)y).

Then x = λx′ + (1 − λ)y holds, that is, x divides the line segment x′y such that
‖x−y‖ = λ‖x′−y‖. As we have chosen ‖x−y‖ = λ, it implies ‖x′−y‖ = 1. This,
together with y ∈ U and with the triangle inequality, gives 2 ≥ ‖x′ − y‖+ ‖y‖ ≥
‖x′‖, yielding ‖x′‖ ≤ 2. Collecting these facts, they imply (x′, y) ∈ H . But then
by (3) there is a zi with

‖y − zi‖ − ‖x′ − zi‖
‖x′ − y‖ > α. (4)

Now using x− zi = λ(x′ − zi) + (1−λ)(y − zi), as well as the fact that the norm
axioms ensure that every norm is a convex function, we can write

‖y − zi‖ − ‖x − zi‖
‖x − y‖ ≥

‖y − zi‖ − (λ‖x′ − zi‖ + (1 − λ)‖y − zi‖)
λ

=

‖y − zi‖ − ‖x′ − zi‖ =

‖y − zi‖ − ‖x′ − zi‖
‖x′ − y‖ > α, (5)

where we made use of ‖x′ − y‖ = 1. Thus, we have arrived at

‖y − zi‖ − ‖x − zi‖
‖x − y‖ ≥ α (6)

also in the case of 0 < ‖x − y‖ < 1/2. Hence, we can conclude that for any
x, y ∈ U there must be an i ∈ {1, . . . , k} with

| ‖x − zi‖ − ‖y − zi‖ | ≥ α‖x − y‖. (7)

For ‖x − y‖ ≥ 1/2 this follows from (3) and the case 0 < ‖x − y‖ < 1/2
is covered by the analysis resulting in (6). (The case ‖x − y‖ = 0 is trivial,
since then the right-hand side in (7) is 0.) Since the triangle inequality implies
| ‖x − z‖ − ‖y − z‖ | ≤ ‖x − y‖ for every x, y, z, therefore, combining this with
(7), we obtain that (2) must hold for every x, y ∈ U .
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Now, let R be the largest norm value that occurs among the input points, i.e.,
R = maxj ‖xj‖. Then we have 1

Rxr ∈ U for every source point xr. Taking any
two input points xr, xs, we can apply (2) to x = 1

Rxr , y = 1
Rxs. Multiplying all

sides in (2) by R yields

α‖xr − xs‖ ≤ max
i

| ‖xr − Rzi‖ − ‖xs − Rzi‖ | ≤ ‖xr − xs‖. (8)

We can now define the sought embedding by the following function:

f(x) = (‖x − Rz1‖, . . . , ‖x − Rzk‖).

This maps the input points into �k∞, and by (8) it satisfies

1
D

‖xr − xs‖ ≤ ‖f(xr) − f(xs)‖∞ ≤ ‖xr − xs‖.

Since k is independent of n, and D = 1 + ε is arbitrarily close to 1, therefore, we
indeed obtained an almost isometric embedding into constant dimension, where
both the dimension and the distortion are independent of the number of source
points. ♣
Now we show that the embedding of Theorem 1 can be computed by a linear
time algorithm. Here we only restrict ourselves to the real number based unit
cost algorithmic model, which is the most natural fit for the method. In this
model a real number is considered an elementary unit of data, and elementary
operations on real numbers are counted as single steps. The algorithm can be
transformed, however, into the more conventional bit oriented model (where we
operate with bits, so one can only use rational numbers, including the norm
values).

Theorem 2. There exists a linear time algorithm in the real number based unit
cost model that computes the embedding derived in Theorem 1.

Proof. Let us first recall, as pointed out in the proof of Theorem 1, that the
vectors z1, . . . , zk ∈ S, used in the embedding, as well as their number k, can be
chosen independently of n. They depend only on S and the target distortion D =
1 + ε, but not on n. Therefore, for fixed S and D, they can be hardwired in the
algorithm2. Then computing f(xr) for an input point xr only takes computing
R = maxj ‖xj‖, and then ‖xr −Rz1‖, . . . , ‖xr −Rzk‖, which are the coordinates
of f(xr). All this can clearly be done in linear time, assuming the real number
based unit cost model, and oracle access to the norm. ♣

5 Conclusion

We have presented a new, simpler and more transparent proof for the metric
embedding result from an arbitrary fixed finite dimensional normed space into
2 Note that here we do not claim an efficient method to actually construct the algo-

rithm, here we only prove that it exists.
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�∞, such that the embedding simultaneously satisfies the following: the target
space has constant dimension (independent of the number of source points), the
distortion is arbitrarily low, and the embedding applies to the original metric,
not a modified version of it. Our embedding can be computed by a linear time
algorithm.
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Abstract. A Boolean function is called an exact threshold function if it
decides whether the input vector x ∈ {0, 1}n is on a hyperplane wT x = t
(w ∈ Zn, t ∈ Z). In this paper we study the upper bound of elements
in w required to represent any exact threshold function. Let k be the
dimension of the linear subspace spanned by Boolean points on wT x = t.
We first give an upper bound O(nk) for constant k, which matches the

lower bound in [2]. Then we prove an upper bound O(kO(k2)nk) for

general cases, improving the result min{n2k

, nn/2+1} in [2].

1 Introduction

A linear threshold function f(x) (x ∈ Rn) is a Boolean function deciding whether
wT x ≥ t, where w = (w1, w2, . . . , wn) ∈ Rn is called the weights and t ∈ R is
called the threshold. Similarly, a linear exact threshold function is a Boolean
function deciding whether wT x = t. Threshold functions and exact threshold
functions are close related to many areas of studies such as circuit complexity,
learning theory, and structural complexity theory etc..

For an (exact) threshold function f , the representation of f (the chosen of the
weights w and threshold t) is not unique, for example we can multiply w and
t by a factor. Without loss of generality we can assume w ∈ Zn and t ∈ Z. A
natural and very important problem is to find the smallest weights required for
representing an (exact) threshold function, i.e. to minimize max1≤i≤n |wi|. For
simplicity, we call this value max1≤i≤n |wi| the key weight of w.

This problem on threshold function has been studied for a long history.
Muroga, Toda and Takasu [5, 6] showed that (n+1)(n+1)/2/2n is sufficient for the
key weight to represent any linear threshold function. For the lower bound part,
there were several existence proofs and explicit constructions of linear threshold
functions that require the key weight of the order 2Ω(n) [5, 7–9]. For n being
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a power of 2, H̊astad [4] gave a threshold function requiring a key weight at
least (1/n)e−4nβ

nn/2/2n, where β = log(3/2). In [1], Alon and Vũ constructed
a threshold function which gives a lower bound nn/2/2n(2−o(1)) for general n.

For the linear exact threshold functions, the same question was first investi-
gated by Babai et al. [2]. They showed a lower bound nn/2/2n(2−o(1)) and an
upper bound n

n
2 +1 of the key weight. They also considered a parameterized

approach to this problem, which is the basic model in this work. For a linear
exact threshold function f : {0, 1}n → {0, 1} defined by f(x) = 1 iff wT x = t,
let k be the dimension of the linear subspace spanned by all the vectors in
f−1(1) = {x ∈ {0, 1}n | f(x) = 1}. Define the dimension of f to be k. For any n
and k, WE(n, k) is used to denote the smallest key weight needed to represent a
dimension-k linear exact threshold function with n variables, and a lower bound
(�n

k �k − 1)/2k and an upper bound n2k

are given for WE(n, k) in [2].
In this work, we focus on the upper bound of WE(n, k). We first show several

properties and lemmas in Section 2, which are the basic ideas widely used in our
argument. For constant k, we give an explicit construction which provides an
upper bound O(nk) matching the lower bound in [2]. The idea is to reduce the
problem into constant size first, and this construction is described in Section 3.
And in Section 4, by a more complicated analysis we show our upper bound
O(kO(k2)nk) for general cases. We conclude the paper with open problems in
Section 5.

2 Preliminary

A Boolean function f : {0, 1}n → {0, 1} is called a linear exact threshold function
if there exist weights w ∈ Rn and a threshold t ∈ R such that f(x) = 1 if and
only if wT x = t. For any w = (w1, w2, . . . , wn)T ∈ Rn, we use notions φ(w) to
denote maxx∈{0,1}n |wT x|, and ω(w) to denote the key weight max1≤i≤n |wi|.

Without loss of generality, we can assume the weights w and the threshold
t are all integers. The goal is to find the minimum possible ω(w) for integer
weights w and threshold t representing any given linear exact threshold func-
tion. Similarly as in [2], without loss of generality we assume f(0) = 1, i.e. the
threshold t = 0. (This can be seen by rotating the Boolean cube {0, 1}n and the
hyperplane wT x = t, which does not change the absolute values of weights.)
Therefore, the points in f−1(1) form a linear subspace in {0, 1}n. Suppose we
are given points a1, a2, . . . , ak ∈ {0, 1}n such that f(x) = 1 (x ∈ {0, 1}n) if and
only if x ∈ span{a1, a2, . . . , ak}∩{0, 1}n. Without loss of generality, we assume
the vectors a1, a2, . . . , ak are linearly independent in Rn. Hence the dimension
of f is k.

A vector w ∈ Zn is called a solution of a1, a2, . . . , ak if the linear function
g(x) = wT x (x ∈ {0, 1}n) vanishes exactly on span{a1, a2, . . . , ak} ∩ {0, 1}n,
i.e. f(x) = 1 (x ∈ {0, 1}n) if and only if wT x = 0.

We give a basic lemma used in our constructions. It states that a solution w
can be constructed from a set of linear equations.
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Lemma 1. Suppose that there exist t vectors w1, w2, . . . , wt ∈ Zn such that
a 0-1 vector x ∈ span{a1, a2, . . . , ak} if and only if every wi

T x = 0 holds
(1 ≤ i ≤ t). Then we can construct a solution w ∈ Zn with

ω(w) ≤
t∑

i=1

⎛⎝ω(wi)
i−1∏
j=1

(φ(wj) + 1)

⎞⎠ .

Proof. Define the vector w as

w1+(φ(w1) + 1) w2+ · · ·+
⎛⎝i−1∏

j=1

(φ(wj) + 1)

⎞⎠wi + · · ·+
⎛⎝t−1∏

j=1

(φ(wj) + 1)

⎞⎠wt.

For every x ∈ {0, 1}n such that wT x = 0, i.e.

w1
T x + (φ(w1) + 1) w2

T x (1)

+ · · · +

⎛⎝i−1∏
j=1

(φ(wj) + 1)

⎞⎠wi
T x + · · · +

⎛⎝t−1∏
j=1

(φ(wj) + 1)

⎞⎠wt
T x = 0.

one can see that
w1

T x ≡ 0 (mod φ(w1) + 1).

This implies w1
T x = 0 by the definition of φ(·). Then if we divide Eq. (1) by

φ(w1) + 1, and module φ(w2) + 1, we get w2
T x = 0. In this way, we can show

that wi
T x = 0 for every i = 1, 2, . . . , t. Hence w is a solution. The key weight

ω(w) stated in this lemma is straightforward. �

Define a matrix N ∈ {0, 1}k×n in which the i-th row is ai
T (1 ≤ i ≤ k), i.e.

N = [a1, . . . , ak]T . Since a1, a2, . . . , ak are linearly independent, the rank of
N must be k, and there exist k linearly independent columns. Without loss of
generality, we assume the first k columns of N are linearly independent in Rk.

Let L denote the first k columns of N , and M denote the last (n−k) columns,
N = [L, M ]. We use l1, l2, . . . , lk and m1, m2, . . . , mn−k to denote the columns
of L and M respectively. For a vector x, let xL be the first k elements and xM

be the last n − k elements. We use x1, x2, . . . , xk to denote the elements of xL

and xk+1, xk+2, . . . , xn to denote elements of xM .
For every xL ∈ {0, 1}k, there is a unique element y ∈ span{a1, a2, . . . , ak}

with yL = xL, because L has full rank. Moreover, we can see

yT = xL
T [Ik, L−1M ],

where Ik is the k × k identity matrix. Therefore yM = (L−1M)T xL and

x ∈ span{a1, a2, . . . , ak} ⇔ x = y ⇔ xM = (L−1M)T xL.

Thus we have the following lemma.
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Lemma 2. A 0-1 vector x ∈ span{a1, a2, . . . , ak} if and only if

xM = (L−1M)T xL.

Based on Lemma 1 and Lemma 2, we give a brute-force construction as the
following solvability lemma.

Lemma 3. For any a1, a2, . . . , ak ∈ {0, 1}n, there exits a solution w with
ω(w) = O(h(k)n−k), where h(k) is a function only depends on k.

Proof. The equations set xM = (L−1M)T xL can be split into (n − k) linear
equations xk+i = (L−1mi)T xL (1 ≤ i ≤ n − k). By Cramer’s rule,

L−1mi =
1

det(L)

(
det(L(i)

1 ), det(L(i)
2 ), . . . , det(L(i)

k )
)T

,

where L
(i)
j is the matrix obtained by replacing L’s j-th column with mi (1 ≤

j ≤ k). Therefore xk+i = (L−1mi)T xL is equivalent to

det(L(i)
1 )x1 + det(L(i)

2 )x2 + · · · + det(L(i)
k )xk − det(L)xk+i = 0.

By Lemma 1 and Lemma 2, we just need to construct a solution from these
equations. In [3], Faddeev and Sominski proved the determinant of a k × k 0-1
matrix is bounded by ± 1

2k (k + 1)
k+1
2 . Recall that L, L

(i)
1 , L

(i)
2 , . . . , L

(i)
k are all

k × k 0-1 matrices, thus we have a solution w with

ω(w) ≤
n−k∑
i=1

⎛⎝ 1
2k

(k + 1)
k+1
2

i−1∏
j=1

(
1
2k

(k + 1)
k+1
2 (k + 1) + 1

)⎞⎠
= O

(
1

k + 1

(
1
2k

(k + 1)
k+3
2 + 1

)n−k
)

.

Let h(k) = 1
2k (k + 1)

k+3
2 + 1 and this lemma is proved. �

Next we show how to reduce the problem by removing any zero columns in N .
Suppose the i1-th, i2-th, . . . , and it-th columns are 0, and w′ is a solution for the
reduced problem. We use x̃ to denote the sub-vector of x, where the i1-th, i2-th,
. . . , it-th elements are removed. We can construct a solution w for the original
problem by two equations w′T x̃ = 0 and xi1 + xi2 + · · · + xit = 0 according
to Lemma 1. Moreover, if the solution w′ itself is constructed by a set of linear
equations, we can add xi1 + xi2 + · · · + xit = 0 to be the last equation (whose
ω(·) = 1). Based on this, a simple use of Lemma 1 gives the following corollary.

Corollary 1. Suppose N = [a1, . . . , ak]T and w′ is a solution of the re-
duced problem (without zero columns). If w′ is constructed from equation sys-
tem w′

1
T x̃ = 0, w′

2
T x̃ = 0, . . . , w′

t
T x̃ = 0, then there is a solution w of

a1, a2, . . . , ak with key weight

ω(w) ≤
t∑

i=1

⎛⎝ω(w′
i)

i−1∏
j=1

(
φ(w′

j) + 1
)⎞⎠+

t∏
j=1

(
φ(w′

j) + 1
)

.
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3 Constant Dimension Case

In this section we give an upper bound for WE(n, k) which matches the lower
bound in [2] for any constant k. The idea is to remove all duplicated columns in
N and solve the reduced problem first.

Suppose there are no zero columns in matrix N . We divide the n columns of
N into groups, such that every two duplicated columns are in the same group.
Suppose there are d groups, we have d ≤ 2k. Pick a leader column from each
group, say they are the r1-th, r2-th, . . . , and rd-th columns. We use s1, s2, . . . , sd

to denote the sizes of each group, then s1 + · · ·+ sd = n. For any vector y ∈ Rn,
define the leader elements as the r1-th, r2-th, . . . , and rd-th elements, and we
use ỹ to denote the sub-vector of all leader elements, i.e. ỹ = yr1yr2 . . . yrd

.
For every row ai in N (1 ≤ i ≤ k), let Qi be the index set of groups with

the i-th row non-zero, i.e. Qi = {j | ai[rj ] = 1, 1 ≤ j ≤ d} (ai[rj ] is the rj -th
element of ai, recall that ai is a 0-1 vector). We first find a solution w′ for
ã1, ã2, . . . , ãk. The equation w′T x̃ = 0 guarantees the leader elements x̃ are
in the required linear space. Then we add further linear equations to solve the
original problem.

Lemma 4. A 0-1 vector x satisfies equation system (2) if and only if x ∈
span{a1, a2, . . . , ak}, where w′ is a solution for ã1, ã2, . . . , ãk.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

w′T x̃ = 0,∑
j∈Q1

sjxrj = a1
T x,∑

j∈Q2
sjxrj = a2

T x,

· · · · · ·∑
j∈Qk

sjxrj = ak
T x.

(2)

Proof. For every 0-1 vector x ∈ span{a1, a2, . . . , ak}, we show that all these
equations are satisfied. The first equation is straightforward. For every group,
say columns j1, j2, . . . , jt, one can see the j1-th, j2-th, . . . , and jt-th elements of
x (and also ai, 1 ≤ i ≤ k) must be all equivalent. It follows that

ai
T x =

∑
j:ai[j]=1

xj =
∑
j∈Qi

sjxrj ,

where 1 ≤ i ≤ k, ai[j] is the j-th element of ai. Therefore all the equations are
satisfied.

On the other hand, we show that if a 0-1 vector x satisfies all these equations,
then there must be x ∈ span{a1, a2, . . . , ak}. By the first equation, we see
x̃ ∈ span{ã1, ã2, . . . , ãk}. Let Ñ be the k × d matrix whose i-th row is ãi

(1 ≤ i ≤ k), i.e. Ñ = [ã1, . . . , ãk]T , and say x̃ = λT Ñ , where λ ∈ Rk. Define
x0 = λT N , we claim that x = x0:

By x ∈ {0, 1}n we see x̃ ∈ {0, 1}k, and this implies x0 ∈ {0, 1}n since
x̃ = λT Ñ , x0 = λT N , and Ñ is the matrix obtained by removing duplicated
columns from N . As a 0-1 vector in span{a1, a2, . . . , ak}, x0 must satisfy all the
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(k + 1) equations in (2). The leader elements of x0 are the same as those of x,
hence the left hand side of the 2nd, 3rd, . . . , (k + 1)-th equations are the same
for x and x0. Therefore ai

T x = ai
T x0 for all i = 1, 2, . . . , k, i.e. N(x−x0) = 0.

It follows that λT N(x−x0) = 0, or x0
T x0 = x0

T x. By a simple observation,
that for any j = 1, 2, . . . , n, the j-th element of x0 is 1 implies xj = 1, i.e. x0 ≤ x,
thus x − x0 ∈ {0, 1}n. It must be 0 due to N(x − x0) = 0 and N contains no
zero column. Therefore x = x0 and the lemma is proved. �

The reduced problem on ã1, ã2, . . . , ãk has only constant size (size d ≤ 2k).
By Lemma 3, there is a solution w′ with constant key weight ω(w′). The value
φ(w′) ≤ d · ω(w′) is also a constant. Let C = max{ω(w′), φ(w′)} + 1. For the
2nd, 3rd, . . . , and the (k+1)-th equations, the corresponding ω(·) and φ(·) values
are at most n. By Corollary 1, there is a solution of a1, . . . , ak with key weight

ω(·) ≤ C + Cn + Cn(n + 1) + · · · + Cn(n + 1)k−1 + C(n + 1)k = O(nk).

Theorem 1. For any linear exact threshold function of constant dimension
k, we have an explicit construction of a solution w with ω(w) = O(nk), i.e.
WE(n, k) = O(nk).

4 General Construction

The previous section actually provides a construction for general cases as well
as constant dimension k. However, the key weight ω(w) in that construction is
of order O(kO(exp(k))nk), which is far from we expected. In this section, we give
a more complicated construction works for general k.

We still assume that there are no zero columns in N = [L, M ]. The idea
has some similarities with the previous construction, i.e. to reduce the size of
the problem first. As we have shown, for every xL ∈ {0, 1}k there is a unique
y ∈ span{a1, a2, . . . , ak} with yL = xL, and x ∈ span{a1, a2, . . . , ak} if and
only if xM = yM . The vector yM = (L−1M)T xL may not be integers for an
arbitrary xL. We say a vector xL ∈ {0, 1}k is forbidden by mi if the i-th element
of yM /∈ Z, i.e. (L−1mi)T xL /∈ Z. (recall mi is the i-th column of M)

We define a reduced matrix M̃ by the following algorithm. Initially let M̃ =
M , then repeat the procedure until no further columns will be deleted.

– If a column mi forbids nothing, remove it from M̃ ;
– If every vector forbidden by mi is also forbidden by some other column in

M̃ , remove mi.

Suppose there are l columns m̃1, m̃2, . . . , m̃l left in M̃ . One can see that
every m̃i (1 ≤ i ≤ l) must forbid some distinct xL. That is, for every
i = 1, 2, . . . , l, there is a vector x

(i)
L ∈ {0, 1}k forbidden only by m̃i. Let

ti = (ti1, ti2, . . . , til)T = (L−1M̃)T x
(i)
L (a sub-vector of the corresponding yM

for x
(i)
L ), then we have tii /∈ Z, and tij ∈ Z for all j �= i.
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We consider the reduced problem on [L, M̃ ] first. By Lemma 2, the following
equation is necessary (but might not be sufficient) for (xL, xM̃ ) being in the
linear space spanned by rows of [L, M̃ ].

M̃(L−1M̃)T xL − xM̃ ) = 0 (3)

We say a vector (xL, xM̃ ) ∈ {0, 1}k+l is bad if it satisfies (3), but not in
the linear space spanned by rows of [L, M̃ ], i.e. (L−1M̃)T xL − xM̃ �= 0. The
following two Lemmas show how to rule out these bad vectors.

Lemma 5. For every xL ∈ {0, 1}k, there is at most one 0-1 vector xM̃ such
that (xL, xM̃ ) is bad, i.e. if both (xL, xM̃

′) and (xL, xM̃
′′) satisfies Eq. (3),

then xM̃
′ = xM̃

′′.

Proof. Suppose xM̃
′ �= xM̃

′′. Pick the i-th column m̃i from M̃ (1 ≤ i ≤ l),
such that the i-th element of xM̃

′ differs from the i-th element of xM̃
′′. Since

ti = (L−1M̃)T x
(i)
L , from Eq. (3) we have

x
(i)
L

T L−1M̃
(

(L−1M̃)T xL − xM̃
′
)

= 0, i.e. ti
T (L−1M̃)T xL = ti

T xM̃
′.

x
(i)
L

T L−1M̃
(

(L−1M̃)T xL − xM̃
′′
)

= 0, i.e. ti
T (L−1M̃)T xL = ti

T xM̃
′′.

Therefore ti
T xM̃

′ = ti
T xM̃

′′. Since only the i-th element of ti is not an integer,
and the i-th elements of xM̃

′, xM̃
′′ are different numbers in {0, 1}, we see one

of {ti
T xM̃

′, ti
T xM̃

′′} is an integer while the other is not an integer. This is a
contradiction, and the lemma is proved. �
Together with Eq. (3), the following lemma gives another equation (4) to solve
the reduced problem on [L, M̃ ].

Lemma 6. There exist a matrix R ∈ {0, 1}(k+1)×l such that no bad vector
(xL, xM̃) satisfies

R((L−1M̃)T xL − xM̃ ) = 0 (4)

Proof. We consider a random matrix R ∈ {0, 1}(k+1)×l that every element has
probability 1

2 to be 1 and probability 1
2 to be 0. For a bad vector (xL, xM̃ ) ∈

{0, 1}k+l, (L−1M̃)T xL − xM̃ is a non-zero vector, say the j-th element is not
zero (1 ≤ j ≤ l). For each row ri

T in R such that ri
T ((L−1M̃)T xL − xM̃ ) is 0,

we can flip the j-th element of ri
T to make it non-zero. Thus the probability

Pr
ri

(
ri

T ((L−1M̃)T xL − xM̃ ) = 0
)
≤ 1

2
,

and it follows that the probability

Pr
R

(
R((L−1M̃)T xL − xM̃ ) = 0

)
≤ 1

2k+1
.

By Lemma 5, there are at most 2k bad vectors. The existence of matrix R
follows directly from a use of union bound. �
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We choose R to be a matrix that no bad vector satisfies (4). One can construct
a solution for the reduced problem on [L, M̃ ] from Eq. (3) and (4). The last step
is to add Eq. (5) to solve the original problem.

Lemma 7. For every vector x = (xL, xM ) ∈ {0, 1}n satisfying Eq. (3), (4) and

M((L−1M)T xL − xM ) = 0, (5)

there must be (L−1M)T xL − xM = 0, i.e. x ∈ span{a1, a2, . . . , ak}.

Proof. By x satisfying Eq. (3) and (4) and the above argument, we have
(L−1M̃)T xL − xM̃ = 0. Thus xL is not forbidden by any column in M̃ . Fur-
thermore, by the construction of M̃ , xL is not forbidden by any column in M ,
i.e. the elements of (L−1M)T xL are all integers.

Similarly as in Section 2 we use yM = (yk+1, yk+2, . . . , yn)T to denote
(L−1M)T xL, then yk+i ∈ Z and therefore y2

k+i ≥ yk+i for i = 1, 2, . . . , n − k.
By Eq. (5) we have

xL
T L−1M

(
(L−1M)T xL − xM

)
= 0,

i.e. yM
T (yM − xM ) = 0, hence

n−k∑
i=1

y2
k+i =

∑
i:xk+i=1

yk+i,

where xk+i is the i-th element of xM . By y2
k+i ≥ yk+i and y2

k+i ≥ 0, we have

– If xk+i = 0, then there must be yk+i = 0.
– If xk+i = 1, then there must be y2

k+i = yk+i, hence yk+i = 0 or yk+i = 1.

Therefore xM ≥ yM , i.e. xM −yM is a 0-1 vector. By Eq. (5) M(xM −yM ) = 0
and M containing no zero columns, xM − yM must be the zero vector. Hence
xM = yM and the lemma is proved. �
The equation system (3), (4) and (5) can be split into 3k + 1 linear equations.
Each equation is a summation of at most l (for Eq. (3) and (4)) or (n − k) (for
Eq. (5)) equations from the following (n − k) equations:

(L−1mi)T xL = xk+i, (i = 1, 2, . . . , n − k).

We normalize the coefficients to integers by multiplying det(L). By a sim-
ilar argument as in Lemma 3, the values ω(·) and φ(·) are bounded by
l

2k (k + 1)
k+1
2 (k + 1) = l

2k (k + 1)
k+3
2 (defined as b1) for the first 2k + 1 equations,

and n
2k (k + 1)

k+3
2 (defined as b2) for the last k equations. By Corollary 1, we can

construct a solution w for [L, M ] with

ω(w) ≤
2k+1∑
i=1

bi
1 +

3k+1∑
i=2k+2

(
b2k+1
1 b

i−(2k+1)
2

)
+ b2k+1

1 bk
2 = O

(
b2k+1
1 bk

2

)
.

We have l ≤ min{2k, n−k} by the definition of M̃ , thus b1 ≤ min{2k,n−k}
2k (k +

1)
k+3
2 . A simple calculation gives the following theorem.
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Theorem 2. For any linear exact threshold function of dimension k, there is a
solution w with ω(w) = O

(
(k+1

4 )1.5k2+O(k) · min{2k, n − k}2k+1 · nk
)

.

Theorem 1 can also be implied directly from this theorem. For general k, Theo-
rem 2 gives an upper bound O(kO(k2)nk) = O(nO(k2)).

5 Conclusion

Through out this paper we consider the weights of integer in the representa-
tions of linear exact threshold functions. We first show an explicit construc-
tion giving a tight upper bound O(nk) on the weights for constant dimension
k. This construction also works for general cases, while the upper bound be-
comes O(kO(exp(k))nk). We then show there exists a solution with upper bound
O(kO(k2)nk) through a more complicated analysis.

There are still several open problems on this topic. For general cases, our proof
go through probabilistic method and the the construction is implicit. It would
be interesting to find a deterministic algorithms to construction good solutions.
Moreover, we believe that our analysis can be improved to get a better upper
bound. And it remains open to close the gap between the upper and lower bounds
for large k.
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a Submodular Set Covering Constraint
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Abstract. In this paper, we consider the problem of minimizing a
submodular function under a submodular set covering constraint. We
propose an approximation algorithm for this problem by extending the
algorithm of Iwata and Nagano [FOCS’09] for the set cover problem with
a submodular cost function.

1 Introduction

Let N be a finite nonempty set. A real-valued function ρ on 2N is submodular if

ρ(X) + ρ(Y ) ≥ ρ(X ∪ Y ) + ρ(X ∩ Y )

for all X, Y ⊆ N . Submodular functions play an important role in the field of
combinatorial optimization, game theory and so on.

The first polynomial-time algorithm for the submodular function minimization
problem was presented by Grötschel, Lovász and Schrijver [1,2] via the ellipsoid
method. Combinatorial polynomial-time algorithms for minimizing submodular
functions were presented by Iwata, Fleischer and Fujishige [3] and Schrijver [4].
These combinatorial algorithms have been improved in time complexity [5,6,7].

Constrained submodular function minimization problems have also been stud-
ied in various contexts. For example, Svitkina and Fleischer [8] considered the
submodular function minimization problem with a cardinality lower bound and
gave a lower bound for approximability. Iwata and Nagano [9] considered sub-
modular function minimization under a vertex covering constraint, a set cover-
ing constraint and an edge covering constraint, and gave approximability and
inapproximability. Goel, Karande, Tripathi and Wang [10] also studied the ver-
tex cover problem, the shortest path problem, the perfect matching problem
and the minimum spanning tree problem with a monotone submodular cost
function.

In this paper, we consider the submodular function minimization problem un-
der a submodular set covering constraint (in short SFM-SSCC) which is defined
as follows. We are given a non-empty finite set N and a non-negative real-valued
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submodular function ρ on 2N and a non-negative real-valued monotone submod-
ular function μ on 2N such that ρ(∅) = μ(∅) = 0, where μ is called monotone
if μ(X) ≤ μ(Y ) for every X, Y ⊆ N such that X ⊆ Y . Let B be the set of
X ⊆ N such that μ(X) = μ(N). Then, the problem SFM-SSCC asks for finding
a minimizer of

min{ρ(X) | X ∈ B}.
We assume without loss of generality that μ(N) > 0. Otherwise, we have μ(X) =
0 for all X ⊆ N , and thus ∅ is an optimal solution for the problem SFM-SSCC.

By the result of [11], we can see that the problem SFM-SSCC generalized the
set cover problem with a submodular cost function (for the details, see Section 4).
The problem SFM-SSCC with a linear cost function was considered in [11,12]. In
this paper, we propose an approximation algorithm for the problem SFM-SSCC
by extending the algorithm of Iwata and Nagano [9] for the set cover problem
with a submodular cost function.

The rest of this paper is organized as follows. In Section 2, we give necessary
definitions and basic facts. In Section 3, we propose an approximation algorithm
for the problem SFM-SSCC. In Section 4, we consider an application of our
result to the set cover problem with a submodular cost function.

2 Preliminaries

We denote by R and R+ the sets of real numbers and non-negative real numbers,
respectively. Given a subset X ⊆ N , we define the characteristic χX by χX(i) = 1
for i ∈ X and χX(i) = 0 for i ∈ N \ X .

2.1 Submodular Functions

Associated with ρ, we consider a submodular polyhedron

P(ρ) =
{
x ∈ RN |

∑
i∈X

x(i) ≤ ρ(X) (∀X ⊆ N)
}
.

Suppose that we are given a non-negative vector p ∈ RN
+ . Let

p1 > p2 > · · · > pm

be the distinct values of p. For each i ∈ {1, . . . , m}, we denote

Ni = {j ∈ N | p(j) ≥ pi}.

Then, we define ρ̂(p) by

ρ̂(p) =
m∑

i=1

(pi − pi+1)ρ(Ni),
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where pm+1 = 0. A function ρ̂ is called a Lovász extension [13]. It is not difficult
to see that ρ̂(χX) = ρ(X) for all X ⊆ N . It is known [14] that

ρ̂(p) = max{〈p, z〉 | z ∈ P(ρ)
}
, (1)

where 〈p, z〉 is an inner product of p and z.
Given a subset S ⊆ N , we define a function ρS : 2N\S → R by

ρS(X) = ρ(X ∪ S) − ρ(S)

for each X ⊆ N \ S. The function ρS is called a contraction of ρ on N \ S.

2.2 Integer Programming Formulation

Here we formulate the problem SFM-SSCC as an integer programming. Given
a subset T ⊆ N , it is known [11] that μ(T ) = μ(N) if and only if∑

i∈N\S

μS({i}) · χT (i) ≥ μS(N \ S)

for all S ⊆ N . Thus, the problem SFM-SSCC can be formulated as follows.

min ρ(X)

s.t.
∑

i∈N\S

μS({i}) · χX(i) ≥ μS(N \ S) (∀S ⊆ N)

X ⊆ N.

We call this integer programming IP.

3 Algorithm

In this section, we give an approximation algorithm for the problem SFM-SSCC.
We use a linear programming relaxation of the problem IP. Recall that ρ̂(χX) =
ρ(X) for all X ⊆ N . Thus, the problem LP

min ρ̂(x)

s.t.
∑

i∈N\S

μS({i}) · x(i) ≥ μS(N \ S) (∀S ⊆ N)

x ∈ RN
+

is a relaxation of the problem IP. Furthermore, it follows from (1) that ρ̂(x) is
equal to the optimal objective value of the problem

min
∑

X⊆N

ρ(X) · ξ(X)

s.t.
∑

X⊆N : i∈X

ξ(X) = x(i) (∀i ∈ N)

ξ ∈ R2N

+
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for each x ∈ RN
+ . Thus, the problem LP can be written as

min
∑

X⊆N

ρ(X) · ξ(X)

s.t.
∑

i∈N\S

μS({i}) · x(i) ≥ μS(N \ S) (∀S ⊆ N)

∑
X⊆N : i∈X

ξ(X) = x(i) (∀i ∈ N)

x ∈ RN , ξ ∈ R2N

+ .

Here, we neglect the redundant non-negativity constraint of x. Hence, the dual
of LP, called DLP, is given as follows.

max
∑
S⊆N

μS(N \ S) · y(S)

s.t.
∑

S⊆N : i/∈S

μS({i}) · y(S) = z(i) (∀i ∈ N)

y ∈ R2N

+ , z ∈ P(ρ).

Let S∗ and optD be an optimal solution of the problem SFM-SSCC and the
optimal objective value of the problem DLP. Then, we have optD ≤ ρ(S∗).

We are now ready to present our algorithm which is called SFM-SSCC. The
algorithm SFM-SSCC can be described as follows. In the algorithm, t is an
integer, yt ∈ R2N

, zt ∈ RN and Tt ⊆ N .

Step 1: Set t = 0, yt = 0, zt = 0 and Tt = ∅.
Step 2: Repeat the following (2-1) to (2-5) until μ(Tt) = μ(N).
(2-1) Compute a vector at ∈ RN

+ defined by

at(i) =
{

μTt({i}), if i /∈ Tt,
0, otherwise,

for each i ∈ N .
(2-2) Compute λt = min{λ ∈ R+ | zt + λ · at ∈ P(ρ)}.
(2-3) Set yt+1 = yt + λt · χ{Tt} and zt+1 = zt + λt · at.
(2-4) Set Tt+1 to be the unique maximal set such that∑

i∈Tt+1

zt+1(i) = ρ(Tt+1).

(2-5) Update t = t + 1.
Step 3: Return Tt.

Notice that it can be proved by using the submodularity of μ that there exists
the desired unique maximal set in Step (2-4). For the details, see the proof of
Lemma 2.
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3.1 Analysis

We first show that the algorithm SFM-SSCC is well-defined. We can prove this
by the following Statement 2 of Lemma 1.

Lemma 1. Throughout the algorithm SFM-SSCC,

1. (yt, zt) is feasible to the problem DLP, and
2. if μ(Tt) < μ(N), λt exists.

Proof. We prove the lemma by induction on t. We first show that (y0, z0) is
feasible to the problem DLP. Since ρ is non-negative, z0 = 0 belongs to P(ρ).
Hence, (y0, z0) is feasible to the problem DLP.

Next, assuming that (yt, zt) is feasible to the problem DLP, we show that
λt exists. Since zt belongs to P(ρ) by the induction hypothesis and at is non-
negative by the monotonicity of μ, it suffices to show that at �= 0. Assume that
at = 0. Then,

μ(Tt ∪ {i}) = μ(Tt) (2)

for all i ∈ N \ Tt. By the submodularity of μ,∑
i∈N\Tt

μ(Tt ∪ {i}) ≥ (|N \ Tt| − 1)μ(Tt) + μ(N). (3)

By (2) and (3), μ(Tt) ≥ μ(N), which contradicts μ(Tt) < μ(N).
Finally, assuming that (yt, zt) is feasible to the problem DLP and λt exists,

we show that (yt+1, zt+1) is feasible to the problem DLP. Since it follows from
the definition of λt that zt+1 belongs to P(ρ), we consider the first constraint.
Since yt+1(S) = yt(S) for all S ∈ 2N \ {Tt}, it suffice to consider the constraint
for i ∈ N \ Tt. By the definition of at,

zt+1(i) − zt(i) = λt · μTt({i}).

Since yt+1(S) = yt(S) for all S ∈ 2N \ {Tt},

∑
S⊆N : i/∈S

μS({i}) · yt+1(S) −
∑

S⊆N : i/∈S

μS({i}) · yt(S)

= μTt({i}) · (yt+1(Tt) − yt(Tt)) = λt · μTt({i}).

By these, (yt+1, zt+1) is feasible to the problem DLP. �	

Now we evaluate the time complexity and the approximation ratio of the algo-
rithm SFM-SSCC.

Lemma 2. The algorithm SFM-SSCC terminates in O(|N |6EO + |N |7) time,
where EO is the time required for one function evaluation of ρ and μ.
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Proof. We first estimate the number of iterations of Step 2. It is not difficult to
see that after Step (2-3) there exists X ⊆ N such that∑

i∈X

zt+1(i) = ρ(X)

and X \ Tt �= ∅. Otherwise, we can increase λt. We define a function g : 2N → R
by

g(S) = ρ(S) −
∑
i∈S

zt+1(i)

for each S ⊆ N . It is easy to see that g is a non-negative submodular function
since zt+1 ∈ P(ρ). By g(Tt) = 0,

0 = g(X) + g(Tt) ≥ g(X ∩ Tt) + g(X ∪ Tt) ≥ 0,

which implies that g(X ∪ Tt) = 0, i.e.,∑
i∈X∪Tt

zt+1(i) = ρ(X ∪ Tt).

By a similar argument, it is easy to see that X ∪ Tt ⊆ Tt+1. Hence, it follows
from X \ Tt �= ∅ that Tt+1 is larger than Tt. This implies that the number of
iterations of Step 2 is at most |N |.

Now we consider the time required for one iteration of Step 2. It is clear that
Steps (2-1), (2-3) and (2-5) can be done in O(|N |EO) time, O(|N |) time and
O(1) time, respectively. Here we consider the time required for Step (2-2). To
compute λt is equivalent to

min
S⊆N

ρ(S) −∑i∈S zt(i)∑
i∈S at(i)

.

Since a function ρ−zt is submodular and at ∈ RN
+ \{0}, it is known [15] that this

value can be computed in O(|N |5EO+ |N |6) time. Furthermore, it is known [16,
Note 10.11] that in Step (2-4) we can compute the desired unique maximal set
in O(|N |3EO) time. This completes the proof. �	
In the sequel, we assume that t = k when the algorithm SFM-SSCC halts. Let
ck be the objective value for (yk, zk), i.e.,

ck =
k−1∑
t=0

μTt(N \ Tt) · λt.

Lemma 3. If ck = 0, Tk is an optimal solution for the problem SFM-SSCC.

Proof. By μ(N) > 0, we must have λ0 = 0. Thus, T1 is set to be the maximal
set such that ρ(T1) = 0. If μ(T1) = μ(N), the proof is done. From here, we
show that if μ(T1) < μ(N), this contradicts the fact that ck = 0. Assume that
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μ(T1) < μ(N), i.e., μT1(N \ T1) > 0. Since T1 is set to be the maximal set such
that ρ(T1) = 0, λ1 > 0. If λ1 = 0, it follows from the submodularity of ρ that
there exists a set X ⊆ N such that X � T1 and ρ(X) = 0, which contradicts the
maximality of T1. Hence, μT1(N \ T1) · λ1 > 0, which contradicts the fact that
ck = 0. �	
Lemma 4. The approximation ratio of the algorithm SFM-SSCC is

max
S⊆N : μ(S)<μ(N)

∑
i∈N\S μS({i})

μS(N \ S)
. (4)

Proof. By the definition of ck,

ck ≤ optD ≤ ρ(S∗). (5)

Since yk(S) = 0 for all S ∈ 2N \ {T0, . . . , Tk−1},

ρ(Tk) = zk(Tk) =
∑
i∈Tk

∑
S⊆N : i/∈S

μS({i}) · yk(S)

=
∑
S⊆N

∑
i∈Tk\S

μS({i}) · yk(S)

=
∑

t∈{0,...,k−1}

∑
i∈Tk\Tt

μTt({i}) · yk(Tt). (6)

Furthermore,

ck =
∑
S⊆N

μS(N \ S) · yk(S) =
∑

t∈{0,...,k−1}
μTt(N \ Tt) · yk(Tt). (7)

By (6) and (7),
ρ(Tk)

ck
≤ max

t∈{0,...,k−1}

∑
i∈Tk\Tt

μTt({i})

μTt(N \ Tt)
. (8)

By the definition of the algorithm SFM-SSCC, μ(Tt) < μ(N) for all t ∈
{0, . . . , k − 1}. Hence, it follows from (5), (8) and the monotonicity of μ that

ρ(Tk)
ρ(S∗)

≤ max
t∈{0,...,k−1}

∑
i∈Tk\Tt

μTt({i})

μTt(N \ Tt)

≤ max
S⊆N : μ(S)<μ(N)

∑
i∈N\S μS({i})

μS(N \ S)
.

This completes the proof. �	
By Lemmas 1 to 4, we obtain the main result of this paper.

Theorem 1. The algorithm SFM-SSCC is a polynomial-time approximation
algorithm for the problem SFM-SSCC with a factor (4).
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4 Application

In this section, we consider an application of our result to the set cover problem
with submodular cost function which was studied by Iwata and Nagano [9].

4.1 The Submodular Cost Set Cover Problem

In this subsection, we consider the submodular cost set cover problem. In this
problem, we are given a finite set U , a collection X = {X1, . . . , Xn} of subsets
of U indexed by N = {1, . . . , n} and a non-negative submodular function ρ on
2N such that ρ(∅) = 0. For each S ⊆ N , we denote XS = ∪i∈SXi. We say that
S ⊆ N is a set cover if XS = U . We assume without loss of generality that
there exists a set cover. Then, this problem asks for finding a set cover S ⊆ N
that minimizes ρ(S). Iwata and Nagano [9] showed that this problem can be
approximated with a factor of the maximum frequency

η = max
u∈U

|{i ∈ N | u ∈ Xi}|.

In this subsection, we prove that our result is an extension of this result.
It is known [11] that the set covering constraint can be represented by the

submodular set covering constraint as follows. We define a function μ on 2N by

μ(S) =
∑
u∈U

min
{∑

i∈S

χXi(u), 1
}

for each S ⊆ N . It is not difficult to see that by setting μ(∅) = 0, μ is a
non-negative monotone submodular function such that μ(∅) = 0. Hence, what
remains is to show that the approximation ratio (4) is no more than η. By the
double counting technique,∑

i∈N\S μS({i})

μS(N \ S)
=

∑
i∈N\S |Xi \ XS |
|U | − |XS |

=

∑
v∈U\XS

|{i ∈ N \ S | v ∈ Xi}|
|U | − |XS |

≤ max
v∈U\XS

|{i ∈ N \ S | v ∈ Xi}|

≤ η

for each S ⊆ N such that μ(S) < μ(N). This completes the proof.
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Abstract. We discuss the optimal allocation problem in combinatorial
auction, where the items are allocated to bidders so that the sum of the
bidders’ utilities is maximized. In this paper, we consider the case where
utility functions are given by quadratic functions; the class of quadratic
utility functions has a succinct representation but is sufficiently general.
The main aim of this paper is to show the computational complexity of
the optimal allocation problem with quadratic utility functions. We con-
sider the cases where utility functions are submodular and supermodular,
and show NP-hardness and/or polynomial-time exact/approximation al-
gorithm. These results are given by using the relationship with graph
cut problems such as the min/max cut problem and the multiway cut
problem.

1 Introduction

Combinatorial auction is an auction such that bidders can place bids on com-
binations of items, rather than individual items. Combinatorial auctions can be
used, for instance, to sell spectrum licenses, pollution permits, land lots, etc.,
and has emerged as a mechanism to improve economic efficiency when many
items are on sale. See [2,3] for comprehensive survey on combinatorial auctions.

In a combinatorial auction, bidders can present bids on bundles of items,
and thus may easily express substitutabilities and complementarities among the
items on sale. The function that, given a bundle, returns the bidder’s value for
that bundle is called a utility function. A utility function is associated with each
bidder specifying the degree of satisfaction of the bidder for each subset of the
items.

Given utility functions of bidders, the auctioneer of a combinatorial auction
needs to determine how to allocate items to bidders, which is called the optimal
allocation problem. One natural objective for the auctioneer is to maximize the
economic efficiency of the auction, which is the sum of the utilities of all the
bidders. Formally, the optimal allocation problem is defined as follows. Let V
be a set of n items, and M a set of m bidders, and assume, for simplicity,
that V = {1, 2, . . . , n} and M = {1, 2, . . . , m}. Bidder i has a utility function
fi : 2V → R which is monotone, i.e., fi(X) ≥ fi(Y ) whenever X ⊇ Y . The
auctioneer wishes to find a partition (S1, S2, . . . , Sm) of the set V among the m
bidders that maximizes the total utility

∑m
i=1 fi(Si).

M. Ogihara and J. Tarui (Eds.): TAMC 2011, LNCS 6648, pp. 142–153, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Implementation of combinatorial auctions faces several issues to be discussed,
including representation of utility functions. A utility function for a bidder re-
quires a value for each subset of items, and therefore requires exponential real
values in total. This makes it difficult for bidders to reveal their preference cor-
rectly since in practice it is not possible for bidders to submit correct values of
utilities for a exponential number of subsets of items. This also brings a difficulty
to the auctioneer since the input size of utility functions becomes exponential,
and the optimal allocation becomes hard to solve in short time.

Thus, we need a restricted class of utility functions which has a succinct
representation but sufficiently general1. Various such classes of utility functions
have been considered in the literature of combinatorial auction (see, e.g., [2], [3,
Ch. 9]). Some examples are symmetric functions, (budgeted) additive functions,
single-minded functions [23], OR functions, XOR functions, and OR-of-XOR
functions [27].

In this paper, we consider one such class of utility functions called quadratic
functions. In the context of combinatorial auction, the use of quadratic functions
is firstly considered independently by Conitzer et al. [6] (as 2-wise dependent
functions) and by Chevaleyre et al. [5] (as 2-additive functions). A utility function
f : 2V → R is said to be quadratic (or of order 2) if it is represented as

f(X) =
∑

u,v∈X,u<v

a(u, v) +
∑
v∈X

b(v) (X ⊆ V ) (1)

by using real values a(u, v) (u, v ∈ V, u < v) and b(v) (v ∈ V ) (see [9, Sec. 3.6])2.
While a quadratic utility function is simple and can be represented in a succinct
way, it is sufficiently general so that by using the term a(u, v) it can easily
express substitutability and complementarity among items. These facts incicate
that quadratic utility functions constitute an important class of utility functions.

The main aim of this paper is to reveal the computational complexity of the
optimal allocation problem with quadratic utility functions. That is, we consider
the case where a utility function fi : 2V → R of bidder i ∈ M is given as

fi(X) =
∑

u,v∈X,u<v

ai(u, v) +
∑
v∈X

bi(v) (X ⊆ V ) (2)

by using real values ai(u, v) (u, v ∈ V, u < v) and bi(v) (v ∈ V ) The same
problem is considered in [5,6], where they only show the NP-hardness of the very
general case. In contrast, we classify the optimal allocation problem according
to the type of utility functions (substitutes or complements) and the number
of bidders (2 or more), analyze the computational complexity of each case, and
present exact/approximation algorithms.

Previous Results. We review the computational complexity results of the optimal
allocation problem with general utility functions. We here consider only the case
1 Representation of utility functions is called a bidding language.
2 A utility function is quadratic if and only if it can be represented by a quadratic

polynomial function with {0, 1}-variables.
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Table 1. Summary of Our Results (uf. = utility function)

type of uf. \ # of bidders m m = 2 m ≥ 3

submodular uf. NP-hard, 0.879-inapprox. NP-hard, 0.879-inapprox.
0.874-approx.

gross substitutes uf. P (O(n2 log n) time) P (O(mn2 log(mn)) time)

supermodular uf. P (O(n3/ log n) time) NP-hard
0.5-approx.

(2/3-approx. for m = 3)

where a utility function f is given implicitly by a value oracle, which, given a
set S ⊆ V , returns a function value f(S). Since the value oracle can be easily
constructed for quadratic utility functions, all of the results mentioned here are
valid for the case of quadratic utility functions.

We firstly consider the case of submodular utility functions. The problem is
NP-hard, even if m = 2. Moreover, there exists no polynomial-time approxima-
tion algorithm with a ratio better than 1 − 1/e, unless P=NP [18]. Mirrokni
et al. [25] also show that an approximation algorithm with a ratio better than
1 − (1 − 1/m)m requires exponentially many calls to the value oracle, implying,
without any assumption, that there exists no polynomial-time approximation
algorithm with a ratio better than 1−1/e. For the class of gross-substitutes util-
ity functions, which is known to be an important subclass of submodular utility
functions [12,16], the optimal allocation problem can be solved in polynomial
time [22].

We then consider the case of supermodular utility functions. Compared to
the case of submodular utility functions, this case attracts less attention in the
literature of combinatorial auction, and much is not known yet for this case.
If m = 2, then the optimal allocation problem can be easily reduced to the
submodular function minimization problem, which can be solved in polynomial
time [11]. On the other hand, if m ≥ 3 then the problem is NP-hard (see, e.g., [6]).
While an O(

√
log n
n )-approximation algorithm is given [15], no inapproximability

result is known.

Our Results. We analyze the computational complexity of the optimal allocation
problem with quadratic utility functions. We consider the two cases where utility
functions are submodular and supermodular (see Section 2 for definitions), and
for each case we also consider subcases where the number m of bidders are equal
to 2 and more than 2. That is, we consider 4 cases, each of which is denoted as
(SUB|m=2), (SUB|m>2), (SUP|m=2), and (SUP|m>2). The results obtained
in this paper is summarized in Table 1. These results are shown by using the
relationship with graph cut problems such as the min/max cut problem and the
multiway (un)cut problem.

For the case of submodular quadratic utility functions, we show the NP-
hardness even for the case (SUB|m=2) by using the reduction of the max cut
problem in undirected graphs. On the other hand, we present the reduction of
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the case (SUB|m=2) to the max cut problem in directed graphs. This reduction
yields a 0.874-approximation algorithm for (SUB|m=2), which is better than the
approximation ratio 1 − 1/e � 0.632 for the case of general submodular utility
functions. We also consider the special case of gross-substitutes quadratic utility
functions as an important subclass of submodular utility functions. It is shown
that the problem can be solved efficiently in O(mn2 log(mn)) time by using the
reduction to the minimum quadratic-cost flow problem.

For the case of supermodular quadratic utility functions, we firstly show the
polynomial-time solvability of (SUP|m=2) by reducing it to the min cut problem
in directed graphs. We then show the NP-hardness of (SUP|m>2) by using the
reduction of the multiway (un)cut problem. For this problem, we also present a
0.5-approximation algorithm based on randomized LP rounding, where we use
the technique in Langberg et al. [21] for the multiway uncut problem.

The organization of this paper is as follows. Characterizations of submodu-
lar/supermodular quadratic utility functions are given in Section 2. In Section
3, we present our results for (SUB|m=2) and (SUB|m>2), while the results for
(SUP|m=2), and (SUP|m>2) are given in Section 4. Proofs are given in Ap-
pendix due to the page limit.

2 Characterizations of Quadratic Utility Functions

We give characterizations of quadratic utility functions of the form (1) which
have submodularity and supermodularity. Throughout this paper we assume
a(v, u) = a(u, v) for every u, v ∈ V with u < v.

A utility function f : 2V → R is said to be submodular if it satisfies the
following condition:

f(X∪{v})−f(X) ≥ f(Y ∪{v})−f(Y ) (∀X, Y ∈ 2V with Y ⊃ X, ∀v ∈ V \Y ).

Intuitively, this condition says that the marginal value of an item decreases as the
set of items already acquired increases. A utility function f : 2V → R is said to
be supermodular if −f is submodular. Submodularity (resp., supermodularity)
of utility functions is used to model substitutability (resp., complementarity)
of items. A utility function f : 2V → R is said to be monotone if it satisfies
f(X) ≤ f(Y ) for every X, Y ∈ 2V with X ⊆ Y .

Theorem 2.1. Let f : 2V → R be a quadratic utility function of the form (1).
(i) f is submodular if and only if a(u, v) ≤ 0 (∀u, v ∈ V, u �= v).
(ii) Suppose that f is a submodular function. Then, f is monotone if and only
if b(v) +

∑
u∈V \{v} a(u, v)≥0 (∀v∈V ).

Proof. It is well known that f is submodular if and only if the following inequality
holds:

f(X ∪{u})+f(X ∪{v}) ≥ f(X ∪{u, v})+f(X) (∀X ⊆ V, ∀u, v ∈ V \X, u �= v).

This condition is equivalent to the condition a(u, v) ≤ 0 (∀u, v ∈ V, u �= v) since

{f(X ∪ {u, v}) + f(X)} − {f(X ∪ {u}) + f(X ∪ {v})} = a(u, v).
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If f is submodular and monotone, then we have 0 ≤ f(V ) − f(V \ {v}) =
b(v) +

∑
u∈V \{v} a(u, v) for all v ∈ V . On the other hand, if f is a submodular

function satisfying the condition b(v) +
∑

u∈V \{v} a(u, v) ≥ 0 (∀v ∈ V ), then we
have

f(X) − f(X \ {v}) = b(v) +
∑

u∈X\{v}
a(u, v) ≥ b(v) +

∑
u∈V \{v}

a(u, v) ≥ 0

for every X ⊆ V and v ∈ X , i.e., f is monotone. �	
Theorem 2.2. Let f : 2V → R be a quadratic utility function of the form (1).
(i) f is supermodular if and only if a(u, v) ≥ 0 (∀u, v ∈ V, u �= v).
(ii) Suppose that f is a supermodular function. Then, f is monotone if and only
if b(v) ≥ 0 (∀v ∈ V ).

Proof. The statement (i) follows immediately from Theorem 2.1 (i) since f is
supermodular if and only if −f is submodular. It is easy to see that f is monotone
if a(u, v) ≥ 0 (∀u, v ∈ V, u �= v) and b(v) ≥ 0 (∀v ∈ V ). On the other hand, if f
is monotone, then we have 0 ≤ f({v}) − f(∅) = b(v) for all v ∈ V . �	
We also consider an important subclass of submodular utility functions called
utility functions with gross substitutes condition [12,16]. The gross substitutes
condition of a utility function f : 2V → R is described as follows:

∀p, q ∈ RV with p ≤ q, ∀X ∈ arg max
S⊆V

{f(S) − p(S)},

∃Y ∈ arg max
S⊆V

{f(S) − q(S)} s.t. X ∩ {v ∈ V | p(v) = q(v)} ⊆ Y ,

where p and q are price vectors. Intuitively, the gross substitutes condition says
that a bidder still wants to get items that do not change in price after the prices
on other items increase.

Theorem 2.3 (cf. [14]). A quadratic utility function f : 2V → R of the form
(1) satisfies the gross substitutes condition if and only if the following conditions
hold:

a(u, v) ≤ 0 (∀u, v ∈ V, u �= v),
a(u, v) ≤ max{a(u, t), a(v, t)} (∀u, v, t ∈ V, u �= v, u �= t, v �= t).

In the proof of Theorem 2.3, we use the following characterization of gross-
substitutes utility functions.

Theorem 2.4 ([26]; see also [3, Th. 13.5]). A utility function f : 2V → R
satisfies the gross-substitutes condition if and only if f is submodular and satisfies
the following condition:

f(X ∪ {u, v}) + f(X ∪ {t})
≤ max{f(X ∪ {u, t}) + f(X ∪ {v}), f(X ∪ {v, t}) + f(X ∪ {u})}

(∀X ∈ 2V , ∀u, v, t ∈ V, u �= v, u �= t, v �= t).
(3)
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Proof (of Theorem 2.3). For every X ⊆ V and distinct u, v, t ∈ V \ X , it holds
that

{f(X ∪ {u, v}) − f(X)} + {f(X ∪ {t}) − f(X)}
= a(u, v) +

∑
s∈X

a(s, u) +
∑
s∈X

a(s, v) +
∑
s∈X

a(s, t) + {b(u) + b(v) + b(t)}.

Therefore, the inequality (3) in Theorem 2.4 is equivalent to a(u, v) ≤
max{a(u, t), a(v, t)}. Hence, the statement of Theorem 2.3 follows from this fact
and Theorems 2.1 and 2.4. �	

3 Results for Submodular Utility Functions

Hardness. We show the hardness of the problem (SUB|m=2) by the reduction of
the max cut problem in undirected graphs. The max cut problem is a famous NP-
hard problem; moreover, it is NP-hard to compute a solution with approximation
ratio better than 0.879, under the assumption of the unique game conjecture [17].

As an instance of the max cut problem, let us consider an undirected graph
G = (V, E) with edge weight w(u, v) ≥ 0 ((u, v) ∈ E). We define an instance
of (SUB|m=2) by regarding V as the item set and by using quadratic utility
functions such that

ai(u, v) =
{−w(u, v) ((u, v) ∈ E),

0 (otherwise), (u, v ∈ V, u < v),

bi(v) = (1/2)
∑

{w(u, v) | (u, v) ∈ E, u ∈ V \ {v}} (v ∈ V )

for i = 1, 2. The definitions of ai and bi imply that the resulting quadratic utility
functions f1 and f2 are monotone and submodular by Theorem 2.1. Moreover,
the objective function value f1(V1) + f2(V2) of a partition (V1, V2) is equal to

−
2∑

i=1

∑
{w(u, v) | (u, v) ∈ E, u, v ∈ Vi} +

∑
(u,v)∈E

w(u, v)

=
∑

{w(u, v) | (u, v) ∈ E, u ∈ V1, v ∈ V2},

i.e., the total weight of cut edges in G. Hence, the max cut problem on undirected
graphs is reduced to (SUB|m=2), and this reduction preserves the approximation
ratio. This fact, together with the result in [17], implies the following:

Theorem 3.1. The problems (SUB|m=2) and (SUB|m>2) are NP-hard. More-
over, for both problems it is NP-hard to compute a solution with approximation
ratio better than 0.879, under the assumption of the unique game conjecture.

Approximability. We present an approximability result for the problem
(SUB|m=2) by showing the reduction to the max s-t cut problem in directed
graphs.
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Given an instance of (SUB|m=2), we define a directed graph G = (V ∪
{s, t}, E) by

E = {(u, v) | u, v ∈ V, u < v} ∪ {(s, u) | u ∈ V } ∪ {(v, t) | v ∈ V }.
For each edge (u, v) ∈ E, its weight w(u, v) is defined as follows:

w(s, u) = b2(u) +
∑{a2(u, v) | v ∈ V, v > u} (u ∈ V ),

w(v, t) = b1(v) +
∑{a1(u, v) | u ∈ V, u < v} (v ∈ V ),

w(u, v) = −a1(u, v) − a2(u, v) (u, v ∈ V, u < v).

Theorem 2.1 (i) implies w(u, v) ≥ 0, while (ii) implies w(s, u) ≥ 0 and w(v, t) ≥
0. Hence, all of edge weights are nonnegative.

Let (S, T ) be a partition of the vertex set V ∪ {s, t} satisfying s ∈ S, t ∈ T .
Then, the objective function value of (S, T ) is equal to∑{w(v, t) | v ∈ S ∩ V } +

∑{w(s, v) | v ∈ T ∩ V }
+
∑{w(u, v) | u ∈ S ∩ V, v ∈ T ∩ V, u < v}

=
∑{b1(v) | v ∈ S ∩ V } +

∑{a1(u, v) | u, v ∈ S ∩ V, u < v}
+
∑{b2(v) | v ∈ T ∩ V } +

∑{a2(u, v) | u, v ∈ T ∩ V, u < v}
= f1(S ∩ V ) + f2(T ∩ V ).

Hence, (SUB|m=2) is reduced to the max s-t cut problem in G, and this re-
duction preserves the approximation ratio. It is shown by Lewin et al. [24] that
a 0.874-approximate solution of the max s-t cut problem can be computed in
polynomial time. Therefore, we obtain the following result:

Theorem 3.2. A 0.874-approximate solution of the problem (SUB|m=2) can
be computed in polynomial time.

Exact Polynomial-Time Algorithm for Special Case. We consider a special case
where utility functions satisfy the gross substitutes condition, and show that
the optimal allocation problem in this case can be reduced to the minimum
quadratic-cost flow problem. The reduction is based on the following property
of gross-substitutes quadratic utility functions. A set family F ⊆ 2V is said to
be laminar if it satisfies X ⊆ Y , X ⊇ Y , or X ∩Y = ∅ holds for every X, Y ∈ F .

Lemma 3.1 (cf. [14, Cor. 3.4]). A quadratic utility function f : 2V → R of
the form (1) satisfies the gross substitutes condition if and only if it is represented
as f(X) = −∑S∈F cS |X ∩ S|2 by using a laminar family F ⊆ 2V and real
numbers cS (S ∈ F) satisfying {v} ∈ F (v ∈ V ) and cS ≥ 0 (S ∈ F , |S| ≥ 2).

This lemma implies that the function value of a gross-substitutes quadratic util-
ity function can be represented as the (quadratic) flow cost on a tree network.

We now explain the reduction to the minimum quadratic-cost flow prob-
lem. Suppose that a utility function fi of bidder i is of the form fi(X) =
−∑S∈Fi

ci
S |X ∩ S|2, where Fi ⊆ 2V is a laminar family and ci

S (S ∈ Fi) are
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real numbers satisfying the conditions in Lemma 3.1. We construct a graph
Ĝ = (V̂ , Ê) as follows. Define V̂ = {r} ∪ V ∪⋃m

i=1 Vi, where Vi (i ∈ M) is given
as Vi = {vi

S | S ∈ Fi}. Note that vi
{u} ∈ Vi for each i ∈ M and u ∈ V . We also

define Ê = E0 ∪⋃m
i=1 Ei, where

E0 = {(u, vi
{u}) | u ∈ V, i ∈ M},

Ei = {(vi
X , r) | X ∈ F , maximal in F}

∪ {(vi
X , vi

ρ(X)) | X ∈ Fi, not maximal in Fi},
and for every non-maximal set X ∈ Fi, we denote by ρ(X) the unique minimal
set Y ∈ Fi with Y ⊃ X . Note that edge set Ei for i ∈ M constitutes a rooted tree
with root r. For each edge in E0, its capacity is given by the interval [0, 1], and
its cost is 0. For each edge (vi

X , r) or (vi
X , vi

ρ(X)) in Ei, its capacity is [0, +∞],
and its cost function is given by ci

Xϕ2, where ϕ is the flow value on the edge.
We also define supply/demand values of vertices to be 1 for each u ∈ V , −n for
r, and 0 for other vertices.

We consider the minimum (quadratic-)cost flow problem on the network Ĝ un-
der the capacity constraint and the supply/demand constraint. It is not difficult
to see that integral feasible flows on the network have one-to-one correspondence
to partitions of the set V , and the cost of the flow is equal to the negative of the
total utilities for the corresponding partition. Hence, we can obtain an optimal
allocation by solving the minimum cost flow problem.

The minimum quadratic-cost flow problem can be solved by iteratively aug-
menting flows along a shortest path in the so-called “auxiliary network,” and
the number of iterations is n (see, e.g., [1]). Since the graph Ĝ has O(mn)
vertices and O(mn) edges, the minimum cost flow problem can be solved in
O(mn log(mn)) × n = O(mn2 log(mn)) time by using the shortest-path algo-
rithm of Fredman and Tarjan [8] as a subroutine.

Theorem 3.3. The optimal allocation problem with gross-substitutes quadratic
utility functions can be solved in O(mn2 log(mn)) time.

4 Results for Supermodular Utility Functions

Polynomial-Time Solvable Case. We firstly show that the problem (SUP|m=2)
can be solved in polynomial time.

Lemma 4.1 ([13, Th. 1], [20, Th. 4.1]). Given an instance of (SUP|m=2),
we can construct in O(n2) time an edge-weighted directed graph G = (V ∪
{s, t}, E) such that for every X ⊆ V , the cut value of (X ∪ {s}, (V \ X) ∪ {t})
is equal to f1(X) + f2(V \ X).

This lemma shows that (SUP|m=2) can be reduced to the minimum s-t cut
problem in G. Note that the graph G has O(n) vertices and O(n2) edges. Hence,
the minimum s-t cut problem can be solved in O(n3/ log n) time by the algorithm
of Cheriyan et al. [4].

Theorem 4.1. The problem (SUP|m=2) can be solved in O(n3/ log n) time.
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Hardness. To show the NP-hardness of the problem (SUB|m>2), we show that
the multiway (un)cut problem on undirected graphs [7,21] can be reduced to
(SUB|m>2).

Input of the multiway (un)cut problem is an undirected graph G = (V, E)
with distinct terminals s1, s2, . . . , sk ∈ V (k ≥ 2) and edge weight w(u, v) ≥ 0
((u, v) ∈ E). In the multiway cut problem, we find a partition (V1, V2, . . . , Vk)
of V with si ∈ Vi (i = 1, 2, . . . , k) minimizing the total weight of cut edges, i.e.,∑{w(u, v) | (u, v) ∈ E, u ∈ Vi, , v ∈ Vj , i �= j}, while in the multiway uncut
problem, we want to maximize the total weight of uncut edges. The multiway
(un)cut problem is known to be NP-hard, even when k = 3 [7].

Given an instance of the multiway (un)cut problem, we define an instance of
(SUB|m>2) by regarding V as the item set and by

ai(u, v) =
{

w(u, v) ((u, v) ∈ E),
0 (otherwise), bi(v) =

{
Γ (v = si),
0 (otherwise),

where Γ is a sufficiently large positive number. Let (V1, V2, . . . , Vk) be a partition
of V which is an optimal solution of this instance. Then, each Vi contains the
vertex si since bi(si) is a sufficiently large number. Moreover, the objective func-
tion value is given as

∑k
i=1

∑{w(u, v) | (u, v) ∈ E, u, v ∈ Vi}, which we want
to maximize. Hence, an optimal solution for (SUB|m>2) is an optimal solution
for the multiway (un)cut problem, and vice versa.

Theorem 4.2. The problem (SUB|m>2) is NP-hard, even when m = 3.

Approximability. We propose a 0.5-approximation algorithm for the problem
(SUB|m>2). Our algorithm is based on a natural linear programming (LP) re-
laxation:

Maximize
k∑

i=1

∑
u,v∈V,u<v

ai(u, v)yi(u, v) +
k∑

i=1

∑
v∈V

bi(v)xi(v)

subject to
k∑

i=1

xi(v) = 1 (v ∈ V ),

yi(u, v) = min{xi(u), xi(v)} (u, v ∈ V, u < v),
xi(v) ≥ 0 (v ∈ V ), yi(u, v) ≥ 0 (u, v ∈ V, u < v).

The algorithm firstly compute an optimal solution of the LP. Then, the algorithm
chooses a bidder i ∈ {1, 2, . . . , m} and a value ρ ∈ [0, 1] uniformly at random, and
assigns each item v ∈ V to the bidder i if xi(v) ≥ ρ. The algorithm repeats this
step until all items are assigned to one of the bidders. Although this algorithm
is randomized, it can be derandomized by using the technique in Kleinberg and
Tardos [19].

We analyze the performance of the algorithm. For v ∈ V and i ∈ M , let X i(v)
be a random variable that is 1 if the item v is assigned to the bidder i and 0
otherwise. Similarly, for u, v ∈ V and i ∈ M , let Y i(u, v) be a random variable
that is 1 if both of the items u and v are assigned to the bidder i and 0 otherwise.
We also denote y(u, v) =

∑m
i=1 yi(u, v) for u, v ∈ V with u < v.
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Lemma 4.2 ([21, Fact 3.1]). Let v ∈ V and i ∈ M . Assume that item v is
not assigned to any bidder before some iteration. Then, the probability that v is
assigned to bidder i in the iteration is (1/m)xi(v).

Lemma 4.3 ([21, Claim 3.2]). Pr[X i(v) = 1] = xi(v) for v ∈ V and i ∈ M .

Lemma 4.4. Pr[Y i(u, v) = 1] ≥ yi(u,v)
2−y(u,v) for u, v ∈ V with u < v and i ∈ M .

Proof. Let Ψ ∈ [0, 1] be the probability that both of u and v are assigned to the
bidder i in the same iteration. Then, Pr[Y i(u, v) = 1] ≥ Ψ holds.

The probability that u and v is assigned to an bidder i ∈ M in some iteration
is (1/m) min{xi(u), xi(v)} = (1/m)yi(u, v). Similarly, the probability that at
least one of u and v is assigned to any bidder in some iteration is

m∑
i=1

1
m

· max{xi(u), xi(v)} =
1
m

[
m∑

i=1

{xi(u) + xi(v)} −
m∑

i=1

min{xi(u), xi(v)}
]

=
1
m

{2 − y(u, v)}.

Hence, the probability that u and v is assigned to a bidder i ∈ M in the k-th
iteration is [

1 − 1
m

{2 − y(u, v)}
]k−1

× 1
m

yi(u, v).

Hence,

Ψ =
∞∑

k=1

[
1 − 1

m
{2 − y(u, v)}

]k−1

× 1
m

yi(u, v)

=
m

2 − y(u, v)
· 1
m

· yi(u, v) =
yi(u, v)

2 − y(u, v)
.

This implies the claim of the lemma. �	
We consider the expected value of the objective function for a solution obtained
by the algorithm. By Lemmas 4.3 and 4.4, it holds that

m∑
i=1

∑
u,v∈V,u<v

ai(u, v) Pr[Y i(u, v) = 1] +
m∑

i=1

∑
v∈V

bi(v) Pr[X i(v) = 1]

≥
m∑

i=1

∑
u,v∈V,u<v

ai(u, v) · yi(u, v)
2 − y(u, v)

+
m∑

i=1

∑
v∈V

bi(v)xi(v) = 0.5 · OPTLP,

where OPTLP denotes the optimal value of the LP. Since OPTLP is an upper
bound of the optimal value of (SUB|m>2), we obtain the following result.

Theorem 4.3. A 0.5-approximate solution of the problem (SUB|m>2) can be
computed in polynomial time.
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With a more careful analysis we can show that the approximation ratio is 1/(2−
ε) (> 0.5), where ε = min{y(u, v) | (u, v) ∈ E, y(u, v) > 0}; this bound is
obtained by analyzing the cases y(u, v) = 0 and y(u, v) > 0 separately.

Our analysis shows that the integrality gap of the LP is at least 0.5. On the
other hand, an instance with integrality gap 2/3 can be easily constructed. An
open problem is to close the gap between 0.5 and 2/3. A possible approach for
a better approximation algorithm is to construct a new LP formulation which
has a larger value of min{y(u, v) | (u, v) ∈ E, y(u, v) > 0}.

We then consider alternative approximation algorithms by using the fact that
(SUP|m=2) can be solved in polynomial time. If m = 3, then we can obtain
a 2/3-approximate solution easily by using this fact. We compute an optimal
allocation (V (12)

1 , V
(12)
2 , ∅) of items to bidders 1 and 2, where bidder 3 is ignored.

In the same way, we compute optimal allocations (V (13)
1 , ∅, V (13)

3 ) for bidders
1 and 3 and (∅, V (23)

2 , V
(23)
3 ) for bidders 2 and 3. Then, we choose the best

allocation among the three, which is a 2/3-approximate solution of the original
problem.

Theorem 4.4. A 2/3-approximate solution of the problem (SUB|m>2) with
m = 3 can be computed in polynomial time.

For general case with m ≥ 3, it is natural to consider the following heuristic based
on local search. Given a partition (V1, V2, . . . , Vm) of V and bidders i, j ∈ M , we
denote by realloc(i, j) an operation which optimally re-allocates items in Vi∪Vj

to bidders i and j. Our heuristic is as follows: start with an arbitrarily chosen
initial partition, and repeatedly apply the operation realloc(i, j) to arbitrarily
chosen two bidders i, j ∈ M until no improvement is possible by this operation.
Although our preliminary computational experiment shows that this heuristic
always outputs a near-optimal solution, we can construct a family of instances
for which the approximation ratio can be arbitrarily close to 0.
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Abstract. In this paper, we consider a threshold circuit C computing
the modulus function MODm, and investigate a relationship between two
complexity measures, fan-in l and energy e of C, where the fan-in l is
defined to be the maximum number of inputs of every gate in C, and
the energy e to be the maximum number of gates outputting “1” over all
inputs to C. We first prove that MODm of n variables can be computed
by a threshold circuit of fan-in l and energy e = O(n/l), and then provide
an almost tight lower bound e = Ω((n − m)/l). Our results imply that
there exists a tradeoff between the fan-in and energy of threshold circuits
computing the modulus function.

Keywords: Boolean function, energy complexity, fan-in, MOD
function, threshold circuit.

1 Introduction

Neurons in the brain communicate with each other by electrical signals for infor-
mation processing, and a neuron emitting a signal is said to be “firing.” Recent
biological study reports the following interesting fact about the energy consump-
tion of neuronal firing: the energy cost of a firing is high while energy supplied
to the brain is limited, and hence neural networks must have low firing activity
[3,4,5]. Motivated by this fact, Uchizawa, Douglas and Maass propose a new
complexity measure, called energy complexity, for a theoretical model of neu-
ral network, called a threshold circuit. The energy e of a threshold circuit C is
defined to be the maximum number of gates outputting “1” in C, where the max-
imum is taken over all inputs to C [9]. In the previous research, it turns out that
the energy complexity has close relationships with other complexity measures
such as size (i.e., the number of gates) and depth [8,9,10,11,12]. In particular,
it is known that there exists a tradeoff between size and energy of threshold
circuit computing the modulus function MODm : {0, 1}n → {0, 1} [8,12], where
MODm(x) = 0 if the number of “1”s in an input x ∈ {0, 1}n is a multiple of
m and, otherwise, MODm(x) = 1. In other words, we know that one of size
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and energy of a threshold circuit computing the modulus function can be small,
while both of them cannot be simultaneously small.

In this paper, we also consider threshold circuits computing the modulus func-
tion, and investigate a relationship between the energy complexity and another
major complexity measure, called fan-in. The fan-in is defined to be the max-
imum number of inputs of every gate in the circuit, and is one of intensively
studied measures, such as size and depth, in the literature [1,2,6,7]. We show
that, similarly to the relationship between size and energy mentioned above,
there exists a tradeoff between the fan-in and energy of threshold circuits. More
precisely, we first prove that MODm of n variables can be computed by a thresh-
old circuit of fan-in l and energy

e = O
(n

l

)
. (1)

Equation (1) implies that there exists a threshold circuit C of small energy e if
every gate in C is allowed to have a large fan-in l (e.g., l = O(n) and e = O(1)),
and also implies that there exists a threshold circuit C of small fan-in l if C is
allowed to use large energy e (e.g., l = O(1) and e = O(n)). We then show that
the upper bound in Eq. (1) is almost tight by providing a lower bound

e = Ω

(
n − m

l

)
. (2)

Consider the case where m = o(n), then Eq. (2) implies that a threshold circuit
C must have large energy e if every gate in C has a bounded fan-in l (e.g.,
if l = O(1) then e = Ω(n)), and also implies that a threshold circuit C must
have large fan-in l if C has small energy e (e.g., if e = O(1) then l = Ω(n)).
Consequently, Eqs. (1) and (2) imply that there exists a tradeoff between the
fan-in and energy of threshold circuits computing the modulus function: One of
the fan-in and energy can be small, while both of them cannot be simultaneously
small.

The rest of this paper is organized as follows. In Section 2, we define some
terms on threshold circuits. In Section 3, we first present the upper bound on
the energy of a threshold circuit computing the modulus function together with
a technical lemma, and then give the lower bound. In Section 4, we prove the
technical lemma presented in the last section. In Section 5, we conclude with
some remarks.

2 Preliminaries

A threshold circuit C is a combinatorial circuit of threshold gates, and is ex-
pressed by a directed acyclic graph. Let n be the number of input variables to
C. Then each node of in-degree 0 in C corresponds to one of the n input variables
x1, x2, . . . , xn, and the other nodes correspond to threshold gates. We define size
s(C), simply denoted by s, of a threshold circuit C as the number of threshold
gates in C. Let gC

1 , gC
2 , . . . , gC

s be the gates in C. One may assume without loss
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of generality that gC
1 , gC

2 , . . . , gC
s are topologically ordered with respects to the

underlying graph of C. We denote by l1, l2, . . . , ls the fan-ins of gC
1 , gC

2 , . . . , gC
s ,

respectively, and define the maximum number l of l1, l2, . . . , ls as fan-in of C.
For gC

i , 1 ≤ i ≤ s, let w1, w2, . . . , wli be real numbers as weights and ti be a real
number as a threshold of gC

i , and let zi(x) = (z1(x), z2(x), . . . , zli(x)) ∈ {0, 1}li

be the li inputs of gC
i for an input x ∈ {0, 1}n. Then the output gC

i (zi(x)) of
the gate gC

i is defined as

gC
i (zi(x)) = sign

⎛⎝ li∑
j=1

wjzj(x) − ti

⎞⎠ ,

where sign(z) = 1 if z ≥ 0 and sign(z) = 0 if z < 0. We simply denote gC
i (zi(x))

by gC
i [x]. Let n′ be the number of outputs of C, then C has n′ gates with

out-degree 0. One may assume without loss of generality that such gates are
gC

s−n′+1, g
C
s−n′+2, . . . , g

C
s . Then, for every input x ∈ {0, 1}n, the output C(x) of

C is denoted by (u1, u2, . . . , un′) where ui = gC
s−n′+i[x] for each i, 1 ≤ i ≤ n′.

The gates gC
s−n′+1, g

C
s−n′+2, . . . , g

C
s are called top gates of C. Let f : {0, 1}n →

{0, 1}n′
be a Boolean function of n inputs and n′ outputs. A threshold circuit C

computes a Boolean function f if C(x) = f(x) for every input x ∈ {0, 1}n. We
define the energy e(C) of C as

e(C) = max
x∈{0,1}n

s(C)∑
i=1

gC
i [x].

For an input x = (x1, x2, . . . , xn) ∈ {0, 1}n, we define |x| as the hamming
weight of the input x, that is, |x| =

∑n
i=1 xi.Then, for positive integers m ≥ 2

and n, the modulus function MODm is defined as follows: For every input x =
(x1, x2, . . . , xn) ∈ {0, 1}n, MODm(x) = 0 if |x| is a multiple of m, and otherwise
MODm(x) = 1. In the rest of the paper, we consider more general modulus
functions MODr

m. For positive integers m ≥ 2, n and r, 0 ≤ r ≤ m − 1, MODr
m

is defined as follows: For every input x = (x1, x2, . . . , xn) ∈ {0, 1}n,

MODr
m(x) =

{
0 if r ≡ |x| (mod m);
1 otherwise.

3 Our Results

In this section, we give upper and lower bounds on the energy of threshold
circuits computing the modulus function. In Section 3.1, we first provide the
upper bound in a form of a theorem, and give a technical lemma. Then, we
prove the theorem by the lemma. In Section 3.2, we show a tightness of the
upper bound by giving the lower bound.
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C ......

z z z1 2 l v v v0 1 m-1

u u u0 1 m-1...

l,m {modulo input

Fig. 1. Overview of the circuit Cl,m given in Lemma 1

3.1 Upper Bound

The following theorem is one of our main results, and gives an upper bound on
the energy of threshold circuits computing the modulus function.

Theorem 1. Let m ≥ 2, n, and l be positive integers. Then, there is a threshold
circuit C computing MODr

m of n variables such that C has fan-in at most 2l,
energy e(C) = O (n/l) and size s(C) = O(mn).

We prove Theorem 1 by construction. For each integer 0 ≤ α ≤ m−1, we denote
by 1α be the vector of length m such that only (α + 1)st position is one, that
is, 10 = (1, 0, 0, . . . , 0), 11 = (0, 1, 0, . . . , 0), and so on. A threshold circuit with l
outputs is called a threshold (l, m)-circuit if it receives l input bits z1, z2, . . . , zl

and m input bits v0, v1, . . . , vm−1. (See Fig. 1.) The m inputs is called modulo
input. The following lemma plays key role in our construction.

Lemma 1. Let l ≥ 1 and m ≥ 2 be two integers. Then, there is a thresh-
old (l, m)-circuit Cl,m of fan-in at most 2l such that, for each pair of z =
(z1, z2, . . . , zl) ∈ {0, 1}l and 1α, 0 ≤ α ≤ m − 1, the output Cl,m(z,1α) =
(u0, u1, . . . , um−1) of Cl,m is 1β for some integer β satisfying

β ≡ α + |z| (mod m). (3)

Moreover, its energy e(Cl,m) = 3, and its size s(Cl,m) ≤ (l + 1)(m + 1) + m.

See Fig. 1 for an overview of Cl,m. We will prove the lemma in Section 4.
We are now ready to prove Theorem 1.

Proof of Theorem 1. Let m ≥ 2, n, r and l be positive integers. One may assume
that n is a multiple of l, that is, n = d · l for some positive integer d; otherwise,
one may increase it so that the condition holds. We construct a desired threshold
circuit C computing MODm of n variables as follows.

Let Ci, 1 ≤ i ≤ d, be a copy of a (l, m)-circuit Cl,m which is given by Lemma 1,
and let (ui,0, ui,1, . . . , ui,m−1) be the output of Ci. We obtain the desired circuit
C by combining C1, C2, . . . , Cd as follows (See Fig. 2). We first fix the modulo
input of C1 to 10, and add the other input l bits of C1 from x1, x2, . . . , xl.
Then for each i, 2 ≤ i ≤ d, we connect the output (ui−1,0, ui−1,1, . . . , ui−1,m−1)
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1         0                              0x      x          x

x      x          x

x      x          x

...

1 2 l

l+1 l+2 2l

(d-1)l+1 dl

C

C

C

1

2

d

0
-1

<_

the output of C

1 =0

...

u       u                      u

u       u                      u

u 

1,0 1,1 1,m-1

2,0 2,1 2,m-1

d,r

...

...

...

...

...

(d-1)l+2

x      x          x(i-1)l+1 (i-1)l+2 il

Ci

u       u                      ui,0 i,1 i,m-1...
... u       u                      ui-1,0 i-1,1 i-1,m-1...

u       u                      ud,0 d,1 d,m-1... ...

u       u                      ud-1,0 d-1,1 d-1,m-1...

...

Fig. 2. Overview of the circuit C given in the proof of Theorem 1

of Ci−1 to Ci as its modulo input, and add the other input l bits of Ci from
x(i−1)l+1, x(i−1)l+2, . . . , xil. We complete the construction of C by adding a gate
g, as the top gate of C, that has a threshold zero and receives ud,r of Cd with
weight −1. See Fig. 2 for an overview of C.

Since we construct C from C1, C2, . . . , Cd which are d copies of Cl,m given
in Lemma 1, the circuit C clearly has fan-in at most 2l, energy e ≤ 1 + 3d =
1 + 3n/l = O(n/l), and size s ≤ 1 + ((l + 1)(m + 1) + m) · d = O(nm). Thus, it
suffices to show that C computes MODm of n variables.

Let i be an arbitrary integer such that 2 ≤ i ≤ d. Since Ci is a copy of Cl,m

and Ci receives the output of Ci−1 as the modulo input, Lemma 1 implies that
the output of Ci is 1βi for some βi such that

βi ≡ βi−1 +
il∑

j=(i−1)l+1

xj (mod m). (4)

Furthermore, the circuit C1 receives 10 as the modulo input. We thus have

β1 ≡
l∑

j=1

xj (mod m). (5)
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By Eqs. (4) and (5), we have

βd ≡ βd−1 +
dl∑

j=(d−1)l+1

xj (mod m)

≡
l∑

j=1

xj +
2l∑

j=l+1

xp + · · · +
dl∑

j=(d−1)l+1

xp (mod m)

≡ |x| (mod m).

Therefore, r ≡ |x| (mod m) if and only if the output ud,r of Cd is one, while the
output ud,r of Cd is one if and only if the top gate g outputs zero. Thus, the
circuit C computes MODr

m of n variables. �	

3.2 Lower Bound

In this section, we show a tightness of our bound given in Theorem 1. The
following theorem implies that our upper bound is tight up to a constant factor
if m = o(n).

Theorem 2. Let l, m, n and r be positive integer such that m ≥ 2, and r ≤
m − 1. Let C be a threshold circuit computing MODr

m of n variables. If C has
fan-in at most l, then

e(C) ≥
⌈

n − m + 1
l

⌉
= Ω

(
n − m

l

)
. (6)

Proof. We prove the theorem by induction on the number n of input variables.
Let m ≥ 2 be an integer. For the inductive base, consider the case where
n ≤ m − 1. In this case, Eq. (6) clearly holds since we have e(C) ≥ 0 and
 (n − m + 1)/l! = 0.

For inductive hypothesis, assume that Eq. (6) holds for every threshold circuit
C′ of fan-in at most l computing MODr′

m of n′ variables for any n′ and r′ such
that n′ ≤ n − 1 and 0 ≤ r′ ≤ m − 1.

Let C be a threshold circuit that computes MODr
m of n variables and that has

fan-in at most l. We say that a threshold gate g computes a non-trivial function
if there exist two inputs x and y such that g[x] = 1 and g[y] = 0. Clearly,
the top gate of C computes a non-trivial function, since C computes MODr

m

of n variables such that m − 1 < n. In fact, one may assume without loss of
generality that every gate in C computes a non-trivial function. Let g1, g2, . . . , gs

be the gates in C, and assume that g1, g2, · · · , gs are topologically ordered with
respect to the underlying directed acyclic graph of C. Clearly, g1 only receives
a number k(≤ l) of the n input variables, say xi1 , xi2 , . . . , xik

. Hence, we can
fix the output of g1 to one by determining assignments to the k input variables.
Let ai1 , ai2 , . . . , aik

∈ {0, 1} be such assignments to xi1 , xi2 , . . . , xik
, respectively,
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that fix the output of g1 to one, and let C′ be the resulting circuit. Clearly, we
have

e(C) = e(C′) + 1. (7)

Furthermore, C′ computes MODr′
m of n′ variables where n′ = n− k ≤ n− 1 and

r′ ≡ r −
k∑

j=1

aij (mod m).

Hence, we have by the induction hypothesis

e(C′) ≥
⌈

n′ − m + 1
l

⌉
=
⌈

n − k − m + 1
l

⌉
. (8)

Since k ≤ l, Eq. (8) implies that

e(C′) ≥
⌈

n − l − m + 1
l

⌉
. (9)

By Eqs. (7) and (9), we have

e(C) ≥
⌈

n − l − m + 1
l

⌉
+ 1 =

⌈
n − m + 1

l

⌉
.

Thus, Eq. (6) holds. �	

4 Proof of Lemma 1

In this section, we prove Lemma 1 by constructing the desired (l, m)-threshold
circuit Cl,m that receives l input bits z1, z2, . . . , zl together with m input bits
v0, v1, . . . , vm−1, and outputs m bits u0, u1, . . . , um−1.

First, we recursively make l + 1 threshold gates gi, 0 ≤ i ≤ l, as follows.

– A threshold gate gl has a threshold l and receives the inputs z1, z2, . . . , zl

with weights one. (See Fig. 3(a).)
– For each i, 0 ≤ i ≤ l−1, a threshold gate gi has a threshold i and receives the

2l−i inputs from z1, z2, . . . , zl with weights one and the outputs of l−i gates
gi+1, gi+2, . . . , gl with weights −(i + 2),−(i + 3), . . . ,−(l + 1), respectively.
(See Fig. 3(b).)

For each i, 0 ≤ i ≤ l − 1, and each input z ∈ {0, 1}l, we obviously have

gi[z] = sign

⎛⎝|z| − i −
l∑

j=i+1

(j + 1) · gj [z]

⎞⎠ . (10)

Note that

gl(z) = sign (|z| − l) =
{

1 if |z| = l,
0 if |z| ≤ l − 1.
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z1 z2 zl gi+1 gi+2

>

gl

gi

1 1 1
(i+2) (i+3) (l+1)

i

>i+1 >i+2 >l

z1 z2 zl

>
gl

1 1 1

l

(a)

(b)

(c)

vjgi

>2
gi, j

1 1

>i

Fig. 3. (a) The gate gl, (b) the gate gi, and (c) the gate gi,j

For each i, 0 ≤ i ≤ l − 1 and z ∈ {0, 1}l, we denote by a(i, z) the value in the
sign function of Eq. (10), that is,

a(i, z) = |z| − i −
l∑

j=i+1

(j + 1) · gj[z]. (11)

We now claim that a(|z|, z) = 0 and a(i, z) < 0 for all i �= |z|, 0 ≤ i ≤ l. By
Eq. (11), clearly a(i, z) < 0 for all i, |z| + 1 ≤ i ≤ l, and hence gi(z) = 0 for
such i. Therefore,

a(|z|, z) = |z| − |z| −
l∑

j=|z|+1

(j + 1) · gj[z] = 0,

and hence g|z|[z] = 1. For each i, 0 ≤ i ≤ |z| − 1, by Eq. (11) we thus have

a(i, z) = |z| − i −
l∑

j=i+1

(j + 1) · gj [z]

= |z| − i −
|z|∑

j=i+1

(j + 1) · gj [z]

≤ |z| − i − (|z| + 1) · g|z|[z]
= |z| − i − |z| − 1
= −i − 1
< 0.
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We thus complete the proof of the claim. Consequently, for every z ∈ {0, 1}l, we
have

gi[z] =
{

1 if i = |z|;
0 otherwise, (12)

that is, only g|z| of g0, g1, . . . , gl outputs one.
For every pair of inputs i ∈ {0, 1, . . . , l} and j ∈ {0, 1, . . . , m − 1}, we then

make a threshold gate gi,j computing AND of the output of gi and vj , that is,
gi,j has a threshold two, and receives the output of gi and vj with weights one
(See Fig. 3(c)). Clearly, gi,j outputs one if and only if

i = |z| and vj = 1. (13)

Note that only g|z| of g1, g2, . . . , gl outputs one, and exactly one of
v0, v1, . . . , vm−1 equals to one. Hence, for a pair of inputs z ∈ {0, 1}l, and 1α,
0 ≤ α ≤ m − 1, only g|z|,α outputs one.

We finally complete the construction of Cl,m by adding a threshold gate g′k
for each k, 0 ≤ k ≤ m − 1, as a top gate whose output corresponds to uk, as
follows. The gate g′k computes OR of every output of the gate gi,j such that i, j
and k satisfy

k ≡ i + j (mod m). (14)

More precisely, g′k receives the output of gi,k−i+mqi for every i, 0 ≤ i ≤ l, and
qi, 0 ≤ k − i + mqi ≤ m − 1. Clearly⌈

i − k

m

⌉
≤ qi ≤

⌊
i − k + m − 1

m

⌋
,

and hence qi =  (i − k)/m!. Therefore

g′k[z,1j ] = sign

(
−1 +

l∑
i=0

gi,k−i+mqi [z,1j ]

)
.

Thus, g′k receives the outputs of the l+1 gates. Note that for a pair of z ∈ {0, 1}l

and 1α, 0 ≤ α ≤ m − 1, only gate g|z|,α outputs one. Hence, Eq. (14) implies
that, for each k, 1 ≤ k ≤ m − 1,

g′k[z,1α] =
{

1 if k ≡ |z| + α (mod m);
0 otherwise,

that is, only g′β , such that

β ≡ |z| + α (mod m), (15)

outputs one. Since the output of g′k is uk for each k, 0 ≤ k ≤ m − 1, the output
of Cl,m is 1β. Hence, Cl,m computes the desired function.
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Clearly, g0, g1, . . . , gl have fan-in at most 2l, g0,0, g0,1, . . . , gm−1,l have fan-in
two, and g′0, g

′
1, . . . , g

′
m−1 have fan-in l + 1. For every pair of z and 1α, the gates

outputting ones are g|z|, g|z|,α and g′β satisfying Eq. (15). Hence, the energy e
of C is three. Furthermore,

s(C) = (l + 1) + (l + 1)m + m ≤ (l + 1)(m + 1) + m.

We thus complete the proof.

5 Conclusions

In this paper, we consider threshold circuits C computing the modulus function
MODm of n variables, where every gate in C has fan-in at most l. We give an
upper bound e = O(n/l) and an almost tight lower bound e = Ω((n − m)/l) on
the energy e of C. A generalization of our results to symmetric functions remains
open.
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Abstract. ACCm circuits are circuits consisting of unbounded fan-in AND, OR
and MODm gates and unary NOT gates, where m is a fixed integer. We show that
there exists a language in non-deterministic exponential time which can not be
computed by any non-uniform family of ACCm circuits of quasipolynomial size
and o(log log n) depth, where m is an arbitrarily chosen constant.

1 Introduction

Proving non-uniform circuit lower bounds is a longstanding open problem in complex-
ity theory. The lack of progress in nearly two decades has made it a well-known major
challenge in the theoretical computer science community. Recently, Williams [16] pro-
posed a research program which tried to show circuit lower bounds via designing fast
satisfiability algorithms for Circuit-SAT problems. A few months ago, Williams [17]
succeeded in carrying out the program by proving an ingenious lower bound for NEXP
against non-uniform constant-depth ACC circuits of sub-exponential size (For every
fixed depth d, he also provided an exponential-size lower bound), thereby solving a no-
torious long-standing open problem. For more background and history on circuit lower
bounds, we refer the readers to [17] which elaborates on this history in detail.

In this paper, we show that Williams’ lower bound result can be extended to a broader
class of ACC circuits with non-constant depth. A function f is a quasipolynomial if
f = nlogO(1) n. Formally, our main theorem is stated as:

Theorem 1. NEXP does not have non-uniform ACC circuits of quasipolynomial size
and o(log log n) depth.

1.1 Related Work

In this section, we survey a few examples of earlier work giving super-polynomial size
bounds for circuits of non-constant depth.
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More than two decades ago, building on his powerful switching lemma, Håstad [10]
proved that the parity function can not be computed by families of AC circuits of poly-
nomial size and depth at most c log n

log log n for some positive constant c. This result found
many applications in proving lower bounds for the parallel random access machine
model (PRAM), which is one of the widely adopted models of parallel computation.
For instance, Beame and Håstad [5] exhibited the optimal Ω( log n

log log n ) lower bounds on
the time for CRCW (Concurrent read and concurrent write) PRAM with polynomially
many processors to compute the parity function and related problems.

The classic results of Razborov [13] and Smolensky [14] showed that if p is a prime
and q is not a power of p, then the MODq function is not computable by any constant-
depth and poly-size family of ACCp circuits. In fact, their technique also works in
the regime of non-constant-depth circuit lower bounds. More precisely, one can adapt
their polynomial method to show that the same MODq function remains hard even for
ACCp circuits of polynomial size and Ω( log n

log log n ) depth. Even though the results in this
paper are exponentially worse in terms of circuit depth, note that they hold for the more
powerful ACC circuit model.

Some other Ω(log log n) depth bounds are known in the setting of uniform cir-
cuits. Allender and Gore [2] showed that the permanent function is not computable
by DLOGTIME-uniform ACC0 circuits of exponential size. Later Allender [1] proved
a smaller (but still super-quasipolynomial) bound for computing the permanent on
DLOGTIME-uniform threshold circuits. Koiran and Perifel [12] extended this latter re-
sult [1], and proved that the permanent function can not be computed by DLOGTIME-
uniform threshold or arithmetic circuits of polynomial size and o(log log n) depth.

2 Preliminaries

We assume that the readers are familiar with standard notations for complexity classes
[3] and circuit complexity classes [15]. General circuits consist of NOT gates and un-
bounded fan-in AND and OR gates. ACCm circuits are general circuits equipped with
unbounded fan-in MODm gates, where m is a fixed integer.

We say a boolean function g : Σn → {0, 1} is in ACCm(s, d) if g can be rec-
ognized by some ACCm circuit of size at most s and depth bounded by d. For any
two functions s(n) and d(n), we say a language L ∈ ACC(s(n), d(n)) if there exists
an integer constant m such that for each input length n, its characteristic function Ln

is in ACCm(s(n), d(n)). For any two families of functions S and D, ACC(S,D) =⋃
ACC(s(n), d(n)) | s(n) ∈ S, d(n) ∈ D.
SYM+ circuits have exactly two levels of internal nodes. The top level is a single gate

with unbounded fan-in which computes an arbitrary symmetric function and the bottom
level contains only AND gates which are connected directly to the input variables. We
say a boolean function g : Σn → {0, 1} is in SYM+(s, t) if it can be computed by some
SYM+ circuit of size at most s, where moreover, the fan-in of AND gates is bounded
by t. We can define similarly as above the language classes SYM+(s(n), t(n)) and
SYM+(S, T ).

For a circuit type C and a set of associated measures, it will be convenient for us to
consider the family of collections of boolean circuits which is denoted as
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CircuitC(s1(n), s2(n), .., sm(n)) = {G1, G2, ..},
where each circuit in Gn has exactly n input variables and its ith measure is bounded
by si(n) respectively. For general circuits, we only consider the size measure, hence,
CircuitGeneral(s(n)) = {G1, G2, ..}, where Gn contains all circuits of size at most
s(n). We can also give similar definitions for CircuitACCm

(s(n), d(n)) with both size
and depth measures and for CircuitSYM+(s(n), t(n)) where the first measure is the
size measure and the second measure is in terms of the bottom fan-in.

For two families F1 = {G1, G2, ..} and F2 = {G′
1, G

′
2, ..}, we say F1 is trans-

formable to F2 if for all sufficiently large n ∈ N, ∀C ∈ Gn, ∃C′ ∈ G′
n such that

∀x ∈ Σn, C(x) = C′(x), namely, C and C′ are equivalent. Furthermore, F1 is trans-
formable to F2 in time t(n) if there exists a uniform algorithm which given the standard
encoding of C, output C′ in time t(n).

For a family F = {G1, G2, ..}, we say F -SAT is solvable in time t(n) if there exists
a uniform algorithm A such that for all sufficiently large n ∈ N, given an arbitrary C
in Gn, A decides its satisfiability in time t(n).

3 Main Result

3.1 A Fast Satisfiability Algorithm

Transformation between different circuit types is an important building block in our
proof. Yao [18], Beigel and Tarui [7] and Allender and Gore [2] studied conversion
from CircuitACCm

(nO(1), O(1)) to CircuitSYM+(nlogO(1) n, logO(1) n). In fact, their
strategy works in a more general setting.

Theorem 2 ([7,2]). For every constant m, there is a constant c such that for any size
function s(n) and any depth function d(n), ACCm(s(n), d(n)) is transformable in time

2O((log s(n))2
cd(n)

) to SYM+(2(log s(n))2
cd(n)

, (log s(n))2
cd(n)

).

Corollary 1. For any constant m, any small constant ε, any quasipolynomial p(n) and
any depth function d(n) of order o(log log n), ACCm(p(n), d(n)) is transformable to
SYM+(2nε

, nε) in time 2O(nε).

In [17], Williams gave an algorithm for solving the satisfiability problem of SYM+

circuits of size s over n variables in time O((2n+s)nO(1)). Combining it with Corollary
1, the following theorem is immediate.

Theorem 3. For every constant m, there exists a constant c such that for any quasipoly-
nomial p(n) and any depth function d(n) of order o(log log n), the decision problem
CircuitACCm

(p(n), d(n))-SAT is solvable in time O(2nnc).

The running time in Theorem 3 can be improved using the identical strategy adopted
by Williams [16].

Theorem 4. Let m be a fixed constant. For any positive constant c′, any quasipolyno-
mial p(n) and any depth function d(n) of order o(log log n), the corresponding decision
problem CircuitACCm

(p(n), d(n))-SAT is solvable in time O( 2n

nc′ ).
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Proof. Let c be the constant in Theorem 3. Given an ACCm(p(n), d(n) circuit over n
variables, when the first (c + c′) log n inputs are set to definite values, we simplify it to
obtain a circuit over n − (c + c′) log n many variables. Hence, by fixing the first (c +
c′) log n input variables to all possible sequences, we get nc+c′ many circuits. Create
a new circuit by feeding their outputs to a single OR gate. The size of this new circuit
is bounded by p(n)nc+c′ and its depth is only increased by one. Note that p(n)nc+c′

is still a quasipolynomial in (n − (c + c′) log n), and d(n) + 1 is in o(log log(n −
(c + c′) log n)) as well. By Theorem 3, its satisfiability can be determined in time
O(2n−(c+c′) log n(n − (c + c′) log n)c) which is O( 2n

nc′ ). This finishes our arguments
since the satisfiability problem for the new circuit is equivalent to the one for the original
circuit.

Note 1. In [17], there are about nδ many input variables set in a single copy. However,
in order to apply Theorem 3, it is crucial for our work to only fix O(log n) many input
variables, which keeps the size of the final circuit within quasipolynomial (compared to
2nO(δ)

in [17]).

3.2 Proof of Main Theorem

In this section, we present our main lower bound result via the framework invented by
Williams [17]. The following notions will be useful.

Definition 1. Let x = x0x1x2...x|x|−1 be a binary string, where |x| is the size of x.
We say x is succinctly represented by the circuit C if C has  log(|x| + 1)! many input
bits and moreover, for all 0 ≤ i ≤ |x| − 1, C(i) = xi while its output can be arbitrary
otherwise. We call such a circuit C as a succinct representations of x.

Let φ be a 3-CNF formula with n variables and m clauses. φ is succinctly repre-
sented by the circuit C′ if C′ has  log(m + 1)! many input bits and furthermore, on the
input 0 ≤ i ≤ m − 1, C′(i)’s output is the standard binary encoding of the ith clause.
Hence, C′ has roughly 3( log(n + 1)! + 1) output bits, the amount which is needed to
encode three literals. We say that C′ is a succinct representation or compression of φ.

Theorem 5 (Theorem 1 restated)

NEXP � ACC(nlogO(1) n, o(log log n)).

Proof. Suppose NEXP ⊆ ACC(nlogO(1) n, o(log log n)). The first step of our proof is
to note that, because of Theorem 4, it is possible to state a slight variant of Lemma 3.1
of [17].

Lemma 1. There is a universal positive constant c with the following property. Assume
that P ⊆ ACC(nlogO(1) n, o(log log n)), then for every L ∈ NTime[2n], there is a
nondeterministic algorithm A, an integer constant m, a quasipolynomial p′(n) and
a depth function d′(n) of order o(log log n) such that
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– A runs in O( 2n

nc′ ) time,
– for every instance x with |x| = n, A(x) either rejects or prints a circuit Cx ∈

Gn+c log n where Gn+c log n ∈ CircuitACCm
(p′(n), d′(n)) such that x ∈ L if and

only if Cx is the compression of a satisfiable 3-CNF formula Fx of size 2n · nO(1),
and

– there is at least one computation path A(x) that outputs Cx.

Hence, Lemma 1 implies that as long as deciding the satisfiability of succinct 3-CNF
instances such as Cx can be achieved in nondeterministic time O( 2n

nc′ ) for any c′, then

NTime[2n] ⊆ NTime[ 2n

nc′ ], in contradiction to the nondeterministic time hierarchy [19].
Therefore, we are done except for showing that the satisfiability of Cx can be tested in
this time bound, assuming that NEXP ⊆ ACC(nlogO(1) n, o(log log n)).

The following theorem is a variant of Theorem 5.2 in [17]. It is also implicit in the
work of Impagliazzo, Kabanets and Wigderson [11].

Theorem 6 ([11,17]). NEXP ⊆ SIZE(nlogO(1) n) implies that for every language L in
NEXP, there exists a quasipolynomial p such that ∀x ∈ L, there exists a witness w for
x with the property that the boolean function whose truth table is given by w can be
computed by a general circuit of size at most p(|x|).

In other words, every instance in L has a succinctly represented witness. In partic-
ular, every compressed 3-CNF formula has a succinct satisfying assignment since the
Succinct SAT Problem is in NEXP.

Our assumption that NEXP ⊆ ACC(nlogO(1) n, o(log log n)) implies NEXP ⊆
SIZE(nlogO(1) n), so obviously the conclusion in Theorem 6 holds.

Lemma 2 (Folklore). If P ⊆ ACC(nlogO(1) n, o(log log n)), then there exists a univer-
sal constant m′ such that for any quasipolynomial p(n), there exists a quasipolynomial
p′(n) and a depth function d(n) of order o(log log n) such that CircuitGeneral(p(n))
is transformable to CircuitACCm′ (p

′(n), d(n)).

Proof. The Circuit Value Problem (CVP) is in P, and hence, there exists an integer
constant m′, a quasipolynomial q(n) and a depth function d′(n) = o(log log n) such
that CVP is computed by a family of ACCm′ circuits of size at most q(n) and depth
bounded by d′(n). Under the standard encoding of circuits, this implies that any general
circuit of size at most p(n) has an equivalent ACCm′ circuit of size at most q(p2(n))
and depth bounded by d′(p2(n)). Since q(p2(n)) is still a quasipolynomial in n and
d′(p2(n)) = o(log log n), our claim holds.

Theorem 6 tells us that for every x in L, there exists a witness w that is succinctly repre-
sented by a circuit of quasipolynomial size. By Lemma 2, this circuit can be assumed to
be a quasipolynomial-size ACC′

m circuit Cw of depth o(log log n). Thus analogous to
the work of Williams [17], our algorithm for deciding the satisfiability of the succinctly
represented 3-CNF instance Cx proceeds as the following steps.

1. Guess the circuit Cw of quasipolynomial size and depth o(log log n), where w is a
witness for Cx being satisfiable.
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2. Build a circuit C of the following form: On input i, use Cx to obtain the encoding of
the ith clause of the formula Fx. Querying Cw , find the values of the three variables
occurring in this clause, according to the witness w.

3. C rejects if and only if these values cause cause the clause to evaluate to 1.

Note that C is unsatisfiable if and only if every clause of Fx is satisfied by w.

Fact 7. For two fixed integers m and m′, there exists a polynomial r such that any ACC
circuit containing both MODm and MODm′ gates of size at most s can be simulated
uniformly by an ACCl circuit of the same depth and size at most r(s) where l = m ·m′.

By fact 7, C is a quasi-poly-size ACCl circuit of depth at most d(n)+d′(n)+O(1) and
by Theorem 4, its satisfiability is decidable in time O( 2n

nc′ ) for any c′, which concludes
our proof for the main theorem.

4 Discussions

We have not fully exploited the strength of the machinery behind Theorem 2. The orig-
inal form of the transformation provides a large set of parameters which can be tuned
smoothly. For instance, one can allow m(n) = {l1, l2, ...} to be a slowly growing
(say, of order O(log log n)) integer sequence rather than a fixed constant and consider
the circuit families ACCm(n) where the nth circuit contains the presence of MODli

gates for all i ≤ n. It is easy for the readers who are familiar with the framework of
[18], [7] and [2] to verify that NEXP does not have non-uniform ACCm(n) circuits
of quasipolynomial size and non-constant depth. This phenomenon has been observed
by several authors, [4], [8] etc, and their further investigations made it explicit that
SYM+(nlogO(1) n, logO(1) n) actually encompasses a circuit complexity class presum-
ably larger than ACC(nO(1), O(1)), where every ACC(nO(1), O(1)) circuit has an extra
symmetric gate at the top. Hence, it is natural to conjecture that NEXP is not contained
in this class either. However, the proof of Theorem 4 introduces too many duplicate
symmetric gates, which falls beyond the reach of current techniques. Note that Beigel
[6] showed that polylog majority gates can be merged into one at the top, but his results
would yield the trivial bound 2nc

for some c > 1 in our case.
We would like to draw the comparison between this work and [14]. The main techni-

cal difficulty which prevents us from obtaining a depth lower bound of order Ω( log n
log log n )

is that each application of modulus-amplifying polynomials creates extra AND gates of
large fan-in. This in turn causes the snowball effect of the blow-up in the final circuit
size. Thus, new ideas are needed in order to improve the current depth lower bound.

In the recent work by Fortnow and Santhanam [9], they defined notions of robust
simulations and significant separations, and showed that the theorem of Williams [17]
can be strengthened with respect to significant separations. We would like to mention
that analogous significant separations can be obtained against the circuit complexity
class ACC(nlogO(1) n, o(log log n)) as well.
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Abstract. Given n items with at most d of them having a particular
property (referred as positive items), a single test on a selected subset
of them is positive if the subset contains any positive item. The non-
adaptive group testing problem is to design how to group the items to
minimize the number of tests required to identify all positive items in
which all tests are performed in parallel. This problem is well-studied
and algorithms exist that match the lower bound with a small gap of
log d asymptoticically. An important generalization of the problem is to
consider the case that individual positive item cannot make a test posi-
tive, but a combination of them (referred as positive subsets) can do. The
problem is referred as the non-adaptive complex group testing. Assume
there are at most d positive subsets whose sizes are at most s, existing
algorithms either require Ω(logs n) tests for general n or O(

(
s+d

d

)
log n)

tests for some special values of n . However, the number of items in each
test cannot be very small or very large in real situation. The above al-
gorithms cannot be applied because there is no control on the number
of items in each test. In this paper, we provide a novel and practical
derandomized algorithm to construct the tests, which has two important
properties. (1) Our algorithm requires only O

(
(d + s)d+s+1/(ddss) log n

)
tests for all positive integers n which matches the upper bound on the
number of tests when all positive subsets are singletons, i.e. s = 1. (2)
All tests in our algorithm can have the same number of tested items k.
Thus, our algorithm can solve the problem with additional constraints on
the number of tested items in each test, such as maximum or minimum
number of tested items.

Keywords: pooling design, non-adaptive complex group testing, knock-
out study, combinatorial group testing.

1 Introduction

In biological studies, there are many situations in which we need to identify a
subset of items with a particular property (called positive items) from a large set
of items. Instead of testing each item one by one, we can group and test several
items together in one experiment. If the outcome is negative, we can conclude
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that all items in the group do not have that property using only one experiment.
By grouping the items carefully, biologists can save a lot of experiments. For
example, during World War II, biologists needed to identify people with syphilitic
antigen from a large population using the Wasserman-type blood test [8]. Instead
of performing the test on each blood sample, they performed tests on grouped
blood samples in order to reduce the total number of tests. In DNA library
screening [6,13], biologists need to identify from the DNA library a subset of
cloned DNA segments containing a particular substring, called probe. Instead
of performing an experiment on each clone-probe pair, biologists group several
cloned DNA segments together and perform a single experiment on them. In
phenotype knockout studies [17,21,26], biologists need to identify genes causing
a particular phenotype from a set of genes. Instead of knocking out genes one by
one in each experiment, biologists can knockout several genes at the same time
and check whether the phenotype still appears in one experiment.

The group testing problem [9,15], which has been studied since World War II
on the Wasserman-type blood test mentioned above, is to find the best way of
grouping items in each test so as to minimize the total number of tests needed
in the worst case. If the tests can be performed sequentially after knowing the
results of the previous tests, the problem was solved more than 30 years ago and
there exist algorithms [15,18,23] for which the number of tests required is close
to the optimal (in term of exact number of tests). However, some experiments
are time-consuming, e.g. each phenotype knockout experiment requires several
months, and we cannot afford the time to perform tests one after another. In-
stead, it is desirable to perform all tests in parallel without knowing the results
of others. In this case, the non-adaptive group testing problem, also called pool-
ing design [5,11,12,19], is needed. In this paper, we focus on this non-adaptive
version.

Given a set of n items with at most d hidden positive items P , the result
of a test on a subset S of items is positive if P ∩ S �= ∅, otherwise, the result
is negative. The non-adaptive group testing problem is to design the minimum
number of tests t, as a function of n and d, for determining all positive items
P from the results of the tests assuming that all tests are performed in parallel
and designed without any knowledge of other test results.

The non-adaptive version of the problem seems to be more difficult. Only re-
cently, there were some breakthrough results for solving the problem. Porat and
Rothschild [20] solved the problem by constructing an Error Correction Code
(ECC). ECC encodes the alphabets in a message into binary strings with the
Hamming distance between any pair of strings is at least d. Thus up to d/2 er-
rors in each string can be detected and corrected. By picking a suitable alphabet
size, they can convert the ECC into O(d2 log n) tests for the non-adaptive group
testing problem which almost matches the lower bound of O(d2 log n

log d ) [4]. Indyk
et al. [16] provided another solution also with O(d2 log n) tests based on concate-
nated code. They first construct a Reed-Solomon code with suitable parameters,
then encode it with another independent random binary code and convert it into
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O(d2 log n) tests. By decoding the test results in two levels, they can determine
the positive items in O(polylog(n)) time.

However, there exist many important applications that cannot be modeled
by the above group testing problem. First, because of the sensitivity of the
experiments, we may not be able to group many items in a test. Similarly, there
are cases for which we cannot group too few items. One example is the phenotype
knockout experiment. We cannot knock out many genes and leave too few for the
test, otherwise the tested individual will die. Therefore, there may be a minimum
(or maximum) requirement on the number of tested items in a test. Second, there
are many real cases that instead of individual items, a combination of items
(forming a positive subset) is required to make the test positive. That is, the test
will show a positive result only if all items in a positive subset are all present in
the test. For example, in DNA hybridization [22], the test result is positive with
the presence of some pairs of hybridized DNA strands (positive subset of size 2).
In two-hybrid screening [27] for detecting protein-protein interaction, the test
result is positive if the test sample contains some pairs of interacting proteins
(another example of positive subset of size 2). Similarly in three-hybrid screening
[1], the test result is positive if the test sample contains some sets of interacting
proteins and RNA (positive subset of size 3). Thus, we need a generalization to
model these applications.

Given a set of n items with at most d distinct hidden positive subsets Si

with |Si| ≤ s, the result of a test on a subset S of items is positive if there is
a positive subset Si ⊆ S, otherwise, the result is negative. The complex group
testing problem [10,14] is to find the best way of grouping items in each test,
so as to minimize the total number of tests needed in the worst case for finding
all the hidden positive subsets Si. In practice, we sometimes require |S| ≥ k (or
|S| ≤ k) for some k. In the following, we only consider the case for |S| ≥ k as
the other case is symmetric (We calculate the optimal k for a given range).

The group testing problem is a special case of the complex group testing
problem with s = 1 and no requirement on |S|. However, none of the algorithms
[5,11,12,19] for solving the non-adaptive group testing problem can be extended
to solve the complex version with s > 1 even without any restriction on the size of
S. At first glance, one may replace the n items by the

(
n
s

)
combinations of items

and apply the above algorithms to design a set of tests. As the
(
n
s

)
combinations

of items are not independent, e.g. we cannot test {1, 2} without testing {1} or
{2}, this reduction does not work. This complex version of the problem seems
to be even more difficult and only limited results exist [2,14,24,25]. None of
these solutions can handle the requirement on the size of S. And they either
require many tests (Ω(logs n) tests) [14], or designed only for specific n values
[24,25,7], or there is no guarantee on the running time or the number of tests
[2]. For example, Gao et al. [14] represent each item by a distinct polynomial
gi(x) of degree z in a finite field GF (q) with n ≤ qz and sdz ≤ q. They select
sdz distinct elements in GF (q) and perform a test on those items with the same
value of gi(y) for each element y. By choosing the value of q and z carefully,
they can solve the problem with O(s(d logq n)s+1) tests. Stinson et al. [24,25]
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construct a set of tests using perfect hash family. They construct a separating
hash family with n = 72i

elements by recursion on integer i. Then they encode
this hash family into O(

(
s+d

s

)
log n) tests. However, their method cannot solve

the non-adaptive complex group testing problem (or require much more tests)
when n �= 72i

. Bishop et al. [2] solved the problem with s = 2 by assigning each
item to a test with probability p. By setting a suitable probability p and number
of tests t, they can find all Si with some false positive subsets, i.e. another round
of experiments are needed to identify the false positive subsets.

In this paper, we introduce a deterministic algorithm based on randomization
and derandomization to solve the non-adaptive complex group testing problem
for all possible number of items n and using no more than t0 = O

(
d+s

rs(1−r)d log n
)

tests, where r = max{ k
n−d+1 , s

d+s}. When there is no restriction on k i.e. k = 1,
our algorithm requires O

(
(d + s)d+s+1/(ddss) log n

)
tests which matches the

lower bound [4] of O(d2 log n) for s = 1. When compared with Porat and Roth-
schild’s algorithm [20] and Indyk et al.’s algorithm [16], our algorithm is more
flexible because it can handle the cases when s > 1 and k > 1. Our main contri-
butions can be summarized as follows.

1. Our approach is novel, different from any of the previous work even though
the techniques used for this approach are not new. The novelty stems from
the following observation. It is known that solving the non-adaptive group
testing problem is equivalent to designing a binary t × n d̄-separable matrix
[5,11,12,19] with the minimum number of rows. We first extend this concept
to a (d̄, s̄)-separable matrix for the complex version of the problem (see the
definition in Section 2), then we show that the probability of a random binary
t×n matrix with t ≥ t0 being a (d̄, s̄)-separable matrix is non-zero, i.e. there
always exists such a matrix. We use a greedy approach to fill the matrix row
by row and guarantee that every time we fill an entry, there must still exist
a solution to fill the rest of the entries to make it (d̄, s̄)-separable.

2. Our approach can solve more general group testing problem, none of previous
approaches can be modified to solve the general problem. In particular, an
additional advantage of our solution is that we can guarantee every test has
exactly k′ items where k′ ≥ k which can handle the cases when there is a
restriction on the size of S.

3. Our approach is practical and gives an optimal design in the sense that the
number of tests matches the lower bound of the special case.

The paper is organized as follows. In Section 2, we define what a (d̄, s̄)-separable
matrix is and the relationship between such a matrix and the non-adaptive com-
plex group testing problem. Section 3 shows a sufficient condition for a matrix
to be (d̄, s̄)-separable and proves the the existence of t0 tests to solve the non-
adaptive complex group testing problem. Then, we will describe a derandomized
algorithm which constructs no more than t0 tests in Section 4. Section 5 con-
cludes the paper.
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2 Preliminaries

Definition 1. The Non-adaptive Complex Group Testing (NCGT) Problem:
Given n items and d′ hidden distinct positive subsets of items, F = S1, S2,
. . ., Sd′ , d′ ≤ d, |Si| ≤ s, Si �⊆ Sj for all i �= j. The result of a test on a set
of items T is positive if and only if there is at least one positive subset Si ⊆ T .
The NCGT problem is to design the minimum number of non-adaptive tests for
discovering all the positive subsets in F .

When the size of each positive set s = 1, the NCGT problem is equivalent to the
classical non-adaptive group testing problem (pooling design) [19]. When s = 2,
it is equivalent to the non-adaptive group testing for disjoint pairs problem [2].
Any solution with t tests to the NCGT problem can be represented as a t × n
binary matrix M and item j is included in the i-th test if M(i, j) = 1 (column
or item and test or row will be used interchangeably if no confusion arises).

For any family F = S1, S2, . . . , Sd′ , d′ ≤ d given in the NCGT problem, each
Si corresponds to a subset of at most s columns in M and F corresponds to
a collection of at most d subsets of columns. For any F , we first take the and-
product of the columns corresponding to each Si, then take the or-product of
all these and-products. The resulting bit vector is denoted as R(F ). Note that
since the outcome of a test is positive if and only if all items in a positive subset
are included in the test, the outcomes of the t tests are the same as R(F ) for
any family F of positive subsets. If such a matrix represents a solution to the
NCGT problem, for any two families F1, F2, R(F1) and R(F2) must be different
otherwise it is no way to distinguish whether F1 or F2 is the collection of the
positive subsets only based on the outcomes of the tests. This motivates us to
define a (d̄, s̄)-separable matrix as follows.

Definition 2. A (d̄, s̄)-separable matrix is a binary matrix, such that for any
family F of at most d subsets of columns, each subset Si has at most s columns,
the or-product of the ≤ d and-products of ≤ s columns corresponding to those
subsets in F , denoted as R(F ), is distinct.

It is easy to see that the NCGT problem is equivalent to designing a t × n
(d̄, s̄)-separable matrix with the minimum number of rows.

3 Existence of (d̄, s̄)-Separable Matrix

In this section, we show that there always exists a t × n (d̄, s̄)-separable matrix
with t ≤ t0 and all rows have at least k ‘1’, i.e. each test has at least k tested
items.

t0 =
(d + s) ln n − d ln(d + s) − s ln s + d + 2s

rs(1 − r)d
= O

(
(d + s) ln n

rs(1 − r)d

)
where r = max{ k

n−d+1 , s
d+s}. We first describe a sufficient condition for a matrix

with exactly k ‘1’ in each row to be a (d̄, s̄)-separable matrix. (Theorem 1). Based
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on this sufficient condition, we prove that there always exists such a t0×n (d̄, s̄)-
separable matrix with exactly k ‘1’ in each row (Theorem 2).

Theorem 1. Given a t×n binary matrix M , if M has the property that for any
d+ s distinct columns, there are

(
d+s

s

)
rows such that the induced

(
d+s

s

)× (d+ s)
matrix contains different set of s ‘1’ entries in each row, then M is a (d̄, s̄)-
separable matrix.

Proof. Let A and B be two distinct families of ≤ d subsets of ≤ s columns {Ai}
and {Bj} in M respectively. Remove those subsets Ai and Bj with Ai = Bj.
W.L.O.G. assume subset Amin ∈ A contains the minimum number of columns
among the remaining subsets. Since Ai �⊆ Amin and S �⊆ Amin for all Ai �= Amin

and remaining subsets S �= Amin respectively, Bj �⊆ Amin for all Bj ∈ B. There
always exist at most s + d columns containing all columns in Amin and one
column from a distinct subset Bj as |Amin| ≤ s and |B| ≤ d. Since there are(
d+s

s

)
rows in M such that the induced

(
d+s

s

) × (d + s) matrix contains a row
with ‘1’ at these ≤ s columns in Amin and ‘0’ at the rest ≤ d columns. Thus the
values of R(A) and R(B) are different (1 and 0 respectively) on that row. �	

In particular when s = 1, Theorem 1 reduces to the existence of (d+ 1)× (d+ 1)
identity matrix for any d + 1 columns. It is because given two distinct sets of
positive items A and B, we should always find a row such that the ≤ d positive
items in B is ‘0’ and a positive item in A is ‘1’. For example, when n = 9 and
d = 4, A = {3, 5, 7, 9}, B = {1, 5, 6, 9}, the corresponding d + 1 columns can
be {3 or 7, 1, 5, 6, 9} and the row must have 1 at positions 3 or 7 and 0 at the
others.

By considering a t × n random matrix where each row is assigned with k
‘1’ randomly, we find that the probability that a t × n random matrix with
exactly k ‘1’ in each row satisfies the sufficient condition of Theorem 1 is non-
zero when t ≥ t0 (Theorem 2). Thus, there always exists such t0 × n (d̄, s̄)-
separable matrix with exactly k ‘1’ in each row; otherwise, the probability should
be zero. Similar theorems as Theorem 2 are shown in [3,25]. However, since Bonis
proved the theorem by considering a hypergraph while Stinson and Wei proved
it by partitioning the matrix into submatrices, these proofs cannot be used to
construct the derandomized algorithm.

Lemma 1. Given a t×n binary matrix M with exactly k randomly selected ‘1’
in each row, the probability that M being a (d̄, s̄)-separable matrix is at least

1 −
(

en

d + s

)d+s(
e(d + s)

s

)s (
1 − rs(1 − r)d

)t
where r = k

(n−d+1) and e ≈ 2.71 is the Euler’s number

Proof. When the k ‘1 are assigned randomly among n columns, the probability
that exactly s ‘1’ are assigned in some particular positions in a subset of d + s
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columns is
(
n−(d+s)

k−s

)
/
(
n
k

)
. Thus the probability that a particular combination of s

out of a particular subset of d+s columns are not assigned ‘1’ is 1−(n−(d+s)
k−s

)
/
(
n
k

)
.

Pr(M is (d̄, s̄)-separable)
≥ 1 − Pr(There are d + s columns s.t. any induced

(
d+s

s

)× (d + s) matrix
does not contain all possible combinations of s out of d + s columns)

≥ 1 −
(

n

d + s

)(
d + s

s

)(
1 −

(
n−(d+s)

k−s

)(
n
k

) )t

≥ 1 −
(

en

d + s

)d+s(
e(d + s)

s

)s (
1 − rs(1 − r)d

)t
�	

Lemma 2

−1
ln(1 − rs(1 − r)d)

<
1

rs(1 − r)d

Theorem 2. There always exists a t0×n (d̄, s̄)-separable matrix M with exactly
k ‘1’s in each row where

t0 =
(d + s) ln n − d ln(d + s) − s ln s + d + 2s

rs(1 − r)d
= O

(
d + s

rs(1 − r)d
log n

)

where r = k
n−d+1 .

Proof. Consider a random binary t×n matrix M with exactly k randomly selected
‘1’ in each row. By Lemma 1

1 −
(

en

d + s

)d+s(
e(d + s)

s

)s (
1 − rs(1 − r)d

)t
> 0

⇔ −t ln(1 − rs(1 − r)d) > (d + s)[ln n − ln(d + s) + 1] + s[ln(d + s) − ln s + 1]

⇔ t >
(d + s) ln n − d ln(d + s) − s ln s + d + 2s

− ln(1 − rs(1 − r)d)

When t satisfies the above inequality, the probability that such a t × n random
binary matrix is a (d̄, s̄)-separable matrix is larger than 0, i.e. there always exists
a t × n (d̄, s̄)-separable matrix M . The theorem is proved using Lemma 2. �	
Corollary 1. There always exists a t0×n (d̄, s̄)-separable matrix M with at least
k ‘1’s in each row, where t0 is defined in Theorem 2 and r = max{ k

n−d+1 , s
d+s}.

Proof. By differentiating the equation in Theorem 2 with respect to r, rs(1− r)d

has the maximum value and t0 the minimum value when r = s/(d + s). Thus,
when k/(n−d+1) ≤ s/(d+s), we can increase the value of k to s(n−d+1)/(d+s)
and achieve the minimum t0 = (d + s)d+s[(d + s) ln n − d ln(d + s) − s ln s + d +
2s]/(ddss). Note that the assumption “at least k 1’s” is still satisfied. �	
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Note that when solving the classical non-adaptive group testing problem with
s = 1 and k = 1, t0 = O(d2 log n) which matches with the lower bound. When
solving the non-adaptive group testing for disjoint pairs problem with s = 2 and
k = 1, t0 = O(d3 log n).

4 Constructing a (d̄, s̄)-Separable Matrix

Theorem 2 shows that there is a t0 × n (d̄, s̄)-separable matrix with exactly k
‘1’s in each row. In this section, we will introduce a deterministic algorithm for
constructing such a t×n (d̄, s̄)-separable matrix with t ≤ t0 by derandomization.

Recall that the sufficient condition for a matrix M being a (d̄, s̄)-separable
matrix is that for any d + s columns, there are

(
d+s

s

)
rows such that the induced(

d+s
s

)× (d + s) matrix represents all possible combinations of s ‘1’ out of d + s

columns (Theorem 1). Therefore, if all the
(

n
d+s

)
combinations of columns satisfy

this requirement, matrix M is a (d̄, s̄)-separable matrix. We first show by Lemma
3 that for a random matrix with exactly k entry ‘1’ in each row, the expected
number of combinations of d + s columns satisfying the requirement is larger
than

(
n

d+s

)− 1. Based on Lemma 4, we can fill in each entry of the matrix with
‘0’ and ‘1’ to each row one by one such that the expected number of groups of
d+ s columns (out of

(
n

d+s

)
) satisfying the requirement does not decrease. Thus,

we can construct a t0 × n (d̄, s̄)-separable matrix in a greedy manner.

4.1 The Derandomized Algorithm

Let C be a subset of d + s columns in a t × n binary matrix M and M(C) be
the t × (d + s) binary matrix by restricting the columns in C.

Lemma 3. For some t ≤ t0, the expected number of combinations of columns
(out of

(
n

d+s

)
) of a random t × n matrix satisfying the requirement in Theorem

1 is larger than
(

n
d+s

)− 1.

Proof. For any subset C of d + s columns, the probability that M(C) is a (d̄, s̄)-
separable matrix is at least

1 −
(

d + s

s

)(
1 −

(
n−(d+s)

k−s

)(
n
k

) )t0

Thus, the expected number of combinations of columns (out of
(

n
d+s

)
) satisfying

the requirement is at least(
n

d + s

)⎡⎣1 −
(

d + s

s

)(
1 −

(
n−(d+s)

k−s

)(
n
k

) )t0
⎤⎦

>

(
n

d + s

)
− 1

�	
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Construct a t0 × n matrix M with all entries marked as ‘x′;
for i← 1 to t0 do

q′ ← 0;
for j ← 1 to n do

Calculate E0(i, j) =
∑

C
p(M,C) when M(i, j) = 0;

Calculate E1(i, j) =
∑

C
p(M,C) when M(i, j) = 1;

if E0(i, j) ≥ E1(i, j) or q′ ≥ k then
M(i, j)← 0;

else
M(i, j)← 1;
q′ ← q′ + 1;

end

if max{E0(i, j), E1(i, j)} =
(

n
d+s

)
then

Assign 0 to all entries marked as ‘x’;
Return the first i-th rows of M (an i× n matrix);

end

end

end

Algorithm 1. derandomized algorithm for constructing (d̄, s̄)-separable matrix

Now, we want to show that we can fill in the matrix in a greedy manner in
order to obtain a (d̄, s̄)-separable matrix with t ≤ t0. We order the entries of
the matrix from top to bottom and from left to right (i.e., we fill the entry from
M(1, 1) to M(t, n)). Assume that all entries proceeding M(i, j) have been filled.
Let E0(i, j) be the expected number of combinations of columns (out of

(
n

d+s

)
satisfying the requirement in Theorem 1 assuming that we fill the entry M(i, j)
with ‘0’. And E1(i, j) is defined similarly assuming that we fill the entry M(i, j)
with ‘1’.

For any subset C of (d + s) columns in the matrix M with some entries filled,
let p(M, C) be the probability that M(C) contains

(
d+s

s

)
rows such that the

induced
(
d+s

s

)× (d + s) matrix represents all combinations of s ‘1’ out of d + s
positions when each row of M is assigned with exactly k ‘1’ randomly (how
to compute p(M, C) will be described in the next subsection). The expected
number of subsets C with M(C) satisfying Theorem 1 is

∑
C p(M, C). Thus,

E0(i, j) =
∑

C p(M, C) when all previously assigned entries are fixed and M(i, j)
is assigned ‘0’, similarly for E1(i, j).

Lemma 4. max{E0(i, j), E1(i, j)} ≥ max{E0(i′, j′), E1(i′, j′)} where M(i′, j′)
is the entry just before M(i, j), i.e., i′ = i and j′ = j − 1 if j ≤ n, otherwise
i′ = i − 1, j′ = n and j = 1.

Proof. We first let j = 2, 3, . . . , n. Since E0(i, j−1) and E1(i, j−1) are calculated
based on the assumption that M(i, j) is assigned ‘0’ and ‘1’, max{E0(i, j −
1), E1(i, j − 1)} = p0E0(i, j) + (1 − p0)E1(i, j) for some real number 0 ≤ p0 ≤ 1.
Thus max{E0(i, j), E1(i, j)} ≥ max{E0(i, j−1), E1(i, j−1)}. Similarly, we have
max{E0(i, 1), E1(i, 1)} ≥ max{E0(i − 1, n), E1(i − 1, n)}. �	
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Based on Lemma 4, we can assign values to M(i, j) according to the larger
value of E0(i, j), E1(i, j). Algorithm 1 shows the details of the construction.
Initially, we mark all unassigned entries by ‘x′. Since the value of

∑
C p(M, C)

increases monotonically with the assignment of M(i, j) and the initial value of∑
C p(M, C) with no entry being assigned is larger than

(
n

d+s

)−1, the correctness
of Algorithm 1 is guaranteed. The following theorem follows. Note also that
when max{E0(i, j), E1(i, j)} =

(
n

d+s

)
, it means that we can assign anything to

the remaining entries, so we assign ‘0’ to these entries.

Theorem 3. Algorithm 1 outputs a t × n (d̄, s̄)-separable matrix with t ≤ t0.

4.2 Computing the Probability

In this subsection, we show how to compute p(M, C). Given a t× (d + s) binary
matrix M(C) with all entries in the first i − 1 rows and the first j entries of
the i-th row assigned, the probability p(M, C) that M(C) containing

(
d+s

s

)
rows

such that the induced
(
d+s

s

)× (d + s) matrix represents all combinations of s ‘1’
out of d + s positions can be calculated by the following arguments.

When the last column of C has been assigned, i.e. we are considering the
case when all the entries in the first i rows of M(C) have been assigned, we can
identify the set of distinct rows of the

(
d+s

s

)
combinations of s ‘1’ out of d + s

positions already existed in the first i rows of M(C). Let R be the set of r out
of
(
d+s

s

)
combinations that do not exist in the first i rows of M(C). p(M, C) is

equal to the probability prow(i, r) that these r combinations in R appear in the
remaining t − i rows of M(C). If all the

(
d+s

s

)
rows have already existed in the

first i rows of M(C), then R = ∅, r = 0 and p(M, C) = 1. The probability that
none of the t − i rows equals to a particular row in R is (1 − (n−(d+s)

k−s

)
/
(
n
k

)
)t−i

and the probability that none of the t − i rows equals to any of the r particular
rows in R is (1 − r

(
n−(d+s)

k−s

)
/
(
n
k

)
)t−i. By inclusion and exclusion principle

prow(i, r) = 1 +
r∑

α=1

(−1)α

(
r

α

)(
1 − α

(
n−(d+s)

k−s

)(
n
k

) )t−i

When the last column of C has not been assigned yet, we can calculate p(M, C) =
prc with the following parameters
r = number of rows in R that do not exist in the first i − 1 rows of M(C)
r′ = number of rows (out of r) in R can occur in the i-th row by assigning the
rest entries properly
w = number of entries in C have not been assigned any value in the i-th row
q = number of unassigned entries in C have to be assigned with ‘1’ such that
exactly s ‘1’ appear in the i-th row of C
q′ = number of entries in the i-th row have been assigned with ‘1’

prc =

⎧⎨⎩
(

r′((n−j)−w

k−q′−q )
( n−j

k−q′)

)
prow(i, r − 1) +

(
1 − r′((n−j)−w

k−q′−q )
( n−j

k−q′)

)
prow(i, r) q + q′ ≤ k

0 q + q′ > k
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Since the values of 0 ≤ w, q ≤ d + s, 0 ≤ r′ ≤ r ≤ (
d+s

s

) ≤ (d + s)s,
1 ≤ i ≤ t, 1 ≤ j < n and 1 ≤ q′ ≤ k, there are O(t(d + s)s) prow(i, r) and
O(nkt(d + s)2+2s) prc needed to be precomputed. All possible values of

(
n′

q′
)

and

(1 − α
(

n−(d+s)
k−s

)
/
(
n
k

)
)t−i for different parameters can be precomputed in O(n2)

and O(t(d + s)s) times. Each prow(i, r) can be calculated in O((d + s)s) time
after the above precomputation. Thus, the O(t(d + s)s) prow(i, r) elements can
be calculated in O(t(d + k)2s) times. Since each prc element can be calculated
in constant time after the precomputation, the O(nkt(d + s)2+2s) possible prc

elements can be calculated in O(nkt(d+s)2+2s) times. The total time complexity
for pre-calculating all possible p(M, C) is O(n2 + nkt(d + s)2+2s).

5 Conclusions

In this paper, we have introduced a deterministic algorithm for constructing
tests with the constraint that at most (or at least) k tested items in each test for
the non-adaptive complex group testing problem. The algorithm matches with
the lower bound O(d2 log n) for the unconstrained classical non-adaptive group
testing problem. In the future, more complicated constraints, such as inhibition
and errors, should be modeled and considered.
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Abstract. In this paper we consider the problem of finding a graph separator of
a given size that decomposes the graph into the maximum number of connected
components. We present the picture of the computational complexity and the
approximability of this problem for several natural classes of graphs.

We first provide an overview of the hardness of approximation of this prob-
lem, which stems mainly from its close relation to the INDEPENDENT SET and
to the MAXIMUM CLIQUE problem. Next, we show that the problem is solv-
able in polynomial time for interval graphs and graphs of bounded treewidth. We
also show that MAXINUM COMPONENTS is fixed-parameter tractable on planar
graphs with the size of the separator as the parameter. Our main contribution is the
derivation of an efficient polynomial-time approximation scheme for the problem
on planar graphs.

1 Introduction

In this paper we address the following graph separation problem, called MAXINUM

COMPONENTS : Given an n-vertex graph G = (V,E) and an integer k ≤ n, find a cut-set
S ⊆ V of size at most k such that the subgraph of G induced by V \ S has the maximum
number of connected components. Throughout the paper we refer to this problem as
MAXINUM COMPONENTS. We remark that the reverse of MAXINUM COMPONENTS :
the number of cut-vertices needed to obtain at least � components, is NP-hard to ap-
proximate within any factor. This is because any set of vertices separating the graph
into at least � components identifies an independent set of size at least � [18].

There are many natural graph-theoretic problems where one has to find a graph sep-
arator of a given size satisfying certain properties. This type of problems is very generic
and has attracted the attention of many researchers. Moreover, graph separation prob-
lems have many applications, e.g., in routing and network reliability. The edge variant
of MAXINUM COMPONENTS, k-CUT, is well studied. Surprisingly enough, despite its
very basic and quite generic setting, MAXINUM COMPONENTS did not receive much
attention in the literature. Marx [27] has investigated the fixed-parameter (in)tractability
of MAXINUM COMPONENTS among other related problems. This is in contrast to
the amount of research concerning related problems such as BALANCED SEPARA-
TORS [1,15,27], MAXIMUM k-CUT [24,28], MULTIWAY CUT [10,13,14,18,30], MUL-
TICUT [11, 12, 17, 20], VERTEX INTEGRITY [4, 5], VALVE LOCATION [7], MINIMUM

k-CUT [2, 19, 21, 29], and BOUNDED FRAGMENTATION [22].
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Our results. In this paper we present the picture of the computational complexity and
the approximability of MAXINUM COMPONENTS for several natural classes of graphs.

In Section 2 we give a summary of complexity results for MAXINUM COMPO-
NENTS, using standard reductions from INDEPENDENT SET and a reduction for split
graphs already used by Marx [27]. Also, we show that MAXINUM COMPONENTS can
be solved in polynomial time for interval graphs and for graphs of bounded treewidth.

Section 3 contains our main contribution, namely, an efficient polynomial-time ap-
proximation scheme (EPTAS) for MAXINUM COMPONENTS on planar graphs. The

running time of our algorithm is O

(
nk2
(

1
ε2

)O( 1
ε2 )
)

, where k is the upper bound on

the size of the cut-set. We also present a fixed-parameter tractable (FPT) algorithm for

planar graphs with running time O
(

nkO(k)
)

in the same section. The FPT algorithm is

needed for the EPTAS.

Notions and definitions. Let G(V,E) be a simple undirected graph. We use G[S] to
denote the subgraph of G induced by S ⊆ V . G \ S := G[V \ S]. The neighborhood of
S ⊂ V in G\ S is denoted N(S) and N[S] := N(S)∪S.

The set of connected components in G is represented by C (G), where each element
in C (G), a set of vertices, induces a connected graph. Let c(G,S) denote |C (G\ S)|−
|C (G)| i.e. the number of extra components obtained by removing S from G. Moreover,
let the component number κ(G,k) of G be the maximum c(G,S) over all subsets S ⊆ V
of size at most k. For the definitions of the tree decomposition and the treewidth we
refer to the survey papers by Bodlaender, for example [6].

2 Complexity Results

In this section we summarize several complexity results for MAXINUM COMPONENTS.
For brevity, the proofs of Theorems 1, 2, 3 and 4 are postponed to the full version of
this paper. The following observation is straightforward.

Observation 1. The independence number of any graph equals the maximum number
of components that can be obtained by removing any number of vertices of the graph.

The following theorem is now immediate from previous hardness results for INDEPEN-
DENT SET [31, 16].

Theorem 1. It is NP-hard to approximate MAXINUM COMPONENTS within a factor
of n1−ε for every ε > 0. Moreover, MAXINUM COMPONENTS is NP-hard on 3-regular
planar graphs.

Using a reduction from MAXIMUM CLIQUE, Marx [27] has shown that MAXINUM

COMPONENTS is W[1]-hard with parameter k even on split graphs. We use an almost
identical reduction to reduce MAXINUM COMPONENTS to DENSE k-SUBGRAPH in an
approximation preserving way. Together with an inapproximability result by Khot [25],
this yields the following theorem.
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Theorem 2. MAXINUM COMPONENTS is NP-complete and W[1]-hard when re-
stricted to split graphs. Moreover, it does not admit a PTAS for split graphs unless
NP ⊆ ∩ε>0BPTIME(2nε

).

We complete this section with two positive complexity results. First, we consider MAX-
INUM COMPONENTS on class of interval graphs.

Theorem 3. Let G = (V,E) be an interval graph and let k be an integer. Then, κ(G,k)
can be found in O(n2k) time.

Second, we present a dynamic programming algorithm for MAXINUM COMPO-
NENTS on graphs of bounded treewidth. We assume that a tree decomposition is given
as part of the input, there are several algorithms for finding the tree decomposition of a
graph, for example see Bodlaender [8].

Theorem 4. Let G = (V,E) be a graph with a tree decomposition of width at most w and
let k be an integer. Then, κ(G,k′), for all 0 ≤ k′ ≤ k, can be found in O(nk2(w+1)w) time.

3 An FPT Algorithm and an EPTAS for Planar Graphs

In this section we develop algorithms for the MAXINUM COMPONENTS problem on
planar graphs. We assume that a planar embedding is given as a part of the input, oth-
erwise we construct it in linear time using Hopcroft and Tarjan’s algorithm [23]. An
embedding of a graph G is called outerplanar (or 1-outerplanar) if all vertices of the
graph are incident to the outer face. For a positive integer p ≥ 2, an embedding of G
is called p-outerplanar if the removal of all vertices incident to the outer face yields
a (p − 1)-outerplanar graph. Assume without loss of generality, that every connected
component in G is incident to the outer face in the embedding. We denote the vertices
incident to the outer face by layer L1. Recursively, all vertices incident to the outer face
of the graph obtained by removing layers L1 to Lj−1 form layer Lj ( j ≥ 2). The set of
layers of a plane graph G is denoted as L := {L1, . . . ,Lz}. Given a plane graph G, L
can be found in linear time by a slightly modified BFS-algorithm where the search pro-
cedure is done in face-by-face fashion. From now on, we assume that in all algorithms,
L is given as a part of the input.

We will first show that the MAXINUM COMPONENTS on planar graphs is fixed-
parameter tractable with respect to parameter k. We will make use of the following
lemma.

Lemma 1 (Bodlaender, [6]). Let G = (V,E) be a p-outerplanar graph on n vertices.
Then, a tree decomposition of width at most 3p−1 can be found in O(n) time.

We will first investigate the structure of the optimal solution in case a given family of
layers is forbidden in the cut-set. Let F := {Li1 , . . . ,Lir} ⊂ L be a set of forbidden
layers, i.e., for any v ∈ Lit ,1 ≤ t ≤ r, vertex v cannot be present in the cut-set. Without
loss of generality we assume that 1 ≤ i1 < · · · < ir ≤ z. We denote by κ(G,F ,k) the

maximum of c(G,S) over all S ⊂V such that S∩
r⋃

t=1

Lit = /0 and |S| ≤ k. Additionally, we

set i0 := 1 and ir+1 := z. For 0 < t < r, let Pt :=
ir−t+1⋃
l=ir−t

Ll , and P0 :=
z⋃

l=ir

Ll and Pr :=
i1⋃

l=1

Ll .
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Lemma 2. Let G = (V,E) be a plane graph, let k ≥ 1 be an integer and let F be a set
of forbidden layers as denoted above. Then, there exist non-negative integers k0, ...,kr

such that the following holds:

– κ(G,F ,k) =
r

∑
t=0

κ(G[Pt ],F ,kt ),

–
r

∑
t=0

kt = k.

Proof. Consider an arbitrary cut-set S ⊆ V \⋃r
t=0 Lit .

We use induction in the number r of layers in F to prove that c(G,S) =
r

∑
t=0

c(G[Pt ],S). Since S is an arbitrary cut-set, the claim of the lemma would follow

immediately.
For the base case, consider the graph induced by Pr. This graph contains exactly one

forbidden layer Lir . The claim in the base case trivially holds.
Let P′

j :=
⋃r

t=r− j Pt , 0 ≤ j ≤ r. Suppose c(G[P′
j],S) = ∑r

t=r− j c(G[Pt ],S) holds for
some j, 0 ≤ j ≤ r, then we claim that

c(G[P′
j+1],S) = c(G[P′

j],S) + c(G[Pj+1],S). (1)

Let us remind that by definition c(G,S) is the number of extra components in G after re-
moval of S. Since G[P′

j] and G[Pj+1] are two intersecting subgraphs, c(G[P′
j∪Pj+1],S)≤

c(G[P′
j],S) + c(G[Pj+1],S). We denote the overcount of adding up c(G[Pj+1 \ S]) and

c(G[P′
j \ S]), the total amount that each component is counted more than once summed

over all components, by

Δ := c(G[Pj+1 \ S]) + c(G[P′
j \ S])− c(G[P′

j ∪Pj+1 \ S]). (2)

Note that only components that include vertices from Li j can be counted multiple times.
Assume Δ = c(G[Li j ]). Then,

c(G[P′
j+1],S) = c(G[P′

j ∪Pj+1],S) (3)

= c(G[Pj+1 ∪P′
j \ S])− c(G[Pj+1∪P′

j]) (4)

= c(G[Pj+1 \ S]) + c(G[P′
j \ S])−Δ − c(G[Pj+1 ∪P′

j]) (5)

= c(G[Pj+1 \ S]) + c(G[P′
j \ S])− c(G[Li j ])− c(G[Pj+1 ∪P′

j]) (6)

= c(G[Pj+1 \ S])− c(G[Pj+1]) + c(G[P′
j \ S])− c(G[P′

j]) (7)

= c(G[Pj+1],S) + c(G[P′
j],S). (8)

Here, Equation 3 is true by definition of the set P′
j+1, Equation 4 follows from the

definition of c(·, ·), Equation 5 is by Equation 2. By assumption that Δ = c(G[Li j ]),
we derive Equation 6. By construction of layers in planar graphs, c(G[P′

j]) = c(G[Li j ])
and c(G[Pj+1]) = c(G[Pj+1 ∪P′

j]), which yields Equation 7. Finally, Equation 8 follows
again from the definition of c(·, ·).

Thus, to prove Equation 1 it only remains to verify the assumption Δ = c(G[Li j ]).
Consider a component C ∈ C (G[P′

j ∪ Pj+1 \ S]) that intersects Li j . Let A := G[Pj+1 \
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S∩C]. Now, we intend to prove that A is connected. For a contradiction, suppose there
are at least two components in A, say, A′ and A′′. By definition, G[C] is connected in
G[P′

j ∪Pj+1]. However, A′ and A′′ are not connected in G[Pj+1]. Thus, there must be a
path connecting A′ and A′′ through G[P′

j ∩C] and not G[Pj+1∩C]. On the other hand, by
construction of layers, every path from A′ to A′′ through G[P′

j ∩C] must go through Li j ,
from which we can shortcut the paths, such that the modified path only goes through
G[Pj+1 ∩C]; a contradiction.

Component C can be covered by one component from G[Pj+1 ∩C \ S] and several
components from G[P′

j ∩C \ S]. Then, the number of times C is counted too often is
precisely the number of components from G[P′

j ∩C \ S] that cover C. Further, at most
one component from C (P′

j \ S) contains vertices from any component induced by the
forbidden layer Li j . Therefore, Δ ≤ c(G[Li j ]). Moreover, from the fact that every com-
ponent induced by Li j is contained in some component from C (P′

j \ S), it follows that
Δ ≥ c(G[Li j ]). Therefore, Δ = c(G[Li j ]). �	
Algorithm 1 is an FPT algorithm for MAXINUM COMPONENTS on planar graphs
with respect to parameter k, the pseudo-code is given in Algorithm 1. The main struc-
tural property that we use in the algorithm is that among any k + 1 consecutive layers
there must be one layer without any cut-vertices. Similar ideas are driving all Baker’s
type polynomial-time approximation schemes [3] for combinatorial problems on planar
graphs. By Lemma 2 we can “partition” the graph into smaller pieces, if we know the
set of forbidden layers not containing any cut-vertices.

Theorem 5. Let G = (V,E) be a planar graph and let k be an integer. Then, Algorithm 1

finds κ(G,k) in O
(

nkO(k)
)

time algorithm.

Proof. Given a planar graph G = (V,E) and integer k, let G[i, j] be the graph induced
by
⋃

i≤t≤ j Lt . Algorithm 1 consists of two parts. First, we decompose the graph into
smaller subgraphs of bounded treewidth. On these subgraphs we run the algorithm from
Theorem 4. Using Lemma 2, in the second phase we apply dynamic programming to
combine the obtained solutions on the subgraphs, and to return the overall optimal so-
lution. Correctness follows from the following inductive argument. Assume we know
κ(G[1, i],k′) for some i and k′, then one of the layers Li+1, ...,Li+k+1 does not contain
cut-vertices. Therefore, we can extend the solution for G[1, i] to a solutions for G[1, j]
where j ∈ [i + 1, i + k + 1]. We can combine these solutions by Lemma 2.

The first part (lines 2 to 7 in Algorithm 1) takes O(nk3kO(k)) time to calculate
κ(G[q,q+d +1],F ,k′), as in Algorithm 1. The union of all these small pieces contains
at most 2n vertices, and the treewidth of each G[q,q+d +1] is bounded by 3(k +2)−1
and can be found in linear time by Lemma 1. Therefore, by applying the algorithm in

Theorem 4 we obtain the optimal solution in each small piece in O
(

nkO(k)
)

time. The

second part (lines 9 to 13) combines all parts by dynamic programming. This takes

O(nk2) time. The total running time is O
(

nkO(k)
)

. �	

We now move to the presentation of the efficient polynomial-time approximation
scheme (EPTAS) for MAXINUM COMPONENTS on planar graphs. Let us remind that
an EPTAS (for a maximization problem) is a polynomial-time approximation algorithm
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Algorithm 1. FPT Algorithm for Planar Graphs
Input: Plane graph G = (V,E), layers L , and k ≥ 0
1: /* Split the graph into small pieces, and use Theorem 4 on the small pieces */
2: for 2 ≤ d ≤ k + 1 do
3: for 0 ≤ i < d do
4: F := {L j ∈ L | j ≡ i mod d}.
5: For all 0 ≤ k′ ≤ k, 0 ≤ q ≤ |L |, q ≡ i mod d, calculate κ(G[q,q+ d + 1],F ,k′).
6: end for
7: end for
8: /* Use dynamic programming to combine all small pieces. */
9: for k + 1 ≤ i ≤ |L | do

10: for 0 ≤ k′ ≤ k do
11:

κ(G[1, i],Li,k
′) :=

max
j≤k+1

max
k1+k2=k′

{
κ(G[1, i− j],Li− j,k1)+ κ(G[i− j, i],Li− j ∪Li,k2)

}
.

12: end for
13: end for
14: l := |L |
15: if l ≤ k then
16: return κ(G, /0,k)
17: else
18: κ(G, /0,k) := max

0≤ j≤k+1
max

k1+k2=k

{
κ(G[1,z− j],Ll− j,k1)+ κ(G[l − j,z],Ll− j,k2)

}
.

19: end if
20: return κ(G,k)

that for any given ε > 0 returns a solution of value at least (1− ε) times the optimum
in time poly(n) f (ε), where poly(n) only depends on n and not on ε , and f (·) is some
function only depending on ε . For a graph G and a cut-set S, the degree of a component
C ∈ C (G\ S) is |N(C)∩S|.

Our approach is as follows. Using a threshold parameter d, we distinguish between
components of low and high degree. Then, we analyze the high and low degree compo-
nents separately. To approximate the maximum number of low degree components we
make use of the decomposition Lemma 2. In combination with the Baker’s type layer-
shifting method [3], we arrive to an EPTAS for the number of low degree components.
Secondly, in Lemma 4 we prove that in planar graphs there are not many components
of high degree. Thus, by choosing the proper threshold parameter d we ensure that the
number of high degree components is at most ε ·κ(G,k). Combining both elements, we
obtain an EPTAS for MAXINUM COMPONENTS.

In order to proceed further, we need several definitions. For a given cut-set S and an
integer d > 0, we say a component from C (G \ S) is of low degree if it has at most d
neighbors in S. Let c≤d(G,S) be the number of low degree components. Similarly, a
component is of high degree if it has more than d neighbors in S. We let c>d(G,S) be
the number of high degree components. By definition, c(G,S) := c≤d(G,S)+c>d(G,S).
We define κ≤d(G,k) to be the maximum of c≤d(S) over all S ⊂V of cardinality at most
k. Likewise, we define κ>d . Clearly,
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κ(G,k) ≤ κ≤d(G,k) + κ>d(G,k). (9)

First, we approximate the number of low degree components κ≤d(G,k). Following the
logic of the layer-shifting method of Baker, for some appropriate number w, we forbid
every w-th layer to be in the cut-set S. Then, using Lemma 2 we can combine partial
solutions obtained on the subgraphs between the forbidden layers. Choosing an appro-
priate shift of the forbidden layers, we guarantee that the combined solution contains at
least (1− ε)κ≤d(G,k) components.

Algorithm 2. EPTAS for the maximum number of low degree components in planar
graphs
Input: Plane graph G = (V,E), layers L , k ≥ 2, d ≥ 5, and ε > 0
1: /* Split the graph into small pieces, and use Theorem 4 on the small pieces */
2: w := d ·⌈ 1

ε
⌉

3: for 0 ≤ s < w do
4: F := {L j ∈ L | j ≡ s mod w}.
5: For all 0 ≤ k′ ≤ k, 0 ≤ q ≤ |L |, q ≡ s mod w, calculate κ(G[q,q+ w],F ,k′).
6: end for
7: /* Use dynamic programming to combine all small pieces. */
8: for 0 ≤ s < w do
9: Fs := {L j ∈ L | j ≡ s mod w}.

10: for k′ ≤ k do
11: Initialize ts(0,k′) := κ(G[0,s],k′)
12: end for
13: for 1 ≤ i ≤  |L |/w! do
14: for k′ ≤ k do
15: ts(i,k′) := max

k1+k2=k′
ts(i−1,k1)+ κ(G[(i−1)w + s, iw + s],Fs ,k2)

16: end for
17: end for
18: κ(G,Fs,k) := ts( |L |/w! ,k).
19: end for
20: return max

0≤s<w
κ(G,Fs,k)

Lemma 3. Let G = (V,E) be a planar graph, let k ≥ 2 and d ≥ 5 be integers and

let 0 < ε < 1 be a rational number. Then, Algorithm 2 is an O

(
nk2
(

d
ε
)O( d

ε )
)

-time

algorithm that approximates κ≤d(G,k) within a factor of (1− ε).

Proof. Let the distance between two consecutive forbidden layers be w := d
⌈

1
ε
⌉
. For

any (integer) shift s, 0 ≤ s < w, let Vs :=
⋃{Li ∈ L (G)|i ≡ s mod w}. Let SOPT ⊂V be

the optimal cut-set. We say that two distinct components in G[V \ SOPT ] break by Vs if
they become connected in G[V \ (SOPT \Vs)]. The solution that our algorithm returns is
therefore at least c≤d(G,SOPT \Vs).
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Let bs be the number of components in G[V \ SOPT ] that break by Vs. Then, by defi-
nition of bs

c≤d(G,SOPT \Vs) ≥ c≤d(G,SOPT )−bs. (10)

Observe that a component can only break by Vs if it has a neighboring vertex in SOPT ∩
Vs. Since we consider only components of degree at most d, there are at most d values
i1, ..., id such that a component is broken by Vi1 , ...,Vid . Therefore,

w−1

∑
s=0

bs ≤ d ·κ≤d(G,k). (11)

Let bmin := min
s=0,...,w−1

bs. From Equation 11 and standard averaging argument

bmin ≤ d ·κ≤d(G,k)
w

=
d ·κ≤d(G,k)

d · ⌈ 1
ε
⌉ ≤ ε ·κ≤d(G,k). (12)

Combining Equations 10 and 12 we derive that Algorithm 2 returns a cut-set splitting
the graph in at least (1− ε)κ≤d(G,k) components.

It remains to analyze the running time of Algorithm 2. In lines (2-6), we in-
voke the algorithm from Theorem 4 exactly w times. By Lemma 1, the treewidth
of the considered subgraphs is at most 3w − 1 = O( d

ε ). Therefore, lines (2-6) take

O

(
w ·nk2

(
d
ε
)O( d

ε )
)

time. Lines (8-18) take O(nwk2) time, making the total running

time O

(
nk2
(

d
ε
)O( d

ε )
)

. �	

Now, we estimate the number of the high degree components κ>d(G,k).

Lemma 4. Let G = (V,E) be a planar graph, and let k ≥ 2 and d ≥ 3 be integers. Then,
κ>d(G,k) ≤ 2k−4

d−2 .

Proof. Let m be the number of edges in G, and let f be the number of faces in an
embedding of G. Let S ⊂ V be an arbitrary cut-set. Consider a minor H = (V ′,E ′)
obtained from G by:

1. Contracting all pairs of adjacent vertices that are not in S;
2. Removing all vertices of degree less than d that are not in the cut-set;
3. Removing all edges between cut-set vertices;
4. For each component T of degree more than d, remove arbitrary edges between T

and S such that the degree of T becomes d.

In the obtained minor H, each vertex not in S is called a component vertex, and each
component in G[V \ S] of degree at least d has a corresponding component vertex in
H. By construction, H is bipartite, all component vertices have degree d. Therefore,
n′ = |V ′| = |S|+ c>d(G,S) and m′ = |E ′| = d · c>d(G,S). Denote by f ′ the number of
faces in a planar embedding of H. As H is bipartite every face is incident to at least four
edges, and we can conclude that f ′ ≤ m′/2. By Euler’s formula,

2 = n′ −m′ + f ′ ≤ k + c>d(G,S)−d · c>d(G,S) + d · c>d(G,S)/2.

Thus, κ>d(G,k) ≤ 2k−4
d−2 . �	
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The final ingredient needed for our main result is the following lemma. This lemma
provides a simple lower bound on the total number of components κ(G,k).

Lemma 5. Let G = (V,E) be a planar graph and let k ≤ 5
6 n. Then,

⌊
k
5

⌋≤ κ(G,k).

Proof. It is well known that any simple planar graph has a vertex v ∈ V of degree at
most 5. Set an initial cut-set S = /0. Find a non-isolated vertex v of the lowest degree
in G[V \ S]. Consider the neighborhood N(v) of v in this graph. If |S∪N(v)| ≤ k, then
define S := S∪N(v). Since k ≤ 5

6 n, e can make
⌊

k
5

⌋
steps of this procedure, obtaining a

cut-set S of at most k vertices while the graph G[V \S] has at least
⌊

k
5

⌋
components. �	

Now we are ready to present our main theorem, an efficient polynomial-time approxi-
mation scheme for MAXINUM COMPONENTS.

Theorem 6. Let G = (V,E) be a planar graph, let k ≥ 2 be an integer and let 0 <

ε < 1 be a rational number. Then, there is a O

(
nk2
(

1
ε2

)O( 1
ε2 )
)

time algorithm that

approximates κ(G,k) within a factor (1− ε).

Proof. Define δ := ε
2−ε . If k < 55 we apply the FPT algorithm in Theorem 5 and we

find the optimal solution in linear time.
For 55 ≤ k, we observe the following. If S ⊂V is a cut-set of cardinality � 5

6 n�+ j ≤ k

where j > 0, then c(G,S) ≤ n−� 5
6n�− j =  1

6 n!− j. By Lemma 5,

⌊� 5
6 n�
5

⌋
=
⌊

1
6 n
⌋≤

κ(G, 5
6 n). Hence, we can assume 55 ≤ k ≤ 5

6 n.
Define d :=

⌈ 24
δ
⌉
. Consider two solutions to MAXINUM COMPONENTS. The first

cut-set is generated by the algorithm in Lemma 5, and the second cut-set is returned by
Algorithm 2 with parameters d and δ . From these two cut-sets, we choose the cut-set
that splits the graph into the most components. Let the resulting number of components
be denoted by ALG. By Lemmas 3 and 5, and by definition of ALG,

ALG ≥ max

{
(1− δ )κ≤d(G,k),

⌊
k
5

⌋}
. (13)

Thus, from Lemma 4 and Equation 13 we obtain

κ>d(G,k) ≤ 2k−4
d −2

≤ 2k
22

δ ≤
⌊

k
5

⌋
δ ≤ δALG. (14)

Combining Equations 9, 13 and 14, we derive

(1− ε)κ(G,k) ≤ (1− ε)κ≤d(G,k) + (1− ε)κ>d(G,k)
≤ ALG. (15)

The running time for obtaining the solution in Lemma 3 clearly dominates the run-
ning time for obtaining the solution in Lemma 5. Therefore, the time requirement in the
theorem will be the same as in Lemma 3, making the total running time

nk2
(

d
δ

)O( d
δ )

= nk2

(⌈
24
δ
⌉

δ

)O

( 24
δ !
δ

)
= nk2

(
1
ε2

)O
(

1
ε2

)
.

�	
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4 Conclusion

The main result of this paper was an EPTAS for MAXINUM COMPONENTS, a natural
graph separation problem which surprisingly did not receive much attention in the liter-
ature. Further, we identified two graph classes for which MAXINUM COMPONENTS is
polynomially time solvable, namely interval graphs and graphs of bounded treewidth.
However, MAXINUM COMPONENTS is W[1]-hard on split graphs and does not allow
a PTAS under a reasonable complexity assumption.
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Abstract. A k-ary cardinal tree is a rooted tree in which each node
has at most k children, and each edge is labeled with a symbol from
the alphabet {1, . . . , k}. We present a succinct representation for k-ary
cardinal trees of n nodes where k = O(polylog(n)). Our data structure
requires 2n + n log k + o(n log k) bits and performs the following oper-
ations in O(1) time: parent, child(i) label-child(α), degree, subtree-size,
preorder, is-ancestor(x), insert-leaf(α), delete-leaf(α). The update times
are amortized. The space is close to the information theoretic lower
bound. The operations are performed in the course of traversing the
tree. This improves the succinct dynamic k-ary cardinal trees represen-
tation of Arroyuelo [1] for small alphabet, by speeding up both the query
time of O(log log n), and the update time of O((log log n)2/ log log log n)
to O(1), solving an open problem in [1].

1 Introduction

In this paper, we present a succinct representation for dynamic k-ary cardinal
trees, i.e., rooted trees in which each node has at most k children and each edge
is labeled by a symbol from the alphabet {1, . . . , k}, for a fixed k. They are also
known as tries with degree k. We consider the case where for a k-ary cardinal
tree of n nodes, the size of the alphabet is small, in particular k = (log n)O(1).

A succinct data structure is a representation of an input which uses an amount
of space close to the information theoretic lower bound, and supports the re-
quired operations efficiently. The information theoretic lower bound for repre-
senting a k-ary cardinal tree of n nodes is computed by taking the logarithm
of the number of distinct such trees, i.e., log C(n, k) = log(

(
kn+1

n

)
/(kn + 1)) ≈

2n + n log k − o(n + log k) bits [1,9]. The required operations are the following:
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parent: the parent of the current node.
child(i): the i-th child of the current node.
label-child(α): the child of the current node such that the in-between edge is
labeled by α.
degree: the number of children of the current node.
subtree-size: the total number of nodes in the subtree rooted at the current node.
is-ancestor(x): true if the current node is an ancestor of a node x; otherwise false.
preorder: the rank of the current node in the preorder traversal of the tree.
insert-leaf(α): insert a new leaf as a child of the current node with an edge labeled
by α.
delete-leaf(α): delete the child of the current node with the in-between edge
labeled by α (assuming that the child is a leaf).

Our data structure supports the operations in the course of traversing the tree,
i.e., a traversal of the tree starts from the root, moves through the tree by per-
forming the navigational operations on the current node, and ends at the root.
All the operations have to be performed on the current node of the traversal.
This is the same model that was used in [12,15,1]. There are applications where
this assumption holds, e.g., constructing Lempel-Ziv indexes which is used for
dynamic compressed full-text indexes; and constructing suffix trees, if we supple-
ment the data structure with satellite data. If we do not restrict the operations
to be only performed on the current node (if we allow them to be performed on
any arbitrary node), Farzan and Munro [6] showed an amortized lower bound of
Ω(log n/ log log n) for child, subtree-size, insert-leaf, and delete-leaf.

We use the unit-cost RAM model with word size w = Θ(log n) bits.

Previous Work. For static k-ary cardinal trees of n nodes, Benoit et al. [2] gave
a representation that requires 2n+n log k+o(n)+O(log log k) bits, and supports
the navigational operations and queries in O(1) time. The space bound of their
structure is log C(n, k) + Ω(n) bits, as k grows. Raman et al. [14] improved the
space to log C(n, k)+o(n)+O(log log k) bits, while supporting all the operations
except subtree-size in O(1) time. Recently, a representation with the same space
that also supports subtree-size in O(1) time was given in [7].

For the dynamic k-ary cardinal trees, when k = 2, i.e., for dynamic binary
trees, Munro et al. [12] gave the first representation that uses 2n + o(n) bits.
This representation, in the course of traversing the tree, supports navigational
operations and queries in O(1) time and updates in O(log2 n) amortized time.
Their structure can also support accessing a b-bit satellite data associated with
a node in O(1) time, where b = Θ(log n). If b = O(1), they achieve O(log n)
amortized update time, and if no satellite data is associated with the nodes,
they obtain O(log log n) amortized update time. For b = O(log n), Raman and
Rao [15] improved the update time to amortized O((log log n)1+ε) while sup-
porting the navigations and queries in O(1) time, in the course of traversing
the tree. They also showed how to store the satellite data in bn + o(n) bits.
Indeed, the total space of their structure is 2n + bn + o(n) bits. More recently,
Farzan and Munro [6] proposed the finger-update model which is stronger than
the traversal pattern that is used in [12,15,1] and this paper as well. In the
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finger-update model, only the update operations are restricted to be performed
on the current node of the traversal (indeed, finger-update is the current node),
and all the other operations are allowed to be performed on any node at any
time. For b = O(log n) and for ordinal trees which are the generalized binary trees
where there is an order between the children of the nodes, Farzan and Munro
[6] presented a data structure that supports all the queries in constant time and
updates in constant amortized time. But their structure uses 2n + bn + o(bn)
bits which is worse than that of [15].

The succinct representation of dynamic k-ary cardinal trees was posed as an
open problem in [12]. In 1993, Darragh et al. [5] presented a compact repre-
sentation of cardinal trees that uses 6n + n log k! bits of space and achieves
O(1) expected time for the operations. Recently, Arroyuelo [1] presented a data
structure for this problem that uses 2n + n log k + o(n log k) bits of space, and
supports navigational operations and queries in O(log k+log log n) time and up-
dates in O((log k +log log n)(1+(log k)/(log(log k +log log n)))) amortized time.
When k = (log n)O(1), his data structure achieves O(log log n) query time and
O((log log n)2/ log log log n) amortized update time. Improving this was posed
as an open problem by Arroyuelo [1]. We address this problem by presenting a
data structure that uses 2n+n logk+o(n log k) bits and performs the navigation
and query operations in O(1) time, and the update operations in O(1) amortized
time. Associating satellite data with the nodes is supported by neither our data
structure nor the one in [1]. The following theorem states our result.

Theorem 1. For a k-ary cardinal tree with n nodes, there exists a dynamic data
structure of size 2n + n log k + o(n log k) bits, where k = (log n)O(1). This data
structure supports the operations parent, child, label-child, degree, subtree-size,
preorder, and is-ancestor in O(1) time, and supports insert-leaf and delete-leaf in
O(1) amortized time.

2 Preliminaries

Dynamic Arrays. A dynamic array [15] is a structure that supports access-
ing, inserting, and deleting elements in arrays efficiently with a small memory
overhead.

Lemma 1. (Dynamic Arrays [15,16]) There exists a data structure to rep-
resent an array of � = wO(1) elements, each of size r = O(w) bits, using
�r+O(k log �) bits, for any parameter k ≤ �. This data structure supports access-
ing the element of the array in a given index in O(1) time, and inserting/deleting
an element in/from a given index in O(1 + �r/kw) amortized time. The data
structure requires a precomputed table of size O(2εw) bits for any fixed ε > 0.

Searchable Partial Sums. In the searchable partial sums problem for an array
A of m numbers from the range [0, . . . , k − 1], we have to maintain A under the
following operations:
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sum(i): return the value
∑i

j=1 A[j],
update(i, δ): set A[i] = A[i] + δ, assuming that A[i] + δ < k, and δ is less than a
certain fixed number,
search(i): return the smallest j such that sum(j) ≥ i.

This problem has been considered for different ranges of m and k [13,10]. But
we are only interested in solving this problem for small m and k. Raman and
Rao [13] gave a data structure that solves the problem for m = wε and k ≤ w,
for any fixed 0 ≤ ε < 1. Their data structure achieves O(1) time for all the
operations and uses O(mw) bits of space. In the following, we show that when
both m and k are O(wc) for a constant c > 0, we can obtain a data structure
with O(1) time for all the operations that uses m log k +o(m log k) bits of space.

Lemma 2. For any integer n < 2w, there exists a searchable partial sums struc-
ture to represent an array of m elements from the range [0, . . . , k − 1], using
m log k + o(m log k) bits and a precomputed table of size o(n) bits, where m and
k are (log n)O(1). This data structure supports the operations sum, update, and
search in O(1) time.

Proof. We pack every w/ log k elements of the array into a word. Within each
word, every b numbers denote a chunk, where b = log1/4 n. Within each chunk,
the operations can be supported in O(1) time using a precomputed table of size
o(n) bits. The space usage to store all the chunks is m log k + o(m log k) bits.

Now, we make a B-tree with branching factor at most b. Each leaf of the B-tree
stores a pointer to one of the chunks such that scanning the chunks of the leaves
from the left of the B-tree to the right gives the original array. The number of
leaves is m/b and the depth of the B-tree is O(1). At each internal node u, we
maintain two arrays of length b. The i-th element of the first array maintains the
sum of all the elements in the chunks that are descendants of the i-th child of u.
The i-th element of the second array maintains the number of all the elements
in the chunks that are descendants of the i-th child of u. The operations on
these two arrays can be supported in O(1) time, using a precomputed table of
size o(n) bits. Since the number of internal nodes is O(m/b2), the space usage
for the B-tree is O((m/b2) · (b(log k + log m))) = o(m log k) bits.

The operations on the input array, can be performed by traversing the tree
top-down and computing the operations at the internal nodes in O(1) time. �	

3 Data Structure and Static Operations

We present a succinct representation for k-ary cardinal trees which uses 2n +
n log k+o(n log k) bits, supports the navigational operations and queries in O(1)
time, and the updates in O(1) amortized time. Our structure is similar to the
structure of [1]. The input tree is decomposed into disjoint micro trees. Each
operation is performed within the micro tree that contains the current node of
the traversal, and in the case of the navigational operations, we might traverse
to an adjacent micro tree. Each micro tree representation of [1] supports the
operations in logarithmic time. We improve the time to O(1) for small alphabet.



Succinct Dynamic Cardinal Trees with Constant Time Operations 199

Decomposition. We use the greedy decomposition algorithm of [12] to de-
compose the input tree to micro trees of size in the range [log2 n . . . k2 log2 n].
The micro tree containing the root might be smaller than log2 n. This algorithm
performs a postorder traversal of the tree. During the traversal, every at least
log2 n visited nodes make a micro tree (see [12] for more details). We change the
algorithm of [12] a little bit to maintain the following. Let τ be a micro tree.
The number of nodes (size) of τ is denoted by |τ |. A frontier node of τ is a node,
except the root of τ , that is adjacent to nodes in other micro trees. If the root
of τ is adjacent to a frontier node of another micro tree τ ′, then τ ′ is the parent
micro tree of τ , and τ is a child micro tree of τ ′. We duplicate the frontier nodes
of τ such that every frontier is also the root of a child micro tree of τ . Therefore,
all the children of a frontier node are in the same micro tree, each frontier node
is a leaf and is adjacent to only one child micro tree, i.e., the number of frontier
nodes of τ denoted by nf (τ) equals the number of child micro trees of τ .

Micro Tree Representation. Each micro tree τ is represented with the tu-
ple (Dτ , Lτ , Fτ , Pτ , rτ , Sτ ) defined as follows.

– Dτ : the tree topology of τ , using the DFUDS representation of τ
– Lτ : the edge labels of τ in the DFUDS order
– Fτ : frontiers of τ
– Pτ : pointers to the child micro trees of τ
– rτ : a pointer to the parent micro tree of τ
– Sτ : the subtree size of all the child micro trees of τ .

Let τ be the micro tree that contains the current node of the traversal. We
perform the navigations within τ using Dτ , and for label-child using Lτ . In the
case of traversing to a child micro tree of τ , we find the pointer to the child
micro tree using Fτ and Pτ . For traversing to the parent micro tree, we use rτ .
To compute subtree-size within τ , we use Dτ . To compute subtree-size of the
current node in the whole tree, we use Sτ to compute subtree-size of the root
of each child micro tree of τ that is a descendant of the current node. Then we
add the subtree size of the current node within τ with all the computed subtrees
sizes. The operation is-ancestor can be easily performed using subtree-size.

For each of the six parts except rτ , we make data structures to perform the
corresponding operations on them efficiently. The space usage for Dτ is 2|τ | +
o(|τ |) bits, for Lτ is |τ | log k + o(|τ | log k) bits, for rτ is log nf (τ) bits, and for
Fτ , Pτ , and Sτ is o(nf (τ)) bits. Since the micro trees are roughly disjoint, the
total space usage is 2n + n log k + o(n log k) bits. In the following, we describe
all the six parts of the micro tree representations.

3.1 Tree Topology of Micro Trees

We make a data structure that maintains a micro tree τ of size at most
k2 log2 n = O(polylog(n)) nodes using 2|τ | + o(|τ |) bits, which supports all the
required operations within τ (including updates) except label-child in O(1) time.
We represent the structure of τ by its DFUDS sequence which is a string of 2 · |τ |
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parentheses [2]. Benoit et al. [2] showed that the navigation and query opera-
tions on a static ordinal tree of size n can be supported in O(1) time using
2n + o(n) bits of space by performing rank/select and the balanced parenthesis
operations: findclose, findopen, and enclose on the DFUDS sequence of the tree.
Let Dτ be the DFUDS sequence of τ . Our data structure supports rank/select
and the balanced parenthesis operations as well as update operations all in O(1)
time on Dτ . Essentially, our data structure is a dynamic DFUDS sequence of
length O(log2 n). Note that inserting and deleting of leaves in τ correspond to
inserting and deleting of the pair of parentheses ”()” in Dτ .

Lemma 3. There exists a dynamic data structure of size 2m + o(m) bits to
maintain a sequence of m pairs of balanced parenthesis using precomputed tables
of size o(n), where m = (log n)O(1). This data structure supports the operations:
findclose, findopen, and enclose in O(1) time, and supports inserting and deleting
of the pair of parentheses “()” in O(1) amortized time.

Proof. This representation is similar to [4]. We divide the sequence into chunks of
size w� bits, where � = O(

√
log n). Each chunk is represented by a dynamic array

of size w�+O(
√

log n log �) bits (see Lemma 1), which allows us to access, insert,
or delete a parenthesis at a given index in O(1) time (amortized for updates)
using a precomputed table of size o(n) bits. Therefore, the total space used for
the chunks is 2m + o(m) bits.

Now, we make a B-tree with branching factor b, where b = O(log1/4 n). Each
leaf of the tree stores a pointer to a sub-chunk of size � such that scanning the
sub-chunks of the leaves from the left of the tree to the right gives the original
sequence. The number of leaves is 2m/�, and the depth of the tree is O(1). At
each internal node u, we maintain an array of length b such that its i-th element
stores the number of open parenthesis in the chunks that are descendants of the
i-th child of u. Since the array is small (i.e., O(log

1
4 n · log log n) bits), we can

represent it by a searchable partial sums structure using a precomputed table of
size o(n) bits. This array is used to perform the operations rank and select in O(1)
time by traversing the tree from its root to the appropriate leaf. In addition to
this array, similar to [4], we store seven arrays containing different information
about the parentheses stored in the subtrees of u. These arrays are used to
perform the parenthesis operations. Update operations are also straightforward.
See [4] for more details. Since the number of internal nodes is O(2m/(b�)), the
space usage for the B-tree is O(2m/(bl) · b log m) = o(m) bits. �	

The following lemma presents our dynamic DFUDS structure based on the dy-
namic parenthesis maintenance structure of Lemma 3.

Lemma 4. There exists a dynamic DFUDS representation of size 2|τ | + o(|τ |)
bits for an ordinal tree τ of (log n)O(1) nodes using precomputed tables of size o(n)
bits. This data structure supports the operations parent, child, degree, subtree-
size, is-ancestor, and preorder all in O(1) time, and supports the update operations
insert-leaf and delete-leaf in O(1) amortized time.
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Proof. Recall that the DFUDS sequence Dτ contains 2 · |τ | balanced parenthesis.
It has been shown that all the operations parent, child, degree, subtree-size, and
is-ancestor on τ can be supported using the balanced parenthesis operations
and rank/select on Dτ [2]. Also the operation preorder can be supported using
the balanced parenthesis operations and rank/select on Dτ [11]. Inserting and
deleting leaves correspond to inserting and deleting the pair of parentheses “()”.

�	
3.2 Edge Labels of Micro Trees

Let Lτ be the sequence containing all the edge labels of τ in the DFUDS ordered.
To perform label-child(α) on τ , we find the rank i of α among all the edge labels
between the current node and its children, and then we use child(i). To find i, we
find the number of α before the current node, and then find the position of the
next α using rank/select structure on both Dτ and Lτ . To perform insert-leaf(α),
we again need to find i to simply insert the label. But finding i if there is no
α among all the edge labels needs more information. For that, we construct a
dynamic predecessor structure for all the edge labels below each internal node.

Note that Lτ consists of contiguous sub-sequences si, for i = 1 · · · Iτ , such that
si represents all the labels below the i-th internal node of τ in preorder, where
Iτ is the number of internal nodes in τ . Note that |si| ≤ k. We construct the
following: (1) a data structure that supports the operations rank, select, insert,
and delete on Lτ , (2) a data structure for each si, if |si| > log n/ log log n, which
supports the operations predecessor, insert, and delete on si. In the following, we
explain these two structures, and then we combine them.

Dynamic Rank/Select Structure. In the following lemma, we present a data
structure which is used to perform label-child in a micro tree.

Lemma 5. There exists a dynamic representation of size m log k + o(m log k)
bits for a sequence of m symbols from an alphabet of size k using precomputed ta-
bles of size o(n) bits, where m and k are (log n)O(1). This data structure supports
the operations rank and select in O(1) time, and supports the update operations
insert and delete in O(1) amortized time.

Proof. There exists a static data structure that supports the operations rank
and select in O(1) time for an alphabet of size k, using a multi-ary wavelet
tree with O(1) height (Theorem 3.2 of [8]). We dynamize their structure in the
following way. We set the branching factor of their wavelet tree to be k′, where
k′ = O(

√
log n). At each internal node we use a dynamic rank/select structure

for an alphabet of size k′. In the following, we explain this data structure. Note
that the update operations do not change the structure of the wavelet tree, and
thus only the internal node structures should be dynamized.

We pack every � symbols of the sequence into a chunk of size � log k′ bits,
for � = (w/ log k′) log1/4 n. Each chunk is represented by a dynamic array of
size � log k′ + O(log1/4 n log �) bits, which allows us to access, insert, or delete a
symbol at a given index in O(1) time (amortized for updates) using a precom-
puted table of size o(n) bits (see Lemma 1). Therefore, the total space used for
the chunks is m log k′ + o(m log k′) bits.
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Now, we make a B-tree with branching factor at most log
1
4 n. Each leaf of the

B-tree stores a pointer to a sub-chunk of size w bits in one of the chunks such
that scanning the sub-chunks of the leaves from the left of the B-tree to the right
gives the original sequence. Therefore, each chunk corresponds to log1/4 n leaves.
The number of leaves is m/(� log1/4 n) and the depth of the B-tree is O(1). At
each internal node u, we maintain k + 1 arrays, each of length log1/4 n. One
of the arrays is denoted by Size. The i-th element of the array Size maintains
the number of symbols in the sub-chunks that are descendants of the i-th child
of u. Each of the other k′ arrays is for a symbol in the alphabet, and its i-th
element maintains the number of the corresponding symbol in the leaves that
are descendants of the i-th child of u. We represent each of these arrays by a
searchable partial sums structure with O(1) time for the partial sums operations,
using a precomputed table of size o(n) bits, since the arrays are small (i.e.,
O(log

1
4 n · log log n) bits).

To perform the operation rankα(i), we traverse the B-tree top-down starting
from the root. Let h be the sub-chunk containing the i-th symbol of the original
sequence. At each internal node u, we count the number of α in the sub-chunks
that are to the left of h, and are descendants of u. This counting can be performed
in O(1) time, using the partial sums structures that are constructed for the array
Size and the array corresponding to α. At the leaf level, where we should perform
rank in a sub-chunk of size w bits, we read the sub-chunk in O(1) time and
perform the rank using word-level computation. The operation selectα(i) can be
performed similarly in O(1) time (the array Size is not required for select).

For the operations insert and delete, we perform them on the appropriate
chunks in O(1) amortized time (with the support of the dynamic arrays), and
then we update the nodes of the B-tree along the appropriate path in a straight-
forward manner. Therefore, the total update time is O(1) amortized. �	
Dynamic Predecessor. In the following lemma, we present a structure used
for insert(α) to find the rank of α among its siblings.

Lemma 6. There exists a dynamic predecessor data structure of size o(m) bits
for a sorted array of m elements, where m = (log n)O(1) and each element is
from the range [0 · · ·k − 1], using a precomputed table of size o(n) bits. This
data structure supports the operation predecessor in O(1) time, and supports the
update operations insert and delete in O(1) amortized time.

Proof. For this structure, we use the same packing strategy and dynamic arrays
as we used in the proof of Lemma 5. We make a B-tree with branching factor
b, where b =

√
log n. Each leaf maintains b elements from the array, such that

concatenating the leaves from left to right, gives the original array. The height
of the tree is O(1). At each internal nodes, we maintain b guiding indexes. Every
node (including leaves) has b log k = o(w) bits which can be handled using a
precomputed table of size o(n) bits. To perform the operations, we traverse
the tree top-down in O(1) time. For the update operations, we also update the
internal nodes in a bottom-up traversal. The rebalancing is applied as needed.

�	
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The following lemma combines Lemma 5 and 6, and shows how to perform the
operation label-child on τ using the data structures of Dτ and Lτ .

Lemma 7. For a k-ary cardinal tree τ of at most k2 log2 n nodes where
k = (log n)O(1), there exists a dynamic representation of size 2|τ | + |τ | log k +
o(|τ | log k) bits that supports the operation label-child in O(1) time, and sup-
ports the update operations insert-leaf and delete-leaf in O(1) amortized time.
The structure uses precomputed tables of size o(n) bits.

Proof. Similar to [1], we represent the tree τ with Dτ and Lτ . We make a data
structure for each of Dτ and Lτ using Lemma 4, 5, and 6 in totally 2|τ | +
|τ | log k + o(|τ | log k) bits. �	

3.3 Frontiers of Micro Trees

During performing the operations on a micro tree τ , we need to check whether
the current node is a frontier of τ or not, and if it is a frontier, then we may
need to traverse to the micro tree rooted at that frontier using a pointer. For
the checking, we represent the frontiers of τ with an array Fτ of nf (τ) elements.
The representation of pointers is explained in Section 3.4. The i-th element
of the array Fτ contains the difference between two preorder numbers which
belong to the i-th and i + 1-st frontiers of τ in the preorder traversal of τ .
We make a searchable partial sums structure for Fτ . Since Fτ has (log n)O(1)

elements, each of size O(log Fτ ) bits, we use the searchable partial sums structure
of Lemma 2 that supports the operations sum, update, and search in O(1) time,
using nf (τ) log |τ |+ o(nf (τ) log |τ |) bits. Thus the overall space for all the micro
trees is o(n) bits. To check whether the current node is a frontier or not, we use
search on Fτ for the preorder number of the current node.

3.4 Pointers to Other Micro Trees

There are two cases where we need to traverse from τ , containing the current
node x, to another micro tree: 1) if x is a frontier of τ , then we need to follow a
pointer to the child micro tree rooted at x, 2) if x is the root of τ , then we need
to follow a pointer to move to the parent micro tree of τ .

For the first case, for each frontier of τ , we store a pointer to another micro tree
that is rooted at that frontier. These pointers are represented in the following
way. Let τi be the micro tree rooted at Fτ [i], the i-th frontier of τ . We make an
array Pτ of nf(τ) elements such that Pτ [i] maintains a pointer to τi. Therefore,
whenever the current node is Fτ [i] (that we can check using the representation
of Section 3.3), we can traverse to τi. The space usage to store Pτ for all the
micro trees is o(n) bits. For the second case, since x is a frontier of the parent
micro tree τ ′, we store rτ such that Fτ ′ [rτ ] maintains the preorder number of x.

3.5 Subtree Sizes

We make a data structure that allows us to compute the subtree size of the
current node in O(1) time. Let τ be the micro tree containing the current node.
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Lemma 4 shows that we can perform subtree-size on the current node within τ
in O(1) time. But, to this number, we should add the subtree size of the root
of each child micro tree of τ that is a descendant of the current node. For this,
we make an array Sτ of length nf (τ) such that Sτ [i] maintains the subtree size
of the root of τi, where τi is the child micro tree rooted at the i-th frontier of
τ in the preorder traversal of τ . We represent Sτ by a searchable partial sums
structure using nf (τ) log |τ | + o(nf (τ) log |τ |) bits (see Lemma 2). The overall
space for all the micro trees is o(n) bits. To compute the subtree size, we need
to find

∑jr

i=j�
Sτ [i], where τ , τj�

and τjr are the left most and right most child
micro trees of τ respectively that are descendants of the current node. To find
τj�

, we do a predecessor search in the array Fτ for the preorder number of the
current node. Let e be the left most leaf of τ that is also a descendant of the
current node. To find τjr , we first find the preorder number of e within τ by
adding the preorder number of the current node and its subtree size within τ .
Then we do a predecessor search in the array Fτ for the preorder number of e.

4 Update Operations

Operation Insert-Leaf. To perform insert-leaf(α) in a micro tree τ , we update
the representation of τ in the following way. We update Dτ by inserting “()”
as a leaf into a position i that we find by a predecessor search in sj of Lτ

corresponding to the current node. We update Lτ by inserting α as a new label
into position i. The new leaf is not a frontier, but if it is inserted between two
frontiers, then it changes the difference between the preorder numbers of them.
Therefore, we increment the appropriate element of Fτ . All the above operations
are performed in O(1) time.

If |τ | exceeds the value of k2 log2 n, we split τ into micro trees of size in
[2 log2 n · · · 2k log2 n] using the decomposition algorithm that we used in Sec-
tion 3. Then we reconstruct the representation of each new micro tree. This
can be performed by inserting leaves one by one into the new micro trees. The
split and the construction of micro tree representations are both can be per-
formed in O(|τ |) = O(k2 log2 n) time. Since, this procedure makes micro trees
of small enough size (at most k log2 n), therefore, k2 log2 n number of insert-leaf
is required to make any of them full and the insertion time is O(1) amortized.

Operation Delete-Leaf. To perform delete-leaf(α) in a micro tree τ , we update
the representation of τ similarly as insert-leaf(α). If |τ | becomes smaller than
log2 n, then we combine τ with its parent micro tree. This can be performed
by inserting the nodes of τ into the parent micro tree, in the preorder traversal
of τ using insert-leaf. This procedure takes O(|τ |) = O(log2 n) time. Since the
new micro trees that we construct in the split procedure of Section 4 are large
enough (at least 2 log2 n size), the deletion time is O(1) amortized.

Memory Management. We store each micro tree in a separate location of
the memory using an Extendible Array [3]. Since the number of micro trees is at
most n/ log2 n, and the nominal size of all the micro trees is s = 2n + n log k +
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o(n log k) bits, then the space requirement for the whole collection of micro trees

is s + O(nw/ log2 n +
√

snw/ log2 n) = 2n + n log k + o(n log k) bits [16].
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Abstract. We consider the problem of representing numbers in close
to optimal space and supporting increment, decrement, addition and
subtraction operations efficiently. We study the problem in the bit probe
model and analyse the number of bits read and written to perform the
operations, both in the worst-case and in the average-case. A counter
is space-optimal if it represents any number in the range [0, . . . , 2n − 1]
using exactly n bits. We provide a space-optimal counter which supports
increment and decrement operations by reading at most n − 1 bits and
writing at most 3 bits in the worst-case. To the best of our knowledge,
this is the first such representation which supports these operations by
always reading strictly less than n bits. For redundant counters where we
only need to represent numbers in the range [0, . . . , L] for some integer
L < 2n − 1 using n bits, we define the efficiency of the counter as the
ratio between L + 1 and 2n. We present various representations that
achieve different trade-offs between the read and write complexities and
the efficiency. We also give another representation of integers that uses
n + O(log n) bits to represent integers in the range [0, . . . , 2n − 1] that
supports efficient addition and subtraction operations, improving the
space complexity of an earlier representation by Munro and Rahman
[Algorithmica, 2010].
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number of bits read or written and the space needed to represent the number.
We study the problem in the bit probe model of computation where the com-
plexity measure includes only the bitwise accesses to the data structure and not
the resulting computations.

We define a code of dimension n as any cyclic sequence of 2n distinct binary
vectors. For a code of dimension n, we define the operation increment (decre-
ment) as moving the code to its next (previous) code in the cycle. We define a
function Val that maps bit sequences to integers, which is used in describing our
algorithms. We use BR and BW to denote the number of bits read and written
respectively. The average number of bits read (written) is computed by sum-
ming the number of bits read (written) to perform the operations for each code,
and dividing this by the number of different codes. Throughout the paper, log n
denotes  log2 n!, log(0) n = n and log(c)(n) = log(c−1)(log n) for c > 0.

Previous Work. The Standard Binary Code (SBC) uses n bits to represent
an integer in the range [0, . . . , 2n − 1] where bn−1bn−2 . . . b0 represents the value∑n−1

i=0 bi2i. An increment or decrement operation using SBC requires n bits to be
read and written in the worst-case but the amortized time per operation is con-
stant. A Gray code is any code in which successive binary vectors in the sequence
differ in exactly one component. The Binary Reflected Gray Code (BRGC) [3]
requires n bits to be read for each increment operation but only 1 bit to write.
Bose et al. [1] have developed a different Gray Code called Recursive Partition
Gray Code (RPGC) which requires on an average O(log n) reads for increment
operations. The previous results are summarized in Table 1. For the Gray codes
BRGC and RPGC, we define Val(X) as the number of times one needs to in-
crement the code 0 . . . 0 to obtain X . The dimension d of a counter refers to the
total number of bits used to represent a number and space-efficiency refers to
the ratio of number of numbers represented out of all possible bit strings gen-
erated (2d) given the dimension d. Space-efficiency equal to one implies that all
possible strings are generated and the counter is space-optimal. There could be
more than one representation for a given number when efficiency is less than one
and such counters are called redundant counters.

Our Results. For space-optimal counters, we introduce the notion of an
(n, r, w)-counter which is a representation of numbers of dimension n where
increment and decrement operations can be performed by reading r bits and
writing w bits in the worst-case. We obtain a (4,3,2)-counter by exhaustive
search and use it to construct an (n, n − 1, 3)-counter which performs an incre-
ment or decrement operation by reading at most n − 1 bits whereas all known
results for space-optimal counters read n bits in the worst-case. The codes BRGC
and RPGC are examples of (n, n, 1)-counters. Fredman has conjectured that for
Gray codes of dimension n, BR = n [1,2]. If this conjecture is true, this would
imply that if there exists a code with the property that all increments can be
made by reading less than n bits, then it would need to write at least 2 bits in
the worst-case.
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Table 1. Summary of previous results

Space Space Bits read (BR) Bits written (BW ) Inc. &
(d) efficiency Average-case Worst-case Worst-case Dec. Ref.

n 1

2 − 21−n

n

n Y Binary
n 1 Y [3]

6 log n 1 Y [1]

O(log(2c−1) n) c N [1]

n + 1 1/2 O(1) log n + 4 4 Y [4]

n + O(t log n) 1 − O(n−t) O(log(2c) n) O(t log n) 2c + 1 N [1]

For non-space-optimal counters, the read complexity has been shown to be
Θ(log n) for a space-efficiency of 1/2 [1,4]. The best known result so far [1] de-
scribes a counter with a space-efficiency of 1 − O(n−t) to increment a value by
reading O(t log n) bits and writing 3 bits for t > 0. Our results shown in Table 2
show that we can reduce the number of bits written to 2 using a representation
with space-efficiency 1 − O(2−t) by reading log n + t + 2 bits where t ∈ Z+. By
choosing t = t′ log n, we can achieve a space-efficiency of 1 − O(n−t′ ) by reading
O(t′ log n) bits and writing 2 bits. The question that remains open is if redundant
counters efficiently allow a representation with 1 write but less than n reads.

For redundant counters with efficiency 1/2, the best known results were log n+
4 bit reads and 4 bit writes [4]. We reduce the number of bits read and written
to log n + 3 and 3. Using the one bit read-write trade-off, we can further reduce
the number of bits written to 2 by reading log n + 4 bits.

Table 2. Summary of our results

Space Space Average-case Worst-case Inc. &
(d) efficiency BR BW BR BW Dec. Ref.

4
1

3 1.25 3 2
Y

Th. 1
n 6 log(n − 4) + O(2−n) 1 + O(2−n) n − 1 3 Th. 2

n + 1 1/2
O(log log n)

1 + O(n−1)

log n + 2 3
N

Th. 3
log n + 3 2 Th. 4

O(log n)
log n + 3 3

Y Th. 6
log n + 4 2

n 1 − 1
2t−1

O(log log n)
1 + O(n−1)

log n + t + 1 3
N Th. 5

log n + t + 2 2

O(log n)
log n + t + 2 3

Y Cor. 1
log n + t + 3 2

2 Space-Optimal Counters with Increment and
Decrement

In this section, we describe space-optimal counters which are constructed using
a (4,3,2)-counter where X denotes the number to be incremented.
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b0

b1

b3

100 011

b3

110 010

b2

b1

010 000

b3

111 101

Increment tree

b0

b1

b2

110 100

b3

011 001

b2

b3

000 111

b3

010 110

Decrement tree

0000(0)
1−→ 0001(1)

2−→ 0100(2)
1−→ 0101(3)

1−→ 1101(4)
1−→ 1001(5)

2−→
1100(6)

1−→ 1110(7)
1−→ 0110(8)

1−→ 0111(9)
1−→ 1111(10)

1−→ 1011(11)
2−→

1000(12)
1−→ 1010(13)

1−→ 0010(14)
1−→ 0011(15)

2−→ 0000(0)

Fig. 1. Sequence generated by the (4,3,2)-counter and increment and decrement trees

(4,3,2)-Counter. Fig. 1 shows our (4,3,2)-counter obtained through brute force
search which represents numbers from 0 . . . 15. Assuming the number is of the
form b3b2b1b0, the corresponding increment and decrement trees for the (4,3,2)-
counter are shown in Fig. 1. For any internal node corresponding to bit bt, the
left edge corresponds to bt = 0 and the right edge corresponds to bt = 1. The
leaf nodes contain information about the new values for the bits read and the
modified bits are shown underlined in the tree and the text.

As an example, for the fifth leaf node from the left in the increment tree, old
b0b2b1 = 100 and new b0b2b1 = 010. To increment 9, for example, we take its
representation 0111 and go through the path b0b2b3 = 110 in the increment tree
to reach the seventh leaf node; so the new values are b0b2b3 = 111 and the new
number is 1111 which represents 10 (ten). To decrement 9, we go through the
path b0b2b3 = 110 in the decrement tree to reach the seventh leaf node; so the
new values are b0b2b3 = 010 and the number is 0110 which represents 8.

Theorem 1. There exists a representation of integers of dimension 4 with ef-
ficiency 1 that supports increment and decrement operations with BR = 3 and
BW = 2 in the worst-case. On average, an increment/decrement requires BR = 3
and BW = 1.25.

2.1 Constructing (n, n − 1, 3)-Counter Using (4,3,2)-Counter

We can now construct an n-bit space-optimal counter for n ≥ 4 by dividing the
code for a number X into two sections X(4,3,2) and XG of length 4 and n − 4
respectively where X(4,3,2) uses the above-mentioned (4,3,2)-counter represen-
tation and XG uses the Gray code [3], that is a (n − 4, n − 4, 1)-counter. To
increment X , we first increment XG and then check if it represents 0 (which is
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r
1 2 3

w
1 ⊥ ⊥ +
2 ⊥ ⊥ +
3 ⊥ ⊥ +

r
1 2 3 4

w

1 ⊥ ⊥ ⊥ +1

2 ⊥ ⊥ +2 +
3 ⊥ ⊥ + +
4 ⊥ ⊥ + +

r
1 2 3 4 5

w

1 ⊥ ⊥ ⊥ ? +1

2 ⊥ ⊥ ⊥ ? +
3 ⊥ ⊥ ⊥ +2 +
4 ⊥ ⊥ ⊥ + +
5 ⊥ ⊥ ⊥ + +

Fig. 2. Exhaustive search results for (n, r, w)-counter for n = 3, 4 and 5 respectively

possible since we read all bits of XG). If XG is 0, then we increment X(4,3,2). In
the worst-case, this requires n − 4 reads and 1 write to increment XG and then
3 reads and 2 writes to increment X(4,3,2), providing us with n − 1 reads and 3
writes overall.

XG is represented using RPGC where incrementing or decrementing a code
of dimension n requires 6 log n average number of reads (although [1, Theorem
2] considers only generating the next code, i.e., increment operation, one can
verify that the same analysis holds for the decrement operations as well). The
worst-case and hence the average number of writes to increment or decrement
a number using RPGC is 1. Since the average number of reads and writes for
X(4,3,2) are 3 and 1.25 respectively, and we increment/decrement X(4,3,2) only
in one out of every 2n−4 codes, the average number of reads and writes are
6 log(n − 4) + 3/2n−4 and 1 + 1.25/2n−4 respectively.

Theorem 2. There exists a representation of integers of dimension n ≥ 4 with
efficiency 1 that supports increment and decrement operations with BR = n − 1
and BW = 3 in the worst-case. On average, an increment/decrement requires
BR = 6 log(n − 4) + O(2−n) and BW = 1 + O(2−n).

To the best of our knowledge, this is the first space-optimal counter with BR

strictly less than n.

Exhaustive Search Results. We used exhaustive search to find (n, r, w)-
counters for small values of n. The results are shown in Fig. 2 for n = 3, 4
and 5 respectively. For a combination of n, r and w, a ‘⊥’ shows that no counter
exists and a ‘+’ refers to its existence. A superscript of 1 shows that this is a
Gray code while 2 refers to Theorem 2. A ‘?’ shows that the existence of counters
remains unknown for the corresponding (n, r, w) value. An enclosed value shows
that no counters were found by our brute-force search.

3 Redundant Counters with Increment

To reduce the number of bits read exponentially, counters with space-efficiency
less than one have been considered [1,4]. In this section, we discuss redundant
counters which show better results and trade-offs for bits read and written and
use these in Section 5 to obtain representations that support addition and sub-
traction efficiently.
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Table 3. Transition Table for the increment step where � = Val(XL) and p = log n+�.
Underlines show the changed bits and x represents ‘don’t care’ condition.

Previous New
� S xp S xp

= �max 0 x 1 x
< �max 0 x 0 x
< �max 1 0 0 1
< �max 1 1 1 0

3.1 Counters with One Bit Redundancy

To represent numbers from 0 . . . 2n − 1, we select n + 1 bits. A number X rep-
resented by xnxn−1 . . . x1x0 consists of a carry bit S = x0, a lower block XL

of the log n bits xlog n . . . x1 and the upper block XH of the last n − log n bits.
p = log n + � is a location in XH where � refers to the value represented by XL.
This is used to perform a delayed addition of the carry as explained below. We
use Gray codes for representing the numbers in XL so that increment writes
only one bit. The block XH is represented using SBC. The value of X is given
by (�+(Val(XH) + 2� · S)·2|XL|) mod 2n.

We determine the number of bits read and written in the worst-case by find-
ing the maximum values of BR and BW respectively. The increment step is
summarised in Transition Table 3.

Increment: XL and S are read at every step, therefore BR is at least log n + 1.
S = 1 implies that the carry needs to be propagated and we will read one bit
from XH , whereas S = 0 implies no carry propagation and we do not need to
access XH . If � > n − log n, we reset S to 0. The different cases for increment
are described below:

Case 1. S = 0 and XL contains its largest value (100 . . . 0 in Gray code): This im-
plies that a new incremental increment of XH should be initiated. Increment
XL and set the carry bit S to 1. (BR = log n + 1, BW = 2)

Case 2. S = 0 and XL is any other value: Increment XL. (BR = log n + 1,
BW = 1)

Case 3. S = 1 and xp = 1: Propagation of carry. Change xp to 0. Increment
XL.(BR = log n + 2, BW = 2)

Case 4. S = 1 and xp = 0: Final bit flip in XH . Change xp to 1, S to 0 and
increment XL. (BR = log n + 2, BW = 3).

The average number of reads to increment XL is O(log log n). The bit S is read
at every step and it is set to 1 on the average 2 out of every n steps. When
S = 1, we also need to read O(log n) bits to find Val(XL). Thus the average
number of bits read is O(log log n). The average number of writes can be shown
to be 1 + O(n−1). Hence we have the following theorem.

Theorem 3. There exists a representation of integers of dimension n + 1 with
efficiency 1/2 that supports increment operations with BR = log n+2 and BW =
3. On average, an increment requires BR = O(log log n) and BW = 1 + O(n−1).
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3.2 One Bit Read-Write Trade-Off

We show how to modify the representations of the previous section (Theorem 3)
to reduce BW from 3 to 2 by increasing BR by 1.

Table 4. Transition Table for the increment step for read-write trade-off where � =
Val(XL), �max = 2|XL| − 1 and p = log n + � + 1. Underlines show the changed bits
and x represents ‘don’t care’ condition.

Previous New

� S xp xp−1 S xp

= �max 0 x − 1 x
= 0 1 1 − 1 0
= 0 1 0 − 1 1
> 0 1 x 1 0 x
> 0 1 0 0 1 1
> 0 1 1 0 1 0

The worst-case of BW for increment is given by Case 4 where BW = 3 since
S and one bit each in XH and XL are modified. As it turns out, we can improve
BW further by delaying the resetting of S by one step if we read another bit.
Instead of reading just one bit xp from XH when S = 1, we can read the pair
(xp, xp−1). If the previously modified bit xp−1 = 1, then the propagation of
carry is complete, else we flip the current bit xp. The only exception to this case
is when XL = 0 . . . 0 which implies that p = log n + 1 which is the first position
in XH . In this case, only one bit xlog n+1 is read and flipped. We modify the
increment step as:

Case 3. S = 1 and xp−1 = 0: propagation of carry to continue. xp−1 = 0 implies
that the previous bit was 1 before getting modified. Therefore, flip xp irrespective
of its value and increment XL. (BR = log n + 3, BW = 2).

(i)

0000 1 1 1

00 10 1 0 1

0 10 0 0 1

0 10 01 0

0 1 1 01

log n bitsn− log n bits
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Fig. 3. Increment for a 8-bit number using (i) Standard binary counter (ii) One-bit
redundant counter with BW = 3 (iii) with BW = 2. log n bits are represented using
BRGC and x represents ‘don’t care’ condition.
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Case 4. S = 1 and xp−1 = 1: The previous bit was 0 before modification, hence
carry has been propagated and xp is not read. Reset S to 0 and increment XL.
(BR = log n + 2, BW = 2).

Theorem 4. There exists a representation of integers of dimension n + 1 with
efficiency 1/2 that supports increment operations with BR = log n+3 and BW =
2. On average, an increment requires BR = O(log log n) and BW = 1 + O(n−1).

3.3 Forbidden State Counter with Increment

To increase the space-efficiency of the above proposed representation, we modify
the data structure proposed in [1] where a particular value of t bits in a dimension
n code is used as a forbidden state. A number X = xn . . . x1 consists of XH

(xn . . . xlog n+t+1), XF (xlog n+t . . . xlog n+1) and XL (xlog n . . . x1) of n− log n−t,
t and log n bits respectively. Similar to the one-bit redundant counter discussed
in Section 3.1, XH and XL represent the upper and lower blocks in the number
while XF acts as an alternative to the carry bit S. We use � to refer to the value
represented by XL and Fmax refers to the value 2t − 1.

All the states for which Val(XF ) ≤ Fmax−1 are considered as normal states for
XF and the state where Val(XF ) = Fmax is used to propagate the carry over XH

(conceptually XF = Fmax corresponds to S = 1). This representation will allow
us to represent 1 − 1/2t of the 2n numbers. The block XH is represented using
SBC while XF and XL are each individually represented using RPGC. Using
XK to represent Val(XK), we obtain Val(X) = XL + (XF + XH · Fmax) · 2|XL|

if XF < Fmax and Val(X) = XL + (XH + 2�) · 2|XL| · Fmax if XF = Fmax.

Increment. The increment scheme is similar to the one-bit redundant counter
of Section 3.1. We first read XL and XF . If XF �= Fmax, we increment XL. If XL

now becomes 0, we also increment XF . For the case XF = Fmax, XL is used to
point to a position p in XH . If the bit xp at position p is equal to 1, it is set to
0 and XL is incremented to point to the next position in XH . This corresponds
to the increment scheme in the one-bit redundant counter when S is set to 1.
If XL now equals n − log n − t, then we incremement XF (to set XF = 0 and
terminate the propagation of carry). On the other hand, if the value of bit xp is
0, then we set xp to 1 and XF is incremented to the next value (which represents
state XF = 0. This corresponds to the carry bit S being set to 0 in Section 3.1.

This scheme gives a representation with BR = log n+ t+1 and BW = 3. Similar
to Section 3.2, we can also obtain a representation with BR = log n + t + 2 and
BW = 2 by reading xp−1. The average number of reads and writes to increment the
log n bits in XL are O(log log n) and 1 respectively. The average number of reads
and writes to incrementXF areO(log t) and 1 respectively. SinceXF is incremented
once in every n steps, this adds only o(1) to the average number of reads and writes.
Similarly, incrementingXH also takes o(1) reads and writes on average. In addition,
at every step we need to check if Val(XF ) is equal to either Fmax or Fmax − 1 which
requires an average of O(1) reads, and finally the cost of reading XL to find p on
average costs at most O( 1

2t
1
n log n). Thus we have the following theorem.
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Theorem 5. Given two integers n and t such that t ≤ n − log n, there exists
a representation of an integer of dimension n with efficiency 1 − O(2−t) that
supports increment operations with BR = log n + t + 1 and BW = 3 or BR =
log n + t + 2 and BW = 2. On average, an increment requires BR = O(log log n)
and BW = 1 + O(n−1).

4 Counters with Increment and Decrement

To support decrement operations interleaved with increment operations, we mod-
ify the representation of a number X described in Section 3.1 as follows: a number
X = xn . . . x1x0 consists of an upper block XH (xn . . . xlog n+2), a lower block
XL (xlog n+1 . . . x1) and the bit S = x0 which is used as either a carry bit or
a borrow bit. We further split the lower block XL into two parts: an indicator
bit I which consists of the bit xlog n+1 and a pointer block XP consisting of the
remaining log n bits. When the indicator bit I is set to 0, S is interpreted as a
carry bit, and when the indicator bit is 1, then S interpreted as a borrow bit.

The log n bits in XP are used to point to a location in XH to perform a
delayed carry or borrow. We use BRGC for representing XL so that an increment
or decrement writes only one bit. The block XH is represented using SBC. Since
XL is represented using BRGC, when Val(XL) < 2|XP |, the indicator bit I is
equal to 0 and I is equal to 1 otherwise. When I = 1, incrementing block XL

corresponds to decrementing the block XP (unless XP = 0) due to the reflexive
property of BRGC [3]. We use these observations in our algorithms for increment
and decrement.

The main ideas behind the representation and the increment/decrement al-
gorithms are as follows: when the carry bit S is not set, we perform the incre-
ment/decrement in the normal way by incrementing/decrementing XL. When
S = 0, Val(XL) = 2log n+1 − 1 and we perform an increment, we set the bit S
and reset the block XL to 0 . . . 0. Since I is now set to 0, S will be interpreted
as a carry bit untill it is reset again. Similarly, when S = 0, Val(XL) = 0 and we
perform a decrement, we set the bit S and decrement XL to 2log n+1 − 1. Since
I is now set to 1, S will be interpreted as a borrow bit.

To increment X when the carry bit is set, we perform one step of carry
propagation in XH , and then increment XL. If the propagation finishes in the
current step, then we also reset the bit S to 0. To decrement X when the carry
bit is set, we first decrement XL and “undo” one step of carry propagation (i.e.,
set the bit xp in XH to 1). Note that the when performing increments, the carry
propagation will finish before we need to change the indicator bit from 0 to 1 (as
the length of XH is less than 2log n). The increment and decrement algorithms
when the borrow bit are set are similar.

The increment and decrement algorithms are described in the Transition Ta-
ble 5. Since we read XL, S and at most one bit in XH , the read complexity
BR = log n + 3. Since we change at most one bit in each of XL, XH and S, the
write complexity BW = 3.

The above scheme requires O(log n) average number of reads as XL is repre-
sented using BRGC and incrementing it requires O(log n) reads. To get better
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Table 5. Transition Table for the increment-decrement counter. For increment, new
p = p + 1 and for decrement, new p = p − 1. x represents ‘don’t care’ condition and -
shows that the value does not exist. � = Val(XP ), p = log n+�+1 and �max = 2|XP |−1.
Underlines show the modified values.

Increment

Previous New Comments

S � I xp xp−1 S I xp xp−1

0 = �max 0 x x 0 1 x x Increment XL (sets I)
0 = �max 1 x x 1 0 x x Increment XL (resets XL), Set S
0 < �max x x x 0 x x x Only increment XP

1 < �max 0 - x 0 0 - x (Position p beyond n) Reset S
1 < �max 0 0 x 0 0 1 x (Last step of carry propagation) Reset S
1 < �max 0 1 x 1 0 0 x (Carry propagation)

1 < �max 1 x 1 1 1 x 0 Undo previous borrow
1 < �max 1 x 0 − − − − Does not occur

Decrement

0 = 0 0 x x 1 1 x x Decrement XL, Set S
0 = 0 1 x x 0 0 x x Decrement XL (Resets I)
0 > 0 x x x 0 x x x Only decrement XP

1 > 0 1 - x 0 1 - x (Position p beyond n) Reset S
1 > 0 1 0 x 1 1 1 x (Borrow Propagation)
1 > 0 1 1 x 0 1 0 x (Last step of borrow propagation) Reset S

1 > 0 0 x 0 1 0 x 1 Undo previous carry
1 > 0 0 x 1 − − − − Does not occur

average-case bounds, we can represent XP using RPGC. This increases the num-
ber of worst-case writes by 1 as now I and XP are incremented independently.
Thus we get a structure with BR = O(log log n) and BW = 1 + O(n−1) on the
average but in the worst-case BW = 4.

Theorem 6. There exists a representation of integers of dimension n + 1 with
efficiency 1/2 that supports increment and decrement operations with BR =
log n + 3 and BW = 3. On average, an increment/decrement requires BR =
O(log log n) and BW = 1 + O(n−1).

We can extend the result of Theorem 5 to support decrement operations using
an indicator bit as described in Section 4.

Corollary 1. Given two integers n and t such that t ≤ n − log n, there exists
a representation of an integer of dimension n with efficiency 1 − O(2−t) that
supports increment and decrement operations with BR = log n+ t+2 and BW =
3. On average, an increment/decrement requires BR = O(log log n) and BW =
1 + O(n−1).

5 Addition and Subtraction

In this section, we give a representation for integers which supports addition
and subtraction operations efficiently. A number N is said to have a span n if
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it can take values in the range [0, . . . , 2n − 1]. Munro and Rahman [4] gave a
representation that uses n + O(log2 n) bits to represent a number N of span n,
and supports adding/subtracting a M of span m to/from N in O(m + log n)
time. We improve the space to n+O(log n) bits while maintaining the operation
time. We describe the data structure and scheme for addition and introduce
suitable modifications to support subtaction as well.

We divide the representation of the number into k = O(log n) blocks:
B1, B2, . . . , Bk with b1, b2, . . . , bk bits respectively, where b1 = 2 and for 2 ≤
i ≤ k, bi = 2i−1 (if n is not a power of 2, then the last block has size
bk = n − 2�log n� instead of 2k−1). Note that the block sizes satisfy the prop-
erty that

∑i
j=1 bj = 2i = bi+1, for 1 ≤ i ≤ k − 2. Each block Bi is maintained

using the increment counter of Section 3.1 using bi + 1 bits and a constant
number of flag bits as described below. Hence, a number is represented using k
blocks of sizes b1, b2, . . . , bk bits along with O(k) additional bits. The value of
the representation is Val(B1) +

∑k
i=2 Val(Bi) · 2bi . Thus the overall space used

is n + O(k) = n + O(log n) bits.
We now describe the modifications to the increment counter described in

Theorem 3. Let X be the counter to be incremented. We introduce two additional
bits max and VH . The bit max indicates whether X represents its maximum
value. Assuming p = Val(XL) represents a position in XH , VH (verifier for block
XH) = 1 if all positions in XH from 0 . . . p are 1. By this definition, when p points
to any location beyond XH and VH = 1 then XH represents its maximum value.
In Section 3.1 we used p to point to a location in XH only when S = 1 but
now we use p as a pointer in all steps. When S = 1, we perform the delayed
increment in XH and when S = 0, we read the bit xp and use it to set/reset VH .
VH is set to 0 if xp = 0. If VH = 0, then we set it to 1 if S = 1 and xp = 0. This
case happens when XL = 0 . . . 0 for a delayed increment. The bit max is set to
1 when VH = 1 and XL represents its maximum value. When X represents its
maximum value, max = 1, VH = 1 and S = 0. Incrementing the maximum value
of X sets S = 1, max = 0 and resets XL to its minimum value. The bit VH = 1
is maintained till S is reset to 0, i.e. throughout the delayed increment process.

We represent every block Bi using the above modified counter. To add M to
N , for some m ≤ n, we first find the largest i such that

∑i−1
j=1 bj < m ≤∑i

j=1 bj

(i.e., bi < m ≤ bi+1). We add M to the number represented by the first i blocks
of N in O(m) time. If any of the first i blocks has a carry bit set, then we first
perform the necessary work and reset the carry bit in the block, and if necessary
propagate the carry to the next block. If there is a carry from Bi to Bi+1, we
propagate this by modifying the bit maxj of the successive blocks until we find
the first block Bj such that maxj is set to 0, and increment Bj , altogether in
O(log n) time. The total running time is O(m + log n) since incrementing the
block and propagation of the carry take O(log n) time each.

The read and write complexities of the addition algorithm can be shown to
be O(m + log n) and O(m) respectively. Since incrementing a counter of span n
has a Ω(log n) lower bound for the read complexity, these bounds are optimal.
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To support subtraction, we use the increment/decrement counter of Theo-
rem 6 to represent each block, along with additional bits to check for the max-
imum and minimum values of a number. The details shall be provided in the
extended version. M can be subtracted from N in O(m + log n) time similarly,
since the representation of a block supports both increment and decrement op-
erations in O(log b) time, where b is the length of the block.

Theorem 7. An integer of span n can be represented by a data structure which
uses n + O(log n) bits such that adding or subtracting an integer of span m can
be perfomed by reading O(m + log n) bits and writing O(m) bits.

6 Conclusion

We have shown that a number of dimension n can be incremented and decre-
mented by reading strictly less than n bits in the worst-case. For an integer in
the range [0, . . . , 2n−1] represented using exactly n bits, our (n, n−1, 3)-counter
reads n − 1 bits and writes 3 bits to perform increment/decrement operations.
One open problem is to improve the upper bound of n − 1 reads for such space-
optimal counters. Fredman [2] has shown that performing an increment using
BRGC requires n bits to be read in the worst-case but the same is not known
for all Gray Codes.

For the case of redundant counters, we have improved the earlier results by im-
plementing increment operations using counters with space-efficiency arbitrarily
close to one which write only 2 bits with low read complexity. We have obtained
representations which support increment and decrement operations with fewer
number of bits read and written in the worst-case and show trade-offs between
the number of bits read and written in the worst-case and also between the
number of bits read in the average-case and the worst-case. Finally we have also
improved the space complexity of integer representations that support addition
and subtraction in optimal time.

References

1. Bose, P., Carmi, P., Jansens, D., Maheshwari, A., Morin, P., Smid, M.H.M.:
Improved methods for generating quasi-gray codes. In: Kaplan, H. (ed.) SWAT
2010. LNCS, vol. 6139, pp. 224–235. Springer, Heidelberg (2010)

2. Fredman, M.L.: Observations on the complexity of generating quasi-gray codes.
SIAM Journal on Computing 7(2), 134–146 (1978)

3. Gray, F.: Pulse code communications. U.S. Patent (2632058) (1953)
4. Ziaur Rahman, M., Ian Munro, J.: Integer representation and counting in the bit

probe model. Algorithmica 56(1), 105–127 (2010)



Closed Left-R.E. Sets�

Sanjay Jain1, Frank Stephan1,2, and Jason Teutsch3

1 Department of Computer Science, National University of Singapore,
Singapore 117543, Republic of Singapore

sanjay@comp.nus.edu.sg
2 Department of Mathematics, National University of Singapore,

Singapore 119076, Republic of Singapore
fstephan@comp.nus.edu.sg

3 Institut für Informatik, Universität Heidelberg,
Im Neuenheimer Feld 294, 69120 Heidelberg, Germany

teutsch@math.uni-heidelberg.de

Abstract. A set is called r-closed left-r.e. iff every set r-reducible to it
is also a left-r.e. set. It is shown that some but not all left-r.e. cohesive
sets are many-one closed left-r.e. sets. Ascending reductions are many-
one reductions via an ascending function; left-r.e. cohesive sets are also
ascening closed left-r.e. sets. Furthermore, it is shown that there is a
weakly 1-generic many-one closed left-r.e. set.

1 Introduction

When studying the limits of computation, one often looks at recursively enumer-
able (r.e.) and left-r.e. sets. Natural examples of the r.e. sets are Diophantine sets
and the word problem of a finitely generated group [8,11,13]. The best-known
left-r.e. set is Chaitin’s Ω [1,14]. The present work focuses on a special subclass
of the left-r.e. sets, namely those which are closed downwards with respect to
the many-one or ascending reducibilities. While all r.e. sets exhibit closure un-
der various reducibilities — one-one, many-one, conjunctive, disjunctive, positive
truth-table and enumeration [8,11,13] — some left-r.e. sets, such as Chaitin’s Ω,
fail to do so.

We show that the classes of many-one closed left-r.e. sets and r.e. sets do
not coincide: there exist both, cohesive and weakly 1-generic sets, which are
many-one closed left-r.e. but not recursively enumerable, see Theorems 4, 15
and Remark 16. We also show that there are cohesive left-r.e. sets which are not
many-one closed left-r.e., see Theorem 12.

We introduce the more restrictive notion of ascending reducibility. We show
that cohesive and even r-cohesive left-r.e. sets are already ascending closed
left-r.e. sets, see Theorem 17.
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Kolmogorov complexity measures the information content of strings; the ap-
plications of this notion range from quantifying the amount of algorithmic ran-
domness [2,7] to establishing lower bounds on the average running time of an
algorithm [5]. An important tool to measure the complexity of a set A is the
initial segment complexity which maps each n to the Kolmogorov complexity
of A(0)A(1) . . . A(n). We show that the initial segment complexity of ascending
closed left-r.e. sets has to be sublinear, see Proposition 13. We also show that the
initial segment complexity of an ascending closed left-r.e. sets can be Ω(n/f(n))
for any unbounded increasing recursive function f , which is close to optimal, see
Theorem 14.

2 Many-One Closed Left-R.E. Sets

Post [9] introduced many-one reducibility by defining that a set B many-one
reduces to a set A, denoted A ≤m B, if there exists a recursive function f
such that x ∈ A ⇐⇒ f(x) ∈ B. Below, we formally define a left-r.e. set and
many-one closed left-r.e. set.

Definition 1. A set A is left-r.e. iff there is a uniformly recursive approximation
A0, A1, . . . to A such that As ≤lex As+1 for all s. Here As ≤lex As+1 means that
either As = As+1 or the least element x of the symmetric difference satisfies
x ∈ As+1. If every set many-one reducible to A is left-r.e. then we say that A is
a many-one closed left-r.e. set.

It is well-known that every set which is many-one reducible to an r.e. set is also
itself r.e. [11]; hence every r.e. set is a many-one closed left-r.e. set. Furthermore,
a set is recursive iff it is a bounded truth-table (btt) closed left-r.e. set because
the complement of any set btt-reduces to the set itself, see [8] for discussion of
btt-reductions.

Definition 2 (Friedberg [3], Lachlan [4], Myhill [6] and Robinson [10]).
An infinite set A is cohesive iff for every r.e. set B either B ∩ A or B ∩ A is
finite. An infinite set A is r-cohesive iff for every recursive set B either A ∩ B
or A ∩ B is finite.

Cohesive sets have been studied widely in recursion theory; they emerged as the
culmination of Post’s unsuccessful attempts to generate a Turing incomplete r.e.
set [13]. The next result gives a cohesive many-one closed left-r.e. set. We remark
that Soare [12] already discovered a cohesive left-r.e. set.

The following notational conventions will be useful. Let

ϕe,s(x) =
{

ϕe(x), if ϕe halts on input y within s steps for all y ≤ x;
↑, otherwise.

Note that if ϕe is total, then
⋃

s ϕe,s = ϕe. Otherwise, the domain of
⋃

s ϕe,s

is some initial segment of N. Let ϕ−1
e (x) = min {y : ϕe(y) = x} and ϕ−1

e,s(x) =
min {y : ϕe,s(y) = x}.
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Lemma 3. Suppose ϕe1 , ϕe2 , . . . , ϕek
are total. Furthermore, suppose that the

set S = range(ϕe1 ) ∩ range(ϕe2 ) ∩ . . . ∩ range(ϕek
) is infinite. Then, for all

a, r, there exist a1, a2, . . . , ar ∈ S such that a < a1 < a2 < . . . < ar and, for
n, m with 1 ≤ n < r and 1 ≤ m ≤ k it holds that ϕ−1

em
(an) < ϕ−1

em
(an+1).

Proof. Let a1 be any member of S which is greater than a. For i with 2 ≤ i ≤ r,
let ai ∈ S be chosen such that ai > ai−1 and for m with 1 ≤ m ≤ k, ϕ−1

em
(ai−1) <

ϕ−1
em

(ai). Note that there exist such ai ∈ S, as S is infinite and only finitely many
elements x can have ϕ−1

em
(x) ≤ ϕ−1

em
(ai−1). �

Theorem 4. There is a cohesive many-one closed left-r.e. set A.

Proof. We will use moving markers, a0, a1, . . .; let am,s denote the value of
marker am as at the beginning of stage s. Let l0 = 0, ld+1 = rd + 1, rd =
ld + 3d+2 + 1. We let Id,s = {am,s : ld ≤ m ≤ rd}.
For all m, s, we will have the following property:

(R1): am,s < am+1,s.

Define the predicate Pe,s(d) as

Pe,s(d) : (∃am,s, an,s ∈ Id,s) [am,s < an,s and ϕ−1
e,s(am,s) > ϕ−1

e,s(an,s)].

For e ≤ d, let

ie,s(d) =

⎧⎨
⎩

0, if Id,s �⊆ range(ϕe,s);
1, if Id,s ⊆ range(ϕe,s) and Pe,s(d);
2, if Id,s ⊆ range(ϕe,s) and not Pe,s(d).

For e ≤ d, let Qe,s(d) = (i0,s(d), i1,s(d), . . . , ie,s(d)). Note that one can consider
Qe,s(d) as a number (base 3), with i0,s(d) as being the most significant bit. So
one can talk about Qe,s(d) > Qe′,s′(d′) etc.

We let am = lims→∞ am,s, Id = lims→∞ Id,s, ie(d) = lims→∞ ie,s(d), and
Qe(d) = lims→∞ Qe,s(d) = (i0(d), i1(d), . . . , ie(d)) (we will show later that these
limits exist).

Intuitively, the aim of the construction of the moving markers am is to max-
imise the values of Qe(e) with higher priority given for lower values of e. The
required set A will be defined later by choosing one element from each Ie. We
define am,s via the staging construction below. Stage s defines am,s+1.

Initially, let am,0 = m.
Stage s: Check if, there exists e ≤ s, such that, by using am,s+1 = am,s for

m < le, some values of am,s+1 ≤ s for le ≤ m ≤ re, and any values for
am,s+1 for m > re such that (R1) is satisfied, we have Qe,s+1(e) > Qe,s(e).
If so, then update the values of am,s+1 to the values witnessing above for
the least such e. If no such e exists, then am,s+1 = am,s, for all m.

End Stage s

Claim 5. For all e,
(a) for all m with le ≤ m ≤ re, lime→∞ Qe,s(e) and lims→∞ am,s converge.
(b) lims→∞ Ie,s converges.
(c) for all d ≥ e, lims→∞ ie,s(d) converges.
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(a) Follows by induction on e and the fact that Qe,s(e) is bounded. Now (b)
and (c) follow by definitions. We let am, Ie, ie(d), and Qe(d) respectively denote
lims→∞ am,s, lims→∞ Ie,s, lims→∞ ie,s(d), and lims→∞ Qe,s(d).

Claim 6. For all d and all e ≤ d, Qe(d + 1) ≤ Qe(d).

To prove the claim, suppose by way of contradiction that some least d and a
corresponding least e ≤ d does not satisfy the claim. Let s be large enough such
that for all d′ ≤ d + 1, s′ > s, Id′,s′ = Id′,s and Qd′,s′(d′) = Qd′,s(d′). Then, in
stage s, one could choose ald,s+1, . . . , ard,s+1 to be ald+1, . . . , ard+ld+1−ld , which
makes Qe,s+1(d) > Qe,s(d), and thus Qd,s+1(d) > Qd,s(d), in contradiction to
the choice of s. It follows from Claim 6 that, for all e, for all but finitely many
d ≥ e, Qe(d) = Qe(d + 1). Thus we get the following:

Claim 7. For all e, for all but finitely many d > e, ie(d + 1) = ie(d). We let
je = limd→∞ ie(d).

Claim 8. For all e, je ∈ {0, 2}.

To prove the claim, suppose by way of contradiction that je = 1, for some least
e. Choose d large enough such that, for all e′ ≤ e, for all d′ ≥ d, ie′(d′) = je′ .
Consider a large enough stage s such that, for all d′ ≤ d, for all s′ ≥ s, Id′,s′ =
Id′,s and Qd′,s′(d′) = Qd′,s(d′). Then we could make Qe,s′(d) > Qe,s(d), for large
enough s′ > s by choosing ald,s′ , . . . , ard,s′ (with ald,s′ > ald) appropriately such
that for all e′ ≤ e, if Id ⊆ range(ϕe′ ), then ϕ−1

e′ (am,s′) < ϕ−1
e′ (an,s′) for ld ≤ m <

n ≤ rd. (It is possible to choose such values as, for e′ ≤ e, if Id ⊆ range(ϕe′),
then Id′ ⊆ range(ϕe′ ) for all d′ > d, and then we can use Lemma 3.) But this
contradicts the choice of s.

Claim 9. For all e, for all but finitely many d ≥ e, ie(d) = 0 implies, for all but
finitely many d, range(ϕe) ∩ Id = ∅.

To prove the claim, suppose by way of contradiction that e is such that for all but
finitely many d ≥ e, ie(d) = 0, but for infinitely many d, range(ϕe)∩ Id �= ∅. Fix
least such e, and let d be such that (i) for all e′ ≤ e, for all d′ ≥ d, Qe(d′) = Qe(d),
and (ii) for all e′ < e, if ie′(d) = 0, then for all d′ ≥ d, range(ϕe′)∩ Id′ = ∅. Let s
be such that for all d′ ≤ d, for all s′ ≥ s, Id′,s′ = Id′,s and Qd′,s′(d′) = Qd′,s(d′).
Let E = {e′ : e′ < e, ie′(d) = 2}∪{e}. Then, clearly,

⋂
e′∈E range(ϕe′ ) is infinite,

and thus using Lemma 3, for large enough s′ > s, we can find, ald,s′ , . . . , ard,s′

such that ie′,s′(d) = 2 for e′ ∈ E, which makes Qd,s′(d) > Qd,s(d), contradicting
the choice of s. The claim follows.

Note above that re − le ≥ Qe+1(e + 1) for all possible values of Qe+1(e + 1),
and thus are−Qe+1(e+1) ∈ Ie. Let

A = {are−Qe+1(e+1) : e ∈ N}.

Claim 10. A is cohesive.
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To prove the claim, consider any total ϕe. If for all but finitely many d > e,
ie(d) = 0, then by Claim 9 range(ϕe) contains elements from only finitely many
Ie′ , and thus only finitely many elements of A. On the other hand, if, for all but
finitely many d > e, ie(d) = 2, then range(ϕe) contains all but finitely many Ie′ ,
and thus all but finitely many elements of A. The claim follows.

Claim 11. Suppose B ≤m A as witnessed by ϕe. Then, B is a left-r.e. set.

To prove the claim, first suppose that range(ϕe) ∩ A is finite. In this case B =
{y : ϕe(y) ∈ S} for some finite set S. Thus, B is recursive and a left-r.e. set.

Now suppose that range(ϕe)∩A is infinite. It follows that, for all but finitely
many d > e, ie(d) has value 2 (by Claims 8 and 9). Let d be large enough such
that Qe(d) = Qe(d′), for all d′ ≥ d. Consider a stage s0 such that for all d′ ≤ d,
for all s ≥ s0, Id′,s = Id′,s0 and Qd′,s(d′) = Qd′,s0(d′). Define sk+1 > sk such
that, for d ≤ d′ ≤ d + k + 1, Qe,sk+1(d′) = (j0, j1, . . . , je). Let

α(m, k) = arm−Qm+1,sk
(m+1),

and define Bk as the characteristic function of {y : ϕe(y) ∈ Ask
∩⋃r<d+k Ir,sk

}
where Ask

= {α(m, k) : m < d + k}.
The characteristic value of Bk as above converges to characteristic function

of B. To show that B is left-r.e., we need to show that Bk ≤lex Bk+1. For
this consider least d′ such that for m ≤ d′, Im,sk+1 = Im,sk

and Qm,sk+1(m) =
Qm,sk

(m), but

[Id′+1,sk+1 �= Id′+1,sk
or Qd′+1,sk+1(d′ + 1) �= Qd′+1,sk

(d′ + 1) or d′ = d + k + 1].

Note that d′ ≥ d. If d′ ≥ d + k, then clearly Bk ≤lex Bk+1. Otherwise, for
m < d′, we have that α(m, k) = α(m, k + 1). Also, Qd′+1,sk

< Qd′+1,sk+1 and
α(d′, k + 1) < α(d′, k), which implies that ϕ−1

e (α(d′, k + 1)) < ϕ−1
e (α(d′, k))

(as ϕ−1
e is monotonic on Id′,sk

, due to Qe,sk
(d′) = Qe,sk+1(d′) = (j0, j1, . . . , je),

where je = 2). Thus, Bk ≤lex Bk+1. It follows that B is a left-r.e. set. �
Not every left-r.e. set is many-one closed left-r.e.: Besides Ω, a quite easy example
can be found by taking an r.e. and nonrecursive set A and considering the set

B = {2x : x ∈ A} ∪ {2x + 1 : x /∈ A}.
Then the complement of A is many-one reducbible to B but not a left-r.e. set.
In contrast to Theorem 4, one can also find cohesive sets with this property.

Theorem 12. There is a left-r.e. cohesive set A which is not a many-one closed
left-r.e. set.

Proof. In the following let Wd,s denote the set of elements of Wd below s which
are enumerated within s steps into Wd. Partition N into intervals Ii of length 2i:
Ii = {2i − 1, 2i, 2i + 1, . . . , 2i+1 − 2}. Furthermore, assign to every x the e-state
given as

qe,s(x) =
∑
d<e

2e−1−d ∗ Wd,s(x).
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We say that

qe,s(Ii) = c iff c < 2e is the largest number satisfying qe,s(x) ≥ c for at
least 2i − 2i−e−1 · (c + 1) elements of Ii.

Here we let Je,i,s be a witness for the above fact in the way such that Je,i,s ⊆ Ii,
|Je,i,s| = 2i − 2i−e−1 · (c + 1) and qe,s(x) ≥ c for all x ∈ Je,i,s. Here we assume
that Je,i,s+1 �= Je,i,s implies that qe,s+1(Ii) > qe,s(Ii). It is easy to verify that
lims→∞ qe,s(Ii) converges for each e, i and thus, lims→∞ Je,i,s converges for each
e, i.

Define i0,s, i1,s, . . . such that the following properties are satisfied:
(a) for all e, s: ie,s < ie+1,s and ie,s+1 ≥ ie,s > 2e + 2;
(b) for all e, s, j with ie,s ≤ j ≤ s it holds that qe,s(Iie,s ) ≥ qe,s(Ij).
(c) for all s, for the least e (if any) such that ie,s �= ie,s+1 or Je,ie,s,s �=

Je,ie,s+1,s+1: qe,s+1(Iie,s+1 ) > qe,s(Iie,s ).

Note that such ij,s can be recursively defined. It is easy to verify by induction
that ie = lims→∞ ie,s converges. Furthermore, note that q0,s(Ii0,s ) = 0 for all s
and J0,i0,s,s = Ii0,s for all s. Hence, i0,s = i0,0 for all s. Now we are ready to
define A.

Definition of As:
Let He,s = {x ∈ Je,ie,s,s : qe,s(x) = qe,s(Iie,s )} for all e.
Let xe,s be the (qe+1,s(Iie+1,s ) + 1)-th element from above of He,s for all e.
Let As = {x0,s, x1,s, . . .}.

End Definition of As

Let A(x) = lims→∞ As(x). One can verify that lims→∞ ie,s, lims→∞ qe,s(Iie,s )
and lims→∞ Je,ie,s,s converge. Thus it is easy to verify that A is well defined. We
also let ie, Je,ie , He, qe(x), qe(Ij) denote the limiting values of ie,s, Je,ie,s,s, He,s,
qe,s(x), qe,s(Ij), respetively.

Here, it should be noted that He,s has at least 2ie,s−e−1 elements. To see this,
let c = qe,s(Iie,s ) and note that Jie,s,s has at least 2i − 2i−e−1 · (c + 1) elements
of which less than 2ie,s − 2ie,s−e−1 · (c + 2) many x satisfy qe,s(x) > c while all x
satisfy qe,s(x) ≥ c. So at least 2ie,s−e−1 elements x of Je,ie,s,s satisfy qe,s(x) = c
and these are in He,s. As ie,s ≥ 2e + 2, it follows that |He,s| ≥ 2e+1 and so there
is, for each possible value c′ of qe+1,s(Ie+1,s) < 2e+1, a (c′ +1)-th largest element
of He,s. Thus every xe,s as defined above really exists. For each e, the sequence
of the xe,s converges to some value xe.

To show that (As)s∈N forms a left r.e. approximation, we need to show that
As ≤lex As+1. So consider the least e (if any) such that xe,s+1 �= xe,s. Note
that ie,s+1 = ie,s and Je,ie,s+1,s+1 = Je,ie,s,s, as otherwise e > 0 and xe−1,s+1 �=
xe−1,s. Hence He,s+1 ⊆ He,s and, for s′ = s, s+1, xe,s′ is the (qe+1,s′(Iie+1,s′ )+1)-
th element of He,s′ from above. As id,s+1 = id,s and Jd,id,s+1,s+1 = Jd,id,s,s for all
d ≤ e, it follows by rule (c) that qe+1,s+1(Ie+1,ie+1,s+1,s+1) ≥ qe+1,s(Ie+1,ie+1,s,s).
Hence xe,s+1 < xe,s and that implies that As+1 >lex As. So A is a left-r.e. set.
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Now we show that A is cohesive. So consider any d, e, k such that d < e
and k ≥ 0. Then, we claim that qd+1(xe) ≥ qd+1(xe+k). To see this, sup-
pose 2kc ≤ qe+k(Iie+k

) ≤ 2kc + 2k − 1. Thus, at least 2i − 2i−e−k−1 · (2k ·
c + 2k), many x in Iie+k

have qe+k(x) ≥ 2kc. Thus, 2i − 2i−e−1(c + 1) of x
in Iie+k

have qe(x) ≥ c and thus qe(Ie+k) ≥ c. Now, for xe+k ∈ He+k and
xe ∈ He, qd+1(xe+k) = �qe+k(Ie+k)/2k+e−d−1� < (c + 1)2k/2k+e−d−1, and
thus qd+1(xe+k) ≤ c/2e−d−1. On the other hand, qd+1(xe) = �qe(Ie)/2e−d−1� ≥
�c/2e−d−1�. Thus, qd+1(xe+k) ≤ qd+1(xe).

Thus, as A = {x0, x1, . . .}, for all d, qd+1(xe) is same for all but finitely many
e. For each d it follows that Wd(xe) is the same value for almost all e. Thus A
is cohesive.

Now consider B ≤m A via f where, for all i and x ∈ Ii, f(x) = max(Ii) +
min(Ii) − x. Note that f(x) = f−1(x). Thus, f also witnesses A ≤m B. Let
(As)s∈N be the left-r.e. approximation of A as given above and (Bs)s∈N be a
left-r.e. approximation of B. Then, the following holds for all e, s:

(∗) If the least e+1 elements x0,s, x1,s, . . . , xe,s of As satisfy that f(x0,s),
f(x1,s), . . . , f(xe,s) are the unique elements of Bs below max({Iie,s})
then x0 = x0,s, x1 = x1,s, . . . , xe = xe,s.

For a proof, assume that the above would be false for some e, s and let d be
the least index such that xd �= xd,s; by the left-r.e.-ness of the approximation,
xd < xd,s. Furthermore, by (c), id,s = id as otherwise d > 0 and xd−1 �= xd−1,s.
So f(xd,s) < f(xd) and B∩{0, 1, . . . , max(Iid

)} = {f(x0), f(x1), . . . , f(xd)}. But
{f(x0), f(x1), . . . , f(xd)} <lex {f(x0,s), f(x1,s), . . . , f(xd,s)} and hence B <lex

Bs, a contradiction to (Bs)s∈N being a left-r.e. approximation of B. So (∗) is
true. Now one can determine xe by searching for the first stage s where f(x0,s),
f(x1,s), . . . , f(xe,s) are the unique elements of B below max({Iie,s}) and then
one knows that xe = xe,s. Thus, we get that A is recursive, in contradiction to
A being cohesive. �

3 Ascending Closed Left-R.E. Sets

An ascending reduction is a recursive function f which satisfies f(x) ≤ f(x + 1)
for all x; B ≤asc A iff there is an ascending reduction f with B(x) = A(f(x))
for all x. A is called ascending closed left-r.e. iff every B ≤asc A is a left-r.e. set.

Let A[n] denote the string A(0)A(1) . . . A(n). Let C(x) denote the plain Kol-
mogorov complexity for x. That is, C(x) = min {log(y) : U(y) = x}, where U is
a fixed universal Turing machine. The function mapping n to C(A[n]) is called
the initial segment complexity of A and the next result shows that the initial
segment complexity of ascending closed left-r.e. sets is sublinear.

Proposition 13. If A is an ascending closed left-r.e. set then the initial segment
complexity n �→ C(A[n]) is a function of sublinear order.

Proof. Let c be any constant, and let Gn denote the interval {x : x ≤  n/c!}.
For d < c, define Bd by Bd(x) = A(cx + d). Thus Bd ≤asc A. Let (Bd

s )s∈N
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be left-r.e. approximations of Bd. For each n, let dn < c be the index for which
(Bdn

s ∩Gn)s∈N converges slowest. Then given dn and Bdn ∩Gn, we can determine
Bd ∩ Gn for each d < c and therefore A[n] as well. Hence, for some constant
bc and for all n, C(A[n]) ≤ n/c + bc. This shows that the complexity function
n �→ C(A[n]) has sublinear order. �

Theorem 14. Let g be a recursive and unbounded non-decreasing function.
Then there is an ascending closed left-r.e. set A such that n �→ C(A[n]) has
at least the order n/g(n).

Proof. Without loss of generality assume 1 ≤ g(i) ≤ i. Partition N into intervals
Ii of length 2i: Ii = {2i−1, 2i, 2i +1, . . . , 2i+1−2}. For each Ii, we will construct
a subset Ji = lims→∞ Ji,s. Let Ji,0 = Ii. At stage s, if there is an e < log(g(i))
(which has not been handled earlier) and an x such that

ϕe(0)↓≤ ϕe(1)↓≤ ϕe(2)↓≤ . . . ≤ ϕe(x)↓ and ϕe(x) > max(Ii).

Then, choose one such e and the corresponding x. Determine the two subsets
Ji,s∩{ϕe(y) : y ≤ x} and Ji,s−{ϕe(y) : y ≤ x}, and let Ji,s+1 be that one of these
two subsets which has the higher cardinality (in case of tie, choose arbitrarily).
Note that during the approximation process Ji,s gets halved at most log(g(i))
times and therefore the limit Ji has at least 2i/g(i) many elements.

Define A so that the characteristic function of A on the set Ji, in ascending
order, is the binary representation of the least number ai with C(ai) ≥ 2i/g(i)−2
(where as many leading zeros are added as needed to use up all bits of Ji); A
has no elements outside the sets Ji. Note that there is a recursive approximation
ai,s to ai from below.

The set A is left-r.e. as we can have an approximation As which takes on
each Ji,s the characteristic function of the binary representation of ai,s (with
sufficiently many leading zeros added in); As is 0 on Ii − Ji,s. If the interval Ji,s

shrinks to Ji,s+1, then the bits of ai,s move to the left and some leading zeros
are skipped; if ai,s+1 > ai,s then the bits are also ascending in lexicographic
manner. Hence the resulting approximation is a left-r.e. approximation which
runs independently on each interval Ii.

Now suppose B ≤asc A via a recursive non-decreasing function ϕe. If the range
of ϕe is finite, then B is clearly recursive. Now suppose that range of ϕe is infinite.
Let r be the greatest index satisfying g(r) ≤ e. Let s0 = s1 = s2 = . . . = sr be
so large that As0(x) = A(x) for all x ≤ max(Ir). For k ≥ r, let sk+1 > sk be
such that for all s ≥ sk+1 either Jk+1,s ⊆ range(ϕe) or Jk+1,s ∩ range(ϕe) = ∅.
Note that sk+1 can be computed effectively from k.

Define the approximation (Bk)k∈N of B as

Bk(x) =
{

Ask
(ϕe(x)), if ϕe(x) ≤ max(Ik);

0, if ϕe(x) > max(Ik).

This approximation is a left-r.e. approximation to B as it starts to consider the
interval Ik, for k > r, only after stage sk such that for all s ≥ sk, Jk,s ⊆ range(ϕe)
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or Jk,s ∩ range(ϕe) = ∅. In the first case all the bits of Jk,sk
are copied order-

preservingly into Bk and the left-r.e. approximation to A on Ik is turned into a
left-r.e. approximation to B on the preimage of Ik under ϕe; in the second case
all x with ϕe(x) ∈ Ik satisfy ϕe(x) /∈ Jk,sk

and therefore Bs(x) = 0 for these x
and all stages s. So A is an ascending closed left-r.e. set.

Furthermore, C(ai) ≥ 2i/g(i)−2. Also, we can compute ai from the number i,
the string A[max(Ii)] and the number of stages s at which Ji,s+1 �= Ji,s. Hence,
for some b and almost all i we have

C(A[max(Ii)]) ≥ C(ai) − log i − log g(i) − b ≥ 2i

2g(i)
.

Taking now n with min(Ii+1) ≤ n ≤ max(Ii+1) and using that g is non-
decreasing, we have that C(A[n]) ≥ n

8g(n) for almost all n. This proves the
postulated bound. �
Another important type of sets are the 1-generic and weakly 1-generic sets [8].
As one cannot have left-r.e. 1-generic sets, one might ask for which reducibilities
r there are r-closed left-r.e. weakly 1-generic sets. The next result shows that
one can make such sets for the notion of ascending closed left-r.e. sets.

Recall that a set is weakly 1-generic iff for every recursive function f from
numbers to strings there exist n and m with f(n) = A(n+1)A(n+2) . . . A(n+m).
The difference between weakly 1-generic and 1-generic is that here one requires
the f to be total and independent of the values of A below n.

Theorem 15. There is an ascending closed left-r.e. weakly 1-generic set A.

Proof. We will be defining moving markers ae, be and ce, where ae ≤ be ≤ ce,
a0 = 0 and ae+1 = ce + 1. Intuitively, we want to use the part A(be), A(be +
1), . . . , A(ce) to ensure weak 1-genericity (by making A(be)A(be + 1) . . . A(be +
|ϕe(be)|−1) = ϕe(be), if ϕe(be) is defined). The part A(ae), . . . , A(be −1) is used
to ensure that A is ascending closed left-r.e.

At the beginning of stage s, the markers have values ae,s, be,s and ce,s respec-
tively. We will have that ae = lims→∞ ae,s, be = lims→∞ be,s, ce = lims→∞ ce,s.

Let a0,s = 0 for all s. Let ae+1,s = ce,s + 1, for all e, s. Initially ae,0 = be,0 =
ce,0 = e, and A0 = 0∞. We will also use sets Je′,e,s, for e′ < e. These sets are
useful for defining A in such a way that, if ϕe′ witnesses an ascending reduction
from B to A, then B is left-r.e. Initially, for all e, for e′ < e, Je′,e,0 = ∅. Below,
for ease of presentation, we will only describe the changes from stage s to stage
s+1; all variables which are not explicitly updated will retain the corresponding
values from stage s.

Stage s:
1. If there exists an e ≤ s such that either Cond e.1 or Cond e.2 hold, then

choose least such e and go to step 2. Otherwise go to stage s + 1.
– Cond e.1: There exists e′ < e such that, Je′,e,s = ∅ and range(ϕe′ ) ∩

{x : x > ce,s} contains at least 2e + 2 elements as can be verified
within s steps.

– Cond e.2: ce,s = be,s and ϕe(be,s)↓ within s steps.
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2. Fix least e such that Cond e.1 or Cond e.2 holds. If Cond e.1 holds, then
go to step 3. Otherwise go to step 4.

3. Fix one e′ such that Cond e.1 holds for e′.
Let Je′,e,s+1 be 2e + 2 elements from range(ϕe′ ) ∩ {x : x > ce,s}.
Update be,s+1 = max(Je′,e,s+1) + 1, ce,s+1 = be,s+1.
For m > e, let am,s+1 = bm,s+1 = cm,s+1 = cm−1,s+1 + 1.
For m > e, and m′ < m, let Jm′,m,s+1 = ∅.
Let As+1 be obtained from As by (i) deleting all elements ≥ be,s, and
by (ii) inserting, for each m < e such that Jm,e,s �= ∅, one new element
(which was not earlier in As) from Jm,e,s.
Go to stage s + 1.

4. Suppose ϕe(be,s) = y.
Let ce,s+1 = be,s + |y| + 1.
For m > e, let am,s+1 = bm,s+1 = cm,s+1 = cm−1,s+1 + 1.
For m > e, and m′ < m, let Jm′,m,s+1 = ∅.
Let As+1 be obtained from As by (i) deleting all elements ≥ be,s + |y|+1,
and by (ii) inserting, for each m < e such that Jm,e,s �= ∅, one new
element (which was not earlier in As) from Jm,e,s, and by setting (iii)
As+1(be,s) . . . As+1(be,s + |y| − 1) = y,
Go to stage s + 1.

End stage s.

It can be shown by induction on e that lims→∞ ae,s, lims→∞ be,s, lims→∞ ce,s

indeed exist. For this, for e′ < e, after ae′ , be′ and ce′ have reached their final
value, ae does not get modified any further (ae is set to ce−1 + 1, in the last
stage in which ce−1 gets modified). Furthermore, once ae reaches its final value,
be can change at most e times due to Cond e.1 holding for some e′ < e (and thus
execution of step 3). Once be reaches its final value, ce gets modified at most once
due to success of Cond e.2 (and thus execution of step 4). The “2e + 2” in the
algorithm description suffices since each index e has e indices below it, and, after
all variables ae′ , be′ , ce′ , with e′ < e have stabilised, we encounter Cond e.1 at
most once for each e′ < e, and correspondingly Cond e.2 once in the beginning,
and at most once after each modification of be via Cond e.1. Also, note that, for
m < e, Jm,e,s ⊆ {x : ae,s ≤ x < be,s}.

Let A(x) = lims→∞ As(x). Now we show that A is weakly 1-generic. Sup-
pose ae′ , be′ , ce′ , for e′ ≤ e, reach their final values before stage s. If ϕe(be)
is defined then Cond e.2 succeeds in some stage s′ ≥ s, and step 4 defines
As′+1(be) . . . As′+1(be + |y| − 1) = y, where ϕe(be) = y. Furthermore, A never
gets modified on inputs ≤ ce,s′+1 = ce after stage s′.

Now suppose B ≤asc A as witnessed by ϕr. If range(ϕr) is finite, then clearly
B is recursive. So assume range(ϕr) is infinite. Thus, for each e > r, Cond e.1
will succeed (eventually) for e′ = r, after ae has achieved its final value.

Define s0 such that am, bm, cm, (for m ≤ r) as well as A[cr] have reached their
final values by stage s0. Let sk+1 > sk such that Jr,r+j,sk+1 �= ∅, for all j ≤ k+1.
Let Bk = {x : ϕr(x) ∈ Ask

and ϕr(x) ≤ cr+k,sk
}.

Clearly B(x) = limk→∞ Bk(x). Thus, to show that B is left-r.e. it suffices to
show that Bk ≤lex Bk+1. So consider the least x ≤ cr+k,sk

, if any, such that in
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some stage s′, sk ≤ s′ < sk+1, Cond e.1 or Cond e.2 succeeds, and x ≥ be,s′ (if
there is no such x, then we are done). Clearly, e ≥ r by hypothesis on s0. Note
that for j ≤ k, Jr,r+j,sk

�= ∅. Thus, Jr,r+j,s′ �= ∅. Thus, in stage s′, As′+1(x′) is
set to 1, for some x′ ∈ Jr,e,s′ such that Ask

(x′) = 0. Note that x′ < be′,s ≤ x.
Let y′ be least such that ϕr(y′) = x′. Thus,

Bk ≤lex As′+1(ϕr(0))As′+1(ϕr(1)) . . . As′+1(ϕr(y′)) ≤lex Bk+1

as desired. �

Remark 16. Note that one can adjust the proof to show that there is a many-
one closed left-r.e. and weakly 1-generic set. For this, main change in the con-
struction would be to change Cond e.1 above to:

Cond e.1: There exists e′ < e such that Je′,e,s = ∅, and for some z, z′, for all
x ≤ z, ϕe′(x)↓ ≤ z′ within s steps, and {ϕe′(x) : x ≤ z} ∩ {x : ce,s < x ≤ z′}
contains at least 2e + 2 elements.

Then, setting Je′,e,s+1 as in step 3, and making be to be > z′, would achieve
the goal, as any element in A which is larger than z′ would be able to influence
membership in B = {x′ : ϕ(x′) ∈ A}, only for x > z. We omit the details.

The next result shows that every r-cohesive set is ascending closed left-r.e. set.
Thus, r-cohesive left-r.e. sets form a subclass of ascending closed left-r.e. sets.
Recall that every cohesive set is r-cohesive.

Theorem 17. Every left-r.e. r-cohesive set is an ascending closed left-r.e. set.

Proof. Suppose A is a left-r.e. r-cohesive set. Suppose B ≤asc A. Let (As)s∈N

be the left-r.e. approximation of A and f be a non-decreasing recursive function
which witnesses that B ≤asc A. If range(f) ∩A is finite, then clearly B is recur-
sive. So assume range(f) ∩ A is infinite. But then, for some x and for all y ≥ x,
y ∈ A implies y ∈ range(f). Fix this x.

Let s0 be such that for all s ≥ s0, for all y ≤ x, As(y) = A(y); let sn+1 > sn

be such that the least n + 1 members of Asn+1 − {y : y ≤ x} exist and are in
range(f); note that one can effectively find such sn+1 from sn. Let

Bn(y) =

⎧⎪⎨
⎪⎩

A(f(y)), if f(y) ≤ x;
1, if f(y) is among the least n members

of Asn which are greater than x;
0, otherwise.

It is easy to verify that Bn is an approximation of B. To see that (Bn)n∈N form a
left-r.e. approximation, we need to show that Bn ≤lex Bn+1 for all n. So consider
any n. If Bn �⊆ Bn+1, then there exists least y such that y ∈ Bn − Bn+1. Then
f(y) is among the first n members of Asn which are greater than x and not among
the first n+1 members of Asn+1 which are greater than x. As (As)s∈N is left-r.e.
approximation, we have that Asn+1 must contain a f(y′), x < f(y′) < f(y), such
that f(y′) �∈ Asn . But, then y′′ ∈ Bn+1 − Bn, for some y′′ ≤ y′. Thus, (Bn)n∈N

is a left-r.e. approximation of B. �
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Abstract. In this paper, we prove that given any Π0
1 subset P of {0, 1}N

there is a tileset τ with a countable set of configurations C such that P
is recursively homeomorphic to C \ U where U is a computable set of
configurations. As a consequence, if P is countable, this tileset has the
exact same set of Turing degrees.

Introduction

Wang tiles have been introduced by Wang [17] to study fragments of first order
logic. Knowing whether a tileset can tile the plane with a given tile at the origin
(also known as the origin constrained domino problem) was proved undecidable
also by Wang [18]. Knowing whether a tileset can tile the plane in the general
case was proved undecidable by Berger [2, 3].

Understanding how complex, in the sense of recursion theory, the tilings of a
given tileset can be is a question that was first studied by Myers [13] in 1974.
Building on the work of Hanf [10], he gave a tileset with no recursive tilings.
Durand/Levin/Shen [9] showed, 40 years later, how to build a tileset for which
all tilings have high Kolmogorov complexity.

A Π0
1 -set is an effectively closed subset of {0, 1}N, or equivalently the set

of oracles on which a given Turing machine halts. Π0
1 -sets occur naturally in

various areas in computer science and recursive mathematics, see e.g. [6,15] and
the upcoming book [7]. It is easy to see that the set of tilings of a given tileset
is a Π0

1 -set (up to a recursive coding of QZ
2

into {0, 1}N). This has various
consequences. As an example, every non-empty tileset contains a tiling which
is not Turing-hard (see Durand/Levin/Shen [9] for a self-contained proof). The
main question is how different the sets of tilings are from Π0

1 -sets. In the context
of one-dimensional symbolic dynamics, some answers to these questions were
given by Cenzer/Dashti/King/Tosca/Wyman [8, 4, 5].

The main result in this direction was obtained by Simpson [16], building on
the work of Hanf and Myers: for every Π0

1 -set S, there exists a tileset whose set
of tilings have the same Medvedev degree as S. The Medvedev degree roughly
relates to the “easiest” Turing degree of S. What we are interested in is a stronger
result: can we find for every Π0

1 -set S a tileset whose set of tilings have the
same Turing degrees ? We prove in this article that this is true if S contains a
recursive point. More exactly we build (theorem 2) for every Π0

1 -set S a set of
tilings for which the set of Turing degrees is exactly the same as for S, possibly

M. Ogihara and J. Tarui (Eds.): TAMC 2011, LNCS 6648, pp. 230–239, 2011.
© Springer-Verlag Berlin Heidelberg 2011
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with the additional Turing degree of recursive points. In particular, as every
countable Π0

1 -set contains a recursive point, the question is completely solved
for countable sets: the sets of Turing degrees of countable Π0

1 -sets are the same
as the sets of Turing degrees of countable sets of tilings. In particular, there
exist countable sets of tilings with non-recursive points. This can be thought as
a two-dimensional version of theorem 8 in [5].

This paper is organized as follows. After some preliminary definitions, we start
with a quick proof of a generalization of Hanf, already implicit in Simpson [16].
We then build a very specific tileset, which forms a grid-like structure while
having only countably many tilings. This tileset will then serve as the main
ingredient in the theorem in the last section.

1 Preliminaries

1.1 Π0
1 Sets and Degrees

A Π0
1 set P ⊆ {0, 1}N is a set for which there exists a Turing machine that

given x ∈ {0, 1}N as an oracle halts if and only if x �∈ P . Equivalently, a subset
S ⊆ {0, 1}N is Π0

1 if there exists a recursive set L so that w ∈ S if no prefix of
w is in L.

We say that two sets S, S′ are recursively homeomorphic if there exists a
bijective recursive function f : S → S′.

A point x of a set S ⊆ {0, 1}N is isolated if it has a prefix that no other point
of S has. The Cantor-Bendixson derivative D(S) of S is the set S without its
isolated points. We define inductively S(λ) for any ordinal λ:

– S(0) = S
– S(λ+1) = D

(
S(λ))

)
– S(λ) =

⋂
γ<λ S(γ) when λ is limit.

The Cantor-Bendixson rank of S, noted CB(S), is defined as the first ordinal λ
such that S(λ) = S(λ+1). An element x is of rank λ in S if λ is the least ordinal
such that x �∈ S(λ).

See Cenzer/Remmel [6] for Π0
1 sets and Kechris [11] for Cantor-Bendixson

rank and derivative.
For x, y ∈ {0, 1}N we say that x is Turing-reducible to y if y is computable

by a Turing machine using x as an oracle and we write y ≤T x. If x ≤T y and
y ≤T x, we say that x and y are Turing-equivalent and we write x ≡T y. The
Turing degree of x ∈ {0, 1}N is its equivalence class under the relation ≡T .

1.2 Tilings and SFTs

Wang tiles are unit squares with colored edges which may not be flipped or
rotated. A tileset T is a finite set of Wang tiles. A configuration is a mapping
c : Z2 → T assigning a Wang tile to each point of the plane. If all adjacent
tiles of a configuration have matching edges, the configuration is called a tiling.
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The set of all tilings of T is noted T (T ). We say a tileset is origin constrained
when the tile at position (0, 0) is forced, that is to say, we only look at the valid
tilings having a given tile t at the origin.

A Shift of Finite Type (SFT) X ⊆ ΣZ
2

is defined by (Σ, F ) where Σ is a
finite alphabet and F a finite set of forbidden patterns. A pattern is a coloring of
a finite portion P ⊂ Z2 of the plane. A point x is in X if and only if it does not
contain any forbidden pattern of F anywhere. In particular, the set of tilings of
a Wang tileset is a SFT. Conversely, any SFT is recursively homeomorphic to
a Wang tileset. More information on SFTs may be found in Lind and Markus’
book [12].

A set of configurations X ⊆ ΣZ
2

X is a sofic shift iff there exists a SFT Y ⊆ ΣZ
2

Y

and a local map f : ΣY → ΣX such that for any point x ∈ X , there exists a
point y ∈ Y such that for all z ∈ Z2, x(z) = f(y(z)).

The notion of Cantor-Bendixson derivative is defined on configurations in
a similar way as with Π0

1 sets. This notion was introduced for tilings by Bal-
lier/Durand/Jeandel [1]. A configuration c is said to be isolated in a set of
configurations C if there exists a pattern P such that c is the only configura-
tion of C containing P . The Cantor-Bendixson derivative of C is noted D(C)
and consists of all configurations of C except the isolated ones. We define C(λ)

inductively for any ordinal λ as above.

2 Π0
1 Sets and Origin Constrained Tilings

A straighforward corollary of Hanf [10] is that Π0
1 subsets of {0, 1}N and ori-

gin constrained tilings are recursively isomorphic. This is stated explicitely in
Simpson [16].

Theorem 1. Given any Π0
1 subset P of {0, 1}N, there exists a tileset and a tile t

such that each origin constrained tiling with this tileset describes an element of P .

Proof. Wetake the basic encoding ofTuringmachines as stated inRobinson [14] for
instance. We modify the bottom tiles, ie the tiles containing the initial tape, such
that instead of being able to contain only the blank symbol, they can contain only
0s or 1s on the right of the starting head. The Turing machine we encode is the one
that given x ∈ {0, 1}N as an input halts if and only if x �∈ P . Then the constrained
tilings, having at the origin the tile with the starting head of the Turing machine,
are exactly the runs of the Turing machine on the members of P . �	
Corollary 1. Any Π0

1 subset P of {0, 1}N is recursively homeomorphic to an
origin constrained tileset.

3 The Tileset

The main problem in the construction of Hanf is that tilings which do not have
the given tile at the origin can be very wild : they may correspond to configu-
rations with no computation (no head of the Turing Machine) or computations
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starting from an arbitrary (not initial) configuration. A way to solve this problem
is described in [13] but is unsuitable for our purposes.

(a) (b) (c) (d)

Fig. 1. The tiling in which to encode the Turing machines

Our idea is as follows: We build a tileset which will contain, among others,
the sparse grid of figure 1c. The main point is that all others tilings of the tileset
will have at most one intersection point of two black lines. This means that if
we put computation cells of a given Turing machine in the intersection points,
every tiling which is not of the form of figure 1c will contain at most one cell of
the Turing machine, thus will contain no computation.

To do this construction, we will first draw increasingly big and distant columns
as in figure 1a and then superimposing the same construction for rows as in
figure 1b, leading to the grid of figure 1c.

It is then fairly straightforward to see how we can encode a Turing machine
inside a configuration having the skeleton of figure 1c by looking at it diagonally:
time increases going to the north-east and the tape is written on the north west
- south east diagonals1.

Our set of tiles T of figure 2 gives the skeleton of figure 1a when forgetting
everything but the black vertical borders. We will prove in this section that it is
countable. We set here the vocabulary:

– a vertical line is formed of a vertical succession of tiles containing a vertical
black line (tiles 5, 6, 17, 21, 24, 25, 26, 27, 31, 35, 36, 37).

– a horizontal line is formed of a horizontal succession of tiles containing a
horizontal black line (tiles 13, 14, 15, 16, 22, 23, 38) or a bottom signal,

– the bottom signal is formed by a connected path of tiles among (30, 31,
27, 14, 7, 36, 38)

– the red signal is formed by a connected path of tiles containing a red line
(tiles among 3 ,7, 10, 12, 14, 19, 22, 32, 33, 38).

– tile 30 is the corner tile
– tiles 30, 32, 33, 34 are the bottom tiles

Lemma 1. The tileset T admits at most one tiling with two or more vertical
lines.
1 Note that we will have to skip one diagonal out of two in our construction, in order

for the tape to increase at the same rate as the time.
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Fig. 2. Our set of Wang tiles T

Proof. The idea of the construction is to force that whenever there are two
vertical lines, then the only possible tiling is the one of figure 3. Note that
whenever the corner tile appears in a tiling, it is necessarily a shifted version of
the tiling on figure 3.

Suppose that we have a tiling in which two vertical lines appear. Suppose they
are at distance k + 1. Necessarily there must be horizontal lines between them
forming squares. Inside these squares there must be a red signal: inside each
square, this red signal is vertical, it is shifted to the right each time it crosses
a horizontal line. This ensures that there are exactly k squares in this column.
Furthermore, the bottom square has necessarily a bottom signal going through
its top horizontal line. The bottom signal forces the square of the column before
to be of size k − 1 and the square of the column after to be of size exactly k + 1.

�	
Lemma 2. The tileset T admits a countable number of tilings.

Proof. Lemma 1 states that there is only one tiling that has more than 2 vertical
lines. This means that the other tilings have at most one such line.
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– If a tiling has exactly one vertical line, then it can have at most two horizontal
lines: one on the left of the vertical one and one on the right. A red signal
can then appear on the left or the right of the vertical line arbitrary far from
it. There is a countable number of such tilings.

– If a tiling has no vertical line, then it has at most one horizontal line. A red
signal can then appear only once. There is a finite number of such tilings.

There is a countable number of tilings that can be obtained with the tileset T .
All obtainable tilings are shown in figure 4 and 3. �	
By taking our tileset T = {1, . . . , 40} and mirroring all the tiles along the south
west-north east diagonal, we obtain a tileset T ′ = {1′, . . . , 40′} with the exact
same properties, except it enforces the squeleton of figure 1b. Remember that
whenever the corner tile appeared in a tiling, then necessarily this tiling was α.
The same goes for T ′ and its corner tile. We hence construct a third tileset τ =
(T \ {30} × T ′ \ {30′})∪{(30, 30′)}. The corner tile (30, 30′) of τ has the property

Fig. 3. Tiling α: the unique valid tiling of T in which there are 2 or more vertical lines
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Fig. 4. The other configurations: the A − ZZ configurations are unique (up to shift),
and the configurations with subscripts i, j ∈ N, k ∈ Z2 represent the fact that distances
between some of the lines can vary. Note that configuration ZZ cannot have a red
signal on its left, because it would force another vertical line.
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that whenever it appears, the tiling is the superimposition of the skeletons of
figures 1a and 1b with the corner tiles at the same place: there is only one such
tiling, call it β.

The skeleton of figure 1c is obtained if we forget about the parts of the lines
of the T layer (resp. T ′) that are superimposed to white tiles, 29’ (resp. 29), of
T ′ (resp. T ).

As a consequence of lemma 2, τ is countable. And as a consequence of lemma 1,
the only tiling by τ in which computation can be embedded is β. The shape of β
is the one of figure 1c, the coordinates of the points of the grid are the following
(supposing tile (30, 30′) is at the center of the grid):

{(f(n), f(m)) | f(m)/4 ≤ f(n) ≤ 4f(m)}
{(f(n), f(m)) | m/2 ≤ n ≤ 2m}

where f(n) = (n + 1)(n + 2)/2 − 1.

Lemma 3. The Cantor-Bendixson rank of T (τ) is 12.

Proof. The Cantor-Bendixson rank of T (T )\{α} is 6, see figure 4, thus the rank
of T (T ) \ {α} × T (T ′) \ {α′} is 11. Adding the configurations corresponding to
the superimposition of α and α′, τ is of rank 12. �	

4 Π0
1 Sets and Tilings

Theorem 2. For any Π0
1 subset S of {0, 1}N there exists a tileset τS such that

S × Z2 is recursively homeomorphic to T (τS) \ O where O is a computable set
of configurations.

Proof. This proof uses the construction of section 3. Let M be a Turing machine
such that M halts with x as an oracle iff x �∈ S. Take the tileset τ of section 3
and encode in it the Turing machine M having as an oracle x on an unmodifiable
second tape. This gives us τM , O is the set all tilings except the β ones. To each
(x, p) ∈ S×Z2 we associate the β tiling having a corner at position p and having
x on its oracle tape. It follows from lemma 2 that O is clearly computable. �	
Corollary 2. For any countable Π0

1 subset S of {0, 1}N, there exists a tileset τ
having exactly the same Turing degrees.

Proof. We know, from Cenzer/Remmel [6], that countable Π0
1 sets have 0 (com-

putable elements) in their set of Turing degrees, thus the tileset τM described in
the proof of theorem 2 has exactly the same Turing degrees as S. �	
Theorem 3. For any countable Π0

1 subset S of {0, 1}N there exists a tileset τS

such that CB(T (τS)) = CB(S) + 11.

Proof. Lemma 3 states that T (τ) is of Cantor-Bendixson rank 12, 11 without
α. In the tileset τM of the previous proof, the Cantor-Bendixson rank of the
contents of the tape is exactly CB(S), hence CB(T (τS)) = CB(S) + 11. �	
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From Ballier/Durand/Jeandel [1] we know that for any tileset X , if CB(T (X)) ≥
2, then X has only recursive points. Thus an optimal construction improves the
Cantor-Bendixson rank by at least 2.

Corollary 3. For any countable Π0
1 subset S of {0, 1}N there exists a sofic sub-

shift X such that CB(X) = CB(S) + 2.

Proof. Take a projection that just keeps the symbols of the Turing machine
tape τM of the proof of theorem 2 and maps everything else to a blank symbol.
Recall the Turing machine tape cells are the intersections of the vertical lines
and horizontal lines. This projection leads to 3 possible configurations :

– a completely blank configuration,
– a completely blank configuration with only one symbol somewhere,
– a configuration with a white background and points corresponding to the

intersections in the sparse grid of figure 1c.
�	
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Abstract. In literature, different deductive systems are developed for
probability logics. But, for formulas, they provide essentially equivalent
definitions of consistency. In this paper, we present a guided maximally
consistent extension theorem which says that any probability assignment
to formulas in a finite local language satisfying some constraints specified
by probability formulas is consistent in probability logics, and hence con-
nects this intuitive reasoning with formal reasoning about probabilities.
Moreover, we employ this theorem to show two interesting results:

– The satisfiability of a probability formula is equivalent to the solv-
ability of the corresponding system of linear inequalities through a
natural translation based on atoms, not on Hintikka sets;

– the Countably Additivity Rule in Goldblatt [6] is necessary for his
deductive construction of final coalgebras for functors on Meas, the
category of measurable spaces.

Keywords: Probability Logic, Belief Types, Modal Logic, Probability
Measure.

1 Introduction

Probability logics are motivated by reasoning about knowledge and belief in
economics [1], [2], artificial intelligence [4] and formal methods [3]. In this pa-
per, we mainly consider a guided maximally consistent extension theorem which
connects intuitive reasoning with formal reasoning in probability logics.

The building blocks of our syntactic formalism for probability logics are for-
mulas. They are constructed from the propositional falsum ⊥ and propositional
letters by the Boolean connectives and a family of belief operators Lr where
r ∈ Q∩ [0, 1]. The characteristic feature of the syntax is this family of operators.
The interpretation of Lrφ is that the agent’s belief in the event φ is at least r.

Different probability logics have been developed to provide a syntactic defini-
tion of consistency. In [4], Fagin and Halpern defined a richer langauge for their
logic. Their logical language includes not only formulas expressing probabilities
but also linear combinations of probability formulas. In order to accommodate
this rich syntax with “arithmetic” connectives, they had to formulate an inde-
pendent system for linear inequalities. In [7], Heifetz and Mongin used a much
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simpler syntax suggested in [2] by Aumann. Just as ours, its characteristic fea-
ture is captured by the belief operators Li

r for rationals r ∈ [0, 1] and i ∈ I where
I is a set of agents. In some sense, this syntax is a probabilistic syntax of modal
logic. In Zhou [12], we provided a new axiomatization of probability logic by
including a new rule capturing the Archimedean property of probability indices.
All the above results are only weak completeness. That is to say, a formula is
consistent in the system iff it has a model based on a type space.

Deductive systems for probability logics with strong completeness, which
would identify satisfied theories as maximally consistent sets of formulas, were
studied in Goldblatt [6] and Meier [10]. Goldblatt formulated a deductive system
for coalgebras over measurable spaces [11] in the same finitary language as ours.
But, in order to show the strong completeness, he postulated the Lindebaum
property. And he showed that the adoption of “Lindenbaum’s Lemma” as a pos-
tulate rather than a property to be proved is unavoidable. The most important
contribution of his system is the following Countable Additivity Rule:

Γ * φ implies {Lpψ : ψ ∈ ∧ω Γ} * Lpφ

where Γ may be infinite and
∧

ω Γ is the set of conjunctions of finite subsets of
Γ . It is needed in the proof of countable additivity of the measures defined on
the canonical models [6], which also depends on the postulate of Lindenbaum
property. Meier employed an infinitary language including countable conjunc-
tion (disjunction) and developed an infinitary probability logic which is strongly
complete with respect to the class of type spaces.

From these deductive systems for probability logic, it seems that there is a
kind of inherent relationship between deductive or formal reasoning about prob-
abilities and intuitive reasoning about linear inequalities. It is easy to see that
probability logics include implicitly or explicitly reasoning about linear inequal-
ities. Specifically, for a probability formula φ, its consistency implies through a
translation based on atoms the solvability of its corresponding system of linear
inequalities. One may wonder whether the converse is true, i.e., the solvability of
its corresponding system entails its consistency. In this paper, we will show that
the entailment holds. This result means that under a certain translation reason-
ing about probabilities is equivalent to reasoning about linear inequalities. The
crucial step to show this equivalence is a guided maximally consistent extension
theorem which says that any probability assignment to formulas in a finite local
language satisfying some constraints specified by probability formulas is consis-
tent in probability logics. The reason for the equivalence is that, for a probability
formula φ, reasoning about its consistency under a certain translation is simply
about its probability indices and hence about the solvability of its corresponding
system of linear inequalities.

However, the deductive machinery for the consistency of an arbitrary set of for-
mulas is much more than reasoning about probability indices. Our first reaction
would be to see whether finite satisfiability implies satisfiability, i.e., given an ar-
bitrary set Γ of formulas, if any finite subset is satisfiable, so is Γ . We can find an
immediate counterexample {¬M0p} ∪ {L 1

2n
p : n ∈ N}, which is finitely satisfi-
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able but not satisfiable. Further one may wonder whether finite satisfiability with-
out such an obvious contradiction in probability indices is satisfiable. In this paper,
we will show that this is not true by the above guided maximally consistent exten-
sion theorem. This negative result also tells us that reasoning about a set of prob-
ability formulas is more than reasoning about linear inequalities. Moreover, it says
that the Countable Additivity Rule in Goldblatt [6] is necessary for the deductive
construction of final coalgebras for functors over measurable spaces [11].

The paper is organized as follows. Section 2 introduces the semantics and
syntax for probability logic and also presents two probability logics Σ+ and
Σs. Σs includes the Countable Additivity Rule while Σ+ does not. Our main
result is the guided maximally consistent extension theorem in Section 3. In the
last part of this paper, we provide two applications of the theorem. One says
that the satisfiability of a probability formula is equivalent to the solvability
of the corresponding system of linear inequalities through a certain translation
based on atoms not on Hintikka sets. The other tells us that the Countably
Additivity Rule in Goldblatt [6] is necessary for his deductive construction of
final coalgebras for functors over Meas.

2 Semantics and Syntax

The syntax of our logic is very similar to that of modal logic. We start with a
fixed infinite set P := {p1, p2, · · ·} of propositional letters. We also use p, q, · · ·
to denote propositional letters. The set of formulas φ is built from propositional
letters as usual by connectives ¬, ∧ and a countably infinite modalities Lr for
each r ∈ Q∩[0, 1], where Q is the set of rational numbers. Equivalently, a formula
φ is formed by the following syntax:

φ := p | ¬φ | φ1 ∧ φ2 | Lrφ (r ∈ Q ∩ [0, 1])

Lr is the primitive modality in our language. But we also use a derived modality
Mr which means “at most” in our semantics through the following definition:

(DEF M) Mrφ := L1−r¬φ.

Let L be the formal language consisting of the above components. We use
r, s, α, β, · · · (also with subscripts) to denote rationals. Next we describe the
semantics of our system. A probability model is a tuple

M := 〈Ω,A, T, v〉
where

– Ω is a non-empty set, which is called the universe or the carrier set of M ;
– A is a σ-field (or σ-algebra) of subsets of Ω;
– T is a measurable mapping from Ω to the space Δ(Ω,A) of probability

measures on Ω, which is endowed with the σ-field generated by the sets:

{μ ∈ Δ(Ω,A) : μ(E) ≥ α} for all E ∈ A and rational α ∈ [0, 1],

– v is a mapping from P to A, i.e. v(p) ∈ A.
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〈Ω,A, T 〉 is called a type space, and T is called a type function on the space.
A finite-additive type space can be defined similarly by simply replacing all
(countably-additive) probability measures with finitely additive probability mea-
sures.

Definition 1. For a fixed model M , the satisfaction relation |= between the state
w of M and modal formulas φ is defined inductively as follows:

– M, w |= p iff w ∈ v(p) for propositional letters p;
– M, w |= φ1 ∧ φ2 iff M, w |= φ1 and M, w |= φ2;
– M, w |= ¬φ iff M, w �|= φ;
– M, w |= Lrφ iff T (w)([[φ]]) ≥ r, where [[φ]] := {w ∈ Ω : M, w |= φ}.

Note that the associated interpretation [[φ]] = {w ∈ M : M, w |= φ} is a
measurable set, for all formulas φ.

φ is valid in the probability model M if M |= φ, i.e. for all states w ∈ M ,
M, w |= φ. φ is valid in a class of probability models C if, for each M ∈ C, M |= φ.
φ is valid in a class T of type spaces if φ is valid in all the probability models
defined on T .

In this section we will give an axiomatization Σ+ of probability logic, which
is weakly complete with respect to the class of type spaces in [12]. Our system
is different from that by Heifetz and Mongin in that we don’t need the rule (B)
there

Probability Logic Σ+

Axiom Schemata:

– A0: propositional tautologies
– A1: L0φ
– A2: Lr,
– A3: Lr(φ ∧ ψ) ∧ Lt(φ ∧ ¬ψ) → Lr+tφ, r + t ≤ 1
– A4: ¬Lr(φ ∧ ψ) ∧ ¬Ls(φ ∧ ¬ψ) → ¬Lr+sφ, r + s ≤ 1
– A5: Lrφ → ¬Ls¬φ, r + s > 1

Rules:

– (Detachment) φ and φ → φ′ infer φ′

– (DIS) φ ↔ ψ infer Lrφ ↔ Lrψ.
– (ARCH): γ → Lsφ for all s < r infer γ → Lrφ.

Probability logic Σ+ is the smallest set of formulas that contains all propositional
tautologies in L and (A1−A5), and is closed under detachment, DIS, ARCH and
uniform substitution. *Σ+ φ denotes the theoremhood of φ in Σ+. We should
stress that in this paper *Σ+ is used only for theoremhood. In other words, the
notations φ ∈ Σ+ and *Σ+ φ mean the same thing. Also, when the context is
clear, we usually omit the subscript Σ+ in *Σ+ .



244 C. Zhou

Probability logic Σs is the system Σ+ plus the following additional rules:

– (Assumption Rule) If φ ∈ Γ ∪ {A0, A1, A2, A3, A4, A5}, then Γ * φ,
– (CR) (Cut Rule) If Γ * ψ for all ψ ∈ Σ and Σ * φ, then Γ * φ,
– (DR) Deduction Rule: Γ ∪ {φ} * ψ implies Γ * φ → ψ.
– (CAR) (Countable Addivity Rule) Γ * φ implies {Lpψ : ψ ∈ ∧ω Γ} * Lpφ

where Γ may be infinite and
∧

ω Γ is the set of conjunctions of finite subsets
of Γ .

The rule (CAR) is the characteristic principle for the probability logic ΣS. The
other four rules are simply auxiliary [6].

Definition 2. A formula φ is consistent in Σ+ (or in ΣS) if it is a theorem in
Σ+ (or in ΣS).

Theorem 1. For any formula φ, it is consistent in Σ+ iff it is consistent in Σs

iff it is satisfied in a type space.

Proof. The interested reader may refer to [6],[13].

3 A Guided Maximally Consistent Extension Theorem

The following theorem says that intuitive reasoning with probabilities can be
formalized in probability logics.

3.1 Three-Dimensional Language

In some sense, our following finite language of probabilistic logic is three-
dimensional. Enumerate all propositional letters: p1, p2, · · ·. For a given formula ψ,
its accuracy index q(φ) is the least common multiple of all denominators of the in-
dices that appear in ψ, its depth index d(ψ) is the depth of the formula which refers
to the depth of the quantified modality Lr and its width index w(ψ) is the num-
ber of propositional letters that occur in ψ. Now we define a finite local language
L(q, d, w). We use index vector (q, d, w) to denote its three dimensions: q is the ac-
curacy index, d the depth index and w the width index. (q, d, w) � (q′, d′, w′) de-
notes the combination of the relationships: q is a factor of q′, d ≤ d′ and w ≤ w′.
(q, d, w) ≺ (q′, d′, w′) means further that at least one of the three holds: q is a proper
factor of q′ (q′ is divisible by but not equal to q),d < d′ andw < w′. DefineL(q, d, w)
to be the smallest set of formulas that satisfies the following conditions:

1. the indices of any formula is a multiple of 1/q;
2. the propositional letters that occur are among p1, · · · , pw;
3. the depths of formulas are ≤ d;
4. tautologically equivalent formulas are regarded as the same.
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So each formula in L(q, d, w) is an equivalence class. By induction on the depth
d, we can show that L(q, d, w) is finite.

This finite set L(q, d, w) gives rise to a set Ω(q, d, w) of maximal consistent sets
of formulas in the local language L(q, d, w), which are called atoms of Ω(q, d, w).
Let Aq denote the set of rationals between 0 and 1 which are a multiple of 1/q.
Next we extend each atom Γ to L(q′, d′, w′) such that (q, d, w) ≺ (q′, d′, w′) and
define, for any formula φ in the language L(q, d, w),

αΓ ′
φ := max{r ∈ Aq′ : Lrφ ∈ Γ ′} and βΓ ′

φ := min{r ∈ Aq′ : Mrφ ∈ Γ ′}.

3.2 Guided Maximally Consistent Extension

Fix an index vector (q, d, w). The elements of Ω(q, d, w) can be enumerated as
follows:

Γ1(q, d, , w), Γ2(q, d, w), · · · , ΓN(q,d,w)(q, d, w)

where N(q, d, w) denotes the number of atoms in Ω(q, d, w). Let γi(q, d, w) de-
note

∧
Γi(q, d, w). We can define a probability space S(q, d, w) on Ω(q, d, w):

S(q, d, w) := 〈Ω(q, d, w), 2Ω(q,d,w), P (q, d, w)〉 for any arbitrarily given proba-
bility measure P (q, d, w) on Ω(q, d, w). Since the parameters q and w are not
much relevant in the following reasoning, we denote P (q, d, w)(Γi(q, d, w)) for
(1 ≤ i ≤ N(q, d, w)) by p

(d)
i for simplicity. So p

(d)
1 + · · · + p

(d)
N(q,d,w) = 1. For

any formula φ ∈ Φ(q, d, w), we can show by standard normal form theorem in
propositional calculus that

φ ↔ ∨
φ∈Γi(q,d,w) γi(q, d, w) is a tautology.

It is easy to see that P (q, d, w)([φ]) =
∑

φ∈Γi(q,d,w) p
(d)
i where, as usual, [φ] =

{Γ ∈ Ω(q, d, w) : φ ∈ Γ}. Define l
S(q,d,w)
φ to be the largest multiple of 1

q which

is less than or equal to P (q, d, w)([φ]) and m
S(q,d,w)
φ to be the smallest multiple

of 1
q which is greater than or equal to P (q, d, w)([φ]). Then such a probability

space S(q, d, w) will determine two probability formulas about φ:

L
l
S(q,d,w)
φ

φ and M
m

S(q,d,w)
φ

φ.

Define Ξ(q, d, w) to be the set of all these formulas, i.e.

Ξ(q, d, w) := {L
l
S(q,d,w)
φ

φ, M
m

S(q,d,w)
φ

φ : φ ∈ Φ(q, d, w)}.

Note that Ξ(q, d, w) ⊆ Φ(q, d + 1, w). Intuitively, the following theorem says,
an arbitrary probability measure assignment to atoms is consistent with our
deduction system Σ+. Hence it also connects intuitive reasoning with formal
reasoning with probabilities.
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Theorem 2. The above defined Ξ(q, d, w) is consistent.

We relegate the proof of this lemma to Appendix 1.

Remark 1. From Theorem 2, we may summarize our probability logics for con-
sistency as follows:

Probability logic = propositional calculus + reasoning about linear inequalities

Through atoms in finite local languages, probability logic can be reduced to
reasoning about linear inequalities (about probability indices) with the help of
propositional calculus (See the first application in the next section). So, for con-
sistency of (nested)formulas, probability logic is simply the intuitive arithmetic
of rationals designating probability indices. It is worth noting that the problem
of deciding satisfiability is NP -complete [5], no worse than that of propositional
logic.

4 Two Applications

In the first application of the above guided maximally consistent extension the-
orem, we show that the satisfiability of a probability formula is equivalent to the
solvability of the corresponding system of linear inequalities through a certain
translation based on atoms not on Hintikka sets.

4.1 Satisfiability of a Probability Formula and Solvability of Its
Corresponding System of Linear Inequalities

Given a formula ψ, let L[ψ] = L(q(ψ), d(ψ), w(ψ)) and Ω be the set of maximally
consistent sets of formulas in the finite local language L[ψ]. Elements in Ω are
called atoms. A Hintikka set H over L[ψ] is a maximal subset of L[ψ] that
satisfies the following conditions:

1. ⊥ �∈ H ;
2. If ¬φ ∈ L[ψ], then ¬φ ∈ H iff φ �∈ H ;
3. If φ1 ∧ φ2 ∈ L[ψ], then φ1 ∧ φ2 ∈ H iff φ1 ∈ H and φ2 ∈ H .

Let ΩH denote the set of Hintikka sets. Note that each atom is a Hintikka set
over L[ψ] but not necessarily the other way around. Here is a counterexample.
L1/2(L2/3p ∧ M1/3p) is contained in a Hintikka set but is not contained in any
atom because the formula is definitely not satisfiable. This implies that Ω � ΩH .
More importantly, we can easily use an algorithm to enumerate all Hintikka sets
over L[ψ]. Just as in modal logic, Hintikka sets have advantages over atoms in
dealing with computational issues for probability logics.

Let n = |Ω|. Assume that an atom Γ and its maximal consistent extension Γ+

in the language L+ (short for L(q(ψ), d(ψ) + 1, w(ψ))) are given. We enumerate
all atoms Hi in Ω and associate to each Hi some variable xi. For any formula
φ in L[ψ], if φ is propositionally equivalent to the disjunction of conjunctions of
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formulas in different atoms: H1, H2, · · · , Hr, then we associate φ with x1 + x2 +
· · ·+ xr. Now we show how to associate each satisfiable formula in the language
L+ with a solvable system of linear inequalities. Consider a formula χ in L+ that
is satisfiable in a probability model. By propositional calculus, we know that χ is
tautologically equivalent to a disjunction of conjunctions of the following form:

(*):
∧

k pik
∧∧l ¬pi′

l
∧∧m Lrmγjm ∧∧m′ ¬Lsm′ γjm′

where pik
and pi′

l
are propositional letters. The first part

∧
k pik

∧∧l ¬pi′
l

is called
the propositional part of this conjunction and

∧
m Lrmγjm ∧ ∧m′ ¬Lsm′ γjm′ is

called the probability part. Since χ is satisfiable, so is at least one disjunct. So,
without loss of generality, we simply assume that χ is a conjunction of the above
form (*). We associate to χ a system of linear inequalities as follows:

1. For each γjm , if it is associated with x1 + · · · + xijm
, then the inequality for

Lrmγjm is

x1 + · · · + xijm
≥ rm

2. For each γjm′ , if it is associated with x1 + · · ·+ xij
m′ , then the inequality for

¬Lsm′ γjm′ is

x1 + · · · + xij
m′ < sm′

To sum up, we get an inequality system of the form

Sχ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

...
x1 + · · · + xijm

≥ rm

...
x1 + · · · + xij

m′ < sm′

...

Note that, since χ is satisfiable, Sχ is solvable. Assume that χ is satisfied at
some state s of a probability model M = 〈S,A, T, v〉. Just as above, for each set
Θ of formulas, [[Θ]]M denotes the set {s′ ∈ S : M, s′ |= γ for all γ ∈ Θ}. It is
easy to check that xi = T (s)([[Hi]]M )(1 ≤ i ≤ n) is a solution to the system Sχ.

In general, we can associate a solvable system of inequalities to a satisfiable
set Γ ′ of formulas in the language L+. To achieve this, we simply take the
conjunction of all formulas in this set and apply the above described procedure
to the conjunction. Assume that the associated system of linear inequalities for
Γ ′ is as follows:

SΓ ′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi1 + · · · + xiΓi
≥ ri

...
xk1 + · · · + xkΓk

> rk

−xi′1 − · · · − xi′Γi
≥ −r′i

...
−xk′

1
− · · · − xk′

Γk
> −r′k
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Implicitly, we assume that all these associated systems of inequalities are prob-
ability measures. Actually we can also show the other direction from solvability
of SΓ ′ to satisfiability of Γ ′ but through atoms in Ω instead. In sum, we have
the following equivalence statement:

Theorem 3. Γ ′ is satisfiable iff SΓ ′ is solvable.

Proof. The left-to-right direction is straightforward from the above translation,
while the other direction requires the Hintikka sets here to be atoms and hence
needs the Guided Extension Theorem 2.

4.2 Canonical Finitely-Additive Probability Models Are Not a
Probability Model

Theorem 4. Any canonical finitely-additive type space, which consists of all
maximally Σ+-consistent sets of formulas, is not a probability model.

Proof. The Γ1 that is constructed in the Appendix according to the Guided Max-
imally Consistent Extension Theorem is a maximally consistent set of formulas
Γ C whose canonical probability measure is finitely additive but not countably
additive.

Theorem 5. All maximally consistent sets of formulas that are satisfied in prob-
ability models form a probability model. Moreover, it is the biggest (or universal)
probability model in the sense that any other probability model can be embedded
into it.

Proof. The proof is actually measure theoretical and is analogous to Lemma 4.5
in [8].

Corollary 1. The set of maximally Σ+-consistent sets of formulas satisfiable in
the class of type spaces is a proper subset of the set of maximally Σ+-consistent
sets.

Heifetz & Samet showed [9] that the canonical space of all maximally Σ+-
consistent sets of formulas which are satisfied in the class of (countably additive)
type spaces is the universal type space U in the sense that there is a unique type
morphism from any type space to this U , which is a map that preserves the
structure of the type space. Moss & Viglizzo constructed similar universal type
spaces in terms of final coalgebras for polynomial functors on Meas from a coal-
gebraic perspective [11]. In [6], Goldblatt developed deduction systems including
the Countable Additivity rule in the introduction to build these final coalgebras
from the collections of maximally consistent sets of formulas in these deduction
systems. Without this rule, we could apply the same techniques for the above
three propositions to find a maximally consistent set of formulas that is not sat-
isfiable in the class of type spaces. This negative result implies that the rule is
necessary in his formulation of deduction systems for coalgebras over Meas.
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Appendix 1: Proof of the Guided Extension Lemma

Proof. (Proof of the Guided Extension Theorem) First we simply repeat the
construction of a finite canonical space M c(q, d, w) = 〈Ω(q, d, w), 2Ω(q,d,w), T c〉
out of the set Ω(q, d, w) as in the proof of the completeness of Σ+ (Theorem
2.21 in [13]). Next we define a new type space by adding one new state w0 to
Ω(q, d, w) as follows:

– Ω′(q, d, w) = Ω(q, d, w) ∪ {w0};
– A′ = 2Ω′(q,d,w)

– For any state w ∈ Ω(q, d, w) and A ∈ 2Ω(q,d,w), T ′c(w, A) = T c(w, A), and
moreover T ′c(w, {w0}) = 0.

– For any w(= Γi(q, d, w) ∈ Ω(q, d, w)), T ′c(w0, w0) = 0 and T ′c(w0, w) =
P (q, d, w)(Γi(q, d, w)), where P (q, d, w) is the above given probability mea-
sure over Ω(q, d, w).

– For any propositional letter p, v′(p) = v(p). That is to say, no propositional
letter is true at the new state w0.

Obviously, M ′c(q, d, w) := 〈Ω′(q, d, w),A′, T ′c, v′〉 is a type space. It is easy to
prove by induction on the complexity of formula φ ∈ L(q, d, w) that, for any
atom Γi(q, d, w) ∈ Ω(q, d, w),
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M c(q, d, w), Γi(q, d, w) |= φ iff M ′c(q, d, w), Γi(q, d, w) |= φ

In other words, [[φ]]Mc(q,d,w) = Ω(q, d, w) ∩ [[φ]]M ′c(q,d,w). In particular, this
implies

[[γi(q, d, w)]]M ′c(q,d,w) ⊆ Γi(q, d, w) ∪ {w0}, where γi(q, d, w) = ∧Γi(q, d, w).

Since T ′c(w0, w0) = 0, it follows directly that Ξ(q, d, w) is satisfiable at w0 in
M ′c(q, d, w). By the Completeness Theorem 1, we know that it is consistent in
Σ+ or in Σs.

Appendix 2: Construction of Γ1

It is easy to see that the following set is finitely consistent:

C := {¬M0p1} ∪ {M 1
2n

p1 : n ∈ N}.

So there is a maximally finitely consistent set Γ∞ that contains C as a subset.
Note that Γ∞ is not maximally consistent. Fix any index vector (q, d, w), define

Γ∞(q, d, w) := Γ∞ ∩ Φ(q, d, w).

In particular, we have a sequence of atoms in the local languages L(2n, 2n, 2n):

Γ∞(1, 1, 1) ⊆ Γ∞(2, 2, 2) ⊆ Γ∞(22, 22, 22) ⊆ · · · ⊆ Γ∞(2n, 2n, 2n) ⊆ · · ·
such that

⋃
n Γ∞(2n, 2n, 2n) = Γ∞. In this section, M = 〈Ω,A, T, v〉 denotes the

canonical finitely additive probability model based on algebras and, in particular,
Ω is the set of all maximally Σ+-consistent sets of formulas. [Γ∞(2n, 2n, 2n)]
denotes the set {Δ ∈ Ω : Γ∞(2n, 2n, 2n) ⊆ Δ}. For simplicity, let L(2n), Γ∞(2n)
and Ω(2n) denote L(2n, 2n, 2n), Γ∞(2n, 2n, 2n) and Ω(2n, 2n, 2n), respectively.
Our next step is to apply the above theorem about guided maximal consistent
extensions to find a maximal Σ+-consistent set Γ1 such that

1
4 = T (Γ1)([Γ∞(2)]) = T (Γ1)([Γ∞(22)]) = · · · = T (Γ1)([Γ∞(2n)]) = · · ·

First we consider the algebra (Ω(1), 2Ω(1)). Since Γ∞(1) is an atom in the local
language L(1), Γ∞(1) ∈ Ω(1). Set an arbitrary probability measure P (1) on this
algebra satisfying the following conditions:

– P (1)(Γ∞(1)) = 1
4 ;

– For all atoms Δ in Ω(1), P (1)(Δ) is a multiple of 1
2m1 for some positive

natural number m1.

By applying Theorem 2, we know that there exists a maximally consistent set
Γ2m1 ∈ Ω(2m1) such that

– for any formula φ in the language L(1), α
Γ2m1
φ = β

Γ2m1
φ = P (1)([φ]1); and,

in particular,
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– α
Γ2m1∧

Γ∞(1) = β
Γ2m1∧

Γ∞(1) = 1
4 , where [φ]1 = {Δ ∈ Ω(1) : φ ∈ Δ}.

Now consider the algebra (Ω(2m1), 2Ω(2m1 )). Note that (Ω(1), 2Ω(1)) can be re-
garded as a quotient algebra of (Ω(2m1), 2Ω(2m1 )). Set a probability measure
P (2m1) on this algebra that satisfies the following conditions:

– P (2m1) agrees with P (1) on 2Ω(1);
– P (2m1)(Γ∞(2m1)) = 1

4 ;
– for all atoms Δ in Ω(2m1), P (2m1)(Δ) is a multiple of 1

2m2 for some m2 > m1.

By applying Theorem 2, we know that there is a maximal consistent set Γm2 ∈
Ω(2m2) such that

– for any formula φ in the language L(2m1), α
Γ2m2
φ = β

Γ2m2
φ = P (2m1)([φ]m1)

where [φ]m1 = {Δ ∈ Ω(2m2) : φ ∈ Δ};
– α

Γ2m2∧
Γ∞(2m1) = β

Γ2m2∧
Γ∞(2m1) = 1

4 ;
– Γ2m1 ⊆ Γ2m2 .

By repeating above process, we get a sequence of maximally consistent sets
Γ2mi ∈ Ω(2mi):

Γ2m1 ⊆ Γ2m2 ⊆ · · ·

that satisfies the following conditions:

– for each Γ∞(2mi), α
Γ2mi+1

∧Γ∞(2mi ) = β
Γ2mi+1

∧Γ∞(2mi ) = 1
4 ;

– any formula φ ∈ Φ(2mi), α
Γ2mi+1

φ = β
Γ2mi+1

φ

Define Γ1 :=
⋃

i Γ2mi . From the above observations, it follows that Γ1 is a max-
imally consistent set in L because it is maximal finitely-consistent and is closed
under (ARCHt) [13]. So Γ1 ∈ Ω. According to our definition on canonical mod-
els,

1
4 = T (Γ1)([Γ∞(2)]) = T (Γ1)([Γ∞(22)]) = · · · = T (Γ1)([Γ∞(2n)]) = · · ·

Corollary 2.
⋂

i[Γ
∞(2mi)] = ∅.

Corollary 3. For such a Γ1, T (Γ1) is finitely additive but not σ-additive.
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Abstract. This paper provides an algebraic characterization of the
Strictly Piecewise class of languages studied by Rogers et al. 2010. These
language are a natural subclass of the Piecewise Testable languages (Si-
mon 1975) and are relevant to natural language. The algebraic character-
ization highlights a similarity between the Strictly Piecewise and Strictly
Local languages, and also leads to a procedure which can decide whether
a regular language L is Strictly Piecewise in polynomial time in the size
of the syntactic monoid for L.

1 Introduction

Rogers et al. [12] study the Strictly Piecewise (SP), which are a proper subclass
of the Piecewise Testable (PT) languages of Simon [13]. The Strictly Piecewise
languages are interesting for two reasons. First, there are several senses in which
the SP class is natural. For example, SP is exactly the class of those languages
closed under subsequence [12]. Also, they bear the same relation to Piecewise
Testable languages that the Strictly Local (SL) bear to Locally Testable (LT)
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size of syntactic monoid for L. However, it remains an open question whether a
polynomial time decision procedure exists in the size of the smallest deterministic
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2 Preliminaries

A semigroup is a set with an associative operation. A monoid is a semigroup
with an identity element (written 1). If S is a semigroup, S1 denotes the monoid
equal to S if 1 ∈ S and to S ∪ {1} otherwise. A zero is an element 0 such that,
for every s ∈ S, s0 = 0s = 0. The free semigroup (monoid) of a set S is the set
of all finite sequences of one (zero) or more elements from S.

If x is an element of set S and π a partition of S, the block of π containing
x is [x]π . The partition of S induced by an equivalence relation ρ is S/ρ. A
right (left) congruence is a partition such that if [x]π = [y]π then [xz]π = [yz]π
([zx]π = [zy]π). A congruence is both a left and a right congruence.

Following Clifford [2], a left (right) ideal of a semigroup S is a non-empty
subset T of S such that ST ⊆ T (TS ⊆ T ). The left (right) ideal of S generated
by T is T ∪ ST = S1T (T ∪ TS = TS1). The principal left (right) ideal of S
generated by t ∈ T is PL(t) = S1t (PR(t) = tS1).

Let Σ denote a finite set, called the alphabet. Sets Σ+ and Σ∗ denote the free
semigroup and free monoid of Σ, respectively. We refer to the elements of Σ+

and Σ∗ as strings and words interchangeably. The unique string of length zero
is denoted λ. The set Σ≤k denotes the set of all words of length at most k.

The length of a string u is denoted |u|, and |w|σ denotes the number of
occurences of σ in w. A string v is a factor of w iff there exist strings x, y ∈ Σ∗

such that w = xvy. A string v is a prefix (suffix ) of w iff there exist x ∈ Σ∗ such
that w = vx (w = xv). A string v is a subsequence of string w iff v = σ1 · · ·σn

and w ∈ Σ∗σ1Σ
∗ · · ·Σ∗σnΣ∗, and we write v / w. Languages are subsets of Σ∗.

The complement of a language L is L = {w ∈ Σ∗ : w �∈ L}.
A semiautomaton is a tuple A = {Q, Σ, T}, where Q is a non-empty finite

set of states and Σ is the alphabet. The transition function is a partial function
T : Q × Σ → Q. The domain of the transition function is expanded to Q × Σ∗

recursively as follows. For all q ∈ Q, T (q, λ) = q and for all w ∈ Σ∗ and σ ∈ Σ,
T (q, wa) = T (T (q, w), a). It follows that T (q, xy) = T (T (q, x), y). By definition
semi-automata are deterministic.

A finite-state automaton (FSA) is a tuple A = {Q, q0, Qf , Σ, T }, where
{Q, Σ, T} is a semi-automaton, q0 ∈ Q is the initial state, and Qf ⊆ Q is a
set of final states. The language recognized by A is {w ∈ Σ∗ : T (q0, w) ∈ Qf}.

A language L is regular iff there exists a FSA recognizing it. For every regular
language L there is a unique (up to isomorphism) automaton with the fewest
number of states recognizing L called the canonical FSA for L.

A state q of an automaton is a sink state iff, for all σ ∈ Σ, if T (q, σ) is defined
then T (q, σ) = q. One can always make the transition function total by adding
a nonfinal sink state and directing all the missing transitions for each state to
this sink. When the sink state is added to a canonical acceptor, it is the only
state which is both a sink and nonfinal. The resulting automaton is complete.

For any automaton A and state q ∈ Q, let ρq be that relation such that, for
all elements x and y of Σ∗, xρqy iff T (q, x) = T (q, y). More generally, let
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fx =
(

q1 · · · qn

T (q1, x) · · · T (qn, x)

)
.

For all x, y ∈ Σ∗, let xρy iff fx = fy. The equivalence relation ρ over Σ∗ induces
a congruence over Σ∗ [15]. The index of ρ is finite because Q is finite.

Let FA = {fx : x ∈ Σ∗} denote the finite monoid of mappings and Ī(A) =
Σ∗/ρ. Then FA is isomorphic to Ī(A) under the correspondence of fx of FA

with [x] of Ī(A), where [x] is the ρ-congruence coset containing x of Σ∗. In this
paper, when writing fx and [x], we choose x to be a shortest-length element in
the congruence class without any ambiguity.

For FSA A, where A is the associated semiautomaton of A, FA is called
the transformation semigroup and Ī(A) is the characteristic semigroup of A.
Elements fx of FA can also be written in matrix form μx, where the rows and
columns indicate states in Q = {q1, . . . , qn} and μx[i, j] = 1 iff T (qi, x) = qj .

The set of matrices is another semigroup, the transition semigroup. The name
is derived from the fact that each element in this semigroup is a transition
matrix associated to a walk x in A. We write UA = {μx : x ∈ Σ∗}. Clearly UA

is isomorphic to Ī(A) under the correspondance of μx of UA with [x] of Ī(A).

Definition 1 (Pin 1997). The syntactic semigroup of a regular language L is
the transformation semigroup given by its complete canonical semiautomaton.

In the syntactic semigroup of an automaton A, the set of generators of FA is
Gen(FA) = {fσ : σ ∈ Σ}. The syntactic monoid of a regular language L is the
syntactic semigroup with identity, Gen(F 1

A) = {fσ : σ ∈ Σ ∪ λ}.
Pin [11] discusses the equivalence between automata and semigroups. Note

that since the transition semigroup UA of A is represented as a semigroup of
boolean matrices of order |Q|×|Q|, a word w is recognized by A iff μx(q0, qf ) = 1
for some final state qf ∈ Qf . It follows that a finite automaton recognizes a
regular language L iff its transition semigroup recognizes L.

A “monoid graph” is a useful method employed by contemporary algebraic
theorists to visualize monoids. The nodes of the graph are elements in the
monoid, though an initial node labeled “λ” is included by convention. The labels
on edges are the elements in the set of generators of the monoid. Given a monoid
M , x

s→ y iff xs = y, where x, y ∈ M , and s ∈ Gen(M). The monoid graph of
FA is denoted as MG(FA). We mark elements x in the monoid graph as final
iff fx ∈ FA and there exists a final state q in the canonical acceptor such that
T (q0, x) = q [11]. Examples of monoid graphs are in Figures 1,2, and 3.

Definition 2. A unique nonfinal sink state in an automaton A is called zero.
An element fx is a zero element of the transformation semigroup iff

fx =
(

q1 . . . qn

0 . . . 0

)
.

We use the notation fx = 0 for the transformation semigroup, μx = 0 for the
transition semigroup, and x = 0 for the free semigroup Σ∗. The corresponding
zero in the characteristic semigroup Ī(A) is denoted [0].
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While every complete canonical automaton (except the one recognizing Σ∗) has
a unique nonfinal sink state, not every transformation semigroup has a zero.

3 Piecewise Testable and Strictly Piecewise Languages

The concept of a subsequence is central to the notion of piecewise testability.

Definition 3. The principle shuffle ideal of v is the language of all words for
which v is a subsequence. We write SI(v) = {w ∈ Σ∗ | v / w}.

The Piecewise Testable languages is the smallest class of languages including
SI(w) for all w ∈ Σ∗ and closed under Boolean operations [13]. Similarly, the
class of Piecewise k-Testable (PTk) languages is the smallest class of languages
including SI(w) for all w ∈ Σ≤k and closed under Boolean operations.

A well-known characterization of the PT languages is stated in terms of the
sets of subsequences within words. If P≤k(w) def= {v : v / w and |v| ≤ k} then the
following characterization (sometimes taken as the definition of PT [3]) holds.

Theorem 1. A language L is Piecewise Testable iff there exists k such that, for
all words w1, w2 ∈ Σ∗, if P≤k(w1) = P≤k(w2) then w1 ∈ L iff w2 ∈ L.

When k is known, L is said to be Piecewise k-Testable (L ∈ PTk).
Simon proved one of the first examples of what later became known as Eilen-

berg’s correspondence theorem [11]. One of the relations that Green [4] defines
on semigroups is the J relation, which relates two elements of a semigroup S if
they generate the same two-sided principal ideal of S: aJ b iff S1aS1 = S1bS1.
A semigroup S is J -trivial iff, for all a, b ∈ S, if aJ b then a = b. Simon proved
the following algebraic characterization of piecewise testable languages.

Theorem 2 (Simon 1975). A language is Piecewise Testable iff its syntactic
monoid is J -trivial.

As an example, consider the language of all words with exactly one a, L = {w :
|w|a = 1}. The canonical acceptor for this language is shown in Figure 1.

There are three elements in the monoid F 1
A1

= {a, 1, 0}, (for simplicity of nota-
tion, let x stand for fx). The J -triviality is established by calculating F 1

A1
xF 1

A1
,

for all x ∈ F 1
A1

: F 1
A1

aF 1
A1

= {0, a}, F 1
A1

1F 1
A1

= {0, a, 1}, and F 1
A1

0F 1
A1

= {0}.
The J -triviality is satisfied, which means this languange L is piecewise testable.

Rogers et al. [12] study a proper subclass of the Piecewise Testable languages,
the Strictly Piecewise class. This paper takes as definition of Strictly Piecewise
languages those languages which are closed under subsequence. (Unknown to
Rogers et al., languages closed under subsequence were studied forty years earlier
by Haines [5] (see also Higman [7]).)

Definition 4. A language is Piecewise Testable in the Strict Sense (L ∈ SP)
iff, for all w ∈ Σ∗, if w ∈ L and v / w then v ∈ L.

Rogers et al. [12] establish the following equivalences (see also [5]).



256 J. Fu, J. Heinz, H.G. Tanner

1 2

b,c b,c

a
λ

a

b

0

b,c

b,c

a,b,c

a

b,c

a

a

Fig. 1. The canonical automaton and the monoid graph for L = {w : |w|a = 1}, which
is the language of all words with exactly one a

Theorem 3. The following are equivalent:

1. L ∈ SP.
2. L = SI(X), X ⊆ Σ∗.
3. L ∈ ⋂w∈S SI(w), for S finite.
4. there exists k such that if P≤k(w) ⊆ P≤k(L) then w ∈ L.

It follows from the third characterization above that any SP language can be
characterized by a finite set S. Elements of this set are the forbidden subse-
quences, and the language is all words which do not contain any of these forbid-
den subsequences. The longest word in S is the length k in the 4th characteri-
zation above, in which case we say L is Strictly k-Piecewise (L ∈ SPk)1.

By forbidding subsequences, SP languages resemble the Stricly Local lan-
guages which forbid factors [10]. Any SL language L can be defined as the
intersection of the complements of sets defined to be those words which con-
tain a forbidden factor. Formally, let the container of w ∈ �Σ∗� be C(w) =
{u ∈ Σ∗ : w is a factor of � u�} then a language L ∈ SL iff there exists a fi-
nite set of forbidden factors S ⊂ �Σ∗� such that L =

⋂
w∈S C(w)2. Fig-

ure 2 shows the canonical acceptor and the monoid graph for the SL language
L = Σ∗aaΣ∗ = C(aa), i.e. all words except those containing the factor aa.

To illustrate SP languages, consider the language L = SI(bb) ∩ SI(ca), which
is the language of all words except those containing either the subsequences bb
or ca; i.e., bb and ca are the forbidden subsequences. Thus this SP language can
be characterized by the set {bb, ca} of forbidden subsequences (or equivalently
by the set Σ≤2/{bb, ca} of permissible subsequences [12]). Hence this language
belongs to SP2. Figure 3 shows ths canonical automata and the monoid graph
for L. The 0 element is not shown there, but note that all missing edges go to 0.

As with the other piecewise testable languages like the one in Figure 1, it is
not difficult to verify that the syntactic monoid of this language is J -trivial.

1 While every SP language is convex [14], it is not the case that all convex languages
are SP since, for example, there are nonempty subword-convex languages that do
not contain λ but the only SP language not containing λ is the empty one.

2 The symbols � and � invoke left and right word boundaries and are necessary
because SL languages make distinctions at word edges [10].



An Algebraic Characterization of Strictly Piecewise Languages 257
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b,c

b,c
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b,c

b,c

a,b,c
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b,c
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b,c

a

a

b,c
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Fig. 2. The canonical acceptor and the monoid for the language L = C(aa), which is
all words except those containing the factor aa

However, this language, like every other SP language, has two additional prop-
erties. Furthermore, no non-SP language has both of these properties.

4 3

1 2

a

a

c

c

b

c

b

c λ
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ab

bc

ac

abc

b

a

c

a

c

a

c

b

c

b

a

c

c

c

b

c

Fig. 3. The canonical automata and the monoid graph of the syntactic monoid of
L = SI(bb) ∩ SI(ca), i.e. the language where the subsequences bb and ca are forbidden

4 Algebraic Characterization of SP

There are two important concepts that need to be introduced.

Definition 5. Let L be a regular language recognized by FSA, and consider its
characteristic semigroup. Language L is wholly nonzero if and only if L = [0].

In other words, a language is wholly nonzero if and only if every word not in
the language is in the zero block of the characteristic semigroup. In terms of the
transformation semigroup, this means that every word x not in the language is
zero; i.e., fx = 0.

Theorem 4. A language L is wholly nonzero if and only if L is closed under
prefix and closed under suffix.

Proof. Clearly, [0] ⊆ L. Now suppose L is closed under prefix and suffix, and
consider any x ∈ L. For contradiction, suppose fx �= 0. Then in the canonical
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acceptor A for L there are states q, q′ in A such that x transforms q to q′. Since
A is canonical, there exist strings w, y such that w transforms q0 to q and y
transforms q′ to a final state. Thus wxy ∈ L. Since L is closed under prefix wx
belongs to L and since L is closed under suffix, x belongs to L, which contradicts
the assumption. Therefore fx = 0, which completes one direction of the proof.

Now suppose L = [0] and consider any w ∈ L and any prefix (suffix) v of
w, which means there exists x such that w = vx (w = xv). If v �∈ L then by
assumption fv = 0. It follows that fw = fvx = 0fx = 0 (fw = fxv = fx0 = 0),
which contradicts that w ∈ L.

Observe that L = Σ∗ and the empty language are wholly nonzero vacuously.
The following two corollaries are almost immediate.

Corollary 1. The Strictly Piecewise languages are wholly nonzero.

Proof. The Strictly Piecewise are closed under subsequence by definition and
are therefore closed under prefix and suffix.

Corollary 2. The Strictly Local languages are wholly nonzero.

Proof. Consider any Strictly Local language L and any w ∈ L. Since w ∈ L,
there are no forbidden factors in w and therefore there are none in any prefix or
suffix of w. Hence every prefix and suffix of w belongs to L as well.

That both the Strictly Local and Strictly Piecewise are wholly nonzero is a
nontrivial property they have in common. To illustrate, recall the SL language
L = C(aa) (Figure 2). Every string not in this SL language transforms any state
in its monoid graph to 0. These are all the strings with the 2-factor aa. Similarly,
consider again the language L = SI(bb) ∩ SI(ca) (Figure 3). Every string not in
this SP language transforms any state in its monoid graph to 0. These are exactly
those strings with either subsequence bb or ca.

The second property is an algebraic characterization of what Rogers et al.
describe in automata-theoretic terms as “missing edges propagate down.” This
means that if some state q in the canonical accepter does not have a transition
labeled with symbol σ then no state reachable from q has an outgoing transition
labeled with σ. To capture this, we need the following concept relating to zeroes.

Definition 6. Let M be a monoid. The set of right annihilators of an element
x ∈ M , is RA(x) = {a ∈ M : xa = 0}.

In other words, the elements of RA(x) annihilate x from the right. The set of
left annihilators can be defined similarly, but it does not play a role here.

We now define the following property which captures the notion of “missing
edges propagating down.”

Definition 7. A language L is right annihilating iff for any element fx in the
syntactic monoid FA(L), and for all fw in the principle right ideal generated by
fx, it is the case that RAFA(L)(fx) ⊆ RAFA(L)(fw).

The main theorem of this paper can now be stated and proved.
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Theorem 5. A language L is SP iff L is wholly nonzero and right annihilating.

Proof. By Corollary 1, any SP language is wholly nonzero.
Next consider any L ∈ SP and any element fx and any ft ∈ RAFA(L)(fx).

It follows that fxft = 0; hence, fxt = 0. Since L ∈ SP, there must be some
v / xt such that v is forbidden; i.e SI(v) ⊆ L. For any fw in the principal
right ideal of fx, it is the case that there exists fa such that fw = fxfa. Thus
fwft = fxfaft = fxat. Since v / xt it follows that v / xat and therefore
fwft = fxat = 0 and so ft ∈ RAFA(L)(fw). The generality of fw and ft ensures
that ∀w ∈ PR(x), RAFA(L)(fx) ⊆ RAFA(L)(fw).

Now for the other direction. The empty language vacuously satisfies the above
conditions and belongs to SP so consider any nonempty regular language L,
which is wholly nonzero and right annihilating. We show that L belongs to SP.

By contradiction, suppose L is wholly nonzero and right annihilating, but not
in SP. By definition of SP, L is not closed under subsequence. So there is some
w and v such that w ∈ L and v / w but v �∈ L. Since v / w, there exists
u0, u1, · · · , un such that for v = σ1σ2 . . . σn, w = u0σ1u1σ2u2 · · ·σnun.

Since v �∈ L and since L is wholly nonzero, v ∈ [0]. It will be useful to
refer to the suffixes of v as follows: vi = σi · · ·σn for 1 ≤ i ≤ n. For example,
v = v1 = σ1 · · ·σn and v2 = σ2 · · ·σn, and vn = σn.

Now v2 is a right annihilator of u0σ1 since u0σ1v2 = u0v = u00 = 0. Also,
since L is right annihilating, RA(u0σ1) is a subset of RA(u0σ1u1), and so v2

right annihilates u0σ1u1 as well.
Next consider that v3 is a right annihilator of u0σ1u1σ2 since u0σ1u1σ2v3 =

u0σ1u1v2 and above we showed that v2 right annihilates u0σ1u1. Again, since L
is right annihilating, RA(u0σ1u2σ2) is a subset of RA(u0σ1u1σ2u2), and so v3

right annihilates u0σ1u1σ2u2 as well.
Carrying this argument through to its conclusion, we see that vn = σn is a

right annihilator of u0σ1u1σ2u2 · · ·un−1σn−1. Therefore σn is a right annihilator
of u0σ1u1σ2u2 · · ·un−2σn−1un as well. Hence u0σ1u1σ2u2 · · ·un−2σn−1unσn = 0.

But this means that w = u0σ1u1σ2u2 · · ·un−2σn−1unσnun = 0un = 0. Since
L is wholly nonzero, it follows that w �∈ L, which contradicts the reduction
assumption. Therefore there is no v, w such that w ∈ L, v / w, and v �∈ L. It
follows that regular languages that are wholly nonzero and right annihilating are
closed under subsequence and are therefore SP.

We illustrate this property in the context of the decision procedure we present
below for deciding whether a regular language is SP.

5 Algorithms for SP Languages

Theorem 3 provides a polynomial-time decision procedure for deciding whether
any regular language L is SP, and if it is, it finds the finite set of the shortest
forbidden subsequences necessary to define L.
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5.1 Deciding SP

The input to the algorithms below is taken to be the monoid graph of the
syntactic monoid for a regular language L, with the initial state being the node
labeled “λ” and the final states being marked. Since this graph is determinstic,
it is possible to obtain the canonical acceptor in time O(n log n) [9]. Given a
minimal DFA A, the syntactic monoid FA can be obtained through the set
of generators {fσ}, ∀σ ∈ Σ. The reader is referred to [1] for the construction
method of syntactic monoid FA.

Theorem 3 provides the basis for the decision procedure, which we call DSP.
DSP simply checks whether the syntactic monoid satisfies the wholly nonzero
and the right annihilation conditions.

The wholly nonzero condition can be checked in two steps, essentially by
checking closure under prefixes and suffixes. To check closure under prefixes, one
simply need check whether every state in the canonical accepter A is final. If they
are not, then the syntactic monoid of A is not wholly nonzero. To check closure
under suffixes, both the complete canonical acceptor and the transformation
semigroup FA are examined. Let 0 be the non-final sink state in the complete
automaton. If there exists one nonzero element fx in FA and one noninitial state
q in the canonical acceptor such that T (q, x) �= 0 but T (q0, x) = 0, then the
wholly nonzero condition is violated. If no such fx or q exist, however, we can
conclude the language is wholly nonzero.

Whether the right annihilating condition is satisfied can be determined from
the Cayley table for FA. The columns and rows of a Cayley table are labeled with
the elements in the syntactic monoid FA, and the cell is the product(x ·y) of the
row-th(x) and column-th(y) elements [2]. Then for each fx ∈ FA, the principal
right ideal generated by x (PR(x)) can be found by the union of all distinct
elements in the xth row of the table and the right annhilators of x (RA(x)) are
given by those elements y such that the xth row and yth column is 0.

Then for each z ∈ PR(x), it is sufficient to check whether RA(x) ⊆ RA(z). If
for any x ∈ FA and any z ∈ PR(x), it is the case that RA(x) �⊆ RA(z) then the
algorithm exits and returns “false”. Otherwise it returns “true”.

We illustrate these procedures with three examples. Consider first the SP
language L = SI(bb) ∩ SI(ca) in Figure 3. The elements of its transformation
semigroup FA(L) = {fx, x ∈ Σ∗} are:

fa =
(

1 2 3 4
0 0 3 4

)
fb =

(
1 2 3 4
2 0 0 3

)
fc =

(
1 2 3 4
1 2 2 1

)

fab =
(

1 2 3 4
0 0 0 3

)
fbc =

(
1 2 3 4
2 0 0 2

)
fac =

(
1 2 3 4
0 0 2 1

)

fabc =
(

1 2 3 4
0 0 0 2

)
0 =

(
1 2 3 4
0 0 0 0

)
.

Since FA is isomorphic to the characteristic semigroup Ī(A), it follows that
Ī(A) = {[0], [a], [b], [c], [ab], [bc], [ac], [abc]}. The transition semigroup U(A) are
the set of the adjacency matrices given by each string x in fx, fx ∈ FA.
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Table 1. Cayley table for syntactic monoid for L = SI(bb) ∩ SI(ca)

λ a b c ab bc ac abc

λ λ a b c ab bc ac abc
a a a ab ac ab abc ac abc
b b ab 0 bc 0 0 abc 0
c c 0 bc c 0 bc 0 0
ab ab ab 0 abc 0 0 abc 0
bc bc 0 0 bc 0 0 0 0
ac ac 0 abc ac 0 abc 0 0
abc abc 0 0 abc 0 0 0 0

The monoid graph for this language is in Figure 3. Recall that although the 0
element is not shown, it is understood that all missing edges go to 0. The Cayley
table is given in Table 1. With a little abuse of notation, in the following context,
x is used to denote the element fx in syntactic monoid FA. The wholly non-zero
condition can be checked by examining the syntactic monoid. It is noticed that
in this canonical accepter all states are finals and there is no such fx ∈ FA and
q ∈ Q such that T (q, x) �= 0 but T (q0, x) = 0.

The next step is to determine whether the right annihilation condition is
satisfied with the help of Cayley table. For example in the Cayley table, the
ab-row is all the elements that are in the right ideal generated by ab, abF 1

A =
{ab, abc, 0}. The elements in those columns corresponding to 0s form the set
RA(ab) = {b, ab, bc, abc}. The right annihilating condition requires that ∀w ∈
xFA, RA(x) ⊆ RA(w). From the table it is easy to verify that RA(abc) =
{a, b, ab, bc, ac, abc}, which is a superset of RA(ab). Since RA(0) = FA, it like-
wise follows that RA(ab) ⊆ RA(0). The right annihilation condition for other
elements can be verified in the same manner and it can be shown this syntactic
monoid is right-annhilating.

Now consider the language L = {w : |w|a = 1} (Figure 1). L is not SP
because it does not satisfy the wholly nonzero condition. The element b is not
in the language but it is not zero in its syntactic semigroup.

For the language L = C(aa) in Figure 2, though it satisfies the wholly nonzero
condition, the right annihilating condition is violated. Observe that aa = 0
and ab ∈ PR(a). If L were right annihilating then RA(a) ⊆ RA(ab). However,
aba = a �= 0 and thus the right annihilating condition is not met. Therefore,
L = C(aa) is not SP.

What is the time complexity for DSP? Letting n be the size of the syntactic
monoid, the wholly nonzero condition can be checked with time O(n) and right
annihilating condition runs in time O(n2). Thus DSP runs in O(n2). Holzer
studies the size of the syntactic monoid as a natural measure of descriptive
complexity for regular languages [8].
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5.2 Finding the Shortest Forbidden Subsequences

The following procedure Find-ssq takes the syntactic monoid of a SP language
as input and finds the finite set of shortest forbidden subsequences which de-
scribe the SP language. In order to link the syntactic monoid and the length
of forbidden subsequences, the monoid graph is employed to find the set of the
shortest paths from the λ node to 0 that covers the graph.

P(FA) def= {xσ : fx ∈ FA, σ ∈ Σ, xσ = 0, and ∀fy = fx, |x| ≤ |y|}
Find-ssq begins with the syntactic monoid for some L ∈ SP and k = 1.

1. Letting Pk(S) def= {{Pk(p)} : p ∈ S}, calculate Pk(P(FA)), i.e. the set of sets
of k-subsequences for each path in P(FA).

2. Find all singleton sets in Pk(P(FA)) and construct the set FSk, which is the
set of hypothesized forbidden subsequences of length k. This set is formed by
taking the union of the singleton sets in Pk(P(FA)). If there is no singleton
set found, update k by one and return to step 1.

3. Verify whether each set P ∈ Pk

(P(FA)
)

has a nonempty intersection with
FSk. If so then FSk is a set of forbidden sequences which can define L and
L ∈ SPk. Otherwise, update k by one and return to step 1.

Theorem 6. Find-ssq terminates at the shortest k for L ∈ SP.

Proof. Suppose this k is not the shortest one for the SP language L, and there
exists k′ > k such that L ∈ SPk′ . This means that there exists at least one path
p′ ∈ P(FA), with |p′| > k, such that Pk(p′) ⊆ Pk(L) and Pk′(p′) ∩ Pk′ (L) = ∅,
for some k′ > k. The fact that Pk(p′) ⊆ Pk(L) implies that ∀v ∈ Pk(p′), v ∈ L,
which is guaranteed by the syntactic monoid of L being wholly nonzero.

However, if the algorithm does not terminate at k ensures that there exists
at least one element h ∈ Pk(p′) with h ∈ FSk. Since FSk is the set of all
paths of length k that lead to 0, h /∈ L. This contradicts the previous statement
that ∀v ∈ Pk(p′), v ∈ L. Therefore, no such p′ exists and thus the algorithm
terminates at the shortest k for the strictly piecewise language L.

We illustrate this algorithm with the automaton in Figure 3, assuming it has
already been verified with DSP that it describes an SP language. We refer to
the monoid in Figure 3 with FA. The set of the shortest paths from the λ node
to 0 that covers the graph is
P(FA) = {bb, ca, bab, bcb, bca, abb, aca, cba, cbb, bacb, baca, abcb, abca, acbb, acba}.

1. For k = 1, all sets in P1(P(FA)) are not singleton. Therefore, increase k by 1.
2. For k = 2, P2(P(FA)) =

{{bb}, {ca}, {ba, ab, bb}, {bc, cb, bb}, {bc, ba, ca},
{ab, bb}, {ac, aa, ca}, {cb, ca, ba}, {cb, bb}, {ba, bc, ac, bb, ab, cb}, {ab, bc, ac, cb,
bb}, {ab, ac, aa, bc, ca, ba}, {ab, ac, bb, cb}, {ac, ab, ca, ba}}. The singleton sets
are {bb}, {ca} and thus FS2 = {bb, ca}. It is easy to verify that for all
P ∈ P2(P(FA)), P has a nonempty intersection with FS2. The algorithm
terminates and outputs {bb, ca}, which are the forbidden subsequences which
describe this language.
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In sum, this procedure tells us that this language is SP for k = 2. Together DSP

and Find-ssq provide a means to check whether a regular language is SP, and
if it is to find the finite set of the shortest forbidden subsequences.

6 Conclusion

Strictly Piecewise languages are wholly nonzero and right annihilating. The
wholly nonzero property is shared by the Strictly Local languages and provides
a definition for the “Strict” aspect, independent of the relation to the Testable
classes. Also, the algebraic characterization for SP provides a polynomial-time
decision procedure for a regular language in the size of its syntactic monoid. This
paper also leaves open some interesting questions. In particular, we would like
to know whether every wholly nonzero, J -trivial language is right annihilating.
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Abstract. We present deterministic approximation algorithms for the
multi-criteria traveling salesman problem (TSP). Our algorithms are
faster and simpler than the existing randomized algorithms.

First, we devise algorithms for the symmetric and asymmetric multi-
criteria Max-TSP that achieve ratios of 1/2k − ε and 1/(4k − 2) − ε,
respectively, where k is the number of objective functions. For two ob-
jective functions, we obtain ratios of 3/8−ε and 1/4−ε for the symmetric
and asymmetric TSP, respectively. Our algorithms are self-contained and
do not use existing approximation schemes as black boxes.

Second, we adapt the generic cycle cover algorithm for Min-TSP. It

achieves ratios of 3/2+ε, 1
2

+ γ3

1−3γ2 +ε, and 1
2

+ γ2

1−γ
+ε for multi-criteria

Min-ATSP with distances 1 and 2, Min-ATSP with γ-triangle inequality
and Min-STSP with γ-triangle inequality, respectively.

1 Multi-criteria TSP

The traveling salesman problem (TSP) is perhaps the best-studied combinatorial
optimization problem. An instance of Min-TSP is a complete graph G = (V, E)
with edge weights d : E → Q+ that satisfy the triangle inequality. The goal is
to find a Hamiltonian cycle (also called a tour) of minimum weight, where the
weight of a tour is the sum of its edge weights. (The weight of an arbitrary set of
edges is defined analogously.) If G is undirected, we have Min-STSP (symmetric
TSP). If G is directed, we have Min-ATSP (asymmetric TSP). If we restrict the
problem to instances that fulfill the γ-triangle inequality for γ ∈ [1/2, 1) (this
means d(u, v) ≤ γ · (d(u, x) + d(x, v)) for all distinct u, v, x ∈ V ), then we get
Min-γ-STSP and Min-γ-ATSP. If we restrict the edge weights to 1 and 2, we
get Min-1/2-STSP and Min-1/2-ATSP. For Max-STSP and Max-ATSP, we have
edge weights w : E → Q+, and the goal is to find a tour of maximum weight.

All these variants of TSP are NP-hard and APX-hard [5]. Thus, we are in
need of approximation algorithms. Min-STSP can be approximated with a ratio
of 3/2 [5, Sect. 3.1.3]. Min-ATSP allows for a randomized O(log n/ log log n)
approximation [4] and for a deterministic 2

3 log2 n approximation [13], where n
is the number of vertices. Max-STSP and Max-ATSP can be approximated with
ratios of 7/9 [22] and 2/3 [17], respectively. Min-γ-STSP and Min-γ-ATSP can
be approximated with constant ratios depending on γ [9–11, 25]. Min-1/2-STSP
and Min-1/2-ATSP admit factor 8/7 [6] and 5/4 [7] approximations, respectively.

M. Ogihara and J. Tarui (Eds.): TAMC 2011, LNCS 6648, pp. 264–275, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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In many scenarios, however, there is more than one objective function to
optimize. In case of the TSP, we might want to minimize travel time, expenses,
number of flight changes, etc., while we want to maximize, e.g., our profit along
the route. This gives rise to multi-criteria TSP, where Hamiltonian cycles are
sought that optimize several objectives simultaneously. In order to transfer the
notion of an optimal solutions to multi-criteria optimization problems, Pareto
curves have been introduced (cf. Ehrgott [12]). A Pareto curve is a set of all
optimal trade-offs between the different objective functions.

In the following, k always denotes the number of objective functions. We
assume throughout the paper that k ≥ 2 is an arbitrary constant. Let [k] =
{1, 2, . . . , k}. The k-criteria variants of the TSP that we consider are denoted
by k-Min-STSP, k-Min-ATSP, k-Min-γ-STSP, k-Min-γ-ATSP, k-Min-1/2-STSP,
k-Min-1/2-ATSP as well as k-Max-STSP and k-Max-ATSP.

We define the following terms for Min-TSP only. After that, we briefly point
out the differences for Max-TSP. For a k-criteria variant of Min-TSP, we have
edge weights d1, . . . , dk : E → Q+. For convenience, let d = (d1, . . . , dk). Inequal-
ities of vectors are meant component-wise. A tour H dominates another tour H̃
if d(H) ≤ d(H̃) and at least one of these k inequalities is strict. This means that
H is strictly preferable to H̃ . A Pareto curve is a set of all solutions that are
not dominated by another solution. Since Pareto curves for the TSP cannot be
computed efficiently, we have to be satisfied with approximate Pareto curves. A
set P of tours is called an α approximate Pareto curve for the instance (G, d) if
the following holds: For every tour H̃ of G, there exists a tour H ∈ P of G with
d(H) ≤ αd(H̃). We have α ≥ 1, and a 1 approximate Pareto curve is a Pareto
curve. An algorithm is called an α approximation algorithm if it computes an α
approximate Pareto curve.

Let us point out the differences for Max-TSP. We have edge weights w =
(w1, . . . , wk) (the triangle inequality is not required). Now a tour H dominates
H̃ if w(H) ≥ w(H̃) and at least one inequality is strict. A set P of tours is
an α approximate Pareto curve if, for every tour H̃ , we have an H ∈ P with
w(H) ≥ αw(H̃). Note that α ≤ 1 for maximization problems.

1.1 Previous Work

Table 1 shows the current approximation ratios for the different variants of
multi-criteria TSP. Many of these approximation algorithms can be extended
to the case where some objectives should be minimized and others should be
maximized [19]. Unfortunately, no deterministic algorithms are known except for
k-Min-STSP and 2-Max-STSP. The reason for this is that most approximation
algorithms for multi-criteria TSP use cycle covers. A cycle cover of a graph
is a set of vertex-disjoint cycles such that every vertex is part of exactly one
cycle. Hamiltonian cycles are special cases of cycle covers that consist of just
one cycle. In contrast to Hamiltonian cycles, cycle covers of optimal weight can
be computed in polynomial time. Cycle covers are one of the main tools for
designing approximation algorithms for the TSP [7, 8, 13, 17, 22]. However,
only a randomized fully polynomial-time approximation scheme (FPTAS) for
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Table 1. Approximation ratios for multi-criteria TSP. The new deterministic ratio for
k-Min-γ-STSP is an improvement for γ ≤ 0.58. The new ratio for k-Min-γ-ATSP is
achieved for γ < 1/

√
3. The result for k-Min-1/2-STSP is an improvement for k ≥ 3.

variant randomized deterministic reference new

2-Min-STSP 2 [15]
k-Min-STSP 2 + ε [20]

k-Min-γ-STSP 2γ3+2γ2

3γ2−2γ+1
+ε, 1+γ

1+3γ−4γ2 +ε 1+γ+ε, 2γ2

2γ2−2γ+1
+ε [20] 1

2
+ γ2

1−γ
+ε

2-Min-1/2-STSP 4/3 3/2 [1, 20]
k-Min-1/2-STSP 4/3 2k

k+1
[2, 20] 3/2 + ε

k-Min-ATSP log n + ε [18]

k-Min-γ-ATSP 1
1−γ

+ ε [18] 1
2

+ γ3

1−3γ2 +ε

k-Min-1/2-ATSP 3/2 [20] 3/2 + ε

2-Max-STSP 2/3 − ε 7/27 [18, 22] 3/8 − ε
k-Max-STSP 2/3 − ε [18] 1

2k
− ε

2-Max-ATSP 1/2 [14] 1/4 − ε
k-Max-ATSP 1/2 [14] 1

4k−2
− ε

multi-criteria cycle covers is known [24]. This randomized FPTAS builds on a
reduction to a specific unweighted matching problem [23], which is then solved
using the RNC algorithm by Mulmuley et al. [21]. Derandomizing this algorithm
is assumed to be difficult [3], and these nested reductions make the algorithm
quite slow. Hence, it is natural to ask whether there exist deterministic, faster
approximation algorithms for multi-criteria TSP.

1.2 New Results

We present deterministic approximation algorithms for several variants of multi-
criteria TSP. Our algorithms are considerably simpler and faster than the exist-
ing randomized approximation algorithms. Table 1 shows an overview.

First, we devise deterministic and self-contained algorithms for Max-TSP
(Sect. 2 and 3). They do not use other algorithms as black boxes except for
maximum-weight matching with a single objective function. Furthermore, they
do not make any assumption about the representation of the edge weights. The
existing algorithms require the (admittedly weak and natural) assumption that
the edge weights are encoded in binary. For k-Max-ATSP, we get a ratio of

1
4k−2 − ε for any ε > 0 (Sect. 2). For k-Max-STSP, we achieve a ratio of
1
2k − ε (Sect. 3). For the special case of two objective functions, we can im-
prove this to 1/4−ε for 2-Max-ATSP and 3/8−ε for 2-Max-STSP. The latter is
an improvement over the existing deterministic 7/27 approximation for 2-Max-
STSP [18, 22].

Second, we consider the cycle cover algorithm for Min-TSP (Sect. 4). We
use a deterministic matching algorithm of Grandoni et al. [16]. The difficulty is
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that their algorithm does not produce perfect matchings. For k-Min-γ-ATSP, k-
Min-γ-STSP, and k-Min-1/2-ATSP, we nevertheless get ratios of 1

2 + γ3

1−3γ2 + ε,
1
2 + γ2

1−γ + ε, and 3/2 + ε, respectively. The ratio for k-Min-γ-STSP is an im-
provement over existing algorithms for γ ≤ 0.58. The result for k-Min-γ-ATSP
holds for γ < 1/

√
3. The result for k-Min-1/2-ATSP holds of course also for

k-Min-1/2-STSP, and it is an improvement for k ≥ 3.
Due to space limitations, many proofs are omitted from this extended

abstract.

2 Max-ATSP

The rough idea behind our algorithm for k-Max-ATSP is as follows: First, we
“guess” a few edges that we contract to get a slightly smaller instance. The
number of edges that we have to contract depends only on k and ε. Second, we
compute k maximum-weight matchings in the smaller instance, each with re-
spect to one of the k objective functions. Third, we compute another matching
that uses only edges of the k matchings and that contains as much weight as pos-
sible with respect to each objective function. One note is here in order: Usually,
cycle covers instead of matchings are used for Max-ATSP. However, although
the weight of a cycle cover can be (roughly) twice as large as the weight of a
maximum-weight matching, we do not get a better approximation ratio by using
cycle covers. The reason is that we lose a factor of roughly 1/2 if we compute a
collection of paths from k initial cycle covers compared to k initial matchings.

The following lemma is a key ingredient of our algorithm. It shows how to
get a matching from k different matchings such that a significant fraction of
the weight with respect to each matching is preserved. This works as long as
no single edge contributes too much weight. The lemma immediately gives a
polynomial-time algorithm for this task.

Lemma 1. Let G = (V, E) be a directed graph, and let w = (w1, . . . , wk) be
edge weights. Let M1, . . . , Mk ⊆ E be matchings. Let η ∈ (0, 1) be arbitrary such
that wi(e) ≤ η

2k−2 · wi(Mi) for all e ∈ Mi and all i ∈ [k]. Then there exists a
matching P ⊆ ⋃k

i=1 Mi such that wi(P ) ≥ 1−η
2k−1 · wi(Mi) for all i ∈ [k]. Such a

matching P can be computed in polynomial time.

Proof. We construct the matching as follows: We add one heaviest edge e ∈
M1 with respect to w1 to P and remove e and all edges adjacent to e from
M2, . . . , Mk. Then we put one heaviest remaining edge from M2 into P and
remove it and all adjacent edges. We proceed with M3, . . . , Mk and repeat the
process until no edges remain.

Let us analyze wi(P ). In each step, at most two edges of any Mi are removed.
Thus, we have removed at most 2i − 2 edges from Mi until we added the first
edge from Mi to P . The weight of these edges is at most (2i−2) · η

2k−2wi(Mi) ≤
ηwi(Mi). Now let e be an edge of Mi that we added to P , and let e1, . . . , et

be the t ≤ 2k − 2 edges that are removed from Mi in the subsequent rounds
of the procedure until again an edge of Mi is added. By construction, we have
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wi(e) ≥ wi(ej) for all j ∈ [t]. Thus, wi(e) ≥ 1
2k−1 · (wi(e)+

∑t
j=1 wi(ej)). Taking

the initial loss of ηwi(Mi) into account, we observe that we can put a 1
2k−1

fraction of (1− η)wi(Mi) into P for each i ∈ [k]. �	
Now we have to make sure that, for a tour H̃ , we can find appropriate match-
ings M1, . . . , Mk. For a directed complete graph G = (V, E) and a set K ⊆ E
that forms a subset of a tour, we obtain G−K by contracting all edges of K.
Contracting an edge (u, v) means that we remove all outgoing edges of u and all
incoming edges of v, and then identify u and v. Analogously, for a tour H̃ ⊇ K,
we obtain a tour H̃−K by contracting the edges in K.

The following lemma says that, for any tour H̃ , there is always a small set K
of edges such that, if we contract these edges, the resulting tour H̃−K consists
solely of edges that do not contribute too much to the weight of H̃−K with
respect to any objective function. The proof is identical to the proof of the
corresponding lemma for the (1/2− ε) approximation for k-Max-ATSP [18, 19].
In the algorithm, we will “guess” good sets K, compute Hamiltonian cycles on
G−K , and add the edges of K to get a Hamiltonian cycle of G.

Small set means that |K| ≤ f(k, ε) for some function f that does not depend
on the number n of vertices. We can choose f(k, ε) ∈ O(k/ log(1/(1 − ε))) =
O(k/ log(1 + ε)) = O(k/ε) [18, 19] (we have log(1 + ε) = O(1/ε) by Taylor
expansion). Moreover, we can choose K such that V−K contains an even number
of vertices.

Lemma 2. Let G = (V, E) be a directed complete graph with edge weights w =
(w1, . . . , wk), and let ε > 0. Let H ⊆ E be any tour of G. Then there is a subset
K ⊆ H such that |K| ≤ f(k, ε), |V−K | is even, and, for all i ∈ [k], we have

1. wi(K) ≥ 1
4 · wi(H) or

2. wi(e) ≤ ε · wi(H−K) for all e ∈ H−K .

We have to make sure that any edge weighs at most an ε fraction of w(H),
provided that w(e) ≤ εw(H) for all e ∈ H : Let βi = max{wi(e) | e ∈ H} be the
weight of the heaviest edge with respect to wi. Let β = (β1, . . . , βk). We define
new edge weights wβ by setting the weight of edges that are too heavy to 0:

wβ(e) =

{
w(e) if w(e) ≤ β and
0 if wi(e) > βi for some i.

Since w(e) ≤ β for every e ∈ H by definition, we have w(H) = wβ(H). The
number of vectors β that result in different weight functions wβ is bounded by
n2k: Since the number of edges is less than n2, there are less than n2 different
edge weights for each objective function. Now we can state and analyze our
approximation algorithm for k-Max-ATSP (Algorithm 1).

Theorem 3. For every ε > 0 and k ≥ 2, Algorithm 1 is a deterministic ap-
proximation algorithm for k-Max-ATSP that achieves an approximation ratio of

1
4k−2 − ε. Its running-time is nO(k/ε).
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PTSP ← MaxATSP-Approx(G, w, ε)
input: directed complete graph G = (V, E), w : E → Qk

+, ε > 0
output: 1

4k−2
− ε approximate Pareto curve PTSP for k-Max-ATSP

1: for all K ⊆ E that form a subset of a tour with |K| ≤ f(k, ε) and |V−K | even do
2: for all I ⊆ [k] and β do
3: compute maximum-weight matchings Mi in G−K w.r.t. wβ

i for i ∈ I = [k]\I
4: compute a matching P ⊆ ⋃i∈I Mi according to Lemma 1
5: add edges to K ∪ P to obtain a Hamiltonian cycle H ; add H to PTSP

Algorithm 1. Approximation algorithm for k-Max-ATSP

Proof. We have to show that, for every tour H̃ , there exists a tour H ∈ PTSP

with w(H) ≥ ( 1
4k−2 − ε) · w(H̃). By Lemma 2, there exists a subset K ⊆ H̃ of

edges and an I ⊆ [k] such that |K| ≤ f(k, ε), |V−K | is even, wi(K) ≥ wi(H̃)/4
for all i ∈ I, and wi(e) ≤ εwi(H̃−K) for all e ∈ H̃−K and i ∈ [k] \ I. Let
i ∈ [k] \ I, and let Mi be a maximum-weight matching in G−K with respect
to wβ

i . Then wβ
i (Mi) ≥ wβ

i (H̃−K)/2 and wβ
i (e) ≤ 2εwi(H̃−K). Using Lemma 1

with η = (2k − 2)2ε, we can compute a matching P ⊆ ⋃
i∈[k]\I Mi such that

wβ
i (P ) ≥ 1−η

2k−1 · wβ
i (Mi) = 1−(2k−2)2ε

2k−1 · wβ
i (Mi) ≥ ( 1

2k−1 − 2ε) · wβ
i (Mi). Now

P ∪K is a collection of paths in G. What remains to be done is to estimate the
weight of w(P ∪K). For every i ∈ I, we have wi(P ∪K) ≥ wi(K) ≥ wi(H̃)/4 ≥(

1
4k−2 − ε

) · wi(H̃). For every i /∈ I, we note that wi(H̃) = wi(K) + wi(H̃−K).
This gives us

wi(P ∪K) ≥ wβ
i (P ) + wi(K) ≥ ( 1

2k−1 − 2ε
) · wβ

i (Mi) + wi(K)

≥ ( 1
4k−2 − ε

) · wβ
i (H̃−K) + wi(K) ≥ ( 1

4k−2 − ε
)
wi(H̃).

The running-time is at most nO(1)+2k+f(k,ε) = nO(k/ε). �	
If we have only two objective functions, we can improve the approximation ratio
to 1/4 − ε. The key ingredient for this is the following lemma, which is the
improved counterpart of Lemma 1 for k = 2. The lemma can be proved using a
cake-cutting argument with one player for each of the two objective functions.

Lemma 4. Let G = (V, E) be a directed graph with edge weights w = (w1, w2)
and an even number of vertices. Let M1, M2 ⊆ E be two perfect matchings, and
let η ∈ (0, 1/4). Suppose that wi(e) ≤ η

2 · wi(Mi) for all e ∈ Mi and i ∈ {1, 2}.
Then there is a matching P ⊆ M1 ∪ M2 with wi(P ) ≥ (1

2 −
√

η)wi(Mi) for
i ∈ {1, 2}. The matching P can be found in polynomial time.

Proof. Without loss of generality, we assume M1 ∩M2 = ∅. Otherwise, we can
simply remove M1 ∩ M2 from both matchings and add it to P . We scale the
edge weights such that wi(Mi) = 1 for i ∈ {1, 2}. If we ignore the directions of
the edges, the graph with edges M1 ∪M2 is a collection of disjoint cycles. Every
cycle has even length and edges from M1 and M2 alternate.

Let c ⊆ M1 ∪M2 be a cycle. We say that c is a light cycle if w1(c) ≤ √
η.

Otherwise, i.e., if w1(c) >
√

η, we call c a heavy cycle. Note that M1 ∪M2 has
at most 1/

√
η heavy cycles.
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PTSP ← MaxATSP-Approx-2(G, w, ε)
input: directed complete graph G = (V, E), w : E → Q2

+, ε > 0
output: 1

4
− ε approximate Pareto curve PTSP for k-Max-ATSP

1: for all K ⊆ E with |K| ≤ f(2, ε2) that are a subset of a tour and |V−K | even do
2: for all I ⊆ {1, 2} and β do
3: compute maximum-weight matchings Mi in G−K w.r.t. wβ

i for i ∈ I
4: compute a matching P ⊆ ⋃i∈I Mi according to Lemma 4
5: add edges to K ∪ P to obtain a Hamiltonian cycle H ; add H to PTSP

Algorithm 2. Improved approximation algorithm for 2-Max-ATSP

We show the lemma by a cake-cutting argument: Player 1 puts cycles (or
parts of cycles) into two sets S1 and S2, and then Player 2 can choose which set
to take. Player i wants to maximize wi. Player 1 puts light cycles as a whole
into S1 or S2. Heavy cycles are split into two parts as follows: Player 1 decides
to remove one edge of M1 and one edge of M2 (these edges are lost also for
Player 2). In this way, we get two paths (again disregarding the directions of
the edges). Player 1 puts one path into S1 and the other path into S2. (It can
happen that one of the paths is empty: If we have a cycle of length four, the
two edges removed are necessarily adjacent. This, however, does not cause any
problem. In particular, cycles of length four are always light cycles.) Finally,
Player 2 chooses the set Si that maximizes w2. Player 1 has to take S3−i. This
yields the matching P = (Si ∩M2) ∪ (S3−i ∩M1).

Let us estimate the weight that the players are guaranteed to get. Since we
have at most 1/

√
η heavy cycles, at most 1/

√
η edges from M2 are removed. The

total weight of the edges removed is hence at most
√

η/2. Thus, w2((S1 ∪ S2) ∩
M2) ≥ w2(M2)−√η/2 = 1−√η/2. Hence, Player 2 can always get a weight of
at least 1

2 · (1 −
√

η/2) ≥ 1
2 −

√
η.

Let us now focus on Player 1. As for Player 2, we have w1((S1 ∪ S2)∩M1) ≥
1 − √η/2. For any heavy weight cycle c, Player 1 can choose to remove edges
such that the resulting paths differ by at most η/2 with respect to w1. Since light
cycles are put as a whole in either S1 or S2 and have a weight of at most

√
η

with respect to w1, Player 1 can make sure that w1(S1 ∩M1) and w1(S2 ∩M1)
differ by at most

√
η. Thus, w1(Si ∩M1) ≥ 1

2 ·
(
1−

√
η

2

)− √
η

2 ≥ 1
2 −

√
η for both

i ∈ {1, 2}. Thus, for any choice of Player 2, Player 1 still gets enough weight
with respect to w1. The proof immediately gives a polynomial-time algorithm
for computing P . �	
Theorem 5. For every ε > 0, Algorithm 2 is a deterministic approximation
algorithm for 2-Max-ATSP with an approximation ratio of 1/4− ε. Its running-
time is nO(1/ε2).

Proof. We have to prove that, for every tour H̃ , there is an H ∈ PTSP with
w(H) ≥ (1

4 − ε) ·w(H̃). According to Lemma 2, there is a subset K ⊆ H̃ and an
I ⊆ {1, 2} such that |K| ≤ f(2, ε2), |V−K | is even, wi(K) ≥ wi(H̃)/4 for i ∈ I,
and wi(e) ≤ ε2wi(H−K) for all e ∈ H−K and i ∈ {1, 2}\I = I. Thus, there exists
a β such that, first, wβ

i (H̃−K) = wi(H̃−K) for all i ∈ I and, second, for each i ∈ I,
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there exists a matching Mi with wβ
i (e) ≤ 2ε2wβ

i (Mi) and wβ(Mi) ≥ 1
2 ·wβ(H̃−K).

Using Lemma 4 with η = 4ε2, we can compute a matching P ⊆ ⋃i∈I Mi such
that wβ

i (P ) ≥ (1
2 − 2ε)wβ

i (Mi) for each i ∈ I. Again, P ∪ K is a collection of
paths. For any i ∈ I, we have wi(P ∪K) ≥ wi(K) ≥ wi(H̃)/4, which is sufficient.
For any i ∈ I, we have

wi(P ∪K) ≥ wβ
i (P ) + wi(K) ≥ ( 1

2 − 2ε
) · wβ

i (Mi) + wi(K)

≥ ( 1
4 − ε

) · wβ
i (H̃−K) + wi(K) ≥ ( 1

4 − ε
) · wi(H̃).

The running-time is bounded by nO(1)+f(2,2ε2) = nO(1/ε2). �	

3 Max-STSP

One key ingredient for our algorithm for k-Max-STSP is the following lemma,
which is the undirected counterpart to Lemma 1. In contrast to k-Max-ATSP,
we now start with k cycle covers rather than k matchings.

Lemma 6. Let G = (V, E) be an undirected graph with edge weights w =
(w1, . . . , wk), and let C1, . . . , Ck ⊆ E be cycle covers. Assume that, for some
η > 0, we have wi(e) ≤ η

2k−1wi(Ci) for all e ∈ Ci and all i ∈ [k]. Then there
exists a collection P ⊆ ⋃k

i=1 Ci of paths such that wi(P ) ≥ 1−η
2k wi(Ci) for all i.

Such a collection P can be computed in polynomial time.

As in Sect. 2, we would like to keep a set K ⊆ E of heavy edges. Unfortunately,
it is impossible to contract edges in the same way as in directed graphs [18].
As already done for the randomized algorithms, we circumvent this by setting
the weight along paths of sufficient length to 0 [18, 19]. To do this formally, we
need the following notation: Let H̃ be a Hamiltonian cycle, and let K ⊆ H̃ . Let
L = L(K) = {v | ∃e ∈ K : v ∈ e} be the set of vertices that are adjacent to
edges of K. Let T = T (K) = {e ∈ H̃ | e is adjacent to K but not in K}. As for
the directed case, let β = (β1, . . . , βk). Now we define

w−L,β(e) =

{
w(e) if e ∩ L = ∅ and w(e) ≤ β and
0 if e ∩ L �= ∅ or there is an i with wi(e) > βi.

This means that under w−K,β , all edges of K or adjacent to K have weight 0.
Furthermore, all edges that exceed β for some objective are also set to 0.

Now we are prepared to state the undirected counterpart of Lemma 2. As
Lemma 2, its proof is identical to the proof of the corresponding lemma for the
(2
3 − ε) approximation for k-Max-STSP [18, 19]. We can choose the function g

in the lemma such that g(k, η) ∈ O
(

k3

η·(log(1−η))2

)
= O(k3/η3). We can easily

require that |V−K | is even. The necessary change of the function g is negligible.
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P ← MaxSTSP-Approx(G, w, ε)
input: undirected complete graph G = (V, E), w : E → Qk

+, ε > 0
output: 1

2k
− ε approximate Pareto curve PTSP for k-Max-STSP

1: for all K ⊆ E with |K| ≤ g(k, ε/2) that form a subset of a tour do
2: for all I ⊆ [k], and β do
3: compute maximum-weight cycle covers Ci in G w.r.t. w−K,β

i for i ∈ I
4: compute a collection P ⊆ ⋃i∈[k]\I Ci of paths according to Lemma 6

5: remove edges incident to L(K) from P to obtain P ′

6: add edges to K ∪ P ′ to obtain a Hamiltonian cycle H ; add H to PTSP

Algorithm 3. 1
2k − ε approximation for k-Max-STSP

Lemma 7. Let G = (V, E) be an undirected complete graph with edge weights
w = (w1, . . . , wk). Let η > 0. Let H ⊆ E be any Hamiltonian cycle of G. Then
there exists a collection K ⊆ H of paths such that |K| ≤ g(k, η) and |V−K | is
even and the following properties hold: Let L = L(K) and T = T (K). For all
i ∈ [k], we have

1. wi(K) ≥ 1
2 · wi(H) or

2. wi(e) ≤ η · w−L
i (H) for all e ∈ H \K and wi(T ) ≤ η · wi(H).

Now we are prepared to state and analyze our approximation algorithm for k-
Max-STSP (Algorithm 3), and we obtain the following theorem.

Theorem 8. For every k ≥ 2 and ε > 0, Algorithm 3 is a deterministic ap-
proximation algorithm for k-Max-STSP that achieves an approximation ratio of
1
2k − ε and has a running-time of nO(k3/ε3).

As for 2-Max-ATSP, we can achieve a better approximation ratio of 3/8− ε for
k = 2. This improves over the known deterministic 7/27 approximation [18, 22].

Lemma 9. Let G = (V, E) be an undirected graph with edge weights w =
(w1, w2), and let M1, M2 ⊆ E be two matchings. Assume that wi(e) ≤ ηwi(Mi)
for i ∈ {1, 2} and all edges e ∈ Mi. Then there exists a collection P ⊆ M1 ∪M2

of paths such that wi(P ) ≥ (3
4 − η) · wi(Mi) for i ∈ {1, 2}. Such a collection P

can be found in polynomial time.

Theorem 10. For any ε > 0, Algorithm 4 is a deterministic algorithm for 2-
Max-STSP with an approximation ratio of 3

8 − ε. Its running-time is nO(1/ε3).

4 Cycle Cover Algorithm for Min-TSP

Now we consider multi-criteria Min-TSP. In the following, we need the (natural
and weak) assumption that the edge weights are encoded in binary. The main
idea is to replace the approximation scheme for cycle covers by the bipartite
matching algorithm of Grandoni et al. [16]. Their algorithm does the following:
Let G = (V, E) be a bipartite graph, let ε > 0 and k be fixed, let d = (d1, . . . , dk)
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PTSP ← MaxSTSP-Approx-2(G, w, ε)
input: undirected complete graph G = (V, E), w : E → Q2

+, ε > 0
output: 3

8
− ε approximate Pareto curve PTSP for k-Max-STSP

1: for all K ⊆ E with |K| ≤ g(2, ε/2) that form a subset of a tour do
2: for all I ⊆ {1, 2} and β do
3: compute maximum-weight matchings Mi in G w.r.t. w−K,β

i for i ∈ I
4: compute a collection P ⊆ ⋃i∈[k]\I Mi of paths according to Lemma 6

5: remove edges incident to L(K) from P to obtain P ′

6: add edges to K ∪ P ′ to obtain a Hamiltonian cycle H ; add H to PTSP

Algorithm 4. Improved approximation for 2-Max-STSP

PTSP ← GenericATSP(G, d, ε)
input: directed complete graph G = (V, E), d : E → Qk

+, ε > 0
output: approximate Pareto curve PTSP for k-Min-ATSP
1: we ← 1 for all e ∈ E
2: compute an ε

2β
-approximate Pareto curve C of ε

2β
-partial cycle covers

3: for all C ∈ C do
4: break one edge of every cycle of C to obtain a collection P of paths
5: join the paths with edges to obtain a Hamiltonian cycle H ; put H into PTSP

Algorithm 5. Generic Approximation for k-Min-TSP

be edge lengths, and let w be edge weights. Let D1, . . . , Dk be budgets. Let Mopt

be a matching that maximizes w(Mopt) subject to di(Mopt) ≤ Di for all i ∈ [k].
Then their algorithm outputs a matching M with w(M) ≥ (1− ε)w(Mopt) and
di(M) ≤ (1 + ε)Di for all i ∈ [k]. We use this algorithm to compute partial
cycle covers. An ε-partial cycle cover of a directed graph is a collection of simple
cycles and simple paths that contains at least (1− ε) ·n edges. (A cycle cover in
an n vertex graph consists of n edges.) In other words, a partial cycle cover is
a subset of a cycle cover. We do this by exploiting that matchings in bipartite
graphs stand in one-to-one correspondence to cycle covers in directed graphs.
Let w(e) = 1 for all edges e ∈ E. Then our goal is simply to maximize the
number of edges subject to the budget constraints. We choose all combinations
of 0 and (1 + ε)� (with � ∈ {−p, . . . , p} for some polynomial p) for D1, . . . , Dk

and run the matching algorithm using these D1, . . . , Dk for some small enough
ε. This yields (1 + ε) approximate Pareto curves for ε-partial cycle covers [24].

Let βd = maxi∈[k],e,e′∈E
di(e)
di(e′) be the maximum ratio of heaviest to lightest

edge with respect to any objective function. We remark that it is crucial that
βd is bounded by a constant in order to our algorithm work satisfactory. The
reason is that we have to be content with ε-partial cycle covers. Due to this, we
might incur extra costs proportional to εβd.

Theorem 11. Fix any ε > 0, k ≥ 2, and β ≥ 1. If restricted to instances (G, d)
with βd ≤ β, Algorithm 5 is a 1+β

2 +ε approximation algorithm for k-Min-ATSP.
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For k-Min-1/2-ATSP, we have βd ≤ 2. For k-Min-γ-ATSP, we have βd ≤ 2γ3

1−3γ2

for γ < 1/
√

3 [11], while for k-Min-γ-STSP, we have βd ≤ 2γ2

1−γ for γ < 1 [10].
Thus, we get the following derandomized algorithms [18, 20].

Corollary 12. For every k ≥ 2 and ε > 0, Algorithm 5 is a deterministic
approximation algorithm for multi-criteria Min-TSP. It achieves a ratio of 3/2+
ε for k-Min-1/2-ATSP, a ratio of 1

2 + γ3

1−3γ2 +ε for k-Min-γ-ATSP for γ < 1/
√

3,

and a ratio of 1
2 + γ2

1−γ + ε for k-Min-γ-STSP for γ < 1.

5 Open Problems

An obvious question is whether there exists a deterministic approximation al-
gorithm for k-Min-ATSP with a non-trivial approximation ratio, which means
smaller than 2

3 · k log2 n, which is obtained by adding the k weights of each edge
to get a single objective function. Furthermore, we would like to know if there
are deterministic approximation algorithms for k-Max-ATSP and k-Max-STSP
that achieve a constant approximation ratio (or at least a ratio of ω(1/k)).

A key step towards improving the deterministic algorithms for multi-criteria
Min-TSP would be an approximation scheme for multi-criteria non-bipartite per-
fect matching. Moreover, the algorithms for k-Min-1/2-STSP and k-Min-γ-STSP
would yield a better ratio if initialized with undirected cycle covers. However, a
derandomization of the randomized FPTAS for general matching [24], which is
based on the isolation lemma [21], seems to be difficult [3].

Finally, it is open if there are deterministic algorithms for the case where some
objectives should be minimized while others should be maximized.
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7. Bläser, M.: A 3/4-approximation algorithm for maximum ATSP with weights zero
and one. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004
and APPROX 2004. LNCS, vol. 3122, pp. 61–71. Springer, Heidelberg (2004)
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Abstract. We initiate the study of the computational complexity of
the question of extending partial representations of geometric intersec-
tion graphs. In this paper we consider classes of interval graphs – given
a collection of real intervals that forms an intersection representation
of an induced subgraph of an input graph, is it possible to add inter-
vals to achieve an intersection representation of the entire graph? We
present an O(n2) time algorithm that solves this problem and constructs
a representation if one exists. Our algorithm can also be used to list all
nonisomorphic extensions with O(n2) delay.

Although the classes of proper and unit interval graphs coincide, the
partial representation extension problems differ on them. We present
an O(mn) time decision algorithm for partial representation extension
of proper interval graphs, but for unit interval graphs the complexity
remains open.

Finally we show how our methods can be used for solving the problem
of simultaneous interval representations. We prove that this problem is
fixed-paramater tractable with the size of the common intersection of
the input graphs being the parameter.

1 Introduction

Intersection Graphs. An intersection representation of a graph G = (V, E) is
a collection of sets Rv, v ∈ V such that for any two distinct vertices u and v,
uv ∈ E if and only if Ru ∩ Rv �= ∅. If M is a family of sets, we say that G
is an M-intersection graph if it has an intersection representation R such that
Rv ∈ M for every v ∈ V . Such a representation is called an M-representation
(or, with a slight abuse of notation, a C-representation where C stands for the
class of all M-intersection graphs).

Intersection graphs of geometrical objects, especially of planar ones, are in-
tensively studied for their practical motivations, algorithmic applications, and
interesting theoretical properties. The realm of these classes includes interval

� (Supported by Czech research project M10545).

M. Ogihara and J. Tarui (Eds.): TAMC 2011, LNCS 6648, pp. 276–285, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Extending Partial Representations of Interval Graphs 277

graphs, circular arc graphs, circle graphs, trapezoid graphs, and many more. Use-
ful overviews can be found in [18,22,10,4]. For many of these classes basic opti-
mization problems, such as finding a maximum clique or independent set, can be
solved in polynomial time when a representation is given. It is therefore important
to be able to recognize the graphs and construct an intersection representation.
Indeed, in many cases these tasks can be achieved in polynomial time.

Many papers and much effort have been devoted to the recognition problem,
and generalizations have been considered. For instance, the so called sandwich
problem refers to the situation when certain edges are mandatory while others
are forbidden, cf. [9,11].

Somewhat surprisingly a very natural problem of deciding whether a given
representation of a part of a graph can be completed to a representation of the
entire one so far has not been addressed. Formally, a partial M-representation
is an M-representation of an induced subgraph G′ of the input graph G. A
representation R extends a partial representation R′ if it assigns the same sets
to the vertices of G′. For an intersection-defined class C of graphs, we consider
the following decision problem.

Problem: RepExt(C) (Partial Representation Extension of C)
Input: A graph G with a partial C-representation R.

Output: Does G have a C-representation that extends R?

Extending Partial Solutions. This approach fits well a general paradigm that
has been frequently investigated in other areas. It is rather interesting (but not so
surprising) that quite often extending a partial solution is provably more difficult
than solving a problem from a scratch1. Consider for instance graph coloring. By
König-Hall Marriage Theorem, it is well known that edges of a cubic bipartite
graph can be properly colored by 3 colors. But if some of them are precolored
in the input graph, it becomes NP-complete to decide if this precoloring can
be extended to a proper 3-edge-coloring of the entire graph [7], even for planar
inputs [17].

On the other hand sometimes even the partial solution extension problem
remains efficiently solvable. For instance, it has been recently proved by Angelini
et al. [2] that planarity of partially embedded graphs can be decided in linear
time. (To complete the picture, deciding if a partial straight line drawing of
a graph can be extended to a straight line drawing of the entire one is again
NP-hard as proven by Patrignani et al. [19].)

Classes of Interval Graphs. Interval graphs are intersection graphs of closed
intervals of the real line. This class of graphs is denoted by INT. It is probably
the most intensively studied class of intersection graphs. It was introduced by
Hájos [12] in 1950s, motivated by applications in areas as diverse as biology, soci-
ology, or traffic light scheduling. Aside from many applications, interval graphs
have interesting theoretical properties. They can be recognized in polynomial
time, in fact several linear time algorithms are known, see [3,6]. They are perfect
1 No wonder architects like to use the metaphor “building on a green meadow”.
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b

c

Fig. 1. A partial representation of P3 extensible only by proper intervals

and hence basic optimization problems such as finding a maximum clique, max-
imum independent set, or the chromatic number are solvable in polynomial time
on them. Thus it is natural to start the investigation of partial representation
extension problems with interval graphs. In this paper we prove the following
theorem.

Theorem 1. The RepExt(INT) problem is solvable in time O(n2), where n is
the number of vertices of the input graph.

Two famous subclasses of interval graphs are proper interval graphs, denoted by
PROPER INT, and unit interval graphs, denoted by UNIT INT. Proper interval
graphs have representations in which no interval is a proper subset of another
one. Unit interval graphs are those having intersection representations by inter-
vals of a unit length. Roberts [20] proved that these classes are the same. Several
linear time algorithms for their recognition are known, see [16,13,5].

Surprisingly, the partial representation extension problem distinguishes these
two classes. For example, consider P3, the path of length 2, with a partial repre-
sentation of the vertices a and c by intervals placed at distance larger than 1, see
Figure 1. As a proper interval representation, it is possible to be extended. On
the other hand, it is not possible to extend it as a unit interval representation,
the gap between a and c is too big.

In this paper, we show that RepExt(PROPER INT) can be solved in polyno-
mial time. The complexity of RepExt(UNIT INT) remains open.

Theorem 2. The RepExt(PROPER INT) problem can be solved in time
O(nm), where n is the number of vertices and m the number of edges of the
input graph.

Both the algorithms are constructive, they not only decide existence of a desired
extension but also construct a feasible representation if it exists.

The Structure. The paper is organized as follows. In Section 2, we give an
O(n2) algorithm for extending interval graphs. In Section 3, we describe an
O(nm) algorithm for RepExt(PROPER INT). In Section 4, we present an ap-
plication to a recent open problem described in [14] – using the partial represen-
tation extension approach, we construct fixed-parameter tractable algorithms for
simultaneous interval graph and proper interval graph recognition. We conclude
the paper with open problems and related remarks.
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2 Extending Interval Graphs

In this section, we describe an algorithm solving RepExt(INT) in time O(n2).
We consider representations having the endpoints of all intervals distinct since
it simplifies the description. Every interval graph has such a representation and
typically such representations are considered. Moreover, it is possible to modify
our algorithm for intervals sharing endpoints.

Recognition. Recognition of interval graphs in linear time was a long-standing
open problem, first solved by Booth and Lueker [3] using PQ-trees. Nowadays,
there are two main approaches to recognition in linear time. The first one finds a
feasible ordering of the maximal cliques which can be done using a data structure
called PQ-tree. The second one uses surprising properties of the lexicographic
breadth-first search, searches through the graph several times and constructs a
representation if the graph is an interval graph [6]. We use the PQ-tree approach
to solve RepExt(INT) in time O(n2).

Maximal Cliques. The PQ-tree approach is based on the following character-
ization of interval graphs, due to Fulkerson and Gross [8]:

Lemma 1 (Fulkerson and Gross). A graph is an interval graph if and only
if there exists an ordering of the maximal cliques such that for every vertex the
cliques containing this vertex appear consecutively in this ordering.

Consider an interval representation of an interval graph. For each maximal clique,
consider the intervals representing the vertices of this clique and select a point in
their intersection (this intersection is non-empty because intervals of the real line
have the Helly property). We call these points clique-points. For an illustration,
see Figure 2. The ordering of the clique-points from left to right gives the ordering
required by Lemma 1. Every vertex appears consecutively since it is represented
by an interval. For a clique a, we denote the assigned clique-point by cp(a).

On the other hand, given an ordering of the maximal cliques, we place clique-
points in this ordering on the real line. Each vertex is represented by the interval
containing exactly the clique-points of the cliques containing this vertex. In this
way, we obtain a valid interval representation of the graph.

In the rest of the section, by a clique we mean a maximal clique. The cliques
of an interval graph have in total O(n + m) vertices and can be found in linear
time [21]. A feasible ordering of the cliques can be found in linear time using
PQ-trees. For readers not familiar with PQ-trees, the description is in [3].
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Fig. 2. An interval graph and one of its representations with denoted clique-points



280 P. Klav́ık, J. Kratochv́ıl, and T. Vyskočil

�(a) �(a) �(b) �(b)

x

y z
w

Fig. 3. Clique-points cp(a) and cp(b), having I(a) = {x} and I(b) = {z, w}, can be
placed to the bold parts of the real lines

Extending INT. We first sketch the algorithm. We construct a PQ-tree for the
input graph, completely ignoring the given partial representation. The partial
representation gives another restriction—a partial ordering of the cliques. We
search the PQ-tree to find an ordering of the cliques extending this partial or-
dering. We show that the representation can be extended if and only if such an
ordering exists.

To construct a representation, we place clique-points on the real line according
to the ordering. We need to be more careful in this step. Since several intervals
are pre-drawn, we cannot change their representations. Using the clique-points,
we construct a representation in a similar manner as in Figure 2.

Now, we describe everything in detail.

Partial Ordering �. For a clique a, let I(a) denote the set of all the pre-
drawn intervals that are contained in a. The pre-drawn intervals split the line
into several parts, traversed by the same intervals. A clique-point cp(a) can be
placed only to a part containing exactly the intervals of I(a) and no other pre-
drawn intervals.

We denote by �(a) (resp. 	(a)) the leftmost (resp. the rightmost) point
where the clique-point cp(a) can be placed, formally:

�(a) = inf
{
x | the clique-point cp(a) can be placed to x

}
,

	(a) = sup
{
x | the clique-point cp(a) can be placed to x

}
.

For an example, see Figure 3. Notice that it does not mean that the clique-point
cp(a) can be placed to all the points between �(a) and 	(a). If a clique-point
cannot be placed at all, the given partial representation is not extendible.

For two cliques a and b, we define a � b if 	(a) ≤ �(b). The obtained relation
is a partial ordering. It is quite natural since every correct representation has
to place a to the left of b if a � b. For example, the cliques a and b in Figure 3
satisfy a � b. This partial ordering can be clearly constructed in time O(n2).

The Algorithm

(1) Find maximal cliques and construct a PQ-tree, independently of the partial
representation.

(2) Compute � and 	 for all the cliques and construct �.
(3) Search the PQ-tree and find an ordering of the cliques extending �.
(4) Place the clique-points greedily on the real line, according to the ordering.
(5) Construct a representation using the clique-points.
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Fig. 4. We show an example how Step 3 works. Consider the highlighted P-node of
the PQ-tree on the left. The subgraph induced by a, b and c has a topological sorting
b → a → c. We contract these vertices into the vertex abc. Next, we keep the order of
Q-node and contract it to the vertex def . Now, we obtain a cycle between abc and def
and the algorithm outputs “no”.

In the rest of the section, we describe in detail steps three to five and prove the
correctness of the algorithm. This proves Theorem 1. All the omitted details will
be in a journal version of the paper.

Step 3: Finding an Ordering Extending �. A subtree of the PQ-tree con-
tains a set C of cliques. All these cliques appear consecutively in every ordering.
Notice that reordering of C influences only this subtree.

This gives the following subroutine. We represent the ordering � by a digraph.
We reorder the children from the leaves to the root and modify the digraph by
contractions. When we finish reordering of a subtree, the order is fixed and
never changed in the future. We process a node when all its subtrees are already
processed and represented by single vertices in the digraph. When we finish
the reordering, we contract all these vertices, keeping edges in the digraph, see
Figure 4.

For a P-node, we check whether the subdigraph induced by vertices corre-
sponding to the children is acyclic. If it is acyclic, we reorder the children accord-
ing to a topological sorting. Otherwise, there exists a cycle, no feasible ordering
exists and the algorithm returns “no”. For a Q-node, there are two possible
orders. All we need is love, and to check whether one of them is feasible.

This operation can be implemented in linear time depending on the size of
the partial ordering � which is O(n2).

Step 4: Placing the Clique-Points. The real line has several intervals already
pre-drawn by the partial representation. We place clique-points greedily from left
to right, according to the ordering. We want to place a clique-point cp(a). Let
cp(b) be the last placed clique-point. Consider the infimum over all the points
where the clique-point cp(a) can be placed and that are to the right of the clique-
point cp(b). We place the clique-point cp(a) to the right of this infimum by an
appropriate epsilon, for example the length of the shortest part (see definition of
�) divided by n. We can easily implement this greedy subroutine in time O(n).

Lemma 2. For an ordering < of the cliques compatible with the PQ-tree ex-
tending �, the greedy subroutine described in Step 4 never fails.
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Due to space limitations, we sketch a proof: For contradiction, let cp(a) be a
clique-point which cannot be placed. There exists a clique-point cp(b) such that
b < a and cp(a) cannot be placed to the right of cp(b). We question the reason
the clique-point cp(b) was not placed more to the left, to allow cp(a) to be placed.
We obtain contradiction with � or the constructed PQ-tree. A detailed proof
will be in a journal version.

Step 5: Constructing a Representation. We construct a representation
of the graph using the clique-points placed in the previous step, similarly to
Figure 2. We represent each vertex as an interval containing exactly all the
clique-points corresponding to the cliques containing this vertex. Also, we slightly
perturbate all the intervals to ensure distinct endpoints.

The intervals placed by the partial representation contain the correct clique-
points. Since the ordering of the clique-points is compatible with the PQ-tree,
we obtain a correct representation. The last step can be done in time O(n).

3 Extending Proper Interval Graphs

In this section, we show an algorithm for extending proper interval graphs in
time O(nm), for n vertices and m edges. We modify the algorithm described in
Section 2. It is the only algorithm known to us which uses PQ-trees to recognize
proper interval graphs. This method is not extremely fast, but we can use the
previously described properties. Basically, the algorithm introduces other sets of
cliques to appear consecutively. These sets ensure that all edges are realized by
single overlapping intervals.

Definitions. We recall that intervals have distinct endpoints. Two intervals of
the real line can be in three relative positions, see Figure 5. If they do not
intersect, they have no overlap. If one is a proper subset of the other one, they
double overlap. Otherwise, we say they single overlap. In proper interval graphs,
all the edges are realized by single overlaps.

All the cliques considered in the rest of the section are maximal. For a vertex
x, we denote by Cx the set of the cliques containing x. Similarly, Cx,¬y denotes
Cx \ Cy .

Additional Conditions. Let x and y be two intervals that single overlap.
Consider an ordering of the maximal cliques given by the representation. Observe
that all the cliques of Cx,¬y appear on one side of the intersection of x and y and

no overlap single overlap double overlap

Fig. 5. Types of interval overlapping
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similarly Cy,¬x appears on the other side. Together with the consecutivity of Cx

and Cy , we know that Cx,¬y and Cy,¬x appear consecutively in the ordering.
We can use this in the opposite direction. To ensure that an edge xy is realized

by a single overlap, we add a requirement that each of the sets Cx,¬y and Cy,¬x

appears consecutively. For a proper interval graph, we introduce these conditions
for every edge of the graph. We introduceO(m) additional sets, each of sizeO(n).
Using the PQ-tree algorithm by Booth and Lueker [3], we construct a PQ-tree
for all these conditions in time O(nm).

The Modified Algorithm. We modify the algorithm from Section 2. First, we
check whether the given partial representation is correct. In Step 1, we introduce
additional sets, as described above. We proceed steps two to four as before.

The clique-points are already fixed at the start of Step 5. We need to place the
intervals in a way that all the edges are realized by single overlaps. Unlike interval
graphs, proper interval graphs have one specific property. For every representa-
tion, the left endpoints appear in the same order as the right endpoints. Denote
this ordering by �. If two vertices are contained in different cliques, their order
in � is fixed. Also, if two intervals are pre-drawn, the order of the corresponding
vertices is fixed. These conditions give a partial ordering of the vertices. As �, we
choose any linear extension of this partial ordering. Using �, we place intervals
around clique points. The described algorithm proves Theorem 2. Details will
be in a journal version.

4 Simultaneous Interval Graphs

In this section, we show an application of the partial representation extension
problem. We give an FPT algorithm for a recent open problem by Jampani and
Lubiw [14]. Let G1, G2, . . . , Gk be graphs, Gi = (Vi, Ei). Let vertex sets of these
graphs intersect as a sunflower, i.e., Vi ∩ Vj = I for every i �= j. We would like
to find a simultaneous representation of all these graphs. This means that we
would like to find a representation Ri for every graph Gi such that all these
representations assign the same sets to the vertices of I. For an example, see
Figure 6. We denote this problem Sim.

a
b

c d
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G2

G3

I

a b

c

d

R1

a b

c

d

R2

a b

c

d

R3

Fig. 6. A simultaneous representation of G1, G2 and G3 with I = {a, b, c, d}
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Jampani and Lubiw [14] show a polynomial time algorithm for Sim(INT) when
k = 2. They ask whether there exists a polynomial time algorithm for Sim(INT)
in general. We show that Sim(INT) and Sim(PROPER INT) are fixed-parameter
tracktable for parameter � = |I|. We describe the algorithm for interval graphs,
the algorithm for proper interval graphs is similar.

Proposition 1. Sim(INT) can be solved in time O(n2k · (2�)!).

Proof. If the partial representation of I were given, we could use the algorithm
for RepExt(INT) described in Section 2 to test whether it is possible to extend
it to a simultaneous representation of all the graphs. We just need to test for
every graph Gi whether it is possible to extend the partial representation to a
representation of entire Gi. This can be done in time O(n2k).

An interval graph with � vertices has O((2�)!) topologically different repre-
sentations. Therefore, if the algorithm tries all the different representations, the
running time is O(n2k · (2�)!). �	
Similarly, the following holds, the proof is omitted:

Proposition 2. Sim(PROPER INT) can be solved in time O(mnk · �!).

5 Conclusions

5.1 Constructing All Representations

Sometimes it is necessary to construct all representations that extend the given
partial one. Our algorithms can be used to list all feasible representations with a
polynomial delay (O(n2) both for RepExt(INT) and RepExt(PROPER INT)).
Details will be discussed in a journal version.

5.2 Allen Algebras

In [1], Allen described thirteen primitive relations between pairs of intervals
and initiated the study of computational complexity of the question of deciding
if there exists an interval representation satisfying given constraints expressed
by subsets of these relations. A full dichotomy for this problem was proved
in [15]. Both RepExt(INT) and RepExt(PROPER INT) can be formulated in
the language of Allen algebras. However, the corresponding constraint satisfac-
tion problems are NP-complete.

5.3 Extending Unit Interval Representations

We conclude by repeating what we consider the main open problem. What is
the complexity of RepExt(UNIT INT)?
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Abstract. In this paper we introduce a new graph class denoted as
Gen(∗; P3, C3, C5). It contains all graphs that can be generated via split
composition by using paths P3 and cycles C3 and C5 as components.
This new graph class extends the well known class of distance-hereditary
graphs, which corresponds to Gen(∗; P3, C3). For the new class we pro-
vide efficient algorithms for several basic combinatorial problems: recog-
nition, stretch number, stability number, clique number, domination
number, chromatic number, graph isomorphism, and clique width.

Keywords: Distance-hereditary graphs, stretch number, split decom-
position, graph algorithms, recognition problem.

1 Introduction

Distance-hereditary graphs have been introduced by Howorka [17], and are de-
fined as those graphs in which every connected induced subgraph is isometric,
that is it “inherits” its distance function from the whole graph. Formally, a graph
G is a distance-hereditary graph if, for each connected induced subgraph G′ of
G, dG′(x, y) = dG(x, y) for each x, y ∈ G′. Such graphs have been rediscovered
many times (e.g., see [1]) and have different applications. For instance, they can
model communication networks [9,12,13] in which node failures may occur: at a
given time, if sender and receiver are still connected, any message can be still
delivered without increasing the length of the path used to reach the receiver.

Since their introduction, dozens of papers have been devoted to them, and
different kind of characterizations have been discovered: metric, forbidden sub-
graphs, cycle/chord conditions, level/neighborhood conditions, generative, and
more. Among such results, the generative properties resulted as the most fruit-
ful for algorithmic applications, since they allowed researchers to solve several
combinatorial problems efficiently in the context of distance-hereditary graphs
(e.g., see [2,3,9,15,18]). Recently, distance-hereditary graphs have been general-
ized into the class of k–distance-hereditary graphs:

M. Ogihara and J. Tarui (Eds.): TAMC 2011, LNCS 6648, pp. 286–297, 2011.
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Definition 1. [7] Given a rational number k ≥ 1, a graph G is a k–distance-
hereditary graph if, for each connected induced subgraph G′ of G:

dG′(x, y) ≤ k · dG(x, y), for each x, y ∈ G′.
The class of all the k–distance-hereditary graphs is denoted by DH(k).

Notice the following basic relationships: DH(1) coincides with the class of
distance-hereditary graphs; DH(k1) ⊆ DH(k2), for each k1 ≤ k2; DH(k) is hered-
itary for each k ≥ 1.

The hierarchy formed by classes DH(k) is fully general. This means that, for
each arbitrary graph G, there exists k′ such that G ∈ DH(k′). In particular, the
stretch number of G – denoted as s(G) – is the smallest rational number t such
that G belongs to DH(t).

Apart from the interesting general results found for the new classes, the orig-
inal motivation was studying how (if possible) to extend the known algorithmic
results from the base class, namely DH(1), to DH(k) for some constant, hope-
fully large, k > 1. This specific task seems to be in contrast with the generality
of the DH(k) hierarchy. This consideration leads to redefine the main objective:
from the hierarchy DH(k) to some new class C, being C a superclass of DH(1)
and with clear relationships with DH(k).

In this work we introduce a new graph class which can play the role of C.
This new class is denoted as Gen(∗; P3, C3, C5) and it contains all graphs that
can be generated by applying the split composition [10], starting from K2, and
using the path P3, and the cycles C3 and C5 as components. We use the notation
Gen(opn; list of components) for classes whose elements can be defined in a
generative way.
Results: We provide the following results for the graph class Gen(∗; P3, C3, C5):

1. Efficient algorithms for the following problems:
(a) recognition, stretch number (both solved in linear time);
(b) stability number, clique number, domination number and its variants

(O(n) time); chromatic number (O(n3) time); graph isomorphism (linear
time).

2. Clique width is bounded.
3. Relationships with the DH(k) hierarchy.

Some proofs are omitted due to space limitation and they can be found in the
full paper [4].

2 Notation and Basic Concepts

In this work we consider finite, simple, loop-less, undirected and unweighted
graphs G = (V, E) with vertex set V and edge set E. For sake of simplicity, by
graph we mean “connected graphs with at least 3 vertices”, although definition
and results can be easily extended to any graph. Given S ⊆ V , the induced
subgraph 〈S〉 of G is the maximal subgraph of G with vertex set S. Given u ∈ V ,
N(u) denotes the set of neighbors of u in G, and N [u] = N(u) ∪ {u}.
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We denote by Ck any cycle with k vertices. A chord of a cycle is an edge
joining two non-consecutive vertices in the cycle. The chord distance of a cycle
Ck is denoted by cd(Ck), and it is defined as the minimum number of consecutive
vertices in Ck such that every chord of Ck is incident to some of such vertices. Hk

denotes a hole, i.e., the cycle Ck, k ≥ 5, without chords. We assume cd(Hk) = 0.
Pk denotes a path with k vertices.

Symbols pG(x, y) and PG(x, y) denote a shortest and a longest induced path
between x and y, respectively. The lengths of such paths are denoted as dG(x, y)
and DG(x, y), respectively.

If x and y are two vertices of G such that dG(x, y) ≥ 2, then {x, y} is a cycle-
pair if there are two induced paths pG(x, y) and PG(x, y) such that pG(x, y) ∩
PG(x, y) = {x, y}. In other words, if {x, y} is a cycle-pair, then the vertices in
pG(x, y) ∪ PG(x, y) induce a cycle in G; this cycle is denoted by G[x, y].

2.1 Split Composition and Decomposition

Let us recall the concept of split composition/decomposition [10]. Let G1, G2 be
two graphs having disjoint vertex sets V1 ∪ {m1}, V2 ∪ {m2} and edge sets E1,
E2, respectively. The split composition of G1 and G2 with respect to the joining
vertices m1 and m2 is the graph G having vertex set V = V1 ∪ V2 and edge set
E = E

′
1∪E

′
2∪{(x, y) | x ∈ N(m1), y ∈ N(m2)}, where E

′
i = {(x, y) ∈ Ei | x, y ∈

Vi} for i = 1, 2. The composition is denoted as G = (G1, m1)∗(G2, m2), or simply
G = G1 ∗G2 when we are not interested in the joining vertices.

The split decomposition is the inverse operation. Let G1, G2 be two graphs
having disjoint vertex sets V1∪{m1}, V2∪{m2} and edge sets E1, E2, respectively.
If G = (G1, m1) ∗ (G2, m2) and |V1|, |V2| ≥ 2, then we say that {G1, G2} is a
simple decomposition of G. We call {V1, V2} the split of G associated with the
simple decomposition {G1, G2}, being m1 and m2 the associated joining vertices.
If G has a split we say that G is split-decomposable. The split decomposition of a
graph G is the set D(G) of graphs obtained by the following recursive procedure:

- if G has a split {V1, V2}, then apply the split decomposition to graphs G1

and G2 obtained by the simple decomposition {G1, G2}.
- if G does not have a split then G is called prime.

Each element of D(G) is called component. The split decomposition of a graph
is not necessarily unique. Cunningham proved the following uniqueness result:

Theorem 1. [10] Each connected graph has a unique split decomposition into
prime graphs, stars, and cliques with a minimum number of components.

D(G) denotes the split decomposition of G, while CD(G) will denote the Cun-
ningham decomposition of G (in which stars and cliques are no further decom-
posed). All known algorithms to compute the split decomposition compute the
Cunningham decomposition. In [11], Dahlhaus given a linear time algorithm for
computing the Cunningham decomposition. The following claim follows directly
from the definition of split composition:
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Property 1. Let G = (G1, m1) ∗ (G2, m2). If u ∈ G1 \ {m1} and v ∈ G2 \ {m2}
then

– DG(u, v) = DG1(u, m1) + DG2(v, m2)− 1;
– dG(u, v) = dG1(u, m1) + dG2(v, m2)− 1. �	

3 Extending Distance-Hereditary Graphs

One of the most popular characterizations of distance-hereditary graphs is based
on one-node extension operations [1]. Given a graph G, u ∈ G, and v �∈ G, then:

- α(G, u; v) adds v to G by making v adjacent to u only;
- β(G, u; v) adds v to G by making v adjacent to each node in N(u);
- γ(G, u; v) adds v to G by making v adjacent to each node in N [u].

Theorem 2. [1] Every distance-hereditary graph is obtained starting from a sin-
gle node and by applying a proper sequence of operations α, β, and γ.

This result can be reformulated in terms of a single operation, i.e. the split
composition.

Lemma 1. Every distance-hereditary graph is obtained starting from K2 and by
applying the split composition using P3 and C3 as components.

Proof. It is easy to verify that the following relationships hold:

- α(G, u; v) ≡ (G, u) ∗ (P3, v), where v is an external vertex in the path P3;
- β(G, u; v) ≡ (G, u) ∗ (P3, v), where v is an internal vertex in the path P3;
- γ(G, u; v) ≡ (G, u) ∗ (C3, v), where v is any vertex in the cycle C3.

The proof is concluded by observing that these relationships also show that any
vertex of the components P3 and C3 can be used as joining vertex. �	
Previous results that make a connection between distance-hereditary graphs and
split composition are [5] and [16]. From the above Lemma it follows that the
class of distance-hereditary graphs can be denoted also as Gen(∗; P3, C3). Now,
extending Gen(∗; P3, C3) via split composition is just matter of selecting a new
component to be used along with P3, C3. To this aim we recall the following
additional characterization of distance-hereditary graphs (see Fig. 1).

Theorem 3. [1] A graph G is distance-hereditary if and only if it does not
contain, as induced subgraph, the following graphs: the hole Hn, n ≥ 5, the
house, the fan, and the domino.

This result states that only few graphs cannot appear as induced subgraphs
in a distance-hereditary graph. Since the smallest ones among such forbidden
subgraphs are cycles C5, then the following definition formalizes the new class:

Definition 2. Every graph in Gen(∗; P3, C3, C5) is obtained starting from K2

by applying the split composition and using P3, C3, and C5 as components.
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Fig. 1. The hole (chordless cycle) Hn, n ≥ 5, the house, the fan, and the domino. The
dotted line represents a path with one or more edges.

4 Algorithmic Problems

In this section we face the recognition problem and the stretch number compu-
tation problem for graph in the new class Gen(∗; P3, C3, C5).

4.1 Recognition Problem

The recognition problem for the new graph class can be formulated as follows:
given a graph G, decide whether G belongs to Gen(∗; P3, C3, C5). This problem
can be easily solved by using the split decomposition.

Lemma 2. A graph G belongs to Gen(∗; P3, C3, C5) if and only if each compo-
nent in CD(G) is a star, a clique, or a cycle C5.

Proof. (⇒) Let G ∈ Gen(∗; P3, C3, C5). Then, there exist a sequence
B1, B2, . . . , Bn such that:

– Bi ∈ {P3, C3, C5}, 1 ≤ i ≤ n;
– G0 ≡ K2;
– Gi ≡ Gi−1 ∗Bi, 1 ≤ i ≤ n;
– Gn ≡ G.

We prove the statement by induction on i. The basic case (i = 1) holds since
K2 ∗ B1 = B1, CD(B1) = {B1}, and B1 is a star (i.e, P3), a clique (i.e, C3), or
a cycle C5. Now, let us assume that the statement is true for Gt, t < n.

By inductive hypothesis, each component of CD(Gt) is a star, a clique, or a
cycle C5, while Bt+1, by definition, is a P3, a C3, or a C5.

Since Gt+1 = Gt ∗ Bt+1, then CD(Gt+1) can be derived from CD(Gt) and
Bt+1 as follows. Let C̄ the component in CD(Gt) containing the joining vertex
in Gt∗Bt+1. Is is easy to observe that, by construction, CD(Gt+1) = (CD(Gt+1)\
C̄)∪CD(C̄ ∗Bt+1). It follows that, to prove the statement it is sufficient to show
that each component in CD(C̄ ∗ Bt+1) is a star, a clique, or a cycle C5. Let us
analyze different cases, according to the size of CD(C̄ ∗Bt+1):

– |CD(C̄ ∗ Bt+1)| = 1. Since C̄ ∗ Bt+1 has a split, then, by Theorem 1, it is a
clique or a star;

– |CD(C̄ ∗Bt+1)| = 2. In this case it follows that CD(C̄ ∗Bt+1) = {C̄, Bt+1};
– |CD(C̄ ∗ Bt+1)| ≥ 3. In this case we have Bt+1 ≡ C5 and C5 has 2 or more

splits. Since such splits divide C5 into P3 and C3, then also in this case each
component in CD(C̄ ∗Bt+1) is a star, a clique, or a cycle C5.



Using Split Composition to Extend Distance-Hereditary Graphs 291

...

Fig. 2. Decomposing a clique Kt, t ≥ 3, into C3 ∗ C3 ∗ · · · ∗ C3 with t − 2 cliques C3

(black vertices represent joining vertices)

...

Fig. 3. Decomposing a star K1,t, t ≥ 2, into K1,2 ∗ K1,2 ∗ · · · ∗ K1,2 with t − 1 stars
K1,2 (black vertices represent joining vertices)

(⇐) Let us assume that each component of CD(G) = {B1, B2, . . . , Bn} is a star,
a clique, or a cycle C5. Now, perform the following operations on each component
Bi, 1 ≤ i ≤ n, which is a clique or a star:

– if Bi is a clique Kt, t ≥ 3, then replace Kt by C3 ∗ C3 ∗ · · · ∗ C3 with t − 2
cliques C3 according to Fig. 2;

– if Bi is a star K1,t, t ≥ 2, then replace K1,t by K1,2 ∗K1,2 ∗ · · · ∗K1,2 with
t− 1 stars K1,2 according to Fig. 3.

From components B1, B2, . . . , Bn and their modifications we get a split decom-
position with components in {P3, C3, C5}. From this split decomposition it is
easy to get a generative sequence showing that G ∈ Gen(∗; P3, C3, C5).

Theorem 4. The recognition problem for the class Gen(∗; P3, C3, C5) can be
solved in linear time.

Proof. Let G be a graph in Gen(∗; P3, C3, C5). The statement directly follows
from Lemma 2 and from the linear time algorithm proposed in [11] for computing
the Cunningham decomposition CD(G). �	

4.2 Computing the Stretch Number

In [7], it has been shown that computing the stretch number for arbitrary graphs
is NP-hard. In this section we provide a linear time algorithm to solve this
problem in Gen(∗; P3, C3, C5). Before presenting it, we give some notation and
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results. Given u and v in G, then, (1) the stretch number of {u, v} is given by
sG(u, v) = DG(u, v)/dG(u, v), (2) sG(v) = max{sG(v, u) | u ∈ V }, and (3) v
represents any vertex such that sG(v) = sG(v, v̄). In [7] it has been shown that
the stretch number of G is given by

s(G) = max
u,v∈V

sG(u, v).

S(G) contains all pairs {u, v} that give s(G), that is sG(u, v) = s(G). If {x, y} is
a cycle-pair that belongs to S(G), then the cycle G[x, y] is called inducing-stretch
cycle for G. The following result states which numbers are admissible as strecth
numbers:

Theorem 5. [8] Let t ≥ 1 be a rational number. t is an admissible stretch
number if and only if t ≥ 2 or t = 2− 1

i for some integer i ≥ 1.

Let G be a graph belonging to Gen(∗; P3, C3, C5) such that G = G1 ∗ G2: fol-
lowing the same approach used by Rao in [19], the next theorem allows us to
compute s(G) starting from the stretch numbers of G1 and G2. It exploits this
technical statement:
Lemma 3. Let G = (V, E) and x ∈ V . If sG(x) = 2 − 1/i, i ≥ 1 integers, then
there exists a vertex y ∈ V such that sG(x, y) = 2− 1/i and dG(x, y) = i.

Theorem 6. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. Let m1 ∈ V1

such that sG1(m1) = 2 − 1/i, and let m2 ∈ V2 such that sG2(m2) = 2 − 1/j. If
G = (G1, m1) ∗ (G2, m2), then

s(G) = max{ s(G1), s(G2), sG(m1, m2) },
where sG(m1, m2) = 2− 1

i+j−1 .

Proof. By assuming that (a, b) ∈ S(G), three different cases may occur:
1. both a and b are in V1;
2. both a and b are in V2;
3. a belongs to V1 and b belongs to V2.

In the first two cases, we get s(G) = s(G1) and s(G) = s(G2), respectively. In
the remainder, we assume that the third case holds, and we show that s(G) =
sG(m1, m2) = 2− 1

i+j−1 .
Since sG1(m1) = 2 − 1/i, by Lemma 3 there exists a vertex m1 ∈ V1 such

that sG1(m1, m1) = 2 − 1/i and dG1(m1, m1) = i. Symmetrically, there exists
m2 ∈ V2 such that sG2(m2, m2) = 2−1/j and dG2(m2, m2) = j. Of course, these
relationships imply DG1(m1, m1) = 2i− 1 and DG2(m2, m2) = 2j − 1.

According to the definitions of stretch number and split composition, it follows
that:

sG(m1, m2) = DG(m1,m2)
dG(m1,m2)

= DG1 (m1,m1)+DG2 (m2,m2)−1

dG1(m1,m1)+dG2(m2,m2)−1

= (2i−1)+(2j−1)−1
i+j−1

= 2− 1
i+j−1
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The proof is concluded by showing that the following relationship holds for each
x ∈ V1 and for each y ∈ V2:

2− 1
i + j − 1

≥ DG(x, y)
dG(x, y)

(1)

By applying again the notion of split composition, Inequality 1 can be rewritten
as:

2− 1
i + j − 1

≥ DG1(x, m1) + DG2(y, m2)− 1
dG1(x, m1) + dG2(y, m2)− 1

(2)

Now:

– by Theorem 5, since sG1(x, m1) < 2, we may assume sG1(x, m1) = 2− 1/k1,
being k1 ≥ 1 an integer. Since sG1(m1, m1) = 2 − 1/i and sG1(m1, m1) ≥
sG1(x, m1), it follows that i ≥ k1. Moreover, dG1(x, m1) = t1k1 and
DG1(x, m1) = t1(2k1 − 1), t1 ≥ 1. The integer t1 is due to the fact that
from sG1(x, m1) = 2 − 1/k1 we cannot derive exact values for the distances
dG1(x, m1) and DG1(x, m1);

– symmetrically, assuming sG2(y, m2) = 2 − 1/k2, it follows that j ≥ k2.
Moreover, dG2(y, m2) = t2k2 and DG2(y, m2) = t2(2k2 − 1), t2 ≥ 1 integer.

As a consequence, Inequality 2 can be rewritten as:

2− 1
i + j − 1

≥ t1(2k1 − 1) + t2(2k2 − 1)− 1
t1k1 + t2k2 − 1

(3)

By simple algebraic transformations, Inequality 3 can be rewritten as:

t1i + t2j + t1(j − 1) + t2(i− 1) ≥ t1k1 + t2k2 + (j − 1) + (i− 1) (4)

Inequality 4 holds due to the following straightforward observations:

1. t1i ≥ t1k1 (because t1 ≥ 1 and i ≥ k1 ≥ 1);
2. t2j ≥ t2k2 (because t2 ≥ 1 and j ≥ k2 ≥ 1);
3. t1(j − 1) ≥ (j − 1) (because t1 ≥ 1);
4. t2(i− 1) ≥ (i− 1) (because t2 ≥ 1).

This concludes the proof. �	

Surprisingly, this result shows that that s(G) does not depends on s(G1) and
s(G2), but only on the maximum stretch number of the joining vertices m1 and
m2. This leads to an algorithm for computing s(G) based on the following steps:

1. decompose G by split decomposition;
2. compute the stretch number of all components in CD(G);
3. compute sB(u) and sB(u, v) for all joining vertices u and v in B, and for all

components B ∈ CD(G);
4. rebuild G using the components and, at each rebuilding step, use Theorem 6.
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Step 3 is necessary since to use Theorem 6 we need information about the max-
imum stretch of joining vertices. Notice also that such additional info has to be
“updated” as long as the graph G is rebuilt. The next corollary can be used
for this purpose. namely to update the value of sG1(u), u ∈ G1, after a split
composition G1 ∗G2.

Corollary 1. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. Let m1 ∈ V1

such that sG1(m1) = 2 − 1/i, and let m2 ∈ V2 such that sG2(m2) = 2 − 1/j. If
G = (G1, m1) ∗ (G2, m2) and u ∈ G1 \ {m1}, then

sG(u) = max
{

sG1(u),
DG1(u, m1) + DG2(m2, m2)− 1
dG1(u, m1) + dG2(m2, m2)− 1

}
Proof. Omitted.

Notice that, by symmetry, the corollary above can be also used to update the
stretch number of a node in G2. Such a corollary, along with Theorem 6, rep-
resents the main tool to give the Algorithm 1, which is able to compute the
stretch number of graphs in Gen(∗; P3, C3, C5). In this algorithm we use the no-
tation CD(G) = {B1, B2, . . . , Bt} and JV(G) = {x2, y2, x3, y3, . . . , xt, yt}, t ≥ 1,
to represent the result of the Cunningham decomposition, where JV(G) repre-
sents the set of joining vertices (i.e., xi and yi are the joining vertices of the i-th
split, where xi ∈ Bi−1 and yi ∈ Bi).

Theorem 7. If G ∈ Gen(∗; P3, C3, C5), then s(G) can be computed in linear
time.

Proof. We prove the statement by analyzing Algorithm 1. Assume that the input
graph G has n vertices and m edges. By using the algorithm proposed in [11],
step at Line 1 can be performed in linear time. Since CD(G) has at most n− 2
components, and since each component has at most 5 vertices, the whole work
performed at cycle 2–7 requires O(n) time.

Consider now cycle at Lines 9–16

– at the end of the t steps of this cycle, step at Line 10 rebuilds the whole
graph G, and this requires linear time;

– steps at Lines 11, 13, and 16 requires constant time each. This implies that
the complexity of cycle at Line 9, limited to Lines 12–16, is bounded by
|B1| × |B2| × · · · |Bt|. Since each component has at most 5 vertices and
t ≤ n− 2, this complexity results to be O(n).

Hence, the whole work performed at cycle 9–16 requires linear time, and this
is the final bound for the algorithm’s complexity. Concerning the correctness, it
directly follows from the comments at Lines 11, 13, and 16. �	

4.3 Other Problems

By using results in [19], here we show that several basic combinatorial problems
can be efficiently solved in the graph class Gen(∗; P3, C3, C5). Let Gk, for k ≥ 3,
be the class of graphs for which every prime graph in a split decomposition has
at most k vertices.
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Algorithm 1. computing the stretch number of G ∈ Gen(∗; P3, C3, C5)

Input: a graph G ∈ Gen(∗; P3, C3, C5)
Output: s(G)
compute CD(G) = {B1, B2, . . . , Bt} and JV(G) = {x2, y2, x3, y3, . . . , xt, yt},1

t ≥ 1 ;
forall B ∈ CD(G) do2

compute s(B) ;3

forall u ∈ B ∩ M do4

compute and store dB(u) and DB(u) (and hence sB(u)) ;5

forall v ∈ B ∩ M \ u do6

compute and store dB(u, v) and DB(u, v) ;7

initialize G1 as B1 ;8

for i = 2 to t do9

compute Gi = (Gi−1, xi) ∗ (Bi, yi) ;10

compute s(Gi) ; // by using Theorem 6 and data computed at Line 311

forall u ∈ Gi ∩ M do12

update dGi (u, u) and DGi (u, u) (and hence sGi(u)) ; // by using13

// Corollary 1 and data computed at Line 3

forall v ∈ Gi ∩ M \ u do14

if ( u ∈ Gi−1 and v ∈ Bi ) or ( v ∈ Gi−1 and u ∈ Bi ) then15

update dGi (u, v) and DGi (u, v) ; // by using Property 1 and16

// data computed at Line 3

return s(Gt)17

Theorem 8. ([19]) For any fixed k ≥ 3:

– there is an O(n) algorithm to compute the weighted stability number, the
weighted cliques number, the domination number and its variants respec-
tively, and a O(n3) algorithm to compute the chromatic number of graph in
the class Gk, if a split decomposition tree is given with the graph;

– the clique-width of graphs in the class Gk is bounded by 2k + 1.

The following results concerning the new class Gen(∗; P3, C3, C5) can be easily
derived:

Corollary 2. It follows that:

– there is a O(n) algorithm to compute the weighted stability, the weighted
cliques number, the domination number and its variants respectively, and
a O(n3) algorithm to compute the chromatic number of graph in the class
Gen(∗; P3, C3, C5), if a split decomposition tree is given with the graph;

– the clique-width of graphs in the class Gen(∗; P3, C3, C5) is bounded by 11.

Theorem 9. In the class Gen(∗; P3, C3, C5), the isomorphism problem can be
solved in linear time.
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Sketch of the Proof. By Theorem 1, two graphs G1 and G2 belonging to
Gen(∗; P3, C3, C5) can be transformed into trees T1 and T2, in which each node
is a prime component in the Cunningham decomposition. It is a well known re-
sult that the isomorphism problem for trees can be solved in linear time. Hence,
to test the isomorphism between G1 and G2 it is sufficient to test the isomor-
phism between the components. By Theorem 2, each component in T1 and T2

is a star, a clique, or a cycle C5, and hence testing the isomorphism between
components is a very easy task. �

5 Relationships between Gen(∗; P3, C3, C5) and DH(k)

We start this section by observing the relationships between the new graph class
Gen(∗; P3, C3, C5) and the class hierarchy DH(k).

Corollary 3. DH(1) � Gen(∗; P3, C3, C5) � DH(2).

Proof. DH(1) � Gen(∗; P3, C3, C5) follows from Definition 2. Now, assume that
G ∈ Gen(∗; P3, C3, C5). From Lemma 2 and Theorem 6 it follows that s(G) < 2,
and this implies Gen(∗; P3, C3, C5) � DH(2). �	
A graph class which can be characterized by the split decomposition enjoys nice
algorithmic results (e.g, see [19]). Graph classes that enjoy this property are
distance-hereditary [16], circle graphs [14], parity graphs [6], as well graphs in
Gen(∗; P3, C3, C5) (by definition). In the remainder of the section we investigate
the class of all graphs having stretch number less than 2 with respect to the
split decomposition. The following result can be considered as a partial answer
to this problem.

Theorem 10. Let G be a graph such that s(G) < 2. If G[x, y] is an inducing-
stretch cycle of G, then G[x, y] belongs to Gen(∗; P3, C3, C5).

Proof. Omitted.

This result implies that each inducing-stretch cycle of G can be decomposed
(by Cunningham decomposition) into cliques, stars, and cycles C5. It would be
interesting to complete this investigation by studying how the inducing-stretch
cycles of G are joined each other.
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Abstract. In this article, we investigate the complexity and approxima-
bility of the Minimum Contamination Problems, which are derived from
epidemic spreading areas and have been extensively studied recently. We
show that both the Minimum Average Contamination Problem and the
Minimum Worst Contamination Problem are NP-hard problems even on
restrict cases. For any ε > 0, we give (1 + ε, O( 1+ε

ε
log n))-bicriteria ap-

proximation algorithm for the Minimum Average Contamination Problem.
Moreover, we show that the Minimum Average Contamination Problem is
NP-hard to be approximated within 5/3− ε and the Minimum Worst Con-
tamination Problem is NP-hard to be approximated within 2 − ε, for any
ε > 0, giving the first hardness results of approximation of constant ratios
to the problems.

1 Introduction

Over the last years, much attention had been paid to algorithmic problems re-
lated to information propagation or virus diffusion over large scale networks
(such as Internet, social networks, etc). One interesting topic is related to the
cascading related problems. The spread of misinformation or flu (resp. virus) in
the social network (resp. Internet) may cause panic or epidemic in population
(resp. computers), so it is important to look for efficient strategies to limit the
effect of the propagation of undesirable instances in large scale networks. One
strategy previously considered was trying to find some nodes to get immuniza-
tion (i.e., remove these nodes from the network), for instance [1,11]. Aspnes et
al. [1] considered the inoculation strategies for victims of viruses and defined
the Sum-of-Squares Partition Problem, which is to find some fixed number of
nodes to get immunization so that after deleting the immunization nodes, the
sum of the squares of the size of connected components of the left graph is mini-
mized, they also gave a (O(1), O((log n)1.5))-bicriteria approximation algorithm
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for this problem. Kumar et al. [11] gave an (O(1), O(log n))-bicriteria approxi-
mation algorithm for the Sum-of-Squares Partition Problem recently. However,
in some cases, immunize and separate some node entirely from the network is
impractical, one more approachable and general way is to block some links be-
tween the vertices (i.e., remove some edges from the network). For example, in
order to avoid epidemic, not only the infected people should be isolated from
the public, susceptible people also need to restrict their own behaviors (to de-
crease the opportunity to meet other people) to decrease the chance of being
infected. The problem of minimizing the spread of undesirable things by block-
ing a limited number of links in a network, was first raised by [9]. The goal is
to find a links set of fixed size such that the remaining network by blocking
those links minimizes the contamination for the undesirable thing (which start
from a random vertex of the network and infects all vertices connected with
it). Two versions of the Minimum Contamination Problem corresponding to dif-
ferent objects were posed by [9], one is the Minimum Average Contamination
problem which is to minimize the expectation number of contaminated nodes
on the average case and the other is the Minimum Worst Contamination prob-
lem which is to minimize the expectation of maximum number of contaminated
nodes in the worst case (a formal definition will be given later in Section 1).
In [9,10], the authors considered these two problems on probabilistic models of
networks (precisely the Independent Cascade Model and the Linear Threshold
Model) and proposed greedy strategy for efficiently finding good approximation
solutions to these problems, they experimentally demonstrated that the greedy
methods have better performance than conventional link-removal methods on
these two probabilistic models.

In this paper, we consider the Contamination Minimization Problems in de-
terministic setting. We prove that both the Minimum Average Contamination
Problem and the Minimum Worst Contamination Problem are NP-hard even
on some restricted cases in the deterministic setting. We show that the greedy
strategy, even though works well in some probabilistic setting [9], allows an
min{O(K), n} approximation for the two problems and there exists tight ex-
amples. We give an

(
1 + ε, O(1+ε

ε log n)
)
-bicriteria approximation algorithm for

the Minimum Average Contamination Problem by using linear programming for
any ε > 0, while the

(
1 + ε, O(1+ε

ε log n)
)
-bicriteria approximation algorithm for

the Minimum Worst Contamination Problem was presented by Anshelevich and
Kempe [2] (they called the problem Min-Max Component Size Problem). We
also show that the LP relaxation admits an Ω(n) integrality gap if we consider
the single criteria approximation. On the hardness side, we show that the Min-
imum Average Contamination Problem is NP-hard to be approximated within
5/3− ε and that the Minimum Worst Contamination Problem is NP-hard to be
approximated within 2− ε, for any ε > 0.

Definition 1 (The Minimum Contamination Problem). [9] Given a graph
G = (V, E) and a positive number K, the Minimum Contamination Problem is
to find a subset E′ ⊆ E of size K such that after deleting edges in E′ from G,
the expected size of contamination (with the virus starting at some single vertex
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which was chosen randomly from the graph) is minimized. Assume H1, ..., Hq

are the connected components of G\E′, there are two kinds of object values we
considered: (1)OBJA � 1

|V |
∑q

i=1 |Hi|2 which corresponds to the Minimum Aver-

age Contamination Problem (MACP, for short); (2) OBJW � 1
|V |Maxi∈[q]|Hi|

which corresponds to the Minimum Worst Contamination Problem (MWCP, for
short).

We remark that the Minimum Worst Contamination Problem is exactly the
Min-Max Component Problem considered by Anshelevich and Kempe [2] and
the Minimum Average Contamination Problem is a generalization of the Sum-
of-Squares Partition Problem, since we can think vaccinating a node as blocking
all edges adjacent to that node. However, the complexity and approximability
results of the Sum-of-squares Partition Problem can not be adopt to the Mini-
mum Worst Contamination Problem obviously. One difference between blocking
an edge and immunizing a vertex is that blocking one edge can increase the
number of connected components of the remaining graph at most one while it is
not the case for immunizing one vertex.

Given a graph G = (V, E) and positive numbers K and B, the decision version
of the Minimum Contamination Problem I = (G = (V, E); K, B) is to determine
whether the Minimum Contamination Problem instance has optimum value at
most B. We also consider the weighted version of minimization contamination
problems, that with input graph G = (V, E) and a weight vector w = (wv)v∈V ,
it only needs to replace |Hi| by w(Hi) in the objective values, where w(Hi) =∑

v∈Hi
wv. (Here we think the random contamination occurs on vertices with

probability in proportion to their weight).
We will show that all the above problems are NP-hard, so we will focus on

the approximation algorithms for these problems.

Definition 2. An (α, β)-bicriteria approximation algorithm for the MACP
(resp. MWCP) is a poly-time algorithm A that given a MACP (resp. MWCP)
instance I = (G = (V, E); K), A find an edges subset of size βK, such that after
deleting these edges from G, the Average Contamination (resp. Worst Contami-
nation) is at most αOptA(I) (resp. αOptW (I)), where OptA(I) (resp. OptW (I))
is the optimum value of the MACP (resp. MWCP) instance I. We also call an
(α, 1)-bicriteria approximation algorithm an α approximation algorithm.

2 The Complexity of the Minimum Contamination
Problems

In this section, we prove the NP-hardness of the Minimum Contamination Prob-
lems by constructing reductions from the 3-Dimensional Matching Problem,
which is a well-known NP-hard problem.

Definition 3. Given 3 disjoint sets A, B and C with |A| = |B| = |C| = p, and
triplets set T ⊆ A × B × C. The 3-Dimensional Matching Problem is to ask
whether T contains a perfect matching, which is a subset S ⊆ T of size p and
each elements g ∈ A ∪B ∪ C appears exactly once in coordinates of S.
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The 3-Dimensional Matching Problem is NP-hard even on instances in which
each element of A∪B ∪C appears exactly twice in T [5], we denote the restrict
version of 3-Dimensional Matching problem as 3-DM2.

We first show that the weighted version of the Minimum Contamination
Problems are NP-hard, then we turn the weighted instances into unweighted
instances.

Theorem 1. Both the weighted Minimum Average Contamination Problem and
the weighted Minimum Worst Contamination Problem are NP-hard even on bi-
partite, planar graphs with maximum degree 3.

Proof (Proof of Theorem 1). We construct polynomial time reductions from the
3-DM2 to Minimum Contamination problems. Similar reduction appeared in [3]
to prove NP-hardness of the Minimum Forest Cover Problem. Given a 3-DM2

instance I =
(
(A, B, C); T ) with |A| = p and |T | = 2p, we construct a weighted

graph G = (V, E) as follows:
For each g ∈ A∪B ∪C, define two vertices g′ and g′′ of weight 1 respectively,

each corresponds to one appearance of g in T (w.l.o.g., we replace the first
appearance of g by g′ and the second appearance of g by g′′), and a vertex Δg

with weight 2 if g ∈ A, and with weight N + 2 (N is a parameter which will be
fixed later) if g ∈ B ∪ C. For each Tl = (ai, bj, ck) ∈ T , define a vertex dl of
weight N . Let V � {g′, g′′, Δg}g∈A∪B∪C

⋃{dj}Tj∈T .
We define the edges set E as follows: for each g ∈ A ∪ B ∪ C, add edges

(g′, Δg) and (g′′, Δg), and for each Tl ∈ T and g′ ∈ Tl (resp. g′′ ∈ Tl), add an
edge (dl, g

′) (resp. (dl, g
′′)). It is easy to verify that graph G = (V, E) is planar

(by Kuratowski’s theorem), bipartite and with maximum degree 3.
We define the decision version of MACP instance I ′ = (G =

(V, E), K; B1/|V |) and the decision version of MWCP instance I ′′ = (G =
(V, E), K; B2/|V |) with K = 5p, B1 = 4p(N + 3)2 and B2 = N + 3.

We claim that the 3-DM2 instance I contains a perfect matching if and only
if both I ′ and I ′′ are yes instances.

For the “only if” part: if I has a perfect matching S ⊆ T , then we define E′

as
E′ = {(g, Δg)}g∈Ti∈S ∪ {(dl, bj), (dl, ck)}Tl=(ai,bj ,ck) �∈S

since S is a perfect matching, we have |S| = p and (since |T | = 2p)

|E′| = 3|S|+ 2|T \S| = 5p

it is easy to verify that each connected component of G \E′ is of weight exactly
N + 3 and there are exactly 4p connected components. So we have∑

i

w(Hi)2 = B1 = 4p(N + 3)2

and
max

i
w(Hi) = B2 = N + 3
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For the “if” part: if I ′ (resp. I ′′) is a yes instance, then there exists an edges
subset E′ of size 5p, such that let (Hi)i∈[q] be the connected components of
G\E′, then∑

i

w(Hi)2 ≤ 4p(N + 3)2 (resp. max
i

w(Hi) ≤ N + 3 )

We say a vertex is a heavier vertex if its weight is at least N , then there are
|B|+ |C|+ |T | = 4p different heavier vertices in G. In each connected component
of G\E′, there can exist at most one heavier vertex if we let N be large enough
(say, N > 24p) such that

(4p + 2)N2 > 4p(N + 3)2 (resp. 2N > N + 3 )

since otherwise if there exists some connected component Hj of G \ E′ has at
least 2 heavier vertices, then

w(Hj)2 ≥ 4N2

and it implies∑
i

w(Hi)2 ≥ (4p + 2)N2 > 4p(N + 3)2 (resp. max
i

w(Hi) ≥ 2N > N + 3)

which contradicts our conditions.
We say that a heavier vertices pair (u, v) is a neighbor pair, if there exists a

path in G between u and v contains no heavier vertices other than u and v, we
call such path cutoff-needed path. We know that for each cutoff-needed path, at
least one edge should be chosen in E′ in order to disconnect the corresponding
neighbor pair. By the definition of graph G, there are exactly 5p different neigh-
bor pairs (each g ∈ B ∪ C contribute 2 pairs (Δg, dl) and (Δg, dm) while each
g ∈ A contribute 1 pair (dl, dm), here assume the two appearances of g is in
Tl, Tm ∈ T ).

On the other hand, since |E′| = 5p and cutoff-needed paths are edge disjoint,
which means that exactly one edge should be chosen to block on each cutoff-
needed path and the left graph should have exactly 4p connected components
(each heavier vertex in one connected component and each connected component
should have exactly one heavier node). Since

∑
i

w(Hi) = w(G) = 4p(N + 3)

we know that∑
i

w(Hi)2 ≤ 4p(N + 3)2 (resp. max
i

w(Hi) ≤ N + 3 )

is true if and only if w(Hi) = N + 3 for each i ∈ [4p].
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We say that a connected component of the left graph G \ E′ is a proper
component if it is a star graph with vertex set {dl, ai, bj, ck} and center dl. We
claim that for any g ∈ B ∪ C, exactly one of vertex g′ and g′′ is in some proper
component.

Consider a component Hi contains g′: if the heavier node in Hi is dl for the
Tl contains g′, then Hi must be a proper component, since it is the only possible
way for Hi to have weight exactly N + 3; otherwise the heavier node in Hi is
Δg, in this case, g′′ should be in a component Hj with heavier node dm for the
Tm contains g′′, similar argument to that in the first case implies that Hj is a
proper component.

So there are exactly p different proper components, we claim that these
proper components correspond to a perfect 3-dimension matching of I. Since
each proper component corresponds to a Tl ∈ T , by the above argument we
only need to verify that for each a ∈ A, exactly one of a′ and a′′ is in some
proper component of the left graph. For any a ∈ A, if a′ is in some proper
component Hi, then a′′ and Δa should be in the same component Hj and since
w(a) + w(Δa) = 3, we know that Hj \ {a′′, Δa} = {dl} for the Tl contains a′′ is
not a proper component.

In all, if the MACP instance I ′ (resp. the MWCP instance I ′′) is a yes in-
stance, then there exists a perfect matching for the 3-DM2 instance I.

By a simple gadget reduction, we are able to prove

Theorem 2. Both the unweighted Minimum Average Contamination Problem
and the unweighted Minimum Worst Contamination Problem are NP-hard even
on bipartite graphs.

We are also able to show

Theorem 3. The Minimum Worst Contamination Problem is NP-hard even on
power law graphs, while there exists a polynomial time algorithm for the weighted
Minimum Worst Contamination Problem on trees.

3 Approximation Algorithms for the Minimum
Contamination Problems

Since the problems we concern are NP-hard, we consider the approximation algo-
rithms of these problems. Kimura et al. [9,10] made use of the bond percolation
methods to estimate the decrease of each edges’ deletion and experimentally
showed that the greedy strategy (choose the edges which decrease the objective
most up now) works well in the Independent Cascade Models and the Linear
Threshold Models. We show that the greedy strategy may works poorly.

Theorem 4. The greedy strategy strategy is a min{O(K), n} approximation al-
gorithm for both the Minimum Average Contamination Problem and the Mini-
mum Worst Contamination Problem. There exists instances on which the greedy
algorithm has performance min{Ω(K), n} for both the Minimum Average Con-
tamination Problem and the Minimum Worst Contamination Problem.
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3.1 Bicriteria Approximation Algorithms for the Minimum
Contamination Problems

Given a Minimum Average Contamination Problem instance I =
(
G =

(V, E), K) with V = {1, ..., n}, we define a 0-1 variable yij for each vertices
pair (i, j) with yij = 1 means that i and j are in the same connected component
of the remaining graph after the edge blocking, we also define a 0-1 variable xe

for each edge e ∈ E with xe = 1 means edge e is chosen to be blocked in the opti-
mum solution. Denote H1, ..., Hq as the connected components of the remaining
graph, then

∑q
k=1 |Hk|2 =

∑
i,j yij . So we are able to present the natural linear

relaxation for I as follows:

min
1
|V |

∑
i,j∈V

yij

st. yij +
∑
e∈P

xe ≥ 1 ∀P ∈ Pij

−
∑
e∈E

xe ≥ −K

xe ≥ 0, yij ≥ 0 ∀e ∈ E, ∀i, j ∈ V

Even though there may be exponentially many constraints, we can find a sep-
aration oracle (the shortest path) in polynomial time, so the above linear pro-
gramming can be solved in polynomial time.

Theorem 5. There exists an
(
1 + ε, O(1+ε

ε log n)
)
-bicriteria approximation al-

gorithm for the Minimum Average Contamination Problem, for any ε > 0.

Proof. We use the linear relaxation above to get an optimum fractional solu-
tion

(
x∗

e

)
e∈E

and
(
y∗

ij

)
i,j∈V

. The rounding technique we used here was intro-
duced for the first time by [11] to get approximation algorithms for the Sum-
of-Squares Partition Problem. For any fixed ε > 0 we proceed as follows: for
each y∗

ij ≥ 1
1+ε define yij � 1, otherwise define yij � 0, for each e ∈ E define

xe = min{ (1+ε)
ε x∗

e , 1}. Then we have

∑
i,j∈V

yij ≤ (1 + ε)
∑

i,j∈V

y∗
ij and

∑
e∈E

xe ≤ (1 + ε)K
ε

moreover, for each i, j ∈ V

yij +
∑
e∈P

xe ≥ 1 ∀P ∈ Pij

Now we construct a Minimum Multi-cut Problem instance I ′ on graph G as
follows: for each i, j with yij = 0, there is a terminal pair (i, j) needs to be
separated. The goal of the problem is to find an edges subset of minimum size
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whose deletion separates all the terminal pairs. Consider the following Linear
relaxation of I ′:

min
∑
e∈E

xe

st.
∑
e∈P

xe ≥ 1 ∀P ∈ Pij with yij = 0

xe ≥ 0 ∀e ∈ E

Denote OPTLin(I ′) as the optimum value of the above relaxation for I ′. It is
easy to check that (xe)e∈E is a feasible solution of the relaxation. Make use of the
region grown techniques approximation algorithm [8] for the Minimum Multicut
problem on I ′, we find an edges subset E′ of size at most

O(log n)OPTLin(I ′) ≤ O(log n)
∑
e∈E

xe ≤ O(
1 + ε

ε
log n)K

which separates all (i, j) with yij = 0.
It is easy to verify that if we take E′ as the solution of the Minimum Average

Contamination Problem instance I, then it satisfies:

|E′| ≤ O(
1 + ε

ε
log n)K

Sol =
∑

i,j∈V

yij ≤ (1 + ε)
∑

i,j∈V

y∗ij ≤ (1 + ε)Opt(I)

Opt(I) is the optimum value of MACP instance I which satisfies Opt(I) ≥∑
i,j∈V y∗ij .

Even we use the linear relaxation to get an
(
1+ε, O(1+ε

ε log n)
)
-bicriteria approx-

imation algorithm for the MACP with good performance, we are able to show
that in the single criteria sense the linear relaxation we used has integrality gap
Ω(n) even for MACP instances on star graphs.

4 Approximation Hardness of the Minimum
Contamination Problems

In this section, we prove the hardness of approximation results for the Minimum
Contamination Problems. To our best knowledge, they are the first nontrivial
results about hardness of approximating these problems.

Definition 4 (The Multiway Cut Problem). Given a graph G = (V, E) and
a set of terminals set S = {s1, ..., sk} ⊆ V , a Multiway Cut is a set of edges
whose removal disconnects the terminals from each other. The problem is to find
the Multiway Cut set of minimum size.
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The problem of finding minimum size multiway cut is APX-hard for any fixed
k ≥ 3 [6].

Theorem 6. For any ε > 0, it’s NP-hard to approximate the Minimum Aver-
age Contamination Problem and the Minimum Worst Contamination Problem
within 5/3− ε and 2− ε respectively.

Proof (Proof of Theorem 6). We construct gap-preserving reductions from the
Multiway Cut Problem with k = 3 to the Minimum Contamination Prob-
lems. Given a Multiway Cut instance I =

(
G = (V, E); {s1, s2, s3}; K

)
, the

problem is to decide whether there exists a multiway cut of size at most K.
We construct the Minimum Contamination Problem instances as follows: Let
N > (max{|E|, |V |})2 be a parameter which will be fixed later, for each si,
construct a clique Di = (Vi, Ei) with |Vi| = N . Define graph G′ = (V ′, E′) as:
V ′ � ∪3

i=1Vi

⋃
V and E′ = ∪3

i=1Ei

⋃
E
⋃∪3

i=1Wi where Wi � {(vij , w)|vij ∈
Vi, w satisfies (w, si) ∈ E}.

We define the MACP instance as IA =
(
G′ = (V ′, E′); K

)
and the MWCP

Problem instance as IW =
(
G′ = (V ′, E′); K

)
.

If there exists a multiway cut of size K, then we can delete the K correspond-
ing edges from E′, then every Di are separated from other Dj((i �= j)) in the
remaining graph G′ \ E′, so the maximum size of the connected component of
the remaining graph is at most N + n, so in the first case

Opt(IA) ≤ 3(N + n− 2)2

|V ′| and Opt(IW ) ≤ (N + n)
|V ′|

On the other side, if the Minimum Multiway Cut of G is larger than K, we claim
there must be two Di’s are connected in the remaining graph after any deletion
of K edges from G′. Since for each i, |Di| = N and si connects to all nodes in
Di, any deletion of at most K < |E| < N edges can not separate si from Di

and can not partite Di for all i ∈ [3]. So we may assume the K deleted edges all
from E, since any minimum multiway cut of G is larger than K, after deleting
K edges from G, there must be some si and sj are still connected, which means
Di and Dj are connected in G′, in this case the size of the maximum connected
component is at least 2N + 2, i.e., in the second case

Opt(IA) ≥ (2N + 2)2 + (N + 1)2 + n− 3
|V ′| and Opt(IW ) ≥ 2N + 2

|V ′|
The NP-hardness of the Multiway Cut Problem with k = 3 implies that it’s NP-
hard to decide whether the Minimum Average Contamination Problem instance
IA =

(
G′ = (V ′, E′); K

)
is in the first case or in the second case, which means

that it NP-hard to approximate the Minimum Average Contamination Problem
within

(2N + 2)2 + (N + 1)2 + n− 3
3(N + n/3)2

≥ 5/3− ε

For any ε > 0, we can choose large enough N such that the last inequality is
true. Similarly we can prove the 2 − ε hardness of approximation result for the
Minimum Worst Contamination Problem.
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5 Conclusion

In the paper, we study the complexity and approximability of the Minimum Con-
tamination Problems in deterministic setting, which has various applications in
different areas, such as Epidemic and Panic control in social networks, virus
spreading control in networks, etc. We show that the Minimum Average Con-
tamination Problem admits (1 + ε, O(1+ε

ε log n))-approximation algorithms, and
is NP-hard to be approximated within (5/3 − ε, β) while the Minimum Worst
Contamination Problem is NP-hard to be approximated within (2 − ε, β), here
β > 1 is the hardness of approximating the Multiway Cut Problem with k = 3,
similar techniques directly 5/3 − ε hardness of approximation results for the
Sum-of-Squares Partition Problem. There are still gaps which need to be closed
for these problems. An improved single criteria approximation algorithm would
also be interesting. The complexity of the Minimum Average Contamination
Problem on trees and power law graphs is still not fixed yet.
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Abstract. It is known that the d-dimensional Steiner Minimum Tree
Problem in Hamming metric is NP-complete if d is considered to be a
part of the input. On the other hand, it was an open question whether
the problem is also NP-complete in fixed dimensions. In this paper we
answer this question by showing that the problem is NP-complete for
any dimension strictly greater than 2. We also show that the Steiner
ratio is 2 − 2

d
for d ≥ 2. Using this result, we tailor the analysis of the

so-called k-LCA approximation algorithm and show improved approxi-
mation guarantees for the special cases d = 3 and d = 4.

1 Introduction and Related Work

In this paper we discuss the d-dimensional Steiner minimum tree problem in
Hamming metric. This problem with applications in many fields of science like
computational biology or computational linguistics reads as follows: given a set
of d-dimensional strings T (called the terminals) over some finite alphabet Σ, one
seeks – possibly using other strings in Σd (called the Steiner nodes) – a tree of
minimum cost, spanning the terminal set. As implied by the name, the distance
between two strings is given by their Hamming distance. The complexity of the
problem naturally depends on which sizes are considered to be part of the input.
If d and |Σ| are sufficiently small, the problem is in P, in particular, if d and |Σ|
are considered to be constants. In [4] Foulds and Graham have shown that for
|Σ| = 2 and for d being part of the input, the problem becomes NP-complete.

As discussed for example in [1] and [6], algorithms trying to find a solution
by exhaustive search can be heavily accelerated if one is able to determine good
lower bounds for a problem instance. In [5] the authors show, how such a com-
putation can be reduced to the computation of low dimensional subproblems
and thus, the question whether subproblems of low (i.e. fixed) dimension can be
solved in polynomial time is of great practical importance. It is known and easy
� This work was done while the second author was at the Johannes-Gutenberg-

Universität Mainz.
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to see that the one-dimensional problem just corresponds to the minimum span-
ning tree of the input sequences, i.e. the number of distinct input strings minus
one. Furthermore, in [1] the authors have shown that also in two dimensions, a
minimum spanning tree is a Steiner minimum tree. Since then, it was an open
question whether the problem is in P for any fixed dimension d. In the first part
of this paper, we will close this discussion by showing that the problem becomes
NP-complete in dimensions strictly greater than two. Later, we show that the
Steiner ratio is 2− 2

d for d ≥ 2, allowing us to tailor the analysis of the approxi-
mation algorithm of Robins & Zelikovsky (see [7]) to the Steiner minimum tree
problem in Hamming metric.

2 Preliminaries

We assume that we are given a alphabet Σ and a positive integer d. We denote
by si the i-th character of a string s ∈ Σd. For a set S ⊆ Σd and an i ∈ {1, . . . , d}
we call {si | s ∈ S} the i-th column of S.

Definition 1 (Hamming distance). Given two strings s, s′ ∈ Σd, the value

‖s, s′‖ := |{ i ∈ {1, . . . , d} | si �= s′i }|

is called the Hamming distance of the strings s and s′.

Definition 2 (difference index). For u, v ∈ Σd with ‖u, v‖ = 1 we call the
index i ∈ {1, . . . , d} such that ui �= vi, the difference index of u and v.

Definition 3 (Steiner (minimum) tree in Hamming metric). Given a
set T ⊆ Σd of terminals, a Steiner tree in Hamming metric T over T is a
tree, spanning T ∪ S for a subset S ⊆ Σd, called the set of Steiner nodes. The
cost of T (denoted by cost(T )) is defined as the sum of its edge costs, where the
cost of an edge (u,v) is defined as ‖u, v‖. A Steiner minimum tree for T is a
Steiner Tree with minimal cost. We write SMT(T ) for such a tree and denote
by SMTH-d the problem of computing it.

Similar to a Steiner minimum tree, we write MST(T ) for a minimum spanning
tree over T .

Definition 4 (full component). A full component of a Steiner tree T is a
maximal subtree of T in which all leafs are terminals and no inner node is a
terminal. We call a full component trivial if it consists only of two terminals
and an edge connecting them.

Definition 5 (Steiner ratio). For a T ⊆ Σd we define R(T ) := cost(MST(T ))
cost(SMT(T ))

The Steiner ratio is then defined as supT⊆Σd (R(T )).
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3 The Complexity in Low Dimensions

Theorem 1. SMTH-3 is NP-hard.

Proof. Clearly, the decision version of SMTH-3 is in NP as the cost of a tree
can be verified in polynomial time. Thus, what is left to show is that SMTH-
3 is NP-hard. We show NP-hardness by reducing 3SAT to SMTH-3, i.e. for a
given boolean 3SAT formula F we show how to construct a terminal set T such
that cost(SMT(T )) falls below some threshold if and only if F is satisfiable. Let
V = {V1, V2, . . . , Vn} be the variables in F and let C = {C1, C2, . . . , Cm} be the
clauses in F with Ci = (Li1 ∨ Li2 ∨ Li3) where Lij ∈ {V1,¬V1, V2,¬V2, . . . , Vn,
¬Vn} are literals. We are looking for a truth assignment π : V → {true, false}
satisfying F . Using the alphabet Σ =

{
V1, . . . , Vn, V T

1 , . . . , V T
n , V F

1 , . . . , V F
n , C1,

. . . , Cm, 0} , we construct T as follows:

– For each variable Vi, we create the terminals ViV
T
i 0 and ViV

F
i 0. We call

such a pair a variable block.
– For each clause Ci = (Li1 ∨ Li2 ∨ Li3), we create the terminals CiX1Ci,

CiX2Ci, CiX3Ci, where Xk = V T
ik

if Lik
= Vik

, and Xk = V F
ik

if Lik
= ¬Vik

.
We call these three terminals a clause block. Furthermore, we create for each
clause Ci the terminal 0CiCi.

– We create the terminal 000.

Note that T contains exactly 2n + 4m + 1 terminals (see Fig. 1). We claim that
F is satisfiable if and only if cost(SMT(T )) ≤ 5m + 3n.

We first prove that cost(SMT(T )) ≤ 5m + 3n if F is satisfiable. Given a
satisfying truth assignment π : V → {true, false} for F , we construct a Steiner
tree with cost 5m+ 3n from π using only edges of length 1. For each variable Vi,
we create the Steiner node 0V T

i 0 if π(Vi) = true or 0V F
i 0 if π(Vi) = false. Since

π is a satisfying truth assignment, every clause Ci must contain at least one
literal Lk that evaluates to true under π. For one such Lk per clause we create
the Steiner node 0V T

j Ci if Lk = Vj or 0V F
j Ci if Lk = ¬Vj . Thus, in total we have

n+m Steiner nodes that we connect to the terminals as follows: For each variable
Vi, we connect ViV

T
i 0 and ViV

F
i 0 via an edge. By construction, there is a Steiner

node 0V X
i 0 with X ∈ {T, F} which we connect to the corresponding terminal

ViV
X
i 0. For each clause, we connect the three terminals CiV

X
j Ci to each other

via two edges and connect the Steiner node 0V X
j Ci (for some X ∈ {T, F}) to

the corresponding terminal in the corresponding clause block and via another
edge to the terminal 0CiCi. Furthermore, we connect the Steiner nodes 0V X

j Ci

to the corresponding Steiner nodes 0V X
j 0 and the Steiner nodes 0V X

j 0 to the
terminal 000. Since each added edge has a length of 1, this yields a tree of cost
5m + 3n.

Let us now prove the other direction, i.e. F is satisfiable if cost(SMT(T )) ≤
5m+3n. So, let cost(SMT(T )) ≤ 5m+3n. We assume without loss of generality
that SMT(T ) consists only of edges of length 1, which is a safe assumption since
by splitting longer edges and by adding further Steiner nodes each SMT can
be transformed into another SMT with this property. We will show that there
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exists a SMT whose Steiner nodes are of certain types, which will then lead to
a truth assignment satisfying F .

First, we will show that there exists a Steiner Minimum Tree whose (non-
trivial) full components all contain at least one terminal with the first coordinate
being 0. In order to see this, notice that there is a spanning tree S over the
terminals consisting of edges of length 2 such that at least one endpoint of
each edge has 0 as the first coordinate (connect 000 to each ViV

X
i 0 and to

each 0CjCj , and each 0CjCj to the three clauses of the corresponding clause
block). Now assume that there is a SMT with a non-trivial full component (of
t terminals) containing no terminal that has 0 as its first coordinate. Since all
these terminals are then pairwise different in the first coordinate (except pairs
in the clause blocks or in the variable blocks, which are wlog. directly connected
and therefore form trivial full components), the cost of this full component in
the first coordinate is at least t− 1. Likewise, all terminals are pairwise different
in the last two coordinates, so the cost for the last two coordinates is t− 1 too,
yielding an overall cost of at least 2t− 2 for a full component of t terminals that
does not contain any terminals that have 0 as their first coordinate. Hence we
can remove that full component and reconnect the terminals using edges of the
spanning tree S.

We now assume that every non-trivial full component of the SMT contains at
least one terminal with 0 as its first coordinate. Let F be such a full component.
Since all letters except 0 appear at most once as the first coordinate of terminals
of F , we can change the first coordinate of all Steiner nodes in F to 0 without
increasing its overall cost. This may however create edges of length 2 between
Steiner nodes and terminals (and double Steiner nodes, which we delete). Insert a
new Steiner node with first coordinate 0 into those edges. Now we have a Steiner
Minimum Tree with all Steiner nodes of the form 0XX and edges of length 1.
Since we supposed cost(SMT (T )) ≤ 5m + 3n, there are ≤ m + n Steiner nodes.

Let Si be a Steiner node connected to ViV
X
i 0, where X ∈ {T, F}. There must

be such a Steiner node, since no terminal has distance 1 to ViV
X
i 0. Since its

first coordinate is 0, it has the form 0V X
i 0. Likewise, let Tj be a Steiner node

connected to the Cj -clause block, it must have the form 0V Z
k Cj . The Steiner

nodes Si and Tj are pairwise different and together m+n nodes, so there are no
further Steiner nodes, and there is exactly one Steiner node for each clause and
variable block. Now examine the path from some terminal CjY Cj to V1V

T
1 0 in

the Steinertree. This path will possibly first visit other terminals in the clause
block, let CjV

X
k Cj be the last of them. Then it will visit the Steiner node Tj ,

possibly other Steiner nodes Tl and eventually for the first time a Steiner node
Si. All the Tx on the path have the same letter in the second coordinate, since
they differ in the third coordinate and the path consists of edges of length 1.
For the same reason, also Si and CjV

X
k Cj have the same second coordinate, so

i = k. Since this holds for every clause block, the Steiner nodes Si give us a
fullfilling assignment for the boolean formula: Let π(Vi) = True if Si = 0V T

i 0
and π(Vi) = False if Si = 0V F

i 0. Then the clause j is fulfilled by this assignment,
since the terminal CjV

X
k Cj , with X = T if Si = 0V T

i 0 and X = F if Si = 0V F
i 0,
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Fig. 1. The terminal set and a SMT for the 3SAT formula (V1 ∨ V2 ∨ V3) ∧ (¬V1 ∨
¬V2 ∨ V3)∧ (V2 ∨¬V3 ∨ V4)∧ (¬V1 ∨ V2 ∨ V4) with the truth assignment π(V1) = true,
π(V2) = true, π(V3) = true, π(V4) = true

is part of the clauseblock j, meaning that Vk or ¬Vk resp., was a literal in the
clause j, and is therefore fulfilled.

4 The Steiner Ratio

In this section, we will examine the Steiner ratio R, i.e. the approximation
guarantee yielded by a minimum spanning tree. This ratio plays an important
role in the analysis of state of the art approximation algorithms for the Steiner
tree problem. First, we will present a sequence of lemmas allowing us to restrict
the discussion to certain instances for which we will analyse in the following
theorems to establish the Steiner ratio of 2 − 2

d for d ≥ 2. As we know that
for d ≤ 2 a minimum spanning tree is also a Steiner minimum tree (see [1]),
we restrict the following the discussion to the case that d ≥ 3. Furthermore, we
assume that all edges have length 1, so cost(SMT(T )) = |T |+ |S| − 1, where |S|
are the Steiner nodes. We say that a Steiner minimum tree T over some terminal
set T satisfies

– property Π1 if T consists of one full component
– property Π2 if T has no elements with distance 1
– property Π3 if for each Steiner node s in T there is a terminal t ∈ T such

that ‖s, t‖ = 1
– property Π4 if there exists a spanning tree over T with edge weights 2

Note that the properties Π2 and Π4 intentionally only depend on the terminals
that are spanned by T . The main idea in this section is to show in the Lemmas
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1 to 4 that for each terminal set T there is a terminal set T ′ with R(T ′) ≥ R(T )
such that there is a Steiner minimum tree over T ′ satisfying the properties Π1,
Π2, Π3 and Π4. Exploiting the existence of such trees, we will show in Theorem
2 an upper bound on the Steiner ratio for such terminal sets T ′ and show its
tightness in Theorem 3.

Lemma 1. For any terminal set T , there is a terminal set T ′ with R(T ′) ≥
R(T ) such that an SMT(T ′) satisfies Π1.

Proof. Let Ci, 1 ≤ i ≤ k be the full components of an SMT(T ) and let Ti be
the terminals in the components Ci. Since cost(SMT(T )) =

∑k
i=1 cost(SMT(Ti))

and cost(MST(T )) ≤∑k
i=1 cost(MST(Ti)),

R(T ) ≤
∑k

i=1 cost(MST(Ti))∑k
i=1 cost(SMT(Ti))

which means that there is at least one i with R(T ) ≤ R(Ti). Thus, the set of
terminals T ′ := Ti establishes the claim, since there is an SMT(Ti) consisting of
one full component.

Lemma 2. For any terminal set T for which there is an SMT(T ) satisfying Π1,
there is a terminal set T ′ with R(T ′) ≥ R(T ) such that an SMT(T ′) satisfies
Π1 and Π2.

Proof. If T also satisfies Π2 we are done. Thus, let us assume otherwise and let
t1,t2 be two terminals in T with distance 1.Then there is an SMT(T ) with an
edge {t1, t2}, yielding a full component C1 with the terminal set T1 := {t1, t2}.
Clearly, cost(MST(T1)) = cost(SMT(T1)) = 1 and thus, there must be a full
component Ci other than C1 spanning a terminal set Ti with R(T ) ≤ R(Ti).
We can now assume wlog. that Ci satisfies property Π2 since otherwise we could
simply repeat this decomposition into smaller full components. Setting T ′ := Ti

yields the claim.

Lemma 3. For any terminal set T for which there is an SMT(T ) satisfying Π1

and Π2, there is a terminal set T ′ with R(T ′) ≥ R(T ) such that an SMT(T ′)
satisfies Π1, Π2 and Π3.

Proof. If such an SMT(T ) also satisfies Π3 we are done. Thus, we assume that
there is a Steiner node s, such that ∀ t ∈ T : ‖s, t‖ ≥ 2. Furthermore, we will
assume that s is the only Steiner node with this property. This can be done,
since otherwise the following argument could be applied to each such Steiner
node separately.

We add a new terminal t0 with ‖s, t0‖ = 1 and ‖t, t0‖ ≥ 2 for all t ∈ T . Note
that such a terminal must exist, since we can obtain t0 by changing a character
of s an element that is not contained in Σ. Since ∀ t ∈ T : ‖s, t‖ ≥ 2, we also
have that ∀ t ∈ T : ‖t0, t‖ ≥ 2. Then, MST(T ∪ {t0}) has a cost at least larger
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by 2 than an MST(T ) and SMT(T ∪ {t0}) is larger by exactly 1 than SMT(T ).
Thus,

R(T ∪ {t0}) =
cost(MST(T )) + 2 + η

cost(SMT(T )) + 1
> R(T ).

for some η ∈ N0. Here the strict inequality holds, because R(T ) < 2 − 2
|T | < 2.

Setting T ′ := T ∪ {t0} establishes the claim, which can be seen as follows:
extending the SMT(T ) by adding the edge (s, t0) with cost 1 yields a Steiner
tree T spanning T ∪ {t0}. Note that T must also be a Steiner minimum tree,
since t0 contains a character that did not appear in any of the terminals in T .
Thus, cost(SMT(T ∪{t0})) = cost(SMT(T ))+1. Furthermore, T consists of one
full component, the terminals spanned by T have pairwise distances of at least
2 and for s, there is a terminal with distance 1, namely the added terminal t0.

Lemma 4. For any terminal set T for which there is an SMT(T ) satisfying Π1,
Π2 and Π3, there is a terminal set T ′ with R(T ′) ≥ R(T ) such that an SMT(T ′)
satisfies Π1, Π2, Π3 and Π4.

Proof. Assume there is no such spanning tree. Then T can be decomposed into
subsets T1, T2, . . . , Tq, so that the terminals in Ti are connect-able with a span-
ning tree of edge length 2, but there is no connection of length 2 between Ti and
Tj with i �= j.

We claim that there are i, j ∈ {1, . . . , q} with i �= j such that, there are at
most two Steiner nodes si, sj on some path between a terminal ti ∈ Ti and a
terminal tj ∈ Tj . For this to be seen, let (tj , s1, s2, . . . , sl, ti) be a path from tj
to ti with Steiner nodes si. We stated that there must be a terminal tk ∈ Tk

with ‖s2, tk‖ = 1. Now we can distinguish two cases. If Tk is unequal to Tj, the
claim holds for the sets Tj and Tk with the path (tj , s1, s2, tk). If Tk is equal to
Tj, then the path (tk, s2, . . . , sl, ti) is shorter than the path (tj , s1, s2, . . . , sl, ti).
By repeating this argument inductively, either the first case holds at some node
or we obtain a path with exactly two Steiner nodes, connecting two distinct sets
Ti and Tj , showing the claim.

Thus, consider the path (ti, si, sj , tj) connecting Ti and Tj and denote by a
the difference index of (si, sj). Now we claim that there exists neither for si nor
for sj a terminal that differs only in the a-th element from si or sj respectively:
Assume without loss of generality that there is a t′j that differs only in the a-th
element from sj . Then ‖tj , t′j‖ ≤ 2 and thus, t′j ∈ Tj . But since the difference
index of both (t′j , sj) and (sj , si) is a, ‖t′j, si‖ = 1 and therefore ‖t′j , ti‖ = 2,
which conflicts with the assumption that the distance between Ti and Tj is ≥ 3.
So, there is no terminal that differs from either si or sj in the a-th element.

Now we can add a terminal t0 that only differs from si in the a-th element
(we choose a character that is not used by any terminal in T ) and obtain T ′ =
T ∪{t0}. t0 has distances of at least 2 to all existing terminals, thus this increases
the MST by 2, but the SMT only by 1. Thus,

R(T ′) =
cost(MST(T )) + 2
cost(SMT(T )) + 1

> R(T )
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Fig. 2. Proof illustration for Lemma 4

Analogously to the arguments used in the proof of Lemma 3, there is now a
Steiner minimum tree T spanning T ∪{t0} satisfying the properties Π1, Π2 and
Π3. Repeatedly applying this argument by adding a finite number (at most q−1)
of terminals, establishes also property Π4 and thereby the claim.

Theorem 2. For any set T of d-dimensional strings, R(T ) ≤ 2− 2
d .

Proof. Let T be an arbitrary terminal set. Then the above lemmas show that
there is a terminal set T ′ with R(T ′) ≥ R(T ) such that there is an SMT(T ′)
satisfying the properties Π1, Π2, Π3 and Π4. Let T ′ = (T ′ ∪ S, E) be an SMT
over T ′ with Steiner nodes S satisfying Π1, Π2, Π3 and Π4. Then by Lemma
4, cost(MST(T ′)) = 2|T ′| − 2. Let us assume that the claim does not hold, i.e.
R(T ′) > 2− 2

d Then

R(T ′) =
2|T ′| − 2

|T ′|+ |S| − 1
>

2d− 2
d

⇔ |S| < 1
d− 1

|T ′| − 1
d− 1

(1)

Since all edges in T ′ have length 1, an edge connects two nodes that differ in
exactly 1 character. So, the edges of the SMT can be partitioned according to
their difference index i ∈ {1, 2, . . . , d}. T ′ consists of |T ′|+ |S|−1 edges, so there
is at least one i ∈ {1, 2, . . . , d}, such that the T ′ has di ≥ 1

d (|T ′|+ |S| − 1) edges
of difference index i. Consider the forest consisting of S ∪ T ′ and the di edges
of type i. In general, for a forest we have k = m − n, where k is the number of
isolated components, m is the number of vertices and n is the number of edges.
In our case, this yields:

k = |T ′|+ |S| − di ≤ |T ′|+ |S| − 1
d

(|T ′|+ |S| − 1)

=
d− 1

d
|T ′|+ d− 1

d
|S|+ 1

d

(I)
<

d− 1
d
|T ′|+ 1

d
|T ′| − 1

d
+

1
d

< |T ′| ,

where the strict inequality I follows from inequality 1. But if the number of iso-
lated components is strictly less than |T ′|, then at least one isolated component
contains at least 2 terminals. These terminals are connected only by edges of the
same difference index, and so, they have distance 1, which is a contradiction to
our assumption.

In [3], the author has shown that there is a terminal set T of d-dimensional
strings of cardinality d such that the Steiner ratio for this problem instance is
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2− 2
d . In the following theorem, we will show, that there are even arbitrary large

problem instances, for which the Steiner ratio is achieved.

Theorem 3. The bound cost(MST)
cost(SMT) ≤ 2 − 2

d is tight: There exists an arbitrarily
large input instance T ⊆ Σd with R(T ) ≥ 2− 2

d .

Proof. We start by constructing a rooted tree T with the following proper-
ties: a) the root has degree d, b) all other inner nodes have degree d + 1 and
c) all leaves have the same depth m. Then we assign strings from Σd to the
tree nodes as follows. We assign to the root node an arbitrary string in Σd.
For all nodes vi of depth n ∈ {0, . . . , m − 1} starting from n = 0, we assign
strings to the adjacent nodes v1

i , v2
i , . . . , vd

i of vi of depth n + 1 in the following
way: if (A1, A2, . . . , Ad) is the string corresponding to vi, we assign the string
(A1, A2, . . . , Aj−1, X, Aj+1, . . . , Ad) to vj

i for a so far not used element X ∈ Σ.
We identify the set of strings assigned to the leaves of this tree with the input
instance T . Since T is a tree spanning over T ,

cost(SMT(T )) ≤ cost(T ) =
m∑

i=1

di =
dm+1 − d

d− 1

Note that the pairwise distances of elements in T are at least 2 which can easily
be seen by induction over m and thus, cost(MST(T )) ≥ 2(|T | − 1) = 2(dm − 1).
But then R(T ) = cost(MST(T ))

cost(SMT(T )) ≥ 2(dm−1) d−1
(dm+1−d) = 2− 2

d . Since we can choose
m arbitraily large, the finishes the proof.

From Theorem 2 and Theorem 3 follows immediately:

Theorem 4. The Steiner ratio of Steiner minimum trees in Hamming metric
in dimension d ≥ 2 is 2− 2

d

4.1 Applications

In [2], the authors give an polynomial time algorithm for the Steiner tree problem
with an expected approximation ratio of ln(4) ≈ 1.39. However, in this section
we will use the Steiner ratio to derive better approximation guarantees for the
algorithm by Robins and Zelikovsky [7] in the case of Hamming Metric. Let us
first recall some important definitions.

Definition 6 (k-restricted Steiner Trees). A k-restricted Steiner tree T is
a Steiner tree in which every full component contains at most k terminals. A
shortest k-restricted Steiner tree for a terminal set T is denoted by OPTk(T).

Definition 7 (Loss). A minimum cost connection of the Steiner nodes of a full
component K of T to its terminals is denoted by LOSS(K) and LOSS(T ) is
defined as the sum over the LOSS(K) of the full components K of T . Finally,
LOSSk(T) is then defined as the loss of OPTk(T).
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In the following we will omit the input set T for the sake of readability, i.e. we
write for example LOSSk for LOSSk(T).

In [7], the authors propose the so-called k-LCA approximation algorithm for
the Steiner minimum tree problem in graphs which constructs a tree with a cost
of at most

LOSSk · ln
(

1 +
cost(MST)− cost(OPTk)

LOSSk

)
+ cost(OPTk)

As a consequence one can show:

Corollary 1. The k-LCA algorithm has an approximation ratio of

1 + α · ln
(

α +R− 1
α

)

for the Steiner ratio R and for an α such that α ≥ LOSS(T )
cost(T ) for all Steiner trees

T .

Proof. The proof follows the proof of Theorem 2 in [7]. As mentioned before,
the authors show that the tree constructed by the k-LCA algorithm has a cost
of at most

LOSSk · ln
(

1 +
cost(MST)− cost(OPTk)

LOSSk

)
+ cost(OPTk) (2)

Since α ≥ LOSS(T )
cost(T ) for any Steiner tree T , in particular LOSSk ≤ α ·cost(OPTk).

The partial derivative LOSSk · ln
(

1 + cost(MST)−cost(OPTk)
LOSSk

)′
LOSSk

is always pos-

itive and thus, the bound attains its maximum for LOSSk = α · cost(OPTk).
Together with the fact that cost(MST) ≤ R · cost(SMT) ≤ R · cost(OPTk), this
yields a cost of

cost(OPTk)
(

1 + α · ln
(

1 +
(R− 1) cost(OPTk)

α · cost(OPTk)

))

which shows the claim for k →∞, as cost(OPTk) goes to cost(SMT)) for k →∞.

Together with the Steiner ratio that we have derived in the previous section for
the SMTH-d problem, we have:

Theorem 5. For SMTH-d, there is a polynomial time (1 + 1
2 ln(3− 4

d))-appro-
ximation algorithm.

Proof. In [8] the authors show that for any Steiner tree, its loss is not larger
than 1

2 times its cost and thus, α = 1
2 . Furthermore, we have shown in Theorem

4 that the Steiner ratio is R = 2− 2
d . Then by Corollary 1, the k-LCA algorithm

gives the desired approximation guarantee.
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For the case d = 3, the algorithm achieves an approximation ratio of ≈ 1.255,
and ≈ 1.347 for d = 4.

We will now prove that in the three dimensional case, the analysis of the k-
LCA algorithm can be improved to a ratio of ≈ 1.231. For this, we use a Lemma
from [1], which allows us to restrict the following discussion to input sequences
I, such that there is always a minimum spanning tree over I with edge lengths
strictly less than 3:

Lemma 5. For T ⊆ Σ3, let C1, . . . Ck be the connected components of the graph
G = (T, E) with E = { (u, v) ∈ T × T | ‖u, v‖ ≤ 2 }. Furthermore, let
ci be an arbitrary representative of the component Ci. Then

⋃k
i=1 SMT(Ck) ∪

MST( {c1, c2, . . . , ck} ) is a Steiner minimum tree over T .

Theorem 6. For SMTH-3, there is a polynomial time (1 + 1
3 ln(2))-approxima-

tion algorithm.

Proof. If we only use edges of length 1, we know that LOSSk = |Sk| =
cost(OPTk) − |T| + 1, where Sk are the Steiner nodes of OPTk. Since we can
assume without loss of generality that cost(MST) ≤ 2|T | − 2, we obtain for the
cost A of the approximate solution:

A ≤ LOSSk · ln
(

1 +
cost(MST)− cost(OPTk)

LOSSk

)
+ cost(OPTk)

≤ |Sk| · ln
(

1 +
2|T | − 2− |T | − |Sk|+ 1

|Sk|
)

+ cost(OPTk)

< |Sk| · ln
( |T |
|Sk|

)
+ cost(OPTk)

= cost(OPTk) ·
( |Sk|

cost(OPTk)
· ln
( |T|
|Sk|

)
+ 1
)

= cost(OPTk) ·
( |Sk|
|Sk|+ |T| − 1

· ln
( |T|
|Sk|

)
+ 1
)

|T |→∞−→ cost(OPTk) ·
( |Sk|
|Sk|+ |T| · ln

( |T|
|Sk|

)
+ 1
)

The single maximum of |Sk|
|Sk|+|T | · ln

(
|T |
|Sk|
)

+ 1 for fixed |T | is at 1.279 for |Sk|
|T | =

0.279. But we know that |S| ≥ |T |
2 − 1

2 , which is also true for full components,
so |Sk| ≥ |T |

2 − 1
2 and thus, |Sk|

|T | ≥ 1
2 for |T | → ∞. So the maximal value of

|Sk|
|Sk|+|T | · ln( |T |

|Sk| ) + 1 is at |Sk|
|T | = 1

2 , which yields the claim.

We conclude this section with a negativity result. As Corollar 1 shows, the
approximation guarantee of the k-LCA algorithm depends on two parameters,
namely the Steiner ratio and the upper bound α on the ratio LOSS(T )

cost(T ) for Steiner
trees T over T . In Theorem 5 we make use of the Steiner ratio derived in this
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Fig. 3. A terminal set T with LOSS(T )
cost(T )

= 3
6

= 1
2

section and use for α the value 1
2 since it was shown in [8] that the loss of a

Steiner tree in graphs is never larger than 1
2 times its cost. A natural question is

now whether this bound is tight for Steiner minimum trees in Hamming metric.
Unfortunately the answer is yes as one can construct a problem instance T for
which the ratio is exactly 1

2 . For an example, see Figure 3 (which can easily be
extended to larger instances): recall that LOSS(T ) is defined as the cost of a
tree connecting the Steiner nodes to to terminals. Such a tree must consist of at
least |S| many edges where S is the set of Steiner nodes. Because each edge in
T has cost 1, LOSS(T ) ≥ |S| = |T| − 1. As cost(T ) = 2|T | − 2, LOSS(T )

cost(T ) ≥ 1
2 .

5 Conclusion

In this paper we have shown that the d-dimensional Steiner minimum tree in
Hamming metric problem becomes NP-complete in dimensions strictly larger
than 2. Additionally, we have shown a Steiner ratio of 2− 2

d and how this result
can be used to tailor the analysis of existing approximation algorithms.
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Abstract. We consider the problem of testing whether a function
f : {0, 1}n → {0, 1} is computable by a read-once, width-2 ordered bi-
nary decision diagram (OBDD), also known as a branching program.
This problem has two variants: one where the variables must occur in
a fixed, known order, and one where the variables are allowed to occur
in an arbitrary order. We show that for both variants, any nonadaptive
testing algorithm must make Ω(n) queries, and thus any adaptive testing
algorithm must make Ω(log n) queries.

We also consider the more general problem of testing computability by
width-w OBDDs where the variables occur in a fixed order. We show that
for any constant w ≥ 4, Ω(n) queries are required, resolving a conjecture
of Goldreich [15].

We prove all of our lower bounds using a new technique of Blais,
Brody, and Matulef [6], giving simple reductions from known hard prob-
lems in communication complexity to the testing problems at hand. Our
result for width-2 OBDDs provides the first example of the power of this
technique for proving strong nonadaptive bounds.

1 Introduction

In this work we consider the problem of testing whether a function f : {0, 1}n →
{0, 1} is computable by a very limited type of computational device, a read-
once Ordered Binary Decision Diagram (OBDD), also known as a Branching
Program. We formalize this question in the language of property testing. The
goal of a property tester is to distinguish objects which have a property from
those that are “far” from having the property, with limited access to the object.
Here, the object is a boolean function f : {0, 1}n → {0, 1}, and we would like a
randomized algorithm that accepts f with high probability if it is computable
by a read-once OBDD, and rejects f with high probability if it disagrees with
any OBDD on an ε fraction of inputs. Property testing algorithms are adaptive
if queries are chosen based on answers to previous queries; otherwise, testers are
non-adaptive. The complexity of the algorithm is the number of times it queries
f , which should hopefully be a small function of n and ε.
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Property testing, and in particular testing of boolean functions, has a long
history. Over the last two decades researchers have studied algorithms for testing
many different properties of functions, such as the property of being linear [7],
being monotone [16,13], being a dictator, a monomial [22] or a k-junta [12,4,5],
or being expressible in various different “concise” forms such as an s-sparse
polynomial, a size-s decision tree, etc. [9] (see, e.g., the survey of [24]).

The class of OBDDs has been studied in many areas of theoretical computer
science, particularly in computational learning theory (e.g. [11,23,3,14,8]), where
there is a well-known connection to testing. In particular, Goldreich et. al. [17]
observed that any proper learning algorithm for a class of functions C can be
used to test whether f is in C versus far from C. Thus, the complexity of a proper
learning algorithm serves as an upper bound on the number of queries required
to test. However, this bound is often weak, since for many interesting classes,
the query complexity of testing is much smaller than the complexity of learning
(for instance, the class of linear functions is testable with O(1/ε) queries [7],
independent of n, even though any learning algorithm must see at least Ω(n)
values of f). It is natural to ask whether this is also the case for OBDDs.

1.1 Results for Width-2 and Width-3 OBDDs

The problem of testing whether a function f is computable by an OBDD was
first studied by Ron and Tsur in [25]. They point out that although previous
testing results have looked at the problem of testing whether f has a simple
form, it seems reasonable instead to fix a simple model of computation, and test
whether f is computable within the model. They focused on the model of width-2
read-once OBDDs, because this class has a simple structure, yet still generalizes
some previously well-studied classes, such as linear functions and monomials.

Ron and Tsur identified two variants of this problem. In the first, the tester
wishes to determine whether f is computable by an OBDD where the variables
must appear in a fixed, known order (say, x1 . . . xn). In the second, studied in
[26], the tester wishes to determine whether f is computable by an OBDD where
the variables can appear in any arbitrary order. Note that the complexity of the
former problem is not a priori related to the complexity of the latter, since a
function can be far from an OBDD with variables in order x1 . . . xn, but still be
equal to an OBDD when the variables are rearranged1.

For the first variant of the width-2 OBDD testing problem, where the variables
must occur in a fixed order, Ron and Tsur gave an adaptive upper bound of
Õ(log n) · poly(1/ε) queries [25] (here the Õ notation hides factors of log log n).
This is an exponential improvement over the Ω(n) queries required for learning
the same class2. Their upper bound raises the obvious question of whether the
1 In general, if C′ is a subset of C, the complexity of testing membership in C′ may be

quite different than the complexity of testing membership in C. However, they are
often the same when the classes are conceptually related.

2 The learning bound is easy to show, since the class of width-2 read-once OBDDs
contains, for instance, all linear functions- a set of 2n functions which are all far from
each other.
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Õ(log n) dependence on n is necessary, and indeed, whether any dependence on
n is necessary at all. Our first result provides an answer to this question.

Theorem 1. Any nonadaptive testing algorithm requires Ω(n) queries (and thus
any adaptive testing algorithm requires Ω(log n) queries3) to test

i. width-2 OBDDs with variables in a fixed order.
ii. width-3 OBDDs with variables in a fixed order.

For width-2 OBDDs, Theorem 1 is essentially tight in terms of n. As mentioned,
for adaptive algorithms Ron and Tsur gave an upper bound of Õ(log n), and
for nonadaptive algorithms, a simple Occam learning algorithm yields an upper
bound of O(n)4.

A few words are in order regarding the history of Theorem 1. In [25], Ron
and Tsur gave a lower bound of Ω(log n) for testing fixed-order width-2 OBDDs
with one-sided error. However, this proof was recently found to contain a flaw,
which we discuss in the full version of this paper. In subsequent work [28],
the same authors gave a different proof which improved the bound to Ω(n) for
nonadaptive testers, even with two-sided error, thus achieving the same bound as
in Theorem 1. The “no” instances (functions that are far from width-2 OBDDs)
we use in our proof are partially inspired by [28]. However, our proof technique
uses a different, more modular approach, as we shall discuss below.

For the problem of testing width-2 OBDDs when the variable order is un-
known, the lower bound of Ron and Tsur does not apply. Tackling this case was
posed as an open question in [28]. Our technique is able to handle this case as
well, as shown in our second main result.

Theorem 2. Any two-sided error, nonadaptive algorithm for testing com-
putability by width-2 OBDDs with variables in arbitrary order requires Ω(n)
queries (and thus, any adaptive algorithm requires Ω(log n) queries).

Remark: An earlier version of this paper claimed that the lower bound in
Theorem 2 was essentially optimal, since it matched an upper bound given by
Ron and Tsur in [26]. However, after reading a draft of this paper, Ron and
Tsur discovered a flaw in their upper bound in [26], and showed that in the
arbitrary-order case, Theorem 2 can be strengthened to Ω(n), even for adaptive
algorithms [27]. Their improvement is nearly optimal, since in this case one can
test using a simple Occam learning algorithm which makes O(n log n) queries.

3 It is well known, and simple to show, that any adaptive testing algorithm which
makes q queries can be transformed into a nonadaptive algorithm which makes
2q queries. Hence a nonadaptive bound of Ω(g(n)) implies an adaptive bound of
Ω(log g(n)). As our result shows, this exponential gap is sometimes necessary.

4 An Occam learning algorithm for a class C is simply a nonadaptive algorithm that
draws a set of random examples, and searches for a member of C consistent with f
evaluated on those examples. It is well known that such an algorithm will produce an
ε-accurate hypothesis with constant probability after seeing O(log |C|/ε) examples.
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1.2 Results for Width-w OBDDs, for Constant w ≥ 4

We also consider the problem of testing computability by width-w read-once
OBDDs, for constant w ≥ 4, where the variables must appear in a fixed or-
der. This problem was previously studied by Goldreich in the w = 4 case [15].
He showed that unlike the width-2 case, where testing can be done with expo-
nentially fewer queries than learning, testing width-4 OBDDs requires Ω(

√
n)

queries. He conjectured that the true bound is Ω(n). In this case, the complex-
ity of testing would be essentially the same as the complexity of learning, since
for any constant w, a simple Occam learning algorithm implies an O(n) upper
bound. Our final result confirms Goldreich’s conjecture.

Theorem 3. For any constant w ≥ 4, any adaptive algorithm for testing com-
putability by width-w OBDDs with variables in fixed order requires Ω(n) queries.

1.3 Techniques

All of our lower bounds are proven using a new technique developed by the first
two authors, along with Blais [6]. The result in [6] shows to reduce communi-
cation problems to testing problems, and thus leverage known lower bounds in
communication complexity to prove lower bounds in testing.

Traditionally, property testing lower bounds are proven using Yao’s Minimax
Lemma. One starts by designing two families of objects- one family of yes in-
stances (objects which have the property), and another of no instances (objects
which are far). In the next step, one defines a distribution over each family, and
then one must show that no deterministic algorithm can distinguish with high
probability whether a function is drawn from the yes or no family. This step
often involves nontrivial technical analysis. The philosophy put forth in [6] is
that one can often eliminate the work required in this step, by creating yes and
no instances which correspond to the yes and no instances of a communica-
tion problem. If strong lower bounds for the communication problem are already
known, no new technical analysis is required.

Roughly speaking, the technique given in [6] translates one-way communica-
tion lower bounds to nonadaptive testing bounds, and two-way communication
lower bounds to adaptive testing bounds. This was observed in [6], though no
examples were given there of nonadaptive bounds that did not also apply to the
adaptive case. For testing width-2 OBDDs in the fixed-order case, the nonadap-
tive complexity is much higher than the adaptive complexity. Thus, to prove
Theorem 1, we must reduce from a communication problem that is hard when
one-way communication is allowed, but easier when two-way communication is
allowed. Our solution is to use an asymmetric communication problem for which
this is known to be the case. Namely, we use the augmented-index problem, a
variant of the well-known index problem. These problems have long been useful
for proving streaming lower bounds [19,21,10], and now find a use in property
testing as well. (We note that our proof of Theorem 2 has a similar flavor, and
features a reduction from the index problem. However, as we remarked earlier,
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Ron and Tsur have subsequently improved this to an adaptive lower bound of
Ω(n), via a reduction from the symmetric set-disjointness problem.)

2 Preliminaries

For two boolean functions f, g : {0, 1}n → {0, 1}, the distance between f and g,
denoted d(f, g) is equal to Prx[f(x) �= g(x)].

We will work in the standard property testing model. Let P denote a property
(a subset) of boolean functions. Then a tester for P is a randomized algorithm
which when given query access to a function f : {0, 1}n → {0, 1} and a distance
parameter ε, outputs “accept” with probability at least 2/3 if f ∈ P , and “reject”
with probability at least 2/3 if d(f, g) > ε for all g ∈ P . A one-sided tester is a
tester which outputs “accept” with probability 1 if f ∈ P . A nonadaptive tester
is a tester which chooses its entire query set at the start of the algorithm.

We use Q(P) to denote the minimum query complexity of a (possibly adap-
tive) tester for P , and Qna(P) to denote the minimum query complexity of a
nonadaptive tester for P .

A two-party communication problem is defined by a function C : A × B →
{0, 1}. Alice has an input a ∈ A and Bob has an input b ∈ B, and they would
like to compute the value of C(a, b). We work in the public randomness model,
where Alice and Bob generate messages based on random bits they both see.

We use R(C) to denote the minimum number of bits they must communicate
for them both to compute C(a, b) with probability at least 2/3 on any input pair
(a, b). We use R→(C) to denote the one-way complexity- that is, the number of
bits Alice must communicate for Bob to compute C(a, b) with high probability
(without sending any message to Alice).

For more details on communication complexity, consult the standard work of
Kushilevitz and Nisan [20].

2.1 Reducing Communication Problems to Testing Problems

In this section, we give a sketch of the lower bound approach in [6]. We refer the
reader to that paper for a more formal treatment.

Lemma 1. Let C be a communication problem and P a property. Given func-
tions f : {0, 1}n → {0, 1} and g : {0, 1}n+1 → {0, 1}, define the function
h = h(f, g) : {0, 1}n → {0, 1} as

h(x) := g(f(x), x)

Suppose there is a way for Alice and Bob to create functions fa and gb based
on their inputs such that (i) h(fa, gb) ∈ P if C(a, b) = 1, and (ii) h(fa, gb) is
Ω(1)-far from P if C(a, b) = 0. Then,

1. R→(C) ≤ Qna(P), and
2. R(C) ≤ 2Q(P).
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Remark: In most reductions, h is defined as h(x) := fa(x) ⊕ gb(x) for some gb

independent of f(x); however, this need not always be the case. In Section 4, we
crucially rely on the asymmetry of the general construction.

Proof. (sketch) For the latter case, suppose there is an adaptive testing algorithm
A for P . Alice and Bob can cooperatively run this algorithm on h, using shared
randomness to decide which values of h to query. Every time A queries h(x)
on some x, Alice sends f(x) to Bob, who then computes h(x) and returns it to
Alice. In this way, both players maintain the list of query results {h(x)} and can
therefore generate successive values to query. If A is indeed a testing algorithm
for P , then at the end of the protocol they will know the value of C(a, b) with
high probability; the number of bits exchanged is twice the number of queries
made by A.

The former case is similar. The only difference is that since queries are gen-
erated nonadaptively, Alice can send Bob {f(x)} in a single message. Thus, the
communication cost equals the query complexity of the testing algorithm.

2.2 Communication Complexity Problems

To prove our lower bounds, we give reductions from some standard communica-
tion problems. First, the set-disjointness problem:

Set-Disjointness. Alice and Bob are given n-bit inputs a and b and must
compute

disj(a, b) :=
n∨

i=1

ai ∧ bi

It is well-known that the two-way communication complexity, R(disj), is Ω(n),
even with the promise that ai ∧ bi = 1 for at most one i [18].

For our width-2 OBDD bounds, where the nonadaptive complexity is larger
than the adaptive complexity, it is necessary for us to reduce from communication
problems where the one-way complexity (where Alice is allowed to send to Bob,
but not vice-versa) is larger than the two-way complexity. We use the following
two problems:

Index. Alice has an n-bit input a, and Bob has a log n-bit index i ∈ [n] (through-
out, we will use the shorthand [n] to denote the set {1, . . . , n}). Bob’s goal is to
compute

index(a, i) = ai

It is well-known that the one-way complexity, R→(index), is Ω(n) [1].

Augmented-Index. augmented-index is nearly identical to index, but Bob
is also allowed to see bits a1 . . . ai−1 without incurring any communication cost.
Even with this additional “free” information, the one-way communication com-
plexity, R→(augmented-index), remains Ω(n) [2].
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2.3 Branching Program Basics

A binary decision diagram (BDD), or branching program, is a layered directed
acyclic graph with a distinguished source vertex and two sink vertices, labeled
0 and 1. Each internal vertex is labeled with an input variable and has out-
going edges to vertices in the next layer of the BDD. These edges are labeled
with possible outcomes for the variable. In an ordered binary decision diagram
(OBDD), all vertices in a layer are labeled with the same input variable. The
width of an OBDD is the maximum number of vertices in any layer. An OBDD
is read-once if vertices in different layers are labeled by different variables. In
this work, we are only concerned with read-once OBDDs, and so we will often
drop the “read-once” modifier.

We will use some basic definitions and claims developed by Ron and Tsur.
The following can be found in [25]. The proofs of the facts are left as exercises.

Definition 1. A function f : {0, 1}n → {0, 1} is a linear function of x1 . . . xn

if it can be written in the form f(x) = b0 +
∑n

i=1 bixi where b0 . . . bn ∈ {0, 1}5.

Fact 4. A function f : {0, 1}n → {0, 1} is computable by a width-2 OBDD with
variables in fixed order x1 . . . xn if and only if it can be written as

f(x) = fn(xn, fn−1(xn−1, . . . f2(x2, f1(x1))))

where f1 is a boolean function on one bit and f2, . . . , fn are boolean functions on
two bits. f is computable by a width-2 OBDD with variables in arbitrary order
if and only if it can be written in the same form after some permutation π ∈ Sn

is applied to the variables.

We will slightly abuse notation, and use fi both to refer to a function on 2
variables (the i’th variable and fi−1), as well as a function on the first i variables.

Definition 2. Consider a function f : {0, 1}n → {0, 1} expressed in the form
given in Fact 4. We say that a level i is relevant if the function fi depends on the
value of xi. Relevant levels can be either linear or blocking. A relevant level is
a linear level if fi is a linear function of xi and fi−1. Otherwise, it is blocking.

Fact 5. If i is a blocking level, then fi is either the and or or of a ∈ {xi, xi}
and b ∈ {fi−1, fi−1}. Thus, if i is blocking level, there exists a setting t ∈ {0, 1}
for xi such that fi is constant, regardless of the value of fi−1.

Definition 3. Let f : {0, 1}n → {0, 1}. We define the influence of variable i in
f as Inff (i) := Prx[f(x) �= f(x⊕i)], where x⊕i denotes x with the i’th bit flipped.

Lemma 2. Let M be a width-2 OBDD with variables in order x1 . . . xn. Let
j < i and suppose level i is a blocking level. Then Inffi(j) ≤ 1

2 Inffi−1(j).

Fact 6. Let f, g : {0, 1}n → {0, 1} and suppose there is a variable xi such that
|Inff (i)− Infg(i)| = τ . Then d(f, g) ≥ τ/2.

5 In this definition and throughout the paper, addition is taken to be over GF (2).
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3 A Lower Bound for Testing Fixed-Order Width-2 and
Width-3 OBDDs

In this section we prove Theorem 1. The proof will be via a reduction from
augmented-index. The main idea is that Alice will use her input to form a
linear function, and Bob will use his index (plus extra knowledge) to form a linear
function plus an AND of two consecutive variables. They then take the xor of
their two functions. If ai = 1, then in the resulting function the AND will appear
before the linear part, so it will be computable by a width-2 OBDD. However
if ai = 0, then in the resulting function the AND will appear after a variable in
the linear part, so it will be far from any width-2 or width-3 OBDD (where the
variables must appear in a fixed order). To show that our “no” instances are far,
we make use of the following lemma.

Lemma 3. Let h : {0, 1}n → {0, 1} be a function of the form h(x) = xi+(xi+1∧
xi+2) +

∑
k∈S xk for some i ∈ [n− 2] and S ⊆ {i + 3, . . . , n}. Then,

i. h is 1/4-far from any width-2 OBDD, with variables in fixed order x1 · · ·xn.
ii. h is 1/8-far from any width-3 OBDD, with variables in fixed order x1 · · ·xn.

In the case of width-2 OBDDs, Lemma 3 essentially appears as Claim 6 in [25].
We leave the proof of Lemma 3 to the full version of this paper. We are now
ready to prove Theorem 1.

Theorem (Restated). Any nonadaptive testing algorithm requires Ω(n)
queries (and thus any adaptive algorithm requires Ω(log n) queries) to test

i. width-2 OBDDs with variables in a fixed order.
ii. width-3 OBDDs with variables in a fixed order.

Proof. Let n′ = �(n− 3)/4�. We will show a reduction from augmented-index

on n′ variables. Since the one-way communication complexity of augmented-

index is Ω(n′), and n′ is linear in n, this will imply an Ω(n) testing bound.
First, Alice uses her input a ∈ {0, 1}n′

to form the function f , and Bob uses
his input i ∈ [n′] (plus knowledge of a1 . . . ai−1) to form the function g as follows

f(x) :=
n′∑

k=1

x4k+3ak
and g(x) := (

i−1∑
k=1

x4k+3ak
) + (x4i+1 ∧ x4i+2)

Bob can then solve augmented-index by running a testing algorithm on the
joint function h(x) = f(x) + g(x) and having Alice send him the value of f(x)
whenever he needs to query h. It is easy to see that if ai = 1, then h(x) =
(x4i+1∧x4i+2)+x4i+3 +

∑n′

k=i+1 x4k+3ak
, so h is a width-2 OBDD. On the other

hand, if ai = 0 then h(x) = x4i + (x4i+1 ∧ x4i+2) + (
∑n′

k=i+1 x4k+3ak
), so by

Lemma 3, h is far from any width-2 or width-3 OBDD.
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4 A Lower Bound for Testing Arbitrary-Order Width-2
OBDDs

In this section we prove Theorem 2. The proof will be via a reduction from
index. The main idea is that Alice will use her inputs to form a width-2 OBDD
on pairs of variables corresponding to the indices where ak = 1. Then Bob will
use his index i to append two more variables to the end of the OBDD. If ai = 0,
then no variable will be used more than once, so the resulting function will
remain a width-2 OBDD. If ai = 1, then two variables will be used twice, which
will cause the resulting function to be far from any (read-once) width-2 OBDD.

Theorem (Restated). Any two-sided error, nonadaptive algorithm for testing
computability by width-2 OBDDs with variables in arbitrary order requires Ω(n)
queries (and thus, any adaptive algorithm requires Ω(log n) queries).

Proof. Let n′ = �(n−1)/2�. We will show a reduction from index on n′ variables.
Since the one-way communication complexity of index is Ω(n′), and n′ is linear
in n, this will imply an Ω(n) testing bound.

First, Alice uses her input a ∈ {0, 1}n′
to form the function

f(x) := x1 +
n′∑

k=1

ak(x2k + x2k+1)

Then Bob uses his index i ∈ [n′] to form the combined function

h(x) := (f(x) ∧ x2i) + x2i+1

We claim that Bob can solve index by running a testing algorithm on h. To
see this, first note that f is just a linear function on some subset of variables. If
ai = 0, then the variables x2i and x2i+1 do not appear in f , so the resulting h
is clearly a read-once width-2 OBDD.

If ai = 1, then the variables x2i and x2i+1 do appear in f . In this case, we
can write f(x) = f ′(x) + x2i + x2i+1, where f ′(x) is a linear function on some
non-empty subset of variables not involving x2i or x2i+1 (note that the variable
x1 is included in f just to guarantee that f ′ is always a linear function on at
least one variable). We can thus express the resulting h as h(x) = ((f ′(x)+x2i +
x2i+1) ∧ x2i) + x2i+1, which simplifies to the following

h(x) =

{
x2i+1 if x2i = 0
f ′(x) + 1 if x2i = 1

We claim that h is 1/8-far from a read-once, width-2 OBDD. To see this, first
note that any variable xk relevant to h has Infh(k) = 1/2. This is easily checked,
since (i) x2i+1 is influential if and only if x2i = 0, (ii) the variables relevant to
f ′ are influential if and only if x2i = 1, and (iii) x2i is influential if and only if
x2i+1 �= f ′(x) + 1, which happens exactly half the time (as x2i+1 and f ′(x) are
linear functions on disjoint subsets of variables).
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Assume for contradiction that h is 1/8-close to some width-2 OBDD �. With-
out loss of generality, we can assume that �’s irrelevant variables come at the
beginning. This means that the last level of � must be a blocking level. Other-
wise, if it is a linear level, the variable at that level will have influence 1 in �,
but only influence 1/2 or 0 in h, so by Fact 6, h and � will be 1/4-far.

Since the last level of � is blocking, there must exist a setting t ∈ {0, 1} for the
variable at the last level which makes the function � constant. However, for any
fixed setting of any single variable in h, the resulting function is at least 1/4-far
from constant. This is easily checked, since (i) fixing the value of x2i induces
either x2i+1 or f ′(x) + 1, both of which are 1/2-far from constant, (ii) fixing the
value of x2i+1 still allows h to be balanced when x2i = 1, so in this case h is
1/4-far from constant, and (iii) fixing the value of a variable which appears in
f ′ still allows h to be balanced when x2i = 0, so in this case h is also 1/4-far
from constant. Since h and � disagree on at least 1/4 of the settings where �’s
last variable is set to t, this implies they must be 1/8-far.

5 A Lower Bound for Testing Fixed-Order Width-w
OBDDs, for Constant w ≥ 4.

In this section we prove Theorem 3, via a reduction from set-disjointness.
To perform the reduction, Alice and Bob will use the elements in their sets to
produce a set of and clauses. They then run a testing algorithm on the xor of
these clauses. Crucially, they will construct the clauses in such a way that when
their sets intersect, they produce at least k := �log2 w� clauses with interleaving
variables. This large number of interleaving variables forces the hard instances
to be far from computable by (fixed-order) width-w OBDDs.

In order to show that our hard instances are far, we make use of the following
technical lemma, which we prove in the full version of this paper. The lemma is
a generalization of the w = 4 case proved in Theorem 4.2 of Goldreich [15].

Lemma 4. Let k := �log2 w� and n′ := �n/2k� − 1. For boolean variables
x1, . . . , x2k, define predicates σ1, σ2, σ3, σ4 as

σ1(x1, . . . , x2k) := 0, σ2(x1, . . . , x2k) := (x1 ∧ xk+1) + . . . + (xk−1 ∧ x2k−1)

σ3(x1, . . . , x2k) := xk ∧ x2k, σ4(x1, . . . , x2k) := (x1 ∧ xk+1) + . . . + (xk ∧ x2k)

and for v1, . . . , vn′ ∈ {1, 2, 3, 4}, define a boolean function h = hv1,...,vn′ as

h(x) := x1 +
n′∑

i=1

σvi(x2ki+1 , . . . , x2ki+2k)

i. If vi ∈ {1, 2, 3} for all i, then h is computable by a width-w OBDD.
ii. If vj = 4 for a unique j, then h is 1

2w2 -far from any width-w OBDD.

Theorem (Restated). For any constant w ≥ 4, any adaptive algorithm for
testing computability by width-w OBDDs with variables in fixed order requires
Ω(n) queries.
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Proof. Let k := �log w� and n′ := �n/2k� − 1. We will reduce from set-

disjointness (with the promise that Alice and Bob’s sets intersect in at most
one place) on n′ variables. Since n′ is Θ(n), this will imply an Ω(n) lower bound.

Let S, T ⊆ [n′] denote Alice’s and Bob’s inputs respectively. Then Alice con-
structs the function f and Bob constructs the function g as follows

f(x) :=
∑
i∈S

(x2ki+1 ∧ x2ki+k+1) + . . . + (x2ki+k−1 ∧ x2ki+2k−1)

g(x) :=
∑
i∈T

(x2ki+k ∧ x2ki+2k)

We will show that they can solve set-disjointness by running a testing algo-
rithm for width-w OBDDs on h(x) := x1 + f(x) + g(x). Note that each set of
2k consecutive variables (x2ki+1 , x2ki+2, . . . , x2ki+2k) depends on a unique co-
ordinate from [n′], and that h contains σ4(x2ki+1, . . . , x2ki+2k) if and only if
i ∈ S ∩ T . The theorem thus follows from Lemma 4.
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Abstract. Nonconstructive proofs are a powerful mechanism in mathe-
matics. Furthermore, nonconstructive computations by various types of
machines and automata have been considered by e.g., Karp and Lip-
ton [17] and Freivalds [11]. They allow to regard more complicated al-
gorithms from the viewpoint of much more primitive computational de-
vices. The amount of nonconstructivity is a quantitative characterization
of the distance between types of computational devices with respect to
solving a specific problem.

In the present paper, the amount of nonconstructivity in learning
of recursive functions is studied. Different learning types are compared
with respect to the amount of nonconstructivity needed to learn the
whole class of general recursive functions. Upper and lower bounds for
the amount of nonconstructivity needed are proved.

Keywords: inductive inference, recursive functions, nonconstructivity.

1 Introduction

Nonconstructive methods of proof in mathematics have a rather long and dra-
matic history. The debate was especially passionate when mathematicians tried
to overcome the crisis concerning the foundations of mathematics.

The situation changed slightly in the forties of the last century, when noncon-
structive methods found their way even to discrete mathematics. In particular,
Paul Erdős used nonconstructive proofs masterly, beginning with the paper [7].

Another influential paper in this regard was Bārzdiņš [2], who introduced the
notion of advice in the setting of Kolmogorov complexity of recursively enumer-
able sets. Karp and Lipton [17] introduced the notion of a Turing machine that
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takes advice to understand under what circumstances nonuniform upper bounds
can be used to obtain uniform upper bounds. Damm and Holzer [6] adapted the
notion of advice for finite automata.

A further step was taken by Freivalds [11, 12], who introduced a qualitative
approach to measure the amount of nonconstructivity (or advice) in a proof.
Analyzing three examples of nonconstructive proofs led him to a notion of non-
constructive computation which can be easily used for many types of automata
and machines and which essentially coincides with Karp and Lipton’s [17] notion
when applied to Turing machines.

As outlined by Freivalds [11, 12], there are several results in the theory of
inductive inference of recursive functions which suggest that the notion of non-
constructivity may be worth a deeper study in this setting, too.

In the present paper we prove several upper and lower bounds for the amount
of nonconstructivity in learning classes of recursive functions. When learning re-
cursive functions growing initial segments (f(0), . . . , f(n)) are fed to the learning
algorithm, henceforth called strategy. For each initial segment the strategy has
then to compute a hypothesis in which is a natural number. These hypotheses
are interpreted with respect to a suitably chosen hypothesis space ψ which is
a numbering. The interpretation of the hypothesis in is that the strategy con-
jectures program in in the numbering ψ to compute the target function f . One
requires the sequence (in)n∈N of all computed hypotheses to converge to a pro-
gram i correctly computing the target function f , i.e., ψi = f . A strategy learns
a class of recursive functions provided it can learn every function from it. The
model just explained is basically learning in the limit as introduced by Gold [14].
Many variations of this model have been studied (cf., e.g., [4, 10, 15, 25], and
the references therein).

For many of these variations it was shown that the class R of all recursive
functions is not learnable. Several attempts have been undertaken to classify the
difficulty of learning the class R. Adleman and Blum [1] showed the degree of
unsolvability of the problem to learn the classR to be strictly less than the degree
of the halting problem. A further approach was to characterize the difficulty of
learning classes of recursive functions by using oracles (cf., e.g., [5, 19]).

We introduce a new measure, i.e., the amount of nonconstructivity needed to
learn the class R. That is, the strategy receives as a second input a bitstring of
finite length which we call help-word. If the help-word is correct, the strategy
learns in the desired sense. Since there are infinitely many functions to learn, a
parameterization is necessary, i.e., we allow for every n a possibly different help-
word and we require the strategy to learn every recursive function contained in
{ψ0, . . . , ψn} with respect to the numbering ψ (cf. Definition 4). The difficulty of
the learning problem is then measured by the length of the help-words needed,
i.e., in terms of the growth rate of a function d bounding this length.

As in previous approaches, the help-word does not just provide an answer to
the learning problem. There is still much work to be done by the strategy. The
usefulness of this approach is nicely reflected by our results which show that
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the function d may vary from arbitrarily slow growing (for learning in the limit)
to n + 1 (for minimal identification).

2 Preliminaries

Unspecified notations follow Rogers [22]. In addition to or in contrast with [22]
we use the following. Let N = {0, 1, 2, . . .} be the set of all natural numbers, and
let N+ = N\{0}. We use N∗ for the set of all finite sequences of natural numbers.
By |S| and ℘(S) we denote the cardinality and power set of a set S, respectively.
Let ∅, ∈, ⊂, ⊆, ⊃, ⊇, and # denote the empty set, element of, proper subset,
subset, proper superset, superset, and incomparability of sets, respectively.

By T we denote the set of all total functions of one variable over N. The set
of all partial recursive and recursive functions of one respectively two variables
over N is denoted by P , R, P2, R2, respectively. Let f ∈ P , then we use dom(f)
for the domain of the function f , i.e., dom(f) = {x | x ∈ N, f(x) is defined}.
By Val(f) we denote the range of f , i.e., Val(f) = {f(x) | x ∈ dom(f)}.

A function f ∈ P is said to be strictly monotonic provided for all x, y ∈ N with
x < y we have, if both f(x) and f(y) are defined then f(x) < f(y). By Rmon

we denote the set of all strictly monotonic recursive functions.
Any function ψ ∈ P2 is called a numbering. Let ψ ∈ P2, then we write ψi

instead of λx.ψ(i, x) and set Pψ = {ψi | i ∈ N} as well as Rψ = Pψ ∩ R.
Consequently, if f ∈ Pψ, then there is a number i such that f = ψi. If f ∈ P
and i ∈ N are such that ψi = f , then i is called a ψ–program for f . Let ψ be any
numbering, and i, x ∈ N; if ψi(x) is defined (abbr. ψi(x)↓ ) then we also say that
ψi(x) converges. Otherwise, ψi(x) is said to diverge (abbr. ψi(x)↑ ). Let ψ ∈ P2

and f ∈ P ; then we use minψ f to denote the least number i such that ψi = f .
A numbering ϕ ∈ P2 is called a Gödel numbering (cf. Rogers [22]) iff Pϕ = P ,

and for any numbering ψ ∈ P2, there is a compiler c ∈ R such that ψi = ϕc(i)

for all i ∈ N. We use Göd to denote the set of all Gödel numberings.
By NUM = {U | (∃ψ ∈ R2) [U ⊆ Pψ]} we denote the family of all subsets

of all recursively enumerable classes of recursive functions. Let NUM! = {U |
(∃ψ ∈ R2) [U = Pψ]} denote the family of all recursively enumerable classes of
recursive functions. The elements of NUM! are referred to as indexed families.

We call (ϕ, Φ) a measure of computational complexity (cf. [20]) if ϕ ∈ Göd
and Φ ∈ P2 satisfies Blum’s [3] axioms. That is, (1) dom(ϕi) = dom(Φi) for all
i ∈ N and (2) the predicate “Φi(x) = y” is uniformly recursive for all i, x, y ∈ N.

Let 〈. . .〉 be any recursive encoding of N∗ onto N. We write fn instead of
〈(f(0), . . . , f(n))〉, for all n ∈ N, f ∈ R. A sequence (jn)n∈N of natural numbers
is said to converge to the number j if jn = j for all but finitely many n ∈ N.
Moreover, (jn)n∈N is said to finitely converge to the number j if it converges in
the limit to j and for all n ∈ N, jn = jn+1 implies jk = j for all k ≥ n.

Definition 1 (Gold [13, 14]). Let U ⊆ R and let ψ ∈ P2. The class U is said
to be learnable in the limit with respect to ψ if there is a strategy S ∈ P such
that for each function f ∈ U ,
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(1) for all n ∈ N, S(fn) is defined,
(2) there is a j ∈ N with ψj = f and the sequence (S(fn))n∈N converges to j.

If U is learnable in the limit w.r.t. ψ by S, we write U ∈ LIMψ(S). Let LIMψ =
{U | U is learnable in the limit w.r.t. ψ}, and let LIM =

⋃
ψ∈P2 LIMψ.

In the following modification of Definition 1 we require the strategy to converge
to minψ f instead of converging to any program for the target function f .

Definition 2 (Freivalds [9], Kinber [18]). Let U ⊆ R and let ψ ∈ P2. The
class U is said to be ψ-minimal learnable in the limit with respect to ψ if there
is a strategy S ∈ P such that for each function f ∈ U ,

(1) for all n ∈ N, S(fn) is defined,
(2) the sequence (S(fn))n∈N converges to minψ f .

If U is ψ-minimal learnable in the limit w.r.t. ψ by a strategy S, we write
U ∈ MINψ(S). Furthermore, let MINψ = {U | U is ψ-minimal learnable in
the limit w.r.t. ψ}, and let MIN =

⋃
ψ∈P2 MINψ.

In general it is not decidable whether or not a strategy has already converged
when successively fed some graph of a function. With the next definition we
consider a special case where it has to be decidable whether or not a strategy has
learned its input function. That is, we replace the requirement that the sequence
of all created hypotheses “has to converge” by “has to converge finitely.”

Definition 3 (Gold [14], Trakhtenbrot and Barzdin [23]). Let U ⊆ R and
let ψ ∈ P2. The class U is said to be finitely learnable with respect to ψ if there
is a strategy S ∈ P such that for any function f ∈ U ,

(1) for all n ∈ N, S(fn) is defined,
(2) there is a j ∈ N such that ψj = f and the sequence (S(fn))n∈N finitely

converges to j.

If U is finitely learnable w.r.t. ψ by a strategy S, we write U ∈ FINψ(S). The
learning types FINψ and FIN are defined analogously to the above.

Of course, we can also combine ψ-minimal learnability and finite identification
resulting in the learning types MIN -FINψ and MIN -FIN .

The strategies used for nonconstructive inductive inference take as input not
only the encoded graph of a function f ∈ R but also a help-word w. The help-
words are assumed to be encoded in binary. So, for such strategies we write
S(fn, w) to denote the program output by S. Then, for all the inference types
defined above, we say that S nonconstructively identifies f with the help-word w
provided the sequence (S(fn, w))n∈N (finitely) converges to a number j such that
ϕj = f (for LIM and FIN ) and j = minψ f (for MIN ), respectively.

Definition 4. Let ψ ∈ P2, let U ⊆ R, and d ∈ R. A strategy S ∈ P2 infers U
with nonconstructivity d(n) in the limit with respect to ψ, if for each n ∈ N there
is a help-word of length at most d(n) such that for every f ∈ U∩{ψ0, ψ1, . . . , ψn}
the sequence (S(fn, w))n∈N converges to a program i satisfying ψi = f .
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Nonconstructive finite and minimal inference is defined in analogue to the above.
Looking at Definition 4 as well as at the definition of nonconstructive finite

and minimal inference, it should be noted that the strategy may need to know
either an appropriate upper bound for n or even the precise value of n in order
to exploit the fact that the target function is from f ∈ U ∩ {ψ0, ψ1, . . . , ψn}.

To simplify notation in several theorems and proofs given below, we make the
convention that logarithmic function is to the base 2 and that it is replaced by
its integer valued counterpart �log n�+ 1.

3 Results

Already Gold [13] showed that R /∈ LIM. So, we start our investigations by
asking for the amount of nonconstructivity needed to identify the set R of all
recursive functions in the limit with respect to any Gödel numbering ϕ.

Using an idea from Freivald and Wiehagen [8], we prove that the needed
amount of nonconstructivity is surprisingly small. To show this result, for every
function f ∈ Rmon we define its inverse finv as follows: finv (n) = μy[f(y) ≥ n]
for all n ∈ N. Recall that Val(f) is recursive for all f ∈ Rmon . Thus, for all
f ∈ Rmon we can conclude that finv (n) ∈ R.

Theorem 1. Let ϕ ∈ Göd be arbitrarily fixed, and let d ∈ Rmon be any function.
Then there is a strategy S ∈ P2 such that the class R can be identified with
nonconstructivity log dinv (n) in the limit with respect to ϕ.

Proof. Let ϕ ∈ Göd be arbitrarily fixed. Without loss of generality, we can also
assume any complexity function Φ ∈ P2 such that (ϕ, Φ) is a complexity measure.

The key idea of the proof is that, in order to learn any function from R,
it suffices to have an upper bound for minϕ f . So, assuming any help-word w
of length precisely log dinv (n), the strategy S uses the length of the help-word
w to create a bitstring that contains only 1s and has the same length as the
help word. This bitstring is interpreted in the usual way as a natural number k.
By construction, we then have k ≥ dinv (n). Furthermore, since d ∈ Rmon , we
directly obtain that d(k) ≥ d(dinv (n)) ≥ n. Consequently, the strategy S uses k
to compute

u∗ =df d(k) ,

and by construction, we have u∗ ≥ n.
Assume any function f ∈ R∩{ψ0, ψ1, . . . , ψn}, and let fm and w be the input

to the strategy S. Then, S initializes the index set Iinit to be Iinit = {0, . . . , u∗}
and checks whether or not Φi(x) ≤ m for every i ∈ Iinit and 0 ≤ x ≤ m. For all i
and x that passed this test successfully, S checks whether or not ϕi(x) = f(x).
If this is not the case, i is removed from Iinit . Let Im be the resulting index set.

The strategy uses the amalgamation technique (cf. [4, 24]). That is, let amal
be a recursive function mapping any finite set I of ϕ-programs to a ϕ-program
such that for any x ∈ N, ϕamal(I)(x) is defined by running ϕi(x) for every i ∈ I
in parallel and taking the first value obtained, if any.
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So, the output of S(fm, w) is amal(Im).
We have to show that the sequence (amal(Im))m∈N converges to a ϕ-program

for f . By construction we know that Iinit contains at least one ϕ-program for f .
This program and any other ϕ-program computing a subfunction of f can never
be removed from Iinit . But if a ϕ-program j from Iinit does not compute a sub-
function of f , then there must be an x such that ϕj(x)↓ �= f(x). So, as soon as
m ≥ max{x, Φj(x)}, the program j is removed from Iinit . Since Iinit is finite,
there must be an m∗ such that Im∗ contains only ϕ-programs for f or a sub-
function of f . We conclude that amal(Im∗) is a ϕ-programs for f . Furthermore,
I� = Im∗ for all � ≥ m∗, and thus the strategy S learns f in the limit. �	
So there is no smallest amount of nonconstructivity needed to learn R in the
limit. But the amount of nonconstructivity cannot be zero, since then we would
have R ∈ LIM. One can define a total function t ∈ T such that t(n) ≥ d(n) for
all d ∈ Rmon and all but finitely many n. Consequently, log tinv is then a lower
bound for the amount of nonconstructivity needed to learn R in the limit when
using the algorithm from the proof of Theorem 1.

We continue by asking what amount of nonconstructivity is needed to ob-
tain ϕ-minimal identification in the limit of the class R. Now, the situation is
intuitively more complex, since LIMϕ \ MINϕ �= ∅ for every ϕ ∈ Göd. In-
terestingly, there are even Gödel numberings ϕ such that MINϕ contains only
classes of finite cardinality (cf. Freivalds [10]). On the other hand, the sufficient
amount of nonconstructivity given in Theorem 2 does not depend on the Gödel
numbering. Theorem 2 below is not the best possible and we shall improve it
below, but it shows an easy way to achieve ϕ-minimal learning of R in the limit.

Theorem 2. Let ϕ ∈ Göd be arbitrarily fixed. Then there is a strategy S ∈ P2

such that the class R can be ϕ-minimal identified with nonconstructivity n + 1
in the limit with respect to ϕ.

Proof. Let ϕ ∈ Göd be arbitrarily fixed, and let n ∈ N. The help-word w is a
bitstring b of length n + 1 defined as follows. If ϕi ∈ R, then the ith entry of b
is 1, and 0 otherwise. So, the length of w allows the strategy to compute n.

Assume any function f ∈ R∩{ψ0, ψ1, . . . , ψn}, and let fm and w be the input
to S. Then S only considers those functions ϕi, 0 ≤ i ≤ n, for which the ith entry
in the help-word is 1. Since all these remaining functions are total, the strategy
searches for the least index j among these functions for which ϕm

j = fm. That is,
it essentially uses the identification by enumeration principle (cf. Gold [14]). �	
The proof of Theorem 2 was easy which may be an indication that a smaller
amount of nonconstructivity may suffice. So far we could not show a lower bound
for the amount of nonconstructivity needed to achieve ϕ-minimal inference in the
limit of R. As Theorem 4 shows, we can achieve a much better result when using
nonconstructivity n + 1, again an indication that we used a too great amount of
nonconstructivity in Theorem 2. And indeed, we can do exponentially better.

Theorem 3. Let ϕ ∈ Göd be arbitrarily fixed. Then there is a strategy S ∈ P2

such that the class R can be ϕ-minimal identified with nonconstructivity 2 · log n
in the limit with respect to ϕ.
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Proof. The key observation for the proof is that it suffices to know the number of
recursive functions in the set {ϕ0, . . . , ϕn}. To use this information appropriately,
the first half of the help-word w is the binary encoding of n and the second half
of w provides the number, say k, of recursive functions in the set {ϕ0, . . . , ϕn}.
This number is written in binary but leading zeros are added to ensure that both
parts of w have the same length. Thus 2 · log n many bits suffice to represent w.

Assume any function f ∈ R∩{ψ0, ψ1, . . . , ψn}, and let fm and w be the input
to the strategy S. Then S, by dovetailing its computations, first tries to compute
ϕi(0), . . . , ϕi(m) for all 0 ≤ i ≤ n until it finds the first k programs i1, . . . , ik such
that ϕi(0), . . . , ϕi(m) turn out to be defined for every i ∈ {i1, . . . , ik}. Once S
has found these programs i1, . . . , ik, it outputs the least program i ∈ {i1, . . . , ik}
for which it verifies ϕm

i = fm provided there is such a program, and m otherwise.
By construction, there are n + 1− k many programs j ∈ {0, . . . , n} such that

ϕj ∈ P \ R. For each of these programs j there is a least yj such that ϕj(yj)↑ .
Let ymax be the maximum of all these yj . Hence, as soon as m ≥ ymax, the
strategy S must find precisely the programs i1, . . . , ik such that ϕi ∈ R for all
i ∈ {i1, . . . , ik}. By assumption, the target function f possesses a program i with
0 ≤ i ≤ n, and so for all m ≥ ymax, the strategy must output minϕ f . �	
Next we provide the theorem already mentioned above which shows that with
nonconstructivity n + 1 a much stronger result is possible.

Theorem 4. Let ϕ ∈ Göd be arbitrarily fixed. Then there is a strategy S ∈ P2

such that the class R can be ϕ-minimal finitely identified with nonconstructivity
n + 1 with respect to ϕ.

Proof. Let ϕ ∈ Göd, and let n ∈ N. The help-word w is a bitstring b of length
n + 1 defined as follows. If ϕi ∈ R and ϕi �= ϕj for all 0 ≤ j < i, then the ith
entry of b is 1, and 0 otherwise. So, the length of the help-word directly allows
the strategy to compute n. Note that now the help-word allows for implicitly
having a one-to-one enumeration for the functions f ∈ R∩ {ϕ0, . . . , ϕn}.

Assume any function f ∈ R ∩ {ϕ0, ϕ1, . . . , ϕn}, and let fm and w be the
input to S. Then S only considers those functions ϕi, 0 ≤ i ≤ n, for which
the ith entry in the help-word is 1. For all these i, the strategy computes ϕm

i

and checks whether or not they are pairwise different. As long as this is not the
case, the strategy outputs m. If all these ϕm

i are pairwise different, then the
strategy outputs the i for which it could verify fm = ϕm

i .
By construction, it is obvious that S finitely converges to minϕ f . �	

So far we could not prove the amount of nonconstructivity given in Theorem 4 to
be the best possible. We thus look at the case, where we have to learn an indexed
family U of recursive functions. Note that for every indexed family U and any
of its numberings ψ ∈ R2 we have U ∈ MINψ (cf. Gold [14]). In contrast,
NUM#FIN (see e.g., [25] and the references therein). So, it is only natural
to ask for the amount of nonconstructivity needed to finitely learn ψ-minimal
programs. The answer is provided by our theorems below.
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Theorem 5. Let U be any indexed family, and let ψ ∈ R2 be any numbering
for U . Then there is a strategy S ∈ P2 such that the class U can be ψ-minimal
finitely identified with nonconstructivity 2 · log n with respect to ψ.

Proof. The key observation is that it suffices to know the number k of distinct
functions in {ψ0, . . . , ψn}. The help-word w is divided in two halves, where the
first half is the binary encoding of n and the second half encodes k in binary
(again including leading zeros). So 2 · log n many bits suffice for representing w.

On input fm and w the strategy S computes, by dovetailing its computations,
ψi(x) for all i ∈ {0, . . . , n} and x = 0, 1, 2, . . . until it has verified that there are
exactly k different functions. Let i1, . . . , ik be the least indices of these k different
functions. Next, it checks whether or not there is precisely one i ∈ {i1, . . . , ik}
such that fm = ψm

i . If this is the case, S outputs this i. Otherwise, it outputs m.
By construction, it is obvious that S finitely converges to minψ f . �	

Next we show that the amount of nonconstructivity given in Theorem 5 cannot
be substantially reduced.

Theorem 6. There is an indexed family U and a numbering ψ ∈ R2 for it
such that no strategy S ∈ P2 can ψ-minimal finitely identify the class U with
nonconstructivity c · log n with respect to ψ, where c ∈ (0, 1) is any constant.

Proof. We construct the indexed family U by defining the numbering ψ ∈ R2

for it. For this purpose, we use the following pairing function c : N × N → N,
where c(x, y) = 2x(2y + 1)− 1. Note that this pairing function is a bijection. It
may be traced back to Pepis [21] and Kalmár [16]. Furthermore, we interpret
every function in P2 as a strategy and obtain thus an effective enumeration
S0, S1, S2, . . . of all possible strategies. Below, for � ∈ N, we use the shortcut i�+1

to denote the encoding f � of the initial segment of the function f for which
f(z) = i for all i = 0, . . . , �.

For every i ∈ N we define two functions ψ2i and ψ2i+1 as follows. Let x and y
be the uniquely determined numbers such that i = c(x, y). Now, we successively
define for k = 1, 2, 3, . . . the functions values ψ2i(k − 1) = ψ2i+1(k − 1) = i
and input ik and y to the strategy Sx until we find the smallest k such that the
following Conditions (A) and (B) are satisfied.

(A) There is an � < k such that each of the values Sx(i, y), . . . , Sx(i�+1, y) turns
out to be computable in at most k steps.

(B) Sx(i, y) �= Sx(i2, y) �= · · · �= Sx(i�, y) = Sx(i�+1, y).

If Conditions (A) and (B) never turn out to be satisfied then the function values
ψ2i(k) and ψ2i+1(k) are defined for all k ∈ N, and thus ψ2i, ψ2i+1 ∈ R.

On the other hand, if Conditions (A) and (B) turn out to be satisfied then
Condition (B) implies that the sequence Sx(i, y), . . . , Sx(i�+1, y) tends to con-
verge finitely. That is, it either converges finitely or it cannot converge finitely
at all. Now, we continue to define the functions ψ2i and ψ2i+1 as follows.
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(C) If Sx(i�, y) = 2i, then we define ψ2i(z) = i + k + z for all z ≥ k.
Furthermore, we set ψ2i+1(z) = i for all z ≥ k.

(D) If Sx(i�, y) = 2i + 1, then we define ψ2i+1(z) = i + k + z for all z ≥ k.
Furthermore, we set ψ2i(z) = i for all z ≥ k.

(E) If Sx(i�, y) /∈ {2i, 2i+1}, then we define ψ2i(z) = ψ2i+1(z) = z for all z ≥ k.

So we have ψ2i, ψ2i+1 ∈ R, and thus, ψ ∈ R2. Finally, we set U = Rψ.
We show that there is no strategy S ∈ P2 that ψ-minimal finitely infers U

with nonconstructivity c·log n with respect to ψ, where c ∈ (0, 1) is any constant.
Suppose the converse, i.e., there is a strategy S ∈ P2 that ψ-minimal finitely

infers U with nonconstructivity c · log n with respect to ψ. Then there must be
a v ∈ N such that S = Sv in our enumeration S0, S1, S2, . . . of all possible strate-
gies. Let d be the function from Definition 4. Furthermore, for every n ∈ N and
every f ∈ {ψ0, . . . , ψn} there has to be a help-word w of length at most d(n) and
depending only on n such that the sequence (Sv(fm, w))m∈N finitely converges
to the minimal ψ-program of f .

By assumption, there is a c ∈ (0, 1) such that d(n) ≤ c · log n. We fix this c
and conclude that for n large enough we have

d(n) > 1 and
1− c

2
>

2 + (v + 1)
log n

. (1)

Now, we obtain successively

1 >
c + 1

2

1 >
2c + 1− c

2

1 >
c · log n

log n
+

1− c

2

1 >
d(n)
log n

+
2 + (v + 1)

log n
, since c · log n ≥ d(n) and by (1)

log n > d(n) + 2 + (v + 1)
log n− log 2v+1 > d(n) + 2

log
n

2v+1
> d(n) + 2

n

2v+1
> 2d(n)+2

n + 2
2v+1

> 2 · 2d(n) + 1

n + 2
2v+1

> 2w + 1 , since 2d(n) ≥ w

n

2
> 2v(2w + 1)− 1

n

2
> c(v, w) .

Now, let i = c(v, w) and consider the functions ψ2i and ψ2i+1. By our choice of
n, these functions must be among the functions {ψ0, . . . , ψn}.
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Let � ∈ N+ be the least number such that Sv on two successive inputs outputs
the same hypothesis, i.e., Sv(i, w) �= · · · �= Sv(i�, w) = Sv(i�+1, w). Such an � has
to exist, since otherwise Sv can neither finitely identify ψ2i nor ψ2i+1.

If Sv(i�, w) /∈ {2i, 2i + 1} we are already done, since ψ2i and ψ2i+1 are the
only functions from U having an initial segment where all values are equal to i.
Finally, if Sv(i�, w) ∈ {2i, 2i+1} then by construction (cf. Condition (C) and (D),
respectively), we have ψ2i(z) = ψ2i+1(z) for all z = 0, . . . , � but ψ2i �= ψ2i+1. So
the strategy Sv fails to finitely learn either function ψ2i or ψ2i+1. �	
As the proof of Theorem 6 shows, the failure to ψ-minimal finitely identify the
indexed family U with respect to the numbering ψ with nonconstructivity c·log n,
for c ∈ (0, 1), is caused by the requirement to finitely identify the functions from
U . Thus, we directly obtain the following corollary.

Corollary 1. There is an indexed family U and a numbering ψ ∈ R2 for it such
that no strategy S ∈ P2 can finitely identify the class U with nonconstructivity
c · log n with respect to ψ, where c ∈ (0, 1) is any constant.

4 Conclusions and Open Problems

We have presented a model for the inductive inference of recursive functions that
incorporates a certain amount of nonconstructivity. In our model, the amount
of nonconstructivity needed to solve the learning problems considered has been
used as a quantitative characterization of their difficulty.

We studied the problem of learning the whole class R under various postu-
lates. These postulates range from learning in the limit to finite and minimal
identification. As far as learning in the limit is concerned, the amount of noncon-
structivity needed to learn R can be very small and there is no smallest amount
that can be described in a computable way (cf. Theorem 1).

This result is nicely contrasted by the fact that we needed nonconstructivity 2·
log n to ϕ-minimal identify the classR in the limit and nonconstructivity n+1 to
ϕ-minimal finitely identify R (cf. Theorems 3 and 4, respectively). That is, each
additional postulate exponentially increased the amount of nonconstructivity
needed. It remains, however, open whether or not these results can be improved.

Furthermore, we investigated the amount of nonconstructivity needed to ϕ-
minimal finitely identify any indexed family of recursive functions. In this set-
ting we obtained an upper bound of 2 · log n for the amount of nonconstructivity
needed and showed that this amount cannot be substantially improved (cf. The-
orems 5 and 6).

Unfortunately, so far we could only show the lower bound presented in The-
orem 6. Proving lower bounds for the other cases studied in this paper remains
open and should be addressed in the future.
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Abstract. k-means++ is a seeding technique for the k-means method
with an expected approximation ratio of O(log k), where k denotes the
number of clusters. Examples are known on which the expected approx-
imation ratio of k-means++ is Ω(log k), showing that the upper bound
is asymptotically tight. However, it remained open whether k-means++

yields an O(1)-approximation with probability 1/poly(k) or even with
constant probability. We settle this question and present instances on
which k-means++ achieves an approximation ratio of (2/3−ε) · log k only
with exponentially small probability.

1 Introduction

In the k-means problem we are given a set of data points X ⊆ Rd and the
objective is to group these points into k mutually disjoint clusters C1, . . . , Ck ⊆
X . Each of those clusters should contain only ‘similar points’ that are close
together in terms of Euclidean distance. In order to evaluate the quality of a
clustering, we assign a cluster center ci ∈ Rd to each cluster Ci and consider the
potential Φ =

∑k
i=1

∑
x∈Ci

‖x− ci‖2. The goal of the k-means problem is to find
clusters and cluster centers that minimize this potential.

Aloise et al. showed that the k-means problem is NP-hard, even for k =
d = 2 [2]. To deal with this problem in practice, several heuristics have been
developed over the past decades. Probably the “most popular” one [5] is Lloyd’s
algorithm [7], usually called the k-means method or simply k-means. Starting
with k arbitrary cluster centers, each data point is assigned to its nearest center.
In the next step each center is recomputed as the center of mass of the points
assigned to it. This procedure is repeated until the centers remain unchanged.

Though Vattani showed that the running time of k-means can be exponential
in the number of input points [8], speed is one of the most important reasons
for its popularity in practice. This unsatisfying gap between theory and practice
was narrowed by Arthur, Manthey, and Röglin who showed that the running
time of k-means is polynomially bounded in the model of smoothed analysis [3].

Another problem is that k-means may yield poor results if the initial centers
are badly chosen. The approximation ratio can be arbitrarily large, even for small
input sets and k = 2. To improve the quality of the solutions found by the k-
means method, Arthur and Vassilvitskii proposed the following seeding technique
called k-means++, which has an expected approximation ratio of O(log k) [4].
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grant from the Netherlands Organisation for Scientific Research.
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1. Choose center c1 uniformly at random from the input set X .
2. For i = 2 to k do:

Let D2
i (x) be the square of the distance between point x and the nearest al-

ready chosen center c1, . . . , ci−1. Choose the next center ci randomly from X ,
where every x ∈ X has a probability of D2

i (x)∑
y∈X D2

i (y)
of being chosen.

Previous work. In [4] instances are given on which k-means++ yields in ex-
pectation an Ω(log k)-approximation, showing that the bound of O(log k) for
the approximation ratio of k-means++ is asymptotically tight. However, the ex-
pected approximation ratio of a heuristic is not the only useful quality crite-
rion if the variance is large. If, for example, an O(1)-approximation is obtained
with probability 1/poly(k), then after a polynomial number of restarts an O(1)-
approximation is reached with high probability even if the expected approx-
imation ratio is Ω(log k). Interestingly, k-means++ achieves a constant factor
approximation for the instance given in [4] with constant probability, and no
instance was known on which k-means++ does not yield an O(1)-approximation
with constant probability.

For this reason Aggarwal, Deshpande, and Kannan called the lower bound of
Ω(log k) “misleading” [1]. In the same paper they showed that sampling O(k)
instead of k centers with the k-means++ seeding technique and selecting k good
points among them yields an O(1)-approximation with constant probability. Un-
fortunately the selection step is done with LP-based algorithms, which makes
this approach less simple and efficient than k-means++ in practice.

Therefore, both Arthur and Vassilvitskii [4] and Aggarwal, Deshpande, and
Kannan [1] raise the question whether k-means++ yields an O(1)-approximation
with constant probability. Aggarwal et al. call this a “tempting conjecture” which
“would be nice to settle”. So far the only known result in this direction is due to
Arthur and Vassilvitskii who mention that the probability to achieve an O(1)-
approximation is at least c · 2−k for some constant c > 0 [4].

Our contribution We modify the instances given in [4] and show that it is very
unlikely that k-means++ achieves an approximation ratio of (2/3− ε) · log k on
this modified example.

Theorem 1. Let r : N → R+ be a real function.

1. If r(k) = δ∗ · ln(k) for a fixed real δ∗ ∈ (0, 2/3), then there is a class of in-
stances on which k-means++ achieves an r(k)-approximation with probability
at most exp(−k1−3/2·δ∗−o(1)).

2. If r = o(log k), then there is a class of instances on which k-means++

achieves an r(k)-approximation with probability at most exp(−k1−o(1)).

2 Construction and Analysis of a Bad Instance

2.1 Construction

Throughout the paper “log” denotes the natural logarithm. Let r = r(k) > 0 be
a function where r(k) = δ∗ · log k for a fixed real δ∗ ∈ (0, 2/3) or r = o(log k).
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Without loss of generality let r(k) → ∞ in the latter case. Additionally, let
δ = δ(k) := r(k)/ log k be the ratio of r(k) and log k. Based on the function r,
we introduce a parameter Δ = Δ(k). In Section 2.3 we describe the details of
this choice. In this section we present the instances used for proving Theorem 1,
which are a slight modification of the instances given in [4].

We first choose k centers c1, . . . , ck, each with squared distance Δ2−(k−1)/k
to each other. For each point ci we construct a regular (k − 1)-simplex with
center ci and with side length 1. We denote the vertices of this simplex by
x

(i)
1 , . . . , x

(i)
k , and we assume that the simplices for different points ci and ci′ are

constructed in orthogonal dimensions. Then we get

‖x(i)
j − ci‖2 =

k − 1
2k

, (1)

and for x
(i)
j �= x

(i′)
j′ we get

‖x(i)
j − x

(i′)
j′ ‖2 =

{
1 : i = i′ ,

Δ2 : i �= i′ , (2)

due to the fact that for i �= i′ the squared distance between x
(i)
j and x

(i′)
j′ is

‖x(i)
j − x

(i′)
j′ ‖2 = ‖x(i)

j − ci‖2 + ‖ci − ci′‖2 + ‖x(i′)
j′ − ci′‖2 = Δ2

because of orthogonality and Equation (1). Let Ci = {x(i)
1 , . . . , x

(i)
k } for i =

1, . . . , k. As input set for our k-means problem we consider the union X =⋃k
i=1 Ci of these sets.
In the remainder we show that, with a good choice of Δ, X is a bad instance

for k-means++. Note that the only relevant difference to the example given in [4]
is the choice of Δ. While in [4] it was sufficient to choose Δ large enough, we
have to tune Δ much more carefully to prove Theorem 1.

2.2 Reduction to a Markov Chain

We consider the k-clustering C∗ = (C1, . . . , Ck) induced by the centers c1, . . . , ck.
Note that for small Δ this might be a non-optimal solution, but its potential is
an upper bound for the optimal potential. Due to Equation (1), the potential Φ∗

of C∗ is

Φ∗ =
k∑

i=1

∑
x∈Ci

‖x− ci‖2 = k2 · k − 1
2k

≤ k2

2

as for any point of Ci the nearest center is ci. Now let C′ be a clustering with
distinct centers c′1, . . . , c

′
t, 1 ≤ t ≤ k, chosen from X . For each center c′i let li

be the index of the set Cli that c′i belongs to. Let s := | {l1, . . . , lt} | denote the
number of covered sets Ci and let Xu := X \ ⋃t

i=1 Cli denote the set of the
points of uncovered sets. Furthermore, let Φ denote the potential of X induced
by the centers c′1, . . . , c

′
t and let Φ(Xu) be the part of Φ contributed by the
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uncovered sets. Applying Equations (1) and (2) we get Φ(Xu) = (k − s) · k ·Δ2

and Φ = (s · k − t) · 12 + Φ(Xu) ≥ (s− 1) · k + Φ(Xu).
The inequality Φ

Φ∗ ≤ r is necessary for C′ being an r-approximation. This
implies

r ≥ Φ

Φ∗ ≥
Φ(Xu)

Φ∗ ≥ 2(k − s) ·Δ2

k
,

i.e. at least s∗ :=
⌈
k · (1− r

2Δ2

)⌉
of the k sets Ci have to be covered to get an

r-approximation.
Let us assume that we are in step 2 of k-means++ (see introduction) and let s

denote the number of covered sets Ci. The probability of covering an uncovered
set in this step is

Φ(Xu)
Φ

≤ Φ(Xu)
(s− 1) · k + Φ(Xu)

=
1

1 + s−1
(k−s)·Δ2

=: ps . (3)

Hence, we can upper-bound the probability that k-means++ yields an r-approxi-
mation by the probability of reaching vertex vs∗ within k steps in the following
Markov chain, starting from vertex v0.

Here, ps are the probabilities defined in Inequality (3), p0 = 1 and qs = 1− ps.

2.3 How to Choose Δ?

Arthur and Vassilvitskii [4] have shown that choosing Δ large enough results in
instances on which k-means++ has an expected approximation ratio of Ω(log k).
This does not suffice for proving Theorem 1 because if we choose Δ too large,
the probability that we do not cover every cluster becomes small. Hence, if we
choose Δ too large, we have a good probability of covering every cluster and
thus of obtaining a constant-factor approximation. On the other hand, if we
choose Δ too small, already a single covered cluster might suffice to obtain a
constant-factor approximation.

We first define a function ε : N → (0, 1) as follows:

ε = ε(k) :=
{

1/3 : r = o(log k) ,
2
3 · log r

r : r = δ∗ · log k .
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Now we set Δ̃ = Δ̃(k) :=
√

r · er·(1+ε)/4 = exp(Θ(r)) and Δ := $Δ̃%. In the
analysis of the Markov chain in the following section, we will assume that k is
chosen sufficiently large such that the following inequalities hold:

Δ2 > r , (4)

Δ2

k
≤ r

2
, (5)(

r + 2
2

)Δ

≥
(

2Δ2

r

)2

, (6)

Δ6 ≤ 19
18

r3 · e3r(1+ε)/2 , (7)

k − 1 ≥
(

1− ε

9

)
· k , (8)

r + 2 ≤
(

1 +
ε

3

)
· r , (9)

r

2Δ2
+

ε

3
·
(

1 +
ε

3

)
·
( r

2Δ2

)2

≤
(ε

3

)2

, (10)

log r ≤ 3
2
ε · r . (11)

In the appendix we show that, for our choice of ε, Inequalities (4) to (11) are
satisfied for every sufficiently large k. We have not made any attempt to simplify
these inequalities as they appear in exactly this form in the analysis in the next
section.

2.4 Analysis of the Markov Chain

Now we concentrate on bounding the probability to reach vertex vs∗ in the
Markov chain above. For this we introduce geometrically distributed random
variables X0, . . . , Xs∗−1. Variable Xs describes the number of trials that are
required to move from vertex vs to vertex vs+1. We would like to show that the
expected value of X :=

∑s∗−1
s=0 Xs is much greater than k and then conclude that

it is unlikely to reach vs∗ within k steps. Unfortunately, Hoeffding’s Inequality [6]
which is often used for drawing such a conclusion requires random variables
with bounded domain. So we make a technical detour by introducing additional
random variables Ys := min {Xs, Δ}, s = 0, . . . , s∗ − 1, and Y :=

∑s∗−1
s=0 Ys. We

will see that the differences caused by truncating the variables Xs are negligible
for our purpose.

The expected value of Xs is 1/ps, the expected value of Ys is (1− qΔ
s )/ps (see

Appendix A). If we express ps as ps = 1
1+ 1

zs

for zs = (k−s)·Δ2

s−1 , then

1− E [Ys]
E[Xs]

= qΔ
s = (1− ps)Δ =

(
1− 1

1 + 1
zs

)Δ

=
(

1
zs + 1

)Δ

.
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As zs is decreasing with s and s ≤ s∗ − 1 ≤ k · (1− r
2Δ2

)
, we can bound zs

for s ≥ 1 by

zs ≥
(k − k · (1− r

2Δ2

)
) ·Δ2

k · (1− r
2Δ2

)− 1
=

r
2

1− r
2Δ2 − 1

k

≥ r

2
.

The non-negativity of the second last denominator follows from Inequalities (4)
and (5). By applying Inequality (6), we get

E[Ys]
E[Xs]

= 1−
(

1
zs + 1

)Δ

≥ 1−
(

1
r
2 + 1

)Δ

≥ 1−
( r

2Δ2

)2

. (12)

Due to Inequality (12) a lower bound for E[X ] implies a lower bound for E [Y ].
The former one can be bounded as follows.

E[X ] =
s∗−1∑
s=0

E [Xs] =
s∗−1∑
s=0

1
ps

= 1 +
s∗−1∑
s=1

(
1 +

s− 1
(k − s) ·Δ2

)

= s∗ +
k−1∑

i=k−s∗+1

k − i− 1
i ·Δ2

= s∗ − s∗ − 1
Δ2

+
k − 1
Δ2

·
k−1∑

i=k−s∗+1

1
i

≥ s∗ ·
(

1− 1
Δ2

)
+

k − 1
Δ2

· log
(

k

k − s∗ + 1

)
.

Using s∗ ≥ k · (1− r
2Δ2

)
, we can lower bound this by

E[X ] ≥ k ·
(

1− r

2Δ2

)
·
(

1− 1
Δ2

)
+

k − 1
Δ2

· log

(
k

k − k · (1− r
2Δ2

)
+ 1

)

≥ k ·
[(

1− r + 2
2Δ2

)
+

k − 1
kΔ2

· log

(
Δ2

r
2 + Δ2

k

)]
.

Inequalities (5), (8), (9) and the choice of Δ yield

E [X ]
k

≥ 1−
(
1 + ε

3

) · r
2Δ2

+
1− ε

9

Δ2
· log

(
Δ2

r

)

≥ 1−
(
1 + ε

3

) · r
2Δ2

+
1− ε

9

Δ2
· r · 1 + ε

2

≥ 1 +
r

2Δ2
· ε

3
·
(

1 +
ε

3

)
,

where the last inequality holds because ε ∈ (0, 1). Applying Inequality (12), we
can show that even the expected value of Y is significantly larger than k.

E[Y ]
k

≥
(

1−
( r

2Δ2

)2
)
· E[X ]

k
≥
(

1−
( r

2Δ2

)2
)
·
(

1 +
r

2Δ2
· ε

3
·
(

1 +
ε

3

))

= 1 +
r

2Δ2
·
(

ε

3
·
(

1 +
ε

3

)
− r

2Δ2
− ε

3
·
(

1 +
ε

3

)
·
( r

2Δ2

)2
)

= 1 +
r

2Δ2
·
(

ε

3
+
(ε

3

)2

−
(

r

2Δ2
+

ε

3
·
(

1 +
ε

3

)
·
( r

2Δ2

)2
))

.
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Hence, we get E[Y ] ≥ k · (1 + r
2Δ2 · ε

3 ) = k + k · f for f = f(k) = εr
6Δ2 be-

cause of Inequality (10). Using Hoeffding’s Inequality [6], we can now bound the
probability to reach vertex vs∗ within k steps in the Markov chain above.

Pr[X ≤ k] ≤ Pr[Y ≤ k] ≤ Pr[E[Y ]− Y ≥ k · f ] ≤ exp
(
−2 · (k · f)2

s∗ ·Δ2

)

≤ exp
(
−2k2f2

k ·Δ2

)
= exp

(
−k · 2f2

Δ2

)
.

Because of Inequalities (7) and (11) we can bound the fraction 2f2/Δ2 by

2f2

Δ2
=

ε2r2

18Δ6
≥ ε2r2

19r3 · e3r(1+ε)/2
=

ε2

19
· 1
e3r(1+ε)/2+log r

≥ ε2

19
· 1
e(3/2+3ε)·r

=
ε2

19
· 1
e(3/2+3ε)·δ·log k

=
ε2

19
· k−(3/2+3ε)·δ .

If r = o(log k), then δ ∈ o(1) and Pr[X ≤ k] ≤ exp
(−k1−o(1)

)
. If r = δ∗ · log k

for some fixed real δ∗ ∈ (0, 2/3), then we get

Pr [X ≤ k] ≤ exp
(
−k−o(1) · k1−( 3

2+ 2 log r
r )·δ∗)

= exp
(
−k1− 3

2 δ∗−o(1) · k− 2 log r
log k

)
= exp

(
−k1− 3

2 δ∗−o(1)
)

.

This concludes the proof of Theorem 1.

3 Conclusion

We proved that, in general, k-means++ yields an o(log k)-approximation only
with negligible probability. The proof of this result is based on instances with
fairly high dimension. Since we constructed the simplices in orthogonal dimen-
sions, our instances have dimension Θ(k2).

It remains open how k-means++ behaves on instances in small dimensions.
One intriguing question is whether there exists an upper bound for the expected
approximation ratio of k-means++ that depends only on the dimension of the
instance. Currently we cannot exclude the possibility that the expected approx-
imation ratio of k-means++ is O(log d) where d is the dimension of the instance.
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A The Expected Value of Truncated Geometrically
Distributed Random Variables

Let X be a geometrically distributed random variable with parameter p, let
q := 1 − p and let M be a non-negative integer. The expected value of the
truncated random variable Y := min {X, M} is

E [Y ] =
∞∑

i=1

min{i, M} · p · qi−1 =
∞∑

i=1

i · p · qi−1 −
∞∑

i=M+1

(i−M) · p · qi−1

= E [X ]− qM ·
∞∑

i=1

i · p · qi−1 =
(
1− qM

) ·E [X ] =
1− qM

p
.

B Inequalities (4) to (11)

Throughout this section any inequality f(k) ≤ g(k) is a short hand for f(k) ≤
g(k) for sufficiently large k. First note that regardless of the choice of r the
inequalities r ≤ 2

3 log k and 2
3 (log r)/r ≤ ε ≤ 1 hold. The latter one immediately

implies Inequality (11).

• Inequality (4) follows from Δ2 ≥ Δ̃2 ≥ r · exp
(

r
2

)
which is greater than r

because r > 0.
• As Δ̃ ≤ √r · exp(r/2) ≤ √r · exp ((log k)/3) =

√
r · 3
√

k ≤ √r ·√k/2− 1, we
get Inequality (5): Δ2 ≤ (Δ̃ + 1)2 ≤ r · k/2.

• Due to the fact Δ→∞ we get 2Δ ≥ Δ4. The inequalities (r + 2)/2 ≥ 2 and
2Δ2/r ≤ Δ2 then imply the correctness of Inequality (6).
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• Inequality (7) is a consequence of Δ̃→∞. This yields Δ̃ + 1 ≤ 6
√

19/18 · Δ̃
and hence Δ6 ≤ (Δ̃ + 1)6 ≤ 19

18Δ̃6 = 19
18r3 · exp(3r · (1 + ε)/2).

• Inequalities (8) and (9) hold if ε ≥ 9/k and ε ≥ 6/r. This is true since
ε = Ω ((log r)/r), k = exp(Ω (r)) and 1/r = O(1/r).

• Let us consider Inequality (10). As Δ2 > r (see Inequality (4)), r/(2Δ2) +
ε/3 ·(1+ε/3)·(r/(2Δ2))2 ≤ r/(2Δ2)+4/9 ·r/(2Δ2) ≤ r/Δ2. The correctness
follows from Δ2 ≥ r · exp(r/2), i.e. r/Δ2 ≤ 1/ exp(r/2), whereas (ε/3)2 =
Ω
(
1/r2

)
.
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Abstract. We analyse the Cops and ∞-fast Robber game on the class of
interval graphs and show it to be polynomially decidable on such graphs.
This solves an open problem posed in paper “Pursuing a fast robber on
a graph” by Fomin et al. [4] The game is known to be already NP-hard
on chordal graphs and split-graphs.

The game is played by two players, one controlling k cops, the other
a robber. The players alternate in turns, all the cops move at once to
distance at most one, the robber moves along any cop-free path. Cops
win by capturing the robber, the robber by avoiding capture.

The analysis relies on the properties of an interval representation of
the graph. We show that while the game-state graph is generally expo-
nential, every cops’ move can be decomposed into simple moves of three
types, and the states are reduced to those defined by certain cuts of the
interval representation. This gives a restricted game equivalent to the
original one together with a winning strategy computable in polynomial
time.

Keywords: cop and robber game, pursuit game, combinatorial game,
interval graph, interval graph representation.

1 Introduction

The recent development in the area of combinatorial “Cop and Robber” games
(also called pursuit-evasion games) includes results on games with various speeds
of the players and their computational complexity.

The Cops and s-fast Robber game is a generalisation of the original Cops
and Robber game introduced by Nowakowski and Winkler [7] and by Quilliot [8]
allowing the Robber to make s steps instead of 1.

In their paper “Pursuing a fast robber on a graph” [4], Fomin et al. propose
the complexity of the ∞-fast Robber game on interval graphs as an open ques-
tion which we answer. The proof is constructive and shows how to decompose
seemingly complicated moves of the cops into simple basic moves.
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Founding the boundary graph classes and restrictions for which the games are
NP-hard or polynomially decidable shows which are the aspects of the problems
that make it easy or hard, providing further insight into the problem.

In this paper we draw the line between interval graphs and split and chordal
graphs. Our result is not only an example of a game reduction technique, but
also indicates that the hardness of the problem on chordal graphs lies in their
unbounded asteroidal number (and not in i.e. unbounded clique size or diameter).

See Section 7 for further discussion.
The Cops and s-fast Robber game is defined as follows: The game is

played by k cops controlled by one player and one robber controlled by the
second player on a given simple undirected graph G. The cops and the robber
are positioned on vertices of G at all times, more cops may share a vertex. Both
players have a complete information about G and the game state.

First, the cops choose starting vertices, then the robber chooses a starting
vertex. One turn then consists of each of the cops moving to distance at most
1, and then by the robber moving along a cop-free path of length at most s.
The robber may never move through a vertex occupied by a cop. Note that this
restricts the robber to one component of the cop-free subgraph of G.

Should a cop be at or move to the robber’s vertex, the cops immediately win.
The robber wins by avoiding the capture indefinitely.

This game is equivalent to the original Cop and Robber game for s = 1.
Some of the complexity aspects of Cops and s-fast Robber games are examined

by Fomin et al. [5,4]. They show that for all s, these games are NP-hard (and
even W[2]-hard in the version parametrised by k) to decide even on chordal
graphs while still being polynomially decidable on interval graphs.

The Cops and ∞-fast Robber game is the limit of the sequence of Cop and
s-fast Robber game, but is an interesting game on its own. The hardness results
of Fomin et al. easily extend to this game but the polynomiality proofs fail.

One of the main ideas of this paper is that any cops’ winning strategy on an
interval graph essentially consists only of sweeping and splitting moves on the
interval representation of the graph. We use a formal version of this statement
to show that the game can be decided in polynomial time.

Theorem 1. There is a polynomial-time algorithm deciding a Cop and ∞-fast
Robber game with k cops on a given graph G.

2 Preliminaries

In this paper, we use “the” standard graph- and game-theoretic notation. For
introduction to these areas, we recommend the books Modern Graph Theory [2]
and Lessons in Play: An Introduction to Combinatorial Game Theory [1].

We use N(v) and N [V ] to denote the closed neighbourhood (including v, resp.
V ) of a vertex or a set of vertices, respectively. We briefly mention some of the
less-known graph classes and their properties:

A graph G is chordal (also called bridged) if there are no induced cycles of
length at least 4. A graph is a split graph if its vertices can be partitioned into
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two sets I and K, I an independent set and K a complete subgraph. Every split
graph is also chordal.

A graph is an interval graph if it can be realised as an intersection graph of
a family of intervals on a real line. For a family of intervals I, the associated
intersection graph G(I) has one vertex for each of the intervals and an edge
between the vertices corresponding to intervals I1 and I2 if and only if I1∩I2 �= ∅.
Every interval graph is chordal.

Throughout the article we assume that every interval graph comes with a
fixed interval representation consisting of open intervals with integral endpoints
1, 2, . . .2|VG| and such that no two intervals share an endpoint. Note that such
an interval representation can be reconstructed from G in linear time, as shown
by Korte and Mhring [6].

We identify the intervals of the chosen representation with the vertices, inter-
changing these frequently.

In the rest of the paper, we fix G to be a connected interval graph with a
given interval representation, V be the set of vertices of G and E be the set of
its edges. We also fix k to be the given number of cops.

Note that in a disconnected graph, the cops have to decide on a distribu-
tion among the components and the robber then chooses a component to play
in. Later in game only the cops in that component matter. Assuming we can
compute the minimum number of cops necessary for each separate connected
component in polynomial time, we can just sum up these numbers to get the
minimum number of cops that can capture the robber in the entire graph.

We slightly modify the game: all the cops must start at the leftmost interval
of G. This is equivalent to the game defined above, since the cops can first move
to any desired position (ignoring the robber) and then pretend that the game
started from that position.

Formally we call the game state before cops’ move C(C, r), where C is a
multiset of vertices occupied by the cops and r is the vertex the robber moved
to. The game state before robber’s move is R(C, A) with C as above and A is the
set of all vertices the robber may move to (the connected component of G− C
containing the robber).

This slightly reduces the complexity of the examined states. Note that before
any robber’s turn, two states with robber in the same component of G−C offer
the same moves to the robber. Also note that A is always connected including
the first round.

The initial state of the game isR(C, V −C), where C is the multiset containing
k times the leftmost vertex of G. We also add a special stateWIN , which denotes
the capture of the robber.

3 Specifics of the Game

In this section, we introduce the definitions necessary for the game strategy
reduction. These allow a more precise look at the game.

The main idea of this paper is to simulate arbitrarily complex cops’ winning
strategy by a simplified, restricted strategy using only three kinds of actions
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– sweep, split and endgame. The definitions of the actions are provided below
together with a formal definition of a restricted strategy.

Informally, an action is a predefined part of cops’ strategy starting at a distin-
guished game state and ending at another distinguished game state. A restricted
cops’ strategy may only decide the next action in such distinguished game state.

Before defining the restricted actions, let us introduce some useful concepts
and make few observations.

Proposition 1. At any point in the game, the cops restrict robber’s movement
to an interval, the robber may move to arbitrary vertex of this interval except
those occupied by the cops.

The union of vertices (as intervals) reachable by the robber is obviously a single
interval (this interval does not generally correspond to a vertex). We call this in-
terval the playground. Any cop-free vertex inside or incident with the playground
is adjacent to a vertex accessible to the robber.

The left and right endpoints of the playground are called the left and right
barriers. We denote the playground with barriers L and R, L < R by (L, R).
Note that L and R are not contained in the playground (as all the intervals are
open) and all intervals incident with these barriers are be occupied by the cops
(otherwise the playground would be bigger).

The vertices incident to the barrier are called the barrier’s support, denoted
V (L). Note that the support of either barrier may be empty. The vertices con-
tained inside a playground (L, R) are called the playground support, denoted
V (L, R). Support of a playground is always disjoint from the supports of the
barriers.

From the cops occupying a barrier support, choose and fix one cop per vertex.
Let us call these cops the cops holding the barrier. The choice and fixing of the
cops is is mostly symbolic since the cops are indistinguishable, but is useful in
some proofs. Note that a cop may hold both barriers at once, but as we will see,
that this may happen only just before capturing the robber.

A playground (L, R) is feasible, if |V (L) ∪ V (R)| ≤ k, that is if the cops are
able to hold both barriers at once. For every nontrivial feasible playground (L, R)
(nonempty and not containing all the vertices), we fix a canonical game state

§(L, R) = R(V (L) ∪ V (R), V (L, R))

with all extra cops not explicitly holding any vertices positioned at the leftmost
vertex outside V (L, R). A game state corresponding to an empty playground
would be WIN , as the cops must have just caught the robber.

There is a minor technicality – there is no game state corresponding to the
full playground containing all the vertices, as there is no way to place the cops
and get the playground to be the entire graph. We fix the state canonical for
(−∞,∞) to be the state R({v0}, V − v0) with v0 the left-most vertex. This
makes the playground (−∞,∞) always feasible.

Proposition 2. If (L, R) is a feasible playground then the playground corre-
sponding to its canonical game state is the same, or a subset in case of (L, R)
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full playground. As the full playground occurs only in the first move, we usually
omit that case.

The cops in position C threaten to take a vertex set B if the cops can occupy
every vertex of B after one move. This is equivalent to an existence of a matching
of C (as a multiset) with all vertices of B.

In our strategy, B is usually a barrier and there may be additional explicit
conditions – usually, some other vertices must be held both before and after the
move. When considering a set of cops threatening B, we fix a matching between
the threatening cops and the vertices of B for the moment.

Now we are ready to define cops’ restricted strategy. While a general cops’
strategy is mapping from every valid state of the game to a move valid in that
state, a restricted cop’s strategy is a mapping from the robber states canonical to
some feasible playground to actions valid in that state. Therefore, the restricted
strategy can influence the game only after an action has finished (which it always
does either in a state canonical to some playground or in WIN ).

4 Essential Cops’ Moves

Formally, a restricted cops’ strategy is a cops’ strategy that, in a canonical game
state, may only choose one valid action or pass. The chosen action is then played
as a sub-strategy. After the action finishes, the strategy may choose another
action.

An action is a sequence of moves starting at a canonical state and ending in
one of defined canonical states or in WIN . An action is valid if it can be played
out by k cops.

The actions are ordered by preference. If an endgame move is valid from some
playground, then we do not consider the possibility of other moves. Also, if a
sweep from (L, R) to (L′, R) is valid, we consider no splits to (L′, R) or (L, R′)
for any R′, and symmetrically for sweep to (L, R′). This saves us few cases in
the technical parts of the proofs.
Endgame from §(L, R). From the state §(L, R), the cops assume a position C
holding both L and R. C dominates V (L, R). In the next move, the cops capture
the robber. Such a multiset C with |C| ≤ k is a witness of the validity of the
action.
Sweep from §(L, R) to §(L′, R) (or to §(L, R′)). From the state §(L, R), the
cops assume a position C holding L and R. In C they threaten barrier L′ (or R′)
while holding R (or L). If L < L′ (or R′ < R) then C also dominates V (L, L′) (or

L R

c c c
c

c
c

L RL′

c c c c
c

cc c

Fig. 1. Illustrations of endgame and sweep actions
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L RL′R′

§(L,R′) §(L′, R)c c c

L RL′ R′

§(L,R′) §(L′, R)

Fig. 2. Split action with R′ < L′ and R′ ≥ L′

V (R′, R)). Then the cops in one move stop holding L (or R) and either capture
the robber or take and start holding L′ (or R′) and move to the state canonical
for the goal state.

The action is valid if such set C with |C| ≤ k exists and an endgame from
(L, R) is not possible. After the action, the robber is either in the new playground
or captured, as (L, L′) (or (R′, R)) was dominated.
Split from §(L, R) to either §(L′, R) or to §(L, R′). From the state §(L, R),
the cops assume a position C holding both L and R. In C they threaten barrier
L′ while holding R and threaten R′ while holding L. If R′ < L′ then C also
dominates V (R′, L′).

After moving to C, the cops let the robber move and decide according to
robber’s position r. If r is adjacent to a cop, they capture the robber. If r ∈
V (L, R′), the cops stop holding R and take and start holding R′. Otherwise, the
cops stop holding L and take and start holding L′. If the cops did not capture
the robber, they then assume the state canonical for either §(L, R′) or §(L′, R).

The action is valid only if such witness set C with |C| ≤ k exists and neither
endgame from §(L, R) nor sweep from §(L, R) to one of §(L, R′), §(L′, R) is
possible. This last condition is added only for simplicity and could be dropped.

The existence of a witness of any of the action is decidable in polynomial
time. The proof of the lemma below is somewhat technical and we present it
to Section 6. The algorithms are mostly straightforward modifications of the
well-known greedy minimum dominating set algorithms for interval graphs.

Lemma 1. There are polynomial-time algorithms deciding the validity of ac-
tions endgame, sweep and split.

This allows us to decide the existence of a cops’ restricted strategy.

Theorem 2. There is a polynomial time algorithm that, given an interval graph
G and k, decides the existence of a winning restricted strategy for k cops.

The length of a winning strategy (measured in game turns) is O(|VG|3).

Proof. We construct a game-state digraph D representing the game with cops
using restricted strategy.

The cop-states of D are all feasible playgrounds and WIN . The empty play-
ground is the initial cop-state, WIN is the cop-win state.

The robber-states of D are quadruples (L, L′, R′, R) of barriers such that split
from (L, R) to either (L, R′) or (L′, R) is a valid action.

For every valid endgame from §(L, R), there is a move from (L, R) to WIN .
For every valid sweep from §(L, R) to §(L′, R′), there is a cop-move from (L, R) to
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(L′, R′). For every valid split from §(L, R) to either §(L, R′) or §(L′, R), there is a
cop-move from (L, R) to (L, R, L′, R′) and two robber-moves from (L, R, L′, R′)
to (L, R′) and (L′, R).

We decide the game given by D using a general state-marking algorithm,
giving us either a winning strategy for the cops or a non-losing strategy for the
robber.

If we get a cops’ winning strategy in D, it is also a restricted cops’ strategy for
the general game, where the cops play the original action of the move dictated
by the strategy.

On the other hand, the moves of any restricted cops’ strategy are present in
the game-state digraph. Both cops’ restricted strategy and the game encoded
by D ignore the position of the robber in the playground except for the final
move in split (that corresponds to the robber choosing one of the playgrounds).
The game of D does not allow the robber to get captured prematurely, but that
possibility is ruled out by assuming the robber to play optimally.

The game digraph D has O(n4) states and moves. The feasibility of every state
and the validity of every move can be decided in polynomial time according to
Lemma 1. The general combinatorial game-decision algorithm then runs in time
polynomial in the size of D.

To see the maximum length of a strategy, note that an optimal cops’ strategy
visits every state at most once, there are O(|VG|2) cop-states and every robber-
state is followed by a cop-state. It is easy to see that playing out any single
action takes O(n) moves. �	

5 Simulating General Cops’ Strategy

In this section we prove the following theorem.

Theorem 3. For an interval graph G and an integer k, k cops have a winning
strategy for the Cops and ∞-fast Robber game if and only if k cops have a
restricted winning strategy.

With this, we may immediately prove Theorem 1.

Proof of Theorem 1. According to Theorem 2, we can decide the existence
of a winning restricted cops’ strategy in polynomial time. By Theorem 3, such
strategy exists if and only if a general winning cops’ strategy exists. �	
Proof of Theorem 3. The “if” part is straightforward, as the cops can play
out the actions of a restricted winning strategy. The action properties ensure that
the actions are possible and that the robber is inside the respective playground
or captured.

For the other direction, let S be an optimal (in the terms of length) cop’s
winning strategy for k cops. We may assume that the strategy wins from any
state, as it may move the cops to the state canonical to the full playground and
then play from there. Note that if the cops play according to S, the game will
never revisit a game state.
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Let S be the subgraph of the game state digraph representing the strategy.
The vertices are all the cop- and robber-states of the game. From each cop-vertex,
there is exactly one cop-move as dictated by S. From each robber-vertex, all the
robber-moves are present. Note that S is acyclic.

Fix any total ordering o of the states of S extending the partial order given
by the moves.

The restricted cops’ winning strategy is obtained using the following lemma:

Lemma 2. Given any robber state R(C, A) of S, let R(Ci, Ai) be the robber
states of S reachable from R(C, A) in two moves (a robber move and a cop move).
Let P = §(L, R) be a playground corresponding to R(C, A) and Pi = §(Li, Ri)
be the playgrounds corresponding to R(Ci, Ai).

There is a restricted cops’ strategy that starts in the cop-state canonical to
§(L, R) and moves a cop-state canonical to one of §(Li, Ri) in O(n) actions, or
wins.

The desired restricted strategy T is as follows:
For a cop-state canonical to §(L, R), find the latest (w.r.t. o) robber-state

R(C, B) with playground §(L, R). Let C(C, ri) be all the possible following cop-
states and let R(Ci, Ri) and §(Li, Ri) be the resulting states of the cop-moves
dictated by S and the corresponding playgrounds.

The restricted strategy T should play the actions given by Lemma 2. This
leaves the game in a state canonical to one of §(Li, Ri) or won for the cops. Note
that all §(Li, Ri) are different from §(L, R), because the state R(C, B) is latest
such state.

Now we have that the latest occurrence of a robber-state with playground
§(Li, Ri) is (w.t.r. o) larger than that of §(L, R). Therefore, by playing T , the
latest state (w.r.t. o) with the same playground as the current one only increases.

This proves that T is acyclic and therefore winning for the cops. �	

R(C,A)

C(C, r1) C(C, r2) C(C, r3)

R(C2, A2)

R(C1, A1)

R(C3, A3)

L R

c c c c c
c c

L′1 R′1

L′2 R′2

L′3 R′3

r1 r2 r2′ r3
r0

C(C, r2′)C(C, r0)

WIN

Fig. 3. An illustration of one robber state R(C, R) of S with some of the robber moves
ri followed by the cop moves dictated by S, and the corresponding playgrounds
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L
L′1 L′2R′1 R′2 R′3=RL′3

d1 d2 d3c
c c c c c cc cc c

ccc

Fig. 4. An illustration of the playgrounds of P . Note that the playgrounds may overlap.
This also illustrates how the dj separate the groups of cops of C.

Proof of Lemma 2. Let D be the non-dominated vertices of P , that is, D =
P \ N [C]. If D = ∅, then C is a witness for endgame and the strategy may
immediately win.

Otherwise, let P be an inclusion-minimal sub-collection of playgrounds cov-
ering D, indexed by j ∈ {1 . . .} from left to right. Denote these playgrounds
P ′

j = §(L′
j, R

′
j) and the corresponding states R(C′

j , B
′
j). For every P ′

j , there is
some vertex dj of D covered only by P ′

j , otherwise P is not minimal.
The cops of C threaten every individual barrier L′

j and R′
j . As every P ′

j

contains an non-dominated vertex, the cops threatening L′
j and R′

j are disjoint
for every j.

The strategy construction is algorithmic and reduces P and modifies C on
the way. However, multiset C is modified only the left of d1 and to the right of
d|P|. After the first two actions, the playground is always §(L′

1, R
′
|P|).

The strategy starts with a sweep to §(L′
1, R) followed by a sweep from §(L′

1, R)
to §(L′

1, R
′
|P|). The first sweep is valid as the cops of C to the left of d1 together

with V (R) witness. The validity of the second sweep is witnessed by the cops of
C to the right of d|P| together with V (L′

1). This changes the position
If there is only one playground §(L′

1, R
′
1) in P , we have that the current

playground is §(L′
1, R

′
1) and we are done.

If there are multiple playgrounds in P , let the strategy play a split to either
§(L′

1, R
′
1) or §(L′

2, R
′
|P|). The split is witnessed by C, as the original C threatened

both V (R′
1) and V (L′

2), dominating V (R′
1, L

′
2) if R′

1 < L′
2. Note that the cops

of C between d1 and d2 are unmodified.
This either moves the game to state canonical to §(L′

1, R
′
1), or reduces P .

Multiset C is modified by taking V (L′
2), but (as this was possible in the original

C) this may be done only using the cops to the left of d2 and right of d1. In
every step, we renumber the elements of P from 1 up.

Repeating this step, the strategy either wins or moves to the state canonical
to some §(L′

j , R
′
j). �	

6 Complexity of Finding Witness

In this section we prove the complexity of the three decision problems in Lemma 5,
splitting it into the following three lemmas. The statement of Lemma 5 then di-
rectly follows.
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The algorithms are not given explicitly, but follow straightforwardly by fol-
lowing the order of assumptions in the proofs of the lemmas.

Lemma 3. A smallest witness for endgame from §(L, R) can be computed in
polynomial time.

Proof. Both V (L) and V (R) have to be occupied and D := V (L, R)−N [V (L)∪
V (R)] has to be dominated (note that all the vertices of G can be used for the
domination). The size of a smallest witness is then |V (L) ∪ V (R)|+ domG(D).

The size of domG(D) is computed by a greedy sweep algorithm for a minimum
dominating set in interval graphs. See a paper by Brandstädt [3] for details. �	
Lemma 4. A smallest witness for sweeps from §(L, R) to §(L′, R) and from
§(L, R) to §(L, R′) can be computed in polynomial time.

Proof. We prove only the direction from §(L, R) to §(L′, R) as the other is sym-
metrical.

Let C be a smallest witness and M a matching of every cop of C with the
threatened vertex such that C holds R (at every vertex of V (R) there is a loop
in the matching). Note that C occupies L.

We can ensure that M uses the maximum number of cops from V (L) just by
changing M . Let the vertices threatened by cops from V (L) be L′

C ⊆ V (L′). We
fix this part of M . M now threatens L′′ := V (L′)−L′

C without cops at V (L) or
V (R) (and optionally dominates V (L, L′)).

If L′ < L, then C has to contain |L′′| additional cops threatening L′′. These
cops can be positioned at the threatened vertices and altogether, |V (L)∪V (R)|+
|L′′| cops are required.

If L′ > L, let D := V (L, L′)−N [V (L) ∪ V (R)] and let c1, c2, . . . be the cops
dominating D ordered left to right. We can ensure that every cop ci is on the
rightmost-ending vertex such that D is still dominated, since moving ci to such
vertex v preserves both domination of D and (possible) threatening of some
vertex l ∈ L′′. For the latter note that v lies either left of L or v ∈ V (L). Note
that such ci are exactly those returned by a left-to-right sweep greedy algorithm
computing domG(D).

Now we may assume that M is maximal between L′′ and ci’s. Therefore, C
must contain at least one extra cop for every v ∈ L′′ not matched to some ci.
This gives the total size of C. �	
Lemma 5. A smallest witness for split from §(L, R) to either §(L′, R) or to
§(L, R′) can be found in polynomial time.

Proof. Let C be a smallest witness and ML (resp. MR) be matchings of cops of
C with V (L′)∪ V (R) (resp. V (R′)∪ V (L)) such that C holds R in ML (resp. C
holds L in MR) as in the proof of Lemma 4.

We can ensure that both ML and MR use the maximum number of cops from
V (L) and V (R) just by changing M . Let the vertices of V (L′) threatened by cops
from V (L) be L′

C and symmetrically, let R′
C be the vertices of V (R′) threatened

by cops from V (R). We fix these parts of ML and MR. Let L′′ := V (L′)−L′
C and
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R′′ := V (R′)−R′
C . C now threatens both L′′ (in ML) and R′′ (in MR) without

the cops at V (L) and V (R) (resp. those occupying/holding these barriers) and
optionally dominates V (R′, L′).

Case 0. If there is an interval (vertex) v of G containing both R′ and L′, then
the cops of C threatening L′′ and R′′ can be assumed to be positioned at v. This
also makes V (R′, L′) dominated. In this case we can take C = V (L) ∪ V (R) ∪
({v} ×max(|L′′|, |R′′|)).

In the remaining cases we assume that there is no such vertex v.

Case L′ < R′. For every l ∈ L′′, we may assume that the cop c threatening l
in ML is positioned on the neighbour v of l with the rightmost right end. If cop
c also threatens some vertex r ∈ R′′ then we still have v ∈ N [r]. Note that if v
would lie to the right of R′ then vertex l would satisfy conditions of Case 0. Let
TL be the cops threatening L′′ in ML.

We can make MR maximal between R′′ and TL. Now C has to contain one
extra cop for every vertex of R′′ not threatened by some TL. Let TR be set of
these vertices. The cops threatening TR in MR can be positioned on the vertices
they threaten.

Now we can take C := V (L) ∪ V (R) ∪ TL ∪ TR.

Case L′ ≥ R′. Let D := V (R′, L′) − N [V (L) ∪ V (R)] (the vertices left to
be dominated). Order the vertices of D ∪ L′′ left-to-right by the right ends as
d1, d2, . . .. We show that we may assume that the cops of C dominating D and
threatening R′′ are in the positions generated by the following algorithm:

Start with C′ := ∅, M ′ := ∅ and take the vertices di in turn. If di ∈ R′′

and not threatened in M ′, place a cop into C on the right-most neighbour of
di and add the matching into M ′. Otherwise if di �∈ N [C′], add the right-most
neighbour (wrt. right endpoint) v of di to C′. If there is r ∈ R′′ non-threatened
neighbour of v, add the left-most such r (wrt. right endpoints) to M ′ to threaten
di. In other cases, proceed with next di+1.

Take the left-most cop ci of C threatening R′′ or dominating D positioned
differently than the corresponding c′i in C′. If ci is left of c′i (wrt. right endpoint),
we may move ci right to c′i. This preserves domination and threatening R′′ and
(optional) threatening L′′ (as c′i can not be to the right of L′). If ci is right of c′i
(wrt. right endpoint), then the vertex dj that caused c′i to be in C′ is either not
dominated (if the reason was domination of dj) or not threatened (if the reason
was threatening some r ∈ R′′).

Again, we may assume that M is maximal between C′ and L′′. Then C has
to contain extra cops TL to threaten L′′, these cops may be assumed to be on
the threatened vertices. Finally, we can take C := V (L) ∪ V (R) ∪C′ ∪ TL. �	

7 Conclusion

We have shown an algorithm deciding the Cop and ∞-fast Robber game on
interval graphs, therefore answering an open question of Fomin et al. posed in
their paper “Pursuing a fast robber on a graph” [4].
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Since the game is already NP-hard for general chordal graphs and even split
graphs, it would be interesting to consider the complexity of the game on chordal
graphs with bounded asteroidal number (or the number of leaves of the underly-
ing tree for the standard intersection representation of chordal graphs) and the
class of circular-arc graphs.

The notion of playgrounds of the reduced game can be extended to such
graphs and seem to have some common properties, but the analysis does not
extend in a straightforward way.

We propose the complexity of the game on such graphs as an open question.
Even an algorithm exponential in the asteroidal number would be of interest.

References

1. Albert, M.H., Nowakowski, R.J., Wolfe, D.: Lessons in Play: An Introduction to
Combinatorial Game Theory. AK Peters, USA (2007)

2. Bollobás, B.: Modern graph theory. Graduate Texts in Mathematics, vol. 184.
Springer, New York (1998)

3. Brandstädt, A.: The computational complexity of feedback vertex set, hamiltonian
circuit, dominating set, steiner tree, and bandwidth on special perfect graphs. Elek-
tronische Informationsverarbeitung und Kybernetik 23(8/9), 471–477 (1987)

4. Fomin, F.V., Golovach, P., Kratochvil, J., Nisse, N., Suchan, K.: Pursuing a fast
robber on a graph. Theoretical Computer Science (2009) (submitted)

5. Fomin, F.V., Golovach, P.A., Kratochv́ıl, J.: On tractability of cops and robbers
game. In: IFIP TCS, pp. 171–185 (2008)
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Abstract. Finding a Nash equilibrium in a bimatrix game is PPAD-hard
(Chen and Deng, 2006 [5], Chen, Deng and Teng, 2009 [6]). The problem,
even when restricted to win-lose bimatrix games, remains PPAD-hard
(Abbott, Kane and Valiant, 2005 [1]). However, there do exist polyno-
mial time tractable classes of win-lose bimatrix games - such as, very
sparse games (Codenotti, Leoncini and Resta, 2006 [8]) and planar games
(Addario-Berry, Olver and Vetta, 2007 [2]).

We extend the results in the latter work to K3,3 minor-free games and
a subclass of K5 minor-free games. Both these classes strictly contain
planar games. Further, we sharpen the upper bound to unambiguous
logspace UL, a small complexity class contained well within polynomial
time P. Apart from these classes of games, our results also extend to a
class of games that contain both K3,3 and K5 as minors, thereby covering
a large and non-trivial class of win-lose bimatrix games. For this class,
we prove an upper bound of nondeterministic logspace NL, again a small
complexity class in P. Our techniques are primarily graph theoretic and
use structural characterizations of the considered minor-closed families.

Keywords: K3,3-minor-free, K5-minor-free, Win-lose bimatrix game,
Nash equilibrium.

1 Introduction

In his seminal paper [15] in 1951, Nash proved that every finite non-cooperative
game always has at least one equilibrium point. In recent years, there has been
a flurry of activity in the algorithmic and complexity theoretic community ad-
dressing various questions regarding the computation of Nash equilibria. On the
one hand, related hardness results have been proved. Daskalakis, Goldberg and
Papadimitriou [9] showed that finding a Nash equilibrium is PPAD complete for
an n-player game (n ≥ 4). (Ref. [16] for a definition of PPAD). Chen and Deng
[4] extended this result to the 3-player case and subsequently to the 2-player case
too [5] (also ref. [6]). Abbott, Kane and Valiant [1] showed that restricting the
payoffs of the players to 0 or 1 does not make the game easier. In other words,
bimatrix (0, 1) or win-lose games are as hard as the general-sum case. Chen, Teng
and Valiant [7] showed that even finding approximate Nash equilibria (correct
upto a logarithmic number of bits) for win-lose bimatrix games is PPAD hard.

On the other hand, search is on for classes of games where efficient (poly-
nomial time, say) algorithms exist. Codenotti, Leoncini and Resta [8] proposed

M. Ogihara and J. Tarui (Eds.): TAMC 2011, LNCS 6648, pp. 365–376, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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an algorithm to efficiently compute Nash equilibria in sparse win-lose bimatrix
games. They showed that win-lose bimatrix games that have at most two winning
positions per pure strategy can be solved in linear time. Addario-Berry, Olver
and Vetta [2] showed that planar win-lose bimatrix games are polynomial time
tractable. Planar win-lose bimatrix games are games where the bipartite graph
obtained by considering the payoff matrices as adjacency matrices is planar. See
Section 3 for formal definitions. They proved that:

Theorem 1. (Theorem 3.6 in [2]) There is a polynomial time algorithm for
finding a Nash equilibrium in a two-player planar win-lose game.

We sharpen the above result by observing that polynomial time can be replaced
by deterministic logarithmic space L and more importantly, we extend the result
from planar games to the following classes of win-lose bimatrix games where we
prove solvability in unambiguous logarithmic space UL for Classes 1 and 2, and
in nondeterministic logarithmic space NL for Class 3. (Recall: UL ⊆ NL).

1. K3,3 minor-free games,
2. K5-minor free games where the triconnected components are planar or V8,
3. Games whose triconnected components are K5, V8 or planar.

For definitions of these classes, see Section 3. Notice that all these classes strictly
include planar graphs since from Kuratowski’s Theorem [14] (also ref. [19] by
Wagner), it follows that planar graphs are exactly the class of graphs which
exclude both K3,3 and K5 as minors. Class 3 above strictly contains Classes 1
and 2 (Ref. [3], [19]), and also contains games that are neither K3,3-minor-free
nor K5-minor-free. Hence, our results cover a large and non-trivial superclass of
planar win-lose bimatrix games. Our results are motivated by a remark in [2]
which indicates that planarity is a necessary condition for their method to work
and exhibits an oriented K3,3 as an example where their method does not apply.

Our proofs for all these classes use the essential ingredients of the proof in
[2], in particular, showing that an undominated induced cycle exists for each of
these classes. Such a cycle corresponds to a Nash equilibrium. (We outline these
results from [2], in Section 3). We also show that such a cycle can be found in
UL for Classes 1 and 2, and in NL for Class 3 (and hence, in polynomial time for
all three classes). Our proofs, further, build on a triconnected decomposition of
planar graphs and K3,3-minor-free graphs (respectively, K5-minor-free graphs).

We discuss the proof outline in the following section. For details of these
proofs, refer Section 4. Section 3 contains background and preliminaries, and
Section 5 concludes with some open problems.

2 Outline of Proof

We outline the proof for the K3,3 minor-free case. The proof for the subclass of K5

minor-free games is similar. The proof for games whose triconnected components
are K5, V8 or planar follows from the proofs for the other two classes.
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Given a K3,3 minor-free game we consider its underlying graph. The essential
idea carried over from [2] is to identify an undominated induced cycle in this
graph. Such a cycle corresponds to a Nash equilibrium. (Ref. Section 3 for def-
initions). Since we are looking for cycles of a particular kind we need to focus
on any biconnected component of the underlying undirected graph (since even
undirected cycles cannot span biconnected components). We further decompose
the underlying biconnected graph into triconnected components using a method
from [11]. We show that if we can produce undominated induced cycles in each
triconnected component (which inherits orientation to edges from the original
graph), then there is a way to “stitch” them together to obtain at least one
undominated induced cycle in the original graph. For non-planar components
(that is, K5 and V8 (Ref. [3], [19])), we prove the following. We show that ev-
ery strongly-connected bipartite subdivision of K5 and V8 has an undominated
induced cycle, and we show how to find one.

The problem thus reduces to finding undominated induced cycles in the tri-
connected components of a K3,3 minor-free graph which by a lemma of Asano
[3] are exactly triconnected planar graphs or K5’s. For the former, we know from
[2] how to find such cycles and for the latter, we explicitly show how to find such
cycles. Notice that in the process of finding triconnected components we have
lost bipartiteness and possibly altered the notion of domination. So we have to
carefully deal with subdivisons of triconnected graphs, instead which preserve
bipartiteness, domination and most properties of 3-connectivity.

3 Background and Preliminaries

3.1 Win-Lose Bimatrix Games

Definition 1. A win-lose (or (0, 1)-) bimatrix game is specified by two R × C
matrices MR and MC with entries from {0, 1} where the payoff for the row
(column) player playing action ri ∈ R (respectively, cj ∈ C) is MR(i, j) (re-
spectively, MC(i, j)) if the column (respectively, row) player plays action cj ∈ C
(respectively, ri ∈ R) in response.

Pure strategies of the row (column) player are just rows (respectively, columns)
that index the payoff matrices of the players. A mixed strategy of the row (column)
player is a probability distribution over the set of rows (respectively, columns).
The aim of each player is to choose a strategy that maximizes his/ her expected
payoff.

Definition 2. A best response of the row (column) player is a mixed strategy x
(respectively, y) of the row (respectively, column) player that maximizes his (her)
expected payoff given a mixed strategy y (respectively x) of the other player.

A Nash equilibrium is a pair of strategies that are mutual best responses.

Definition 3. Given a win-lose bimatrix game specified with the matrices
MR, MC, its associated (or underlying) graph is the bipartite directed graph,



368 S. Datta and N. Krishnamurthy

GR,C = (V, E) with bipartitions R, C (that is, V = R ∪ C) and the following
adjacency matrix: (

0 MR

MT
C 0

)

Definition 4. An undominated induced cycle in GR,C is a cycle C such that
there are no vertices {u, v, w}, where v and w (v �= w) are on C, such that
(u, v) ∈ C and (u, w) ∈ C. (An induced cycle C is dominated by a vertex v (not
on C), if there are two or more edges from v to vertices on C).

We use the following results from [2].

Claim 1. (From Sections 2.1 and 2.2 in [2]) It suffices to look at the case when
GR,C is strongly connected and is free of digons (cycles of length 2).

Lemma 1. (Corollary 2.3 in [2]) Let S ⊂ V and let the subgraph restricted to
S, GR,C [S], be an induced cycle. S corresponds to a (uniform) Nash equilibrium
if the cycle GR,C [S] is undominated.

Lemma 2. (Theorem 3.4 in [2]) Any non-trivial, strongly connected, bipartite,
planar graph contains an undominated facial cycle.

Lemma 3. (Theorem 3.1 in [2]) Any non-trivial, strongly connected, bipartite,
planar graph has an undominated induced cycle.

3.2 Minor-Free Graphs

Definition 5. A subdivision of a graph G is a graph obtained by subdividing its
edges by adding more vertices.

Definition 6. Given a graph G, a minor of G is a subgraph H that can be
obtained from G by a finite sequence of edge-removal and edge-contraction oper-
ations. If G does not contain K3,3 (K5) as a minor, it is called K3,3-minor-free
(K5-minor-free).

We are interested in K3,3-minor-free graphs and K5-minor-free graphs due to
Kuratowski’s (and Wagner’s) theorems.

Theorem 2. (Kuratowski, 1930 [14], Wagner, 1937 [19]) A finite graph is pla-
nar if and only if it contains neither a K3,3-minor nor a K5-minor.

Definition 7. A k-connected graph is one which remains connected on removing
less than k vertices. A 2-connected graph is called biconnected. A graph is called
triconnected if it is either 3-connected or a cycle.

Definition 8. Consider two graphs G1 and G2 each containing cliques of equal
size. The clique-sum of G1 and G2 is a graph formed from their disjoint union
by identifying pairs of vertices in the corresponding equal-sized cliques to form a
shared clique, and possibly deleting some of the clique edges. A k-clique-sum is
a clique-sum in which both cliques have at most k-vertices.
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We use the following results regarding K3,3-minor-free and K5-minor-free graphs.

Lemma 4. (Asano, 1985 [3]. Also ref. Vazirani, 1989 [18]) Let G be a K3,3-
minor-free graph. The triconnected components of G are either planar or K5.

Lemma 5. (Wagner, 1937 [19]. Also ref. Khuller, 1988 [13]) Any K5-minor-
free graph can be obtained by repeatedly taking 3-clique-sums of planar graphs
and V8. (V8 is the 4-rung Mobius ladder, on 8 vertices).

The class of K5-minor free graphs where we prove existence of undominated
induced cycles, namely K5-minor free graphs whose triconnected components
are either V8 or planar, can also be obtained by taking 3-clique-sums of planar
graphs and V8, but for every set of shared-clique-vertices, we require the clique-
sum to be between two graphs. Given 3 or more cliques with a common set of
vertices, repeatedly taking clique-sums may lead to graphs with no undominated
induced cycles. E.g., K3,3 can be obtained by a 3-clique-sum operation on three
K4’s. We can orient these edges to obtain the counter example shown in [2].

3.3 Triconnected Decomposition of a Graph

Given a graph, we can find its cut-vertices and biconnected components in L
(e.g. see [10]). If we start with a digraph instead, there is virtually no change in
the procedure since two biconnected components do not share any edge. In 1973,
Hopcroft and Tarjan [12] proposed a technique to decompose a graph into its
triconnected components. Finding triconnected components can also be accom-
plished in L - e.g. see [11]. This procedure outputs a triconnected-component-
separating-pair tree which has triconnected components and separating pairs1

as nodes with an edge between a triconnected component and a separating pair
if and only if the separating pair belongs to the component.

4 Finding a Nash Equilibrium

From Claim 1, it suffices to look at bipartite digraphs that are strongly connected
and free of digons. It is easy to see that this initial pre-processing can be done
in L. If the graph GR,C has a digon, a pure equilibrium can easily be found in L.
Checking if GR,C is strongly connected can be done in L as well. If GR,C is not
strongly-connected, we can find, in L, one strongly connected component, say
S, that is a source (hence “undominated”) in the strongly-connected-component-
dag of GR,C . (The strongly-connected-component-dag, H , of GR,C is such that
strongly connected components of GR,C are vertices of H . For S1, S2 ∈ H ,
(S1, S2) is an edge if ∃v1 ∈ S1, v2 ∈ S2 such that (v1, v2) is an edge in GR,C).

Now, we find the triconnected components of GR,C and as discussed in Sec-
tion 3, this can be done in L. It is important to notice that while computing a
1 Pairs of vertices removing which disconnects the graph. Only triconnected separating

pairs are present in the triconnected-component-separating-pair tree - Ref. [11].
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triconnected component, we add a spurious edge between the vertices of a sepa-
rating pair if it is not already present. These spurious edges pose three kinds of
problems when we consider bipartite digraphs: (1) How do we orient these edges?
(2) How do we ensure bipartiteness in the resulting triconnected components?
(3) How do we make sure that no new domination is introduced?

For handling (1), note that if there is a directed path from u to v, (where {u, v}
is a separating pair) in some component C0 formed after removing {u, v} from
the graph, we can orient the edge as (u, v) in every other component C formed
by removing the same separating pair. Then, if we find a cycle in a triconnected
component, it will correspond to a cycle in the original graph. However, to do this
orientation, we must check for reachability in the corresponding directed graphs,
which is in NL. For K3,3-minor-free and K5-minor-free graphs, we know from [17]
that this is in UL. Problem (2) is easy to solve: we just need to subdivide the
spurious edge appropriately i.e. if both its endpoints are in the same partition
then subdivide the edge by introducing a single vertex, else subdivide it by
introducing two vertices. Observe that, to solve (2), if both endpoints are in
different partitions, we do not need to subdivide the edges at all. But this may
introduce new dominations. Subdividing spurious edges even if the endpoints are
in different partitions takes care of (3). (As existing edges are neither subdivided
nor removed, existing domination relationships are preserved). Hence:

Lemma 6. Given a digraph G whose underlying undirected graph is biconnected,
we can obtain a triconnected-component-separating-pair tree T with edges in tri-
connected components directed in such a way that every directed cycle present in
a triconnected component corresponds to some directed cycle in G. This procedure
is in NL, and in UL if G is K3,3-minor-free or K5-minor-free.

Now, we prove the following lemma.

Lemma 7. Let G be a strongly connected orientation of a subdivision of a tri-
connected planar graph which is bipartite. Then at least one of the faces of G is
bounded by an undominated, induced (directed) cycle.

Proof. Using Lemma 2 we know there exists an undominated, facial (directed)
cycle. Since in a triconnected graph every facial cycle is induced, the same follows
for any subdivision thereof.

We prove the following lemmas for non-planar triconnected components, in sub-
sequent sections.

Lemma 8. Every strongly-connected bipartite subdivision of K5 has an undom-
inated induced cycle.

Lemma 9. Every strongly-connected bipartite subdivision of V8 has an undom-
inated induced cycle.

Finally, we need to stitch together various cycles across triconnected components.
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Lemma 10. Given the triconnected-component-separating-pair tree T of (the
underlying undirected graph of) a strongly connected bipartite graph G, it is pos-
sible to find an undominated induced cycle in the original graph G in L.

Thus, we obtain our main result:

Theorem 3. There is an NL procedure for finding a Nash equilibrium in a two-
player win-lose game which belongs to one of the following classes:

1. K3,3 minor-free games,
2. K5-minor free games where the triconnected components are planar or V8,
3. Games whose triconnected components are K5, V8 or planar.

For Classes 1 and 2, a Nash equilibrium can, in fact, be computed in UL.

Proof. We are done by invoking the above Lemmas. Apart from Lemmas 6, 7, 10
and 1, we invoke 8 and 4 for the proof for Class 1, Lemmas 9 and 5 for Class 2
and for Class 3, Lemmas 8, 9 and the observation that undominated induced
cycles in K5 and V8 can be “stitched” together in L too.

Remark 1. Class 3 in Theorem 3 includes games that are neither K3,3-minor-free
nor K5-minor-free, and contains Classes 1 and 2 (and planar games) too.

4.1 Stitching Cycles Together

Before we complete the proof of Lemma 10, we prove the following lemma:

Lemma 11. Given a graph G with two triconnected components C1 and C2

which share a separating pair S = {u, v} and suppose Oi ∈ Ci (for i ∈ {1, 2})
are two undominated induced cycles both passing through the (undirected) edge
{u, v} but in opposite directions, then the cycles can be “stitched” together to
obtain an undominated induced cycle in G.

Proof. It is easy to see that dropping the oriented copies of S, we get a directed
cycle O consisting of all other directed edges in O1 and O2. O is an undominated
induced cycle as there are no edges between vertices in C1 and C2, and Oi is
already undominated and induced in Ci (for i ∈ {1, 2}).
Now, we prove Lemma 10.

Proof. (of Lemma 10) We first modify the triconnected-component-separating-
pair tree T as obtained from Lemma 6, as follows.

Consider a separating pair S = {u, v} and the corresponding triconnected
components, say, C1, C2, . . . , Ci. If component Cj (1 ≤ j ≤ i) has a vertex w
that dominates S (that is, G has edges from w to both u and v), then we remove
edges (in T ) between S and Ck, ∀k �= j. If more than one component contains
such vertices that dominate S, we pick one component arbitrarily. If none of
them contain vertices that dominate S, then we leave the edges between S and
Ck (1 ≤ k ≤ i) untouched. Repeat the above for all separating pairs.
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Now, we pick a tree, say T1 from the resulting forest. It suffices to find an
undominated induced cycle in T1 because of the following. If Cj (1 ≤ j ≤ i)
has a vertex w that dominates S, then undominated cycle(s) in Cj do not pass
through u and v. Hence, no vertex outside T1 can dominate any cycle within T1.

Notice that we can stitch together only two cycles at a separating pair. Hence,
we further modify T1 as follows. We arbitrarily pick one undominated induced
cycle per component in T1. We keep the edge (C, S) in T1 if and only if the
picked cycle in triconnected component C passes through the separating pair
S. If an S node has just one edge incident on it, remove it. If it has two or
more bidirected edges incident on it, keep exactly two of them and remove the
rest. Note that vertices from components we have “disconnected” from S cannot
dominate (in G) cycles in the components we have retained. This is because each
“disconnected” component itself has an undominated cycle passing though S.

The trees in the resulting forest are just paths. Pick one of these paths, say
P . If P has just one component C, we are done as any undominated induced
cycle in C is an undominated induced cycle in G as well. On the other hand, if P
has two or more components, we repeatedly invoke Lemma 11 to stitch together
undominated induced cycles across all these components, thereby obtaining an
undominated induced cycle in G.

Since the steps of the above procedure can be performed by a L-transducer,
we have completed the proof of the lemma.

4.2 Undominated Induced Cycle in K5

We prove Lemma 8. The key idea is that removing an edge of K5 makes it planar.

Proof. (of Lemma 8) Let G be a strongly connected bipartite (oriented) sub-
division of K5. Using Lemma 12 below, there exists an edge (or a subdivided
edge) e = (w1, w2) such that G \ e is strongly connected. As G \ e is also planar,
by the result of Addario-Berry, Olver and Vetta [2] (Lemma 3 above), it has an
undominated induced cycle, say U . Notice that U continues to be induced in
G. We also prove in Lemma 12 below that adding back e = (w1, w2) introduces
no new domination(s) in G, because either w1 and w2 belong to the same color
class (R or C) or w2 is the only vertex in its color class. It follows that U is
undominated in G as well.

Lemma 12. Let G = (V, E) be an orientation of K5 that is strongly connected
and such that each w ∈ V belongs to one of the color classes R or C. There
exists an edge e ∈ E, e = (w1, w2) such that G′ = G \ e is strongly connected
and such that one of the following holds:

(i) w1 and w2 belong to the same color class.
(ii) One of the color classes (say, C) has exactly one vertex and e is an

incoming edge to that vertex. That is, C = {w2}.
Proof. Let V = {1, 2, 3, 4, 5}. It suffices to look at the number of vertices belong-
ing to each class:
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(I) All vertices belong to the same color class, say R. It suffices to prove that
∃e = (w1, w2) ∈ E such that G′ = G \ e is strongly connected. Condition
(i) of the theorem holds no matter what e we choose.

(II) |R| = 4, |C| = 1. Here, apart from proving that G \ e is strongly connected,
we need to prove that either w1, w2 ∈ R or C = {w2}.

(III) |R| = 3, |C| = 2. We need to prove that G \ e is strongly connected and
w1, w2 ∈ R or w1, w2 ∈ C.

If there does not exist any edge whose removal ensures that the rest of the graph
is strongly connected, then ∀e = (u, v) ∈ E, either u is a source in G \ e or v is
a sink. Without loss of generality, let v be a sink. (The case when u is a source
is symmetric and a similar argument works). Consider the subgraph G \ u. As
shown in Fig. 1, only two non-isomorphic cases arise. (We denote the remaining
vertices by a, b, c).

a

b
cv

(a) Case 1

a

b
cv

(b) Case 2

a

b
c

u

v

(c) Case 1

a

b
c

u

v

(d) Case 2

Fig. 1. (a) and (b) show Cases 1 and 2 in the proof for K5-subdivision. (c) and (d):
After adding the vertex u and some edges to Cases 1 and 2 respectively.

Consider case 1. As G is strongly connected, (v, u) ∈ E and at least one of
(u, a), (u, b), (u, c) ∈ E. Without loss of generality, let (u, a) ∈ E. This is shown
in Fig. 1(c). Now, in case (I), independent of the orientation of the edges between
u, b and u, c, the graphs G\(a, v), G\(b, v) and G\(c, v) are strongly connected.
In case (II), if C = {v} or C = {u}, again choose e to be either (a, v), (b, v) or
(c, v). If C = {a}, drop (b, v) or (c, v) so that condition (i) is satisfied. Similarly
for C = {b} or C = {c}. In case (III), at least one of a, b, c is in R. Say a ∈ R. If
v ∈ R, then choose e = (a, v). If v ∈ C and one of a, b, c ∈ C (say b ∈ C), choose
e = (b, v). If C = {u, v}, choose e = (b, a).

Consider case 2. As G is strongly connected, (v, u) ∈ E and (u, c) ∈ E. Ref.
Fig. 1(d). Choose e = (c, a) or (b, a) or (c, v) or (b, v). G \ e remains strongly
connected. The proof for case (I) follows rightaway. In cases (II) and (III) too, we
are done as one of these pairs of vertices must belong to the same color class. �	

4.3 Undominated Induced Cycle in V8

Proof. (of Lemma 9) Let G = (V, E) be a counter example and let G′ = (V ′, E′)
be its underlying V8. (G′ is obtained from G by ignoring subdividing vertices).
As G is strongly connected, so is G′. However, though G is bipartite, G′ is not.
(It is easy to see that G must have at least 3 sub-dividing vertices). Also, G′ has
no undominated induced cycle (otherwise G has one too). The following Claim
is easy to prove.
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Claim. The following hold for cycles in G′ (and in G):

1. All cycles in G′ (and hence in G) are of length > 3.
2. 4-cycles in G′ correspond to undominated induced cycles in G.
3. 5-cycles in G′ are induced but may be dominated (in both G′ and G).
4. If G′ has a 6-cycle, it has a 4-cycle too.
5. If G′ has a 7-cycle, it either has a 4-cycle or a 5-cycle.
6. If G′ has an 8-cycle, it has a 5-cycle too.

As G is a counter-example, because of the above Claim, G′ contains no 4-cycle.
⇒ G′ contains a 5-cycle.

Without loss of generality, let this cycle be (a, b, c, d, e, a). This cycle may either
be dominated by f or by h. This leads to two cases as shown in Fig. 2.
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Fig. 2. Orienting edges in G′, given that (a, b, c, d, e, a) is dominated. (a) Case 1: Cycle
dominated by f . (b) Case 2: Cycle dominated by h. (c) Case 1 forces this orientation,
having an undominated induced cycle (a, h, d, e, a). (d) Case 2 forces this orientation,
having an undominated induced cycle whether (c, g) or (g, c) is an edge.

Case 1: f dominates (a, b, c, d, e, a). That is, (f, b) and (f, e) ∈ E′.
⇒ (g, f) ∈ E′ (otherwise f is a source in G′ but G′ is strongly connected).
⇒ (g, c) ∈ E′ (else (c, g, f, b, c) is a 4-cycle, hence undominated, induced).
⇒ (h, g) ∈ E′ (owing to strong-connectivity, again)
⇒ (h, d) ∈ E′ (otherwise we have a 4-cycle, again)
⇒ (a, h) ∈ E′ (due to strong connectivity)
⇒ (a, h, d, e, a) is a 4-cycle (an undominated induced cycle), a contradic-

tion to the fact that G is a counter example. So f cannot dominate (a, b, c, d, e, a).

Case 2: h dominates (a, b, c, d, e, a). That is, (h, a) and (h, d) ∈ E′.
⇒ (g, h) ∈ E′ (since G′ is strongly connected).

Now, (f, g) ∈ E′ (because, if (c, g) ∈ E′, f has to dominate the resulting 5-cycle,
and if (g, c) ∈ E′, (f, g) ensures strong-connectivity). Similarly, (e, f) ∈ E′.
⇒ (b, f) ∈ E′ (otherwise (f, b, c, d, e, f) is an undominated induced cycle).

Now, if (g, c) ∈ E′, (h, d, e, f, g, h) is an undominated induced cycle. Otherwise,
(c, g, h, a, b, c) is an undominated induced cycle.
Hence, h cannot dominate (a, b, c, d, e, a) either.
⇒ (a, b, c, d, e, a) itself is an undominated induced cycle. �	
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5 Conclusion and Future Work

We have shown that finding a Nash equilibrium is in UL for win-lose bimatrix
games that are K3,3 minor-free or K5-minor free whose triconnected components
are planar or V8. Further, we have shown that finding a Nash equilibrium is in NL
for win-lose bimatrix games whose triconnected components are K5, V8 or planar.
As win-lose bimatrix games are PPAD hard in general, finding or narrowing down
on what actually causes the hardness is an interesting open problem.
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Abstract. Obfuscating programs has been a fascinating area of theo-
retical cryptography in recent years. Hohenberger et al. in TCC’07 and
Hada in EUROCRYPT’10 showed that re-encryption and encrypted sig-
nature are obfuscateable and their constructions are dedicated and the
security proofs are complicated. Whereas, obfuscation for other compli-
cated cryptographic functionalities still remains unknown.

In a recent breakthrough on fully homomorphic encryption in STOC’09,
Gentry noted that one algorithm in his construction, called Recrypt, is a
re-encryption program. Along Gentry’s sight, we observe that with fully
homomorphic encryption, we can obfuscate a category of functionali-
ties, including re-encryption and encrypted signature and even signature-
then-encryption, which can be characterized as first secret operation and
then public encryption. We formally demonstrate the obfuscation for this
category of functionalities, in which the construction and security proof
are general and simple. We then show the applicability of this obfuscation
that it is secure in the contexts of the three functionalities.

Keywords: Cryptography,Obfuscation,FullyHomomorphicEncryption.

1 Introduction

Question. In recent years, theoretical cryptography community has focused on a
fascinating research line of obfuscating programs. Loosely speaking, obfuscating
a program P is to construct a new program which can preserve the functional-
ity of P , but its code is fully “unintelligent”. Any adversary can only use the
functionality of P and cannot learn anything more than this, i.e. cannot reverse-
engineering nor understand it. In other words, an obfuscated program should
not reveal anything useful beyond executing it.

Barak et al. [2] formalized the definition of obfuscation through a simulation-
based definition called the virtual black-box property. Following [2], many works
focused on how to obfuscate different cryptographic functionalities. Among them,
there are some negative results, e.g. [2,8]. [2] showed there doesn’t exist any gen-
eral obfuscation method for all programs. [8] showed many natural cryptographic
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functionalities cannot be obfuscated. On the other hand, there exist some posi-
tive results, e.g. [4,6,9,10,11]. Among these positive results, [9,11] demonstrated
how to securely obfuscate two complicated functionalities in cryptography, i.e.
re-encryption (RE) and encrypted signature (ES), while others focused on a
very basic and simple primitive, i.e. (multiple-bit) point functions, traditionally
used in some password based identification systems. In summary, so far only
a few primitives are obfuscateable and it is actually very hard to construct an
obfuscation for any other primitive.

Recently, Gentry [7] proposed the first fully homomorphic encryption scheme
and noted that one algorithm, called Recrypt, is actually a re-encryption pro-
gram. Briefly, let FHES = (KeyGen, Enc, Dec, Evaluate) be a fully homomorphic
encryption scheme. Let (pk1, sk1), (pk2, sk2) ← KeyGen(1n). Assume Recrypt is
now given cm, an encryption of m under pk1, and csk1 , an encryption of sk1 un-
der pk2, and its goal is to output an encryption of m under pk2. It first encrypts
cm using pk2 and runs Evaluate on input pk2, Dec, csk1 and the new encryption of
cm and finally outputs what Evaluate outputs. By the functionality of Evaluate,
we have the output is an encryption of m under pk2, and thus the re-encryption
functionality is achieved. (But we still need to investigate the security of this
method in the context of RE formally.)

Let us take a closer look at RE and ES. First consider the following naive
program P implementing RE: P has sk1, pk2 hardwired; Given a ciphertext en-
crypted under pk1 P first decrypts it using sk1 and then encrypts the decryption
using pk2. One can see that it is insecure to let anyone other than the sk1-holder
obtain P since it exposes sk1 (while executing P by any third party securely is
the motivation of obfuscating P ). Notice that P ’s computation can be divided
to two steps: first decrypt the ciphertext using secret key sk1 (secret operation)
and then encrypt the decryption using pk2 (public encryption). We also consider
the naive program P ′ implementing ES, which first signs the message using a
signing key (secret operation) and then encrypts the signature using a public
encryption key (public encryption). Even for Sign-then-Encrypt (StE), it can
also be executed by a naive program identically to P ′ except that in the second
step it encrypts both the signature and the message.

To securely implement these functionalities, one can first construct the cor-
responding naive programs and then obfuscate them. Actually, this is the route
adopted by [11] for RE and [9] for ES. Notice that these naive programs share a
common character. That is, each of them first performs a secret operation and
then performs a public encryption operation. For convenience of statement we
say a functionality which can be executed by a such naive program is of this
character. Actually, there are many cryptographic functionalities which are of
this character. Since Gentry’s Recrypt shows a different and conceptually sim-
pler way to implement RE, we have naturally the following question: Can we
securely obfuscate those cryptographic functionalities of this character using fully
homomorphic encryption?

Our Result. We show that with fully homomorphic encryption, all the function-
alities which possess the required character are obfuscateable. The security of
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the obfuscation holds even adversaries possess some dependent information on
obfuscated programs (e.g. (sk1, pk1, pk2)). Further, we investigate the security of
the obfuscation in the contexts of RE, ES and StE. We enhance the security in
[11] for RE and [1] for StE by letting adversaries obtain the obfuscated programs
while in the original literature, adversaries can only access the programs in the
oracle manner. Our investigation shows that when instantiated in these contexts,
the obfuscation can achieve the security proposed by [9] for ES and the enhanced
security from [11] for RE and the enhanced security from [1] for StE except the
EU-CMA insider security w.r.t. obfuscator. As explained in [9,11], obfuscation
for ES, RE and StE etc. mainly aims to letting a third party, rather than sender
and receiver, execute the programs for the sender, usually the sk1-holder. Our
investigation means that these delegation tasks can indeed be executed by any
third party who doesn’t know the secret of the receiver.

Our Technique. Let GF be a general functionality of the required character, and
P denote a naive program implementing GF. P on input x first performs a secret
(or non-secret) operation, denoted C, and then encrypts the output of C(x) with
a public key pke. With fully homomorphic encryption, we can also output an
encryption of C(x) by running Evaluate on pke, a universal circuit U conforming
to U(C, x) = C(x), two encryptions of C and x encrypted under pke. Thus, we
can construct a program Q which has the encryption of C hardwired and on
input x first encrypts x and then outputs Evaluate’s output on all the required
arguments. We then show Q implementing GF is indeed an obfuscated program.
This is essentially the entire construction and it is quite simple. We then consider
the applicability of this construction by showing that our obfuscation is secure
in the contexts of ES, StE and RE.

Organizations. In the rest of this paper, Section 2 presents the preliminaries
required in the paper and Section 3 presents our result.

2 Preliminaries

Due to space limitations we assume familiar with the notions of IND-CPA en-
cryption schemes and EU-CMA (existential unforgeability under chosen message
attack) signature schemes etc. and refer readers to [7] for the notion of fully ho-
momorphic encryption as well as the construction of IND-CPA security. We
present the definition of obfuscation as follows.

Obfuscation. We use the following definition which strengthens the one in [9]
by requiring the ACVBP holds even D can obtain some auxiliary input which
may depend on the obfuscation, as shown in [8].

Definition 1. (Average-case secure obfuscation w.r.t. dependent input). A PPT
machine Obf is a circuit obfuscator for a class of probabilistic circuits C =
{Cn}n∈N w.r.t. dependent input z (may depend on C), if for every probabilistic
circuit C ∈ Cn, the following holds:

Functionality: Pr[C′ ← Obf(C) : ∀x; StaDiff(C(x); C′(x)) = 0] = 1, where
StaDiff denotes the statistical difference.
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Average-case virtual black-box property (ACVBP): There exists a PPT oracle
machine S (simulator) such that, for every non-uniform PPT oracle machine D
(distinguisher), every polynomial p(·), all sufficiently large n, dependent input z,

|Pr

⎡
⎣C ← Cn;

C′ ← Obf(C);
b ← DC(C′, z)

: b = 1

⎤
⎦− Pr

⎡
⎣C ← Cn;

C′′ ← SC(1n);
b ← DC(C′′, z)

: b = 1

⎤
⎦ | < 1

p(n)

3 Our Result

In Section 3.1 we propose our obfuscation for the generate functionality GF. In
Sections 3.2, 3.3, 3.4, we show the applicability of the obfuscation to the category
of functionalities by illustrating its applications to ES, StE and RE.

3.1 Obfuscation for the General Functionality

In this subsection we first present GF, which is the abstract of the category
of functionalities we are interested in and then provide an obfuscated program
implementing GF.

Let C = {Cn}n∈N be an arbitrary ensemble of circuits and sk be a secret
that was generated by some key generator Gen, i.e. (pk, sk) ← Gen(1n) (in
the public key setting, Gen may be the key generator KeyGen of a public-key
encryption scheme PKE or the key generator SKG of a signature scheme DS,
where in the latter case we usually use notation vk to substitute pk). Let Cn,sk

denote Cn having sk hardwired (if there is no requirement that Cn should have a
secret hardwired let sk be empty). Let (pke, ske) ← KeyGen(1n) and Enc be the
encryption algorithm of PKE. The general functionality GFsk,pke is as follows.

Functionality. GFsk,pke (and Csk,pke): input x ∈ {0, 1}n ∪ {RetrieveKey}.
1. If x = RetrieveKey, output pke;
2. Let y ← Cn,sk(x);
3. Let z ← Enc(pke; y) and output z.

It can be seen that GFsk,pke indeed consists of the two desired operations: first
a secret operation (in line 2) and then a public encryption (in line 3) (line 1 is pro-
posed for constructing obfuscation). To obtain an obfuscation for GFsk,pke , one
usually needs to first construct a naive program Csk,pke implementing GFsk,pke

(e.g. simply execute each line of GFsk,pke ), and then obfuscate Csk,pke .
Since the goal of GFsk,pke is to output an encryption of y, we can use Evaluate

to generate an encryption of y too if we instantiate PKE with a FHES. That is,
we adopt an alternative program implementing GFsk,pke . Let ObCsk,pke denote
this program which works as follows: given the encryption of Cn,sk, it computes
an encryption of x and executes Evaluate on input the two encryptions, which
output is an encryption of Cn,sk(x) = y under pke.

Let us present this more precisely. First, it is reasonable to assume the size of
Cn,sk can be computed given index n for the publicly known Cn. Thus let U =
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{Un}n∈N be an ensemble of universal circuits satisfying that Un on input Cn,sk

and x ∈ {0, 1}n emulates Cn,sk’s computation on input x to output Cn,sk(x).
Similarly, the depth of Un can be estimated in advance. Thus due to [7] there ex-
ists a fully homomorphic encryption scheme FHES = (KeyGen, Enc, Dec, Evaluate)
in which Evaluate can handle any circuit which depth is bounded by Un’s depth.
Thus we first construct the naive program Csk,pke where PKE is instantiated with
FHES. Then construct obfuscator Obf and ObCsk,pke as follows.

Obfuscator. Obf : input: the description of Csk,pke .

1. Obtain pke and Cn,sk from Csk,pke ’s description.
2. Compute cCn,sk

← Enc(pke; Cn,sk);
3. Generate the program ObCsk,pke : input: x ∈ {0, 1}n ∪ {RetrieveKey}.

(a) If x = RetrieveKey, output pke;
(b) Let cx ← Enc(pke; x);
(c) Compute z ← Evaluate(pke; Un, cCn,sk

, cx) and output z.

Note that there is a slight difference between the outputs of Csk,pke and
ObCsk,pke . That is, Csk,pke (x) is a fresh encryption of y output by Enc while
ObCsk,pke (x) is an encryption of y output by Evaluate. Due to the current con-
structions of FHES in e.g. [7], the two encryptions are not identically distributed.
However, this difference is actually indifferent since GF only needs to output
a normal encryption of y under pke. Thus it is very reasonable to say that
ObCsk,pke essentially preserves the functionality of Csk,pke (Gentry [7] thought
Recrypt is a re-encryption program due to the same consideration). So we say
Obf satisfies a relaxed functionality property, or just the functionality property.

Proposition 1. For any polynomial-time algorithm f , ObCsk,pke is an obfus-
cation of Csk,pke w.r.t. (the relaxed functionality property and) dependent input
f(sk, pk, pke).

Proof. We show the relaxed functionality property and ACVBP can be satisfied.
1. Relaxed Functionality. Since both ObCsk,pke (x) and Csk,pke (x) are normal
encryptions of y = Cn,sk(x) under pke, this property obviously holds.

2. ACVBP. To show this, we need to construct a simulator S and show that for any
non-uniform PPT D, letting z′ ← f(sk, pk, pke), |Pr[DCsk,pke (ObCsk,pke , z

′) =
1] − Pr[DCsk,pke (SObCsk,pke (1n), z′) = 1]| is negligible, where SObCsk,pke (1n) de-
notes a fake program being input to D. In the following we first present S’s de-
scription and then establish this indistinguishability.

Simulator. S: input n and oracle access to ObCsk,pke .

1. Query the oracle ObCsk,pke with RetrieveKey to obtain pke.
2. Sample (pk′, sk′) ← Gen(1n) and generate Cn,sk′ .
3. Compute cCn,sk′ ← Enc(pke; Cn,sk′ ).
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4. Generate the program ObCsk′ ,pke , which description is as follows:
input: x ∈ {0, 1}n ∪ {RetrieveKey}
(a) If x = RetrieveKey, output pke;
(b) Let cx ← Enc(pke; x);
(c) Compute z ← Evaluate(pke; Un, cCn,sk′ , cx) and output z.

Now we turn to the indistinguishability. Suppose D on oracle access to Csk,pke

and input z′ ← f(sk, pk, pke) can distinguish ObCsk,pke from ObCsk′,pke with
non-negligible probability. Then we can construct a PPT A′ which can distin-
guish cCn,sk

from cCn,sk′ still with non-negligible probability. A′ works in the
following way. Given pke from the challenger, A′ samples (pk, sk), (pk′, sk′) ←
Gen(1n) and generates Cn,sk and Cn,sk′ . A′ sends Cn,sk and Cn,sk′ to the chal-
lenger which randomly encrypts one of them and responds with the ciphertext,
which is either cCn,sk

or cCn,sk′ . Then A′ adopts Obf ’s strategy in line 3 to gen-
erate a program which is either ObCsk,pke or ObCsk′,pke . A′ sends the program
as well as z′ ← f(sk, pk, pke) to D as input and emulates D’s computation. Dur-
ing this emulation, A′ adopts Csk,pke ’s strategy to answer all D’s oracle queries.
Output what D outputs finally. By A′’s description, we can see that the proba-
bility that A′ distinguishes the two encryptions is equal to the probability that
D distinguishes the two programs, which contradicts the security of IND-CPA
of FHES. Thus, the ACVBP holds. The proposition follows. �	
We remark that Proposition 1 still holds even if D is given access to oracle
Cn,sk since we only need to let A further adopt Cn,sk’s strategy to answer all
D’s Cn,sk-queries (Cn,sk will be instantiated with the signing algorithm in the
context of ES), and that the consideration on f(sk, pk, pke) is necessary, since
in the later applications D (adversary) has some auxiliary inputs besides the
obfuscation which are, for instance, (sk, pk, pke) or (pk, pke) (the corresponding
f can be chosen as the one which simply outputs all the inputs or the latter two
inputs). In the following subsections, we will illustrate the applicability of the
result in this subsection by showing ES, StE and RE can be implemented using
this result simply and securely.

3.2 Application to Encrypted Signature

The ES functionality for Alice and Bob generates a signature on a given message
under Alice’s signing key and then encrypts the signature under Bob’s public
encryption key. Hada [9] proposed the first obfuscation for ES. We will use
our result to obfuscate this functionality too and the advantage of ours is the
simpleness in the construction and security proof. Let DS = (SKG, S, V) be an
EU-CMA signature scheme and PKE be as before. Let (vk, sk) ← SKG(1n) and
(pke, ske) ← KeyGen(1n). The ES functionality can be shown as follows.

ES Functionality. ESsk,pke (and Csk,pke): input m ∈ {0, 1}n ∪ {RetrieveKey}.
1. If m = RetrieveKey, output pke;
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2. Compute σ ← S(sk; m);
3. Compute z ← Enc(pke; σ) and output z.

It can be seen that ESsk,pke is an instantiation of GFsk,pke , in which the
circuit Cn,sk is now instantiated with Sn,sk, where Sn,sk denotes the circuit rep-
resentation of S w.r.t. the security parameter n and having sk hardwired. Now
we instantiate PKE with a FHES to construct the naive program Csk,pke imple-
menting ESsk,pke . Then run Obf(Csk,pke) (in which we use cSn,sk

to denote the
encryption of Sn,sk under pke) to generate the obfuscated program implementing
ESsk,pke , denoted ESsk,pke , which is shown as follows.

Obfuscation for ESsk,pke : ESsk,pke . input: m ∈ {0, 1}n ∪ {RetrieveKey}
1. If m = RetrieveKey, output pke;
2. Let cm ← Enc(pke; m);
3. Compute z ← Evaluate(pke; Un, cSn,sk

, cm) and output z.

By Proposition 1, ESsk,pke is an obfuscation for ESsk,pke w.r.t. f(sk, vk, pke)
for any f . Now we turn to investigate if it can achieve the security in the context
of ES. We first review the security requirement presented by [9], as Definition 2
shows, and then show ESsk,pke can achieve the required security.

Definition 2. (EU w.r.t. ES Obfuscator [9]) Let DS be a signature scheme and
PKE be a public-key encryption scheme. Also, let Obf be the obfuscator for ES.
The DS scheme is existentially unforgeable w.r.t. Obf if for every non-uniform
PPT machine A (adversary), every polynomial p(·), all sufficiently large n, the
following condition holds where A doesn’t query the oracle with m:

Pr

⎡
⎣ (vk, sk) ← SKG(1n); (pke, ske) ← KeyGen(1n);

C′ ← Obf(Csk,pke); (m, σ) ← ASn,sk(vk, pke, C
′);

V(vk; m, σ) = Accept.

⎤
⎦ <

1
p(n)

Proposition 2. The DS scheme is EU w.r.t. our Obf (where PKE is instanti-
ated with FHES).

Proof. Suppose there exists an A which can violate the proposition. Then we
can construct a B which can break the EU-CMA security of DS. B on input vk
samples (pke, ske) ← KeyGen(1n), adopts the simulator S’s strategy on pke to
generate a fake program, denoted C′′, feeds (vk, pke, C

′′) to A (now f is chosen
as the one that receives only two inputs (vk, pke) and just outputs them) and
performs the experiment. During the experiment, for each A’s oracle query m′,
B queries its signing oracle with m′ which then responds with a signature for m′.
On receiving the signature, B transits it to A as the response. Finally output
what A outputs. As shown in the remarks following Proposition 1, A cannot
distinguish C′ from C′′ given access to oracle Sn,sk, so A on input C′′ can still
forge a signature with non-negligible probability and B breaks the EU-CMA
security of DS. This is impossible. �	
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We lastly remark that we could add the IND-CPA requirement in Definition 2,
i.e., when A outputs two messages (m0, m1) and mb for random bit b is encrypted
A cannot guess correctly b. Actually, this IND-CPA security can be proved using
a proof similar to that of Proposition 3, thus we adopt the original statement in
[9] to present the security definition (while [1] explicitly required the encryption
security, as Definition 3 shows). Further, we discuss why Definition 2 doesn’t
allow A to access the decryption-oracle Dec(ske; ·) to investigate the IND-CCA
security. It can be seen that if A is given access to the decryption oracle, then
A can easily forge a signature by first sending a m to the obfuscation C′ and
then querying the decryption oracle with C′’s output. Then the response of
the decryption oracle is a signature for m. Thus [9] didn’t provide A with the
decryption oracle and we only need to investigate the IND-CPA security.

3.3 Application to Sign-Then-Encrypt

The StE functionality differs from ES in that StE should encrypt both the sig-
nature and message instead of the signature only in ES. An et al. [1] showed
that the sequential composition of “sign then encrypt” can achieve some secu-
rity. Hada [9] informally stated an obfuscation for StE based on his obfuscation
for ES. We will propose an obfuscation for StE and discuss the security that our
obfuscation can achieve. Let DS and PKE be as before. Let (vk, sk) ← SKG(1n)
and (pke, ske) ← KeyGen(1n). The StE functionality can be shown as follows.

StE Functionality. StEsk,pke (and Csk,pke ): input m ∈ {0, 1}n.
1. If m = RetrieveKey, output pke;
2. Compute σ ← S(sk; m);
3. Compute z ← Enc(pke; σ, m) and output z.

Also, StEsk,pke is an instantiation of GFsk,pke , in which the circuit Cn,sk is
now instantiated with S′

n,sk, where S′
n,sk is identical to Sn,sk except that it

outputs the signature as well as the message. Also, we instantiate PKE with a
FHES to construct the naive program Csk,pke implementing StEsk,pke . Then run
Obf(Csk,pke ) (in which we use cS′

n,sk
to denote the encryption of S′

n,sk) to gen-
erate the obfuscated program implementing StEsk,pke , denoted StEsk,pke , which
is shown as follows.

Obfuscation for StEsk,pke : StEsk,pke : input m ∈ {0, 1}n ∪ {RetrieveKey}.
1. If m = RetrieveKey, output pke;
2. Let cm ← Enc(pke; m);
3. Compute z ← Evaluate(pke; Un, cS′

n,sk
, cm) and output z.

By Proposition 1, StEsk,pke is an obfuscation for StEsk,pke w.r.t. f(sk, vk, pke).
Now we turn to investigate the security of StEsk,pke in the context of StE. For
convenience of stating the security in [1], we use the phrase “a sign-then-encrypt
scheme” to denote the signcrypt scheme that is sequential composition of a
signature scheme (e.g. DS) and a public key encryption scheme (e.g. FHES).
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Using our obfuscation, the sign-then-encrypt scheme works as follows. Ini-
tially, Alice obtains (vk1, sk1) ← SKG(1n) and (pke1, ske1) ← KeyGen(1n), and
Bob obtains (vk2, sk2) ← SKG(1n) and (pke2, ske2) ← KeyGen(1n). To signcrypt
a message m, Alice runs z ← StEsk1,pke2(m), which is the signcryption, and sends
z to Bob. On receiving z, Bob runs the decrypt-then-verify program (function-
ality) DtVske2,vk1 , which first decrypts z using ske2 and verifies the validness of
signature using vk1 and then outputs m if the verification succeeds. (Abusing
notation a little) we still use StE to denote our sign-then-encrypt scheme.

Now we can introduce the security in [1]. [1] proposed two security: outsider
security and insider security, where the outsider security is proposed w.r.t. any
adversary not belonging to the two parties and the insider security is proposed
w.r.t. one adversarial party. We first present the outsider security as follows.

Definition 3. (IND-CPA and EU-CMA outsider security w.r.t. Obf , enhanced
from [1]) Let PKE and DS be as before and StE be the sign-then-encrypt scheme
of sequential composition of PKE and DS. Let Obf be the obfuscator for StE.
Let the random variable IND(StE, A, k) where A = (A1, A2), b is a uniformly
random bit, denote the result of the following probabilistic experiment where A
doesn’t query the oracle with m:

IND(StE, A, n)
(vk1, sk1) ← SKG(1n), (pke2, ske2) ← KeyGen(1n);
C′ ← Obf(Csk1,pke2), (m0, m1, z)← A

Csk1,pke2
1 (vk1, pke2, C

′);
y ← Enc(pke2; mb); (b′, m, σ) ← A2(y, z);
Output b′.

We say StE is of the IND-CPA and EU-CMA outsider security w.r.t. Obf if
for any non-uniform A both Pr[b′ = b]− 1/2 and the probability (m, σ) is a valid
pair of message and signature are negligible.

We give two remarks on Definition 3. First, the outsider (and insider) security
can be defined w.r.t. the strongest encryption security IND-CCA2 as shown in
[1]. But our scheme cannot achieve this security due to the IND-CPA security of
FHES, so we only present the outsider (and insider) security w.r.t. the IND-CPA
security. Second, Definition 3 enhances the original definition in [1] by letting A
further obtain C′’s description while the original definition in [1] only allows A
to access Csk1,pke2 -oracle (similarly for Definition 4 and Definition 5).

We now turn to the insider security. [1] showed that from any sign-then-
encrypt scheme StE, we can induce a signature scheme and an encryption scheme.
The induced signature scheme DS′ is identical to StE except that receiver’s ske2

now becomes a part of sender’s verifying key of DS′. To sign a message m, Alice
runs z ← StEsk1,pke2(m), which is the signature, and publishes z. On receiving z,
anyone can verify z by running m ← DtVske2,vk1(z) (notice that ske2 is publicly
known) and accepts if m �= ⊥. The induced encryption scheme PKE′ is also
identical to StE except that sender’s signing key sk1 now becomes a part of
receiver’s public key of PKE′. To encrypt a message m for Bob, anyone can run
z ← StEsk1,pke2(m), which is the ciphertext and sends z to Bob (notice that sk1
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is publicly known). On receiving z, Bob runs m ← DtVske2,vk1(z) to obtain m.
So far we can present the notion of the insider security as follows.

Definition 4. (IND-CPA and EU-CMA insider security w.r.t. Obf , enhanced
from [1]) We say a sign-then-encrypt scheme StE is IND-CPA and EU-CMA
insider secure w.r.t. Obf if the induced DS′ is EU-CMA and PKE′ is IND-CPA
where any adversary A can further obtain the description of C′ ← Obf(Csk1,pke2).

Proposition 3. The scheme StE is of IND-CPA and EU-CMA outsider secu-
rity and IND-CPA insider security w.r.t. our Obf .

Proof. Outsider security. Suppose there exists an A = (A1, A2) which can break
the security. First consider the case that Pr[b′ = b]− 1/2 is non-negligible. Then
we construct a B which can break the IND-CPA security of FHES. B on in-
put pke2 samples (vk1, sk1) ← SKG(1n), generates C′ ← Obf(Csk1,pke2), feeds
(vk1, pke2, C

′) to A1 (f is now chosen as the one outputting the latter two in-
puts) and performs the experiment. During the experiment, B adopts Csk1,pke2 ’s
strategy to answer A1’s oracle queries. When A1 proposes two messages (m0, m1)
and z, B transits (m0, m1) to the challenger which encrypts a random one and
responds with the encryption. Then B sends the encryption and z to A2. Fi-
nally B outputs the b′ in A2’s output. By the assumption on A, B breaks the
IND-CPA security of FHES.

Second consider the case that (m, σ) is a valid pair of message and signature
with non-negligible probability. Then we can construct a B which can break the
EU-CMA security of DS. B on input vk1 samples (pke2, ske2) ← KeyGen(1n),
adopts the simulator S’s strategy on pke2 to generate C′′, feeds (vk1, pke2, C

′′)
to A1 and performs the experiment identically as above except that for each A1’s
oracle query m′, B queries its signing oracle with m′ which then responds with a
signature for m′ and on receiving the signature B encrypts it and m′ using pke2

and sends the encryption to A1 as the response. Finally output the (m, σ) in A2’s
output. By the security of obfuscation, A on input C′′ can still forge a signature
with non-negligible probability and thus B breaks the EU-CMA security of DS.
IND-CPA insider security. Suppose A can break the IND-CPA security of PKE′.
We can construct a B which can break the IND-CPA security of FHES. Given
pke2, B samples (vk1, sk1) ← SKG(1n) and generates C′ ← Obf(Csk1,pke2), feeds
(sk1, vk1, pke2, C

′) to A1 (f is now chosen as the one just outputting all inputs)
and performs the experiment identically as above except that when A1 proposes
two messages (m0, m1), B signs both of them using sk1 and transits the two
pairs of message and signature to the challenger which randomly encrypts one of
them and responds with the encryption (notice that the encryption is identical to
StEsk1,pke2(mb) for the random bit b) and on receiving the encryption, B sends
it and z to A2. Lastly, output A2’s guess. By the assumption on A, B breaks
the IND-CPA security of FHES. This is impossible. �	
We lastly remark that StE is not EU-CMA insider secure w.r.t. our Obf , since
an adversary holding ske2 against DS′ can decrypt cS′

n,sk1
in the obfuscation and

extract sk1 and thus can easily forge a signature (note that DS′ is EU-CMA and
StE is EU-CMA insider secure w.r.t. the original definitions in [1]).
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3.4 Application to Re-encryption

The RE functionality for Alice and Bob takes a ciphertext for a message m under
Alice’s public key, and transforms it into a ciphertext for the same message m
under Bob’s public key. Hohenberger et al. [11] proposed the first obfuscation
for RE. Gentry [7] gave a remark on his fully homomorphic encryption that
the algorithm Recrypt is actually a realization of RE. We will present Gentry’s
method in our term formally and show it can meet the security requirement in
[11]. Let PKE be as before and Alice owns (pk1, sk1) ← KeyGen(1n) and Bob
owns (pk2, sk2) ← KeyGen(1n). The RE functionality can be shown as follows.

RE Functionality. REsk1,pk2 (and Csk1,pk2): input c ∈ {0, 1}l(n)∪{RetrieveKey}.
1. If c = RetrieveKey, output pk2;
2. Let m ← Dec(sk1; c);
3. Let z ← Enc(pk2; m) and output z.

It can be seen that REsk1,pk2 is also an instantiation of GFsk,pke , in which
(sk, pke) is now replaced by (sk1, pk2) and Cn,sk is now instantiated with Decn,sk1 ,
which denotes the circuit representation of Dec(sk1; ·) w.r.t. security parameter n.
Also, we instantiate PKE with a FHES to construct the naive program Csk1,pk2 im-
plementing REsk1,pk2 . Then run Obf(Csk1,pk2) (in which we use cDecn,sk1

to denote
the encryption of Decn,sk1 under pk2) to generate the obfuscated program imple-
menting REsk1,pk2 , denoted REsk1,pk2 , which is shown as follows.

Obfuscation for REsk1,pk2 REsk1,pk2 : input c ∈ {0, 1}l(n) ∪ {RetrieveKey}.
1. If c = RetrieveKey, output pk2;
2. Let cc ← Enc(pk2; c);
3. Compute z ← Evaluate(pk2; Un, cDecn,sk1

, cc) and output z.

By Proposition 1, REsk1,pk2 is an obfuscation for REsk1,pk2 w.r.t. f(sk1, pk1,
pk2) for any f . Now we first enhance the security requirement in [11] as Definition
5 shows and then show our Obf satisfies the requirement as Proposition 4 shows.

Definition 5. (IND-CPA w.r.t. obfuscator Obf , enhanced from [11].) Let PKE
be a public-key encryption scheme and Obf be an obfuscator for RE. Let the
random variable INDb(PKE, A, n) where b, b′ ∈ {0, 1}, A = (A1, A2), denote the
result of the following probabilistic experiment:

INDb(PKE, A, n)
(pk1, sk1) ← KeyGen(1n), (pk2, sk2) ← KeyGen(1n);
C′ ← Obf(Csk1,pk2), (m0, m1, i, z)← A

Csk1,pk2
1 (pk1, pk2, C

′);
y ← Enc(pki; mb); b′ ← A2(y, z);
Output b′.

We say that scheme PKE is IND-CPA w.r.t. Obf if for any non-uniform PPT
A, |Pr[IND0(PKE, A, n)]− Pr[IND1(PKE, A, n)]| is negligible.

Proposition 4. The FHES is IND-CPA w.r.t. our Obf .
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Proof. The proof is similar to the part for IND-CPA outsider security of the
previous proof. Suppose A = (A1, A2) is an adversary which can violate the
proposition. First consider the case that i = 2 occurs with non-negligible prob-
ability. The desired B on given a public key from the challenger, views it as
pk2, samples (pk1, sk1) ← KeyGen(1n), generates C′ ← Obf(Csk1,pk2), feeds
(pk1, pk2, C

′) to A1 and proceeds as shown previously. Thus if A2’s outputs b′s
in the two experiments differ with non-negligible probability, B can distinguish
the encryptions of (m0, m1) with non-negligible probability. Second in the case
that i = 1 occurs with non-negligible probability, B views its public key as pk1

and samples (pk2, sk2), (pk′, sk′) ← KeyGen(1n), generates C′′ ← Obf(Csk′,pk2),
feeds (pk1, pk2, C

′′) to A1, adopts Csk′,pk2 ’s strategy to answer A1’s oracle queries
and encrypts mb using pk1. It can be seen that A1 cannot distinguish C′ from C′′

either and thus A2’s outputs are indistinguishable in the two experiments. �	
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Abstract. We propose a new model of steganography which combines
partial knowledge about the type of covertext channel with machine
learning techniques to learn the covertext distribution. Stegotexts are
constructed by either modifying covertexts or creating new ones, based
on the learned hypothesis. We illustrate our concept with channels that
can be described by monomials. A generic construction is given showing
that besides the learning complexity, the efficiency of secure grey-box
steganography depends on the complexity of membership tests and suit-
able modification procedures. For the concept class monomials we present
an efficient algorithm for changing a covertext into a stegotext.

1 Introduction

The aim of steganography is to hide secret messages in unsuspicious covertexts
such that the mere existence of this message is concealed. The basic scenario
assumes two communicating parties Alice (sender) and Bob (receiver) plus an
adversary Eve, also called a “warden” due to Simmons’ [22] scenario of secret
communication among prisoners. Eve wants to find out whether Alice and Bob
exchange hidden messages among their covertext communication.

A “useful” stegosystem should not only be secure (against Eve finding out
about the presence of hidden communication), but also reliable (i.e. with high
probability, encoded messages can be correctly decoded), computationally effi-
cient (i.e. the time, space and oracle query complexities should be polynomial in
the length of the hidden message) and rate efficient (i.e. the transmission rate
should be close to the covertext entropy).

In the past few years significant advances have been achieved in developing
a theoretical foundation of steganography [4,6,7,12,2,13,14,16,18]. Using notions
from cryptography such as indistinguishability and adapting them to a stegano-
graphic scenario, Hopper et al. have constructed stegosystems that are provably
secure against passive and active attacks [12,2]. Their constructions are based on
the assumption that Alice and Bob know nothing about the covertext channel.
They are only given access to a black-box oracle that samples according to the
channel distribution. By repeatedly sampling based on a history of previously
sampled covertexts these schemes try to find samples that already “contain”
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the message bits to be embedded, hence this method has been named “rejection
sampling”. While Hopper et al. only embed one bit per covertext document, Le
and Kurosawa [16] increase this rate by means of a coding scheme similar to
arithmetic coding that they call “P-Codes”.

However, all black-box stegosystems suffer from several drawbacks. Lysyan-
skaya and Meyerovich first pointed out that sampling based on the full history
might be too difficult and analysed under which conditions stegosystems that
sample with restricted length histories become insecure [18]. Furthermore, Hundt
et al. have shown that the construction of such a history-based sampling oracle,
a core component of all black-box stegosystems, can lead to an intractable prob-
lem for practically relevant covertext channels [14]. Moreover, the scheme in [12]
embeds only one bit per document, so each convertext consists of a large number
of documents. In order to achieve a reasonable transmission rate, i.e. the average
number of hiddentext bits per bit sent, one either has to choose documents of
small size or embed more than one bit per document.

Dedić et al. have analysed a generalisation of the scheme in [12] to embed an
arbitrary number of bits per document [7] They have shown that for a reliable
and secure black-box stegosystem the number of sample documents drawn from
the covertext channel grows exponentially in the number of bits embedded per
document. Note that this exponential bound also holds for the construction by
Le and Kurosawa [16] which uses black-box sampling, too.

In white-box steganography, on the other hand, the stegoencoder is assumed to
have full knowledge about the covertext channel. The availability of a cumulative
distribution function for the covertext channel enables Le and Kurosawa [16] to
modify their encoding procedure for black-box sampling and turn it into a white-
box stegosystem. Although this makes their construction much more efficient, it
seems unlikely that in practice the cumulative distribution is known.

In our study we want to overcome the exponential sampling complexity of the
black-box approach without assuming too much knowledge about the covertext
channel, as in white-box steganography. The model that we propose here will
be called grey-box steganography, as the encoder has partial knowledge of the
covertext channel, making it lie between the black- and white-box scenarios. We
will investigate whether efficient and secure grey-box steganography is possible
and extract the different properties required for this purpose. Equipped with
partial knowledge, the encoder still has to gather more information about the
covertext channel to select as stegotexts only those documents that appear in
the covertext channel. We will model this situation as an algorithmic learning
problem (for an introduction to learning theory see [1]). A priori, Alice knows
that the covertext channel belongs to some class of channels, but does not know
which covertext documents lie in the support of the actual channel. This is
where algorithmic learning comes into play: Alice considers covertext samples
and computes a hypothesis that describes the support of the channel. Based on
this hypothesis, she actively tries to construct suitable stegotexts that encode
her hidden message instead of passively waiting for the sampling oracle to give
her a covertext with the desired properties (i.e. using rejection sampling).
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This construction can be done by modifying an existing covertext or creating
a new one. In both cases the distribution of output stegotexts should look like
“normal” samples from the oracle. We give a proof of concept with channels
that can be described by monomials and concentrate on learning the support
of such a channel. To avoid further complications of the learning process due to
highly unbalanced distributions, a uniform distribution on the support will be
assumed. A generic construction is given showing that apart from the learning
complexity, the efficiency of grey-box steganography depends on the complexity
of the membership test, and suitable covertext modification procedures. For
the concept class monomials we present an efficient algorithm for changing a
covertext into a stegotext. Obviously, membership tests for such concepts can be
done fast. An additional feature of our construction is that only the sender needs
access to the sampling oracle (to learn the concept class), while the receiver only
decodes, as in [12,7] and unlike [16], where both sender and receiver require the
sampling oracle (black-box) or the cumulative distribution function (white-box).

2 Basic Notation and Definitions

Let Σ be a finite alphabet and σ := log |Σ|. As usual, Σ� denotes the set of
strings of length � over Σ, and Σ� the set of strings of finite length over Σ. We
denote the length of a string u by |u| and the concatenation of two strings u1

and u2 by u1||u2, or by u1u2 if this does not lead to ambiguities.
Symbols u ∈ Σ will be called documents and a finite concatenation of docu-

ments a communication sequence or covertext. Typically, the document models
a piece of data (e.g. a digital image or fragment of the image) while the commu-
nication sequence c ∈ Σ� models the complete message sent to the receiver in a
single communication exchange.

If P is a probability distribution with finite support denoted by supp(P), we
define the min-entropy of P as H∞(P) = minx∈supp(P)− log PrP [x]. This notion
provides a measure of the minimal amount of randomness present in P .

Definition 1 (Channel). A channel C is a function that takes a history H ∈
Σ� as input and produces a probability distribution CH on Σ. A history H =
c1c2 . . . cm is legal if each subsequent symbol is obtainable given the previous
ones, i.e., PrCc1c2...ci−1

[ci] > 0 for all i ≤ m. The min-entropy of C is the value
minH H∞(CH) where the minimum is taken over all legal histories H.

This gives a very general definition of covertext distributions which allows de-
pendencies between individual documents that are present in typical real-world
communications. In order to embed additional information into covertexts, one
has to assume that the covertext channel distribution has a sufficiently large
min-entropy.

To get information about the covertext distribution sampling oracles can be
used. EXC(H) denotes an oracle that generates documents according to a channel
C with history H, i.e. each call of EXC(H) returns a document c with probability
PrCH [c] and the responses are independent of each other.
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A steganographic information transmission is thought of as taking a finite
sequence C1, C2, . . . ∈ Σ� of covertexts and based on them to construct a stego-
text S ∈ Σ� such that the sequence additionally encodes an independent message
M . This encoding is done by Alice who then sends the stegotext to the receiver
Bob over a public channel. Let b denote the message encoding rate, i.e. a single
stegodocument can encode up to b bits of M . Longer messages M have to be
split into blocks of b bits each and for each block a separate stegodocument is
generated. Their concatenation yields the stegotext.

Definition 2 (Stegosystem). In the following, let n = � · b denote the length
of the messages to be embedded, thus � stegodocuments each hiding b bits are
needed. A stegosystem S for the message space {0, 1}n is a triple of probabilistic
algorithms [SK, SE, SD] with the following functionality:

– SK is the key generation procedure that on input 1n outputs a key K of length
κ, where κ is a security parameter that depends on n;

– SE is the encoding algorithm that takes as input a key K ∈ {0, 1}κ, a mes-
sage M ∈ {0, 1}n (called hiddentext), a channel history H, and accesses the
sampling oracle EXC() of a given covertext channel C and returns a stegotext
S ∈ Σ�;

– SD is the decoding algorithm that takes K, S, and H, and having access to
the sampling oracle EXC() returns a message M ′.

S is called a black-box stegosystem if SE and SD have no a priori knowledge
about the distribution of the covertext channel and can obtain information about
it only by querying the sampling oracle.

The application of SK is shared by Alice and Bob beforehand and its result is
kept secret from an adversary. All further actions of Alice are specified by SE,
those of Bob by SD. For all stegosystems discussed in this paper SK generates
keys with a uniform distribution, thus when specifying a stegosystem we skip
the description of SK.

The time complexities of the algorithms SK, SE, SD are measured with respect
to n, κ, and the document size (specified formally by σ = log |Σ|), where an ora-
cle query is charged as one unit step. A stegosystem is computationally efficient
if its time complexities are polynomially bounded. By convention, the running
time of an algorithm includes the so called description size of that algorithm
with respect to some standard encoding.

Ideally, one would expect that the encoder always succeeds in encoding the
original message M and that the decoder always succeeds in extracting M from
the stegotext. Since this may not always be possible, we define the unreliability
of a stegosystem.

Definition 3 (Unreliability). The unreliability UnRelC,S of S with respect to
C is given by maxM∈{0,1}n,H PrK←SK(1n)[SD(K, SE(K, M,H),H) �= M ].

Next, let us measure the security of a stegosystem. How likely is it that an
adversary, the warden W , can discover that the covertext channel is used for
transmitting additional information? If we put no algorithmic restrictions on W
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(i.e. information-theoretic security) it is necessary that (1) the stegotext S lies in
the support of the covertext channel, otherwise W could test S for membership in
supp(C), and (2) the probability of producing a stegotext S equals the probability
of drawing S according to C. Cachin has proposed the following information-
theoretic model of steganographic security [6].

Definition 4 (Information-theoretic Security). Let C be a covertext chan-
nel with distribution PC and let PS,C be the output distribution of the stegano-
graphic embedding function SE having access to the sampling oracle EXC(). The
stegosystem [SK, SE, SD] is called perfectly secure for the channel C (against pas-
sive adversaries) if the relative entropy satisfies D(PC ||PS,C) = 0 .

To simplify the analysis, for the systems given later we will assume that the
distribution on the support is uniform. Thus, we concentrate on the problem how
the encoder can learn the support of the channel and then uniformly generate
stegotexts. The constructions given below can be extended to a wider class of
distributions using statistical learning techniques [15].

For a security analysis in the complexity-theoretic sense, W is assumed to
be polynomially time-bounded. Thus, Alice has to make sure that an adversary
cannot detect deviations from the two conditions above in polynomial time. How-
ever, the adversary may actively perform a chosen hiddentext attack [12,7]. Let
SE(K, M,H) with access to EXC(H) be denoted by SEC(K, M,H). In contrast,
we define an oracle OC that for given message M ∈ {0, 1}n and channel history
H returns a truly random covertext c1c2 . . . c� of length � = |SEC(K, M,H)| from
the covertext channel C with the history H, i.e. each ci is drawn according to
the probability distribution CH||c1c2...ci−1 .

Definition 5 (Warden, Chosen Hiddentext Attack (CHA)). A proba-
bilistic algorithm W is a (t, q, λ)-warden for the stegosystem S = [SK, SE, SD] if

– W runs in time t and accesses a reference oracle EXC() that he can query
for samples from the covertext channel C with a history H;

– W can make a number of q queries of total length λ bits on a challenge
oracle CH which is either SEC(K, M,H) or OC(M,H), where M and H can
be chosen by W ;

– the task of W is to determine the use of the stegosystem S with the help of
the challenge oracle: W C,CH = 1 means that W decides on “stegotext”, resp.
W C,CH = 0 means that W decides on “covertext”.

We define the advantage of W over random guessing for a given covertext channel
C as

Advcha
C,S(W ) :=

∣∣∣PrK←SK(1n)[W C,SEC(K,·,·) = 1]− Pr[W C,OC(·,·) = 1]
∣∣∣ .

Note that in order to maximize the advantage, W may depend on the channel
C. In the most favourable case, W may possess a complete specification of C, so
that he even does not need to query the reference oracle. The amount of such
information about C is part of the description size of W . This knowledge may
put the adversary in a much better situation than the encoder.
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Definition 6 (Steganographic Security against CHA). The insecurity of
a stegosystem S with respect to a covertext channel C and complexity bounds
t, q, λ is defined by

InSeccha
C,S(t, q, λ) := max

W
{Advcha

C,S(W )} ,

where the maximum is taken over all adversaries W working in time at most t
and making at most q queries of total length λ bits to the challenge oracle CH.

Note that we do not explicitly mention the description size of the adversary, but
assume this to be included in the running time t (W has to read this information
at least once).

Below we recall some notions from cryptography required for the specification
of the encoding function SE. Let F : {0, 1}k × {0, 1}l → {0, 1}L be a function.
Here {0, 1}k is considered as the key space of F . For each key K ∈ {0, 1}k we
define the subfunction FK : {0, 1}l → {0, 1}L by FK(x) = F (K, x). Thus, F
specifies a family of functions, and is called a family of permutations if l = L
and for each key K the subfunction FK is a permutation on {0, 1}l. For such an
F we define the advantage of a probabilistic distinguisher D having access to a
challenging oracle as

PRP-AdvF (D) =
∣∣∣PrK∈R{0,1}k [DFK(·) = 1]− PrP∈RPERM(l)[DP (·) = 1]

∣∣∣ ,
where PERM(l) denotes the family of all permutations on {0, 1}l. The insecurity
of a pseudorandom family of permutations F is given by PRP-InSecF (t, q) =
maxD{PRP-AdvF (D)}, where the maximum is taken over all probabilistic distin-
guishers D running in at most t steps and making at most q oracle queries.
F is called a (t, q, ε)-pseudorandom family if PRP-InSecF (t, q) ≤ ε. Let the
length l grow polynomially with respect to k. A sequence {Fk}k∈IN of fami-
lies Fk : {0, 1}k×{0, 1}l → {0, 1}l is called pseudorandom if for all polynomially
bounded distinguishers D, PRP-AdvF (D) is negligible in k (for more formal def-
inition of pseudorandom permutations see e.g. [5]).

3 A Grey-Box Model for Steganography

Previous steganographic models have considered computationally restricted ad-
versaries W that possess full knowledge of the covertext channel. Dedić et al. [7]
consider this “a meaningful strengthening of the adversary”. We think that such
strengthening is not appropriate to model Alice and Eve’s basic knowledge about
a covertext channel. In practice, encoders and wardens get an idea about typical
covertexts by observing samples. They do not and likely will never possess any
short advice that fully describes the channels they are looking at. Furthermore,
there may be different families of channels (e.g. images, texts, audio-signals) and
Alice may preselect one specific family from which the actual channel is then
drawn without any outside influence. This more realistic setting strengthens the
encoder and may be a chance to overcome the negative results for the black-box
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scenario. We do not know any steganographic system used in practice that is
based on rejection-sampling, instead stegotexts typically are derived by slight
modifications of given covertexts.

In the grey-box model Alice has some partial knowledge about the covertext
channel. Therefore, we use the notion of concept classes from machine learning
and define a channel family F as a set of covertext channels that share some
common characteristics, such as e.g. all pseudo-random sequences, digital pho-
tographs from a certain camera, or all English literary texts. In the context of
pseudo-random sequences, a single channel Ci contains strings output by a spe-
cific pseudo-random number generator with a fixed seed and the channel family
FPRS = {C1, C2, . . .} contains channels with different seeds.

Note that both the encoder and the warden know the concept class, the family
of channels. For the actual channel C, one member is selected at random, which is
unknown to the encoder. Depending on the modelled strength of the warden, W
may also lack knowledge about C or he may have additional information about C.
Here, we do not investigate this question further and allow the adversary to have
full knowledge. The decoder, on the other hand, is not involved in the learning
process, he does not need any information about the concept class.

As before, the encoding SE may access the sampling oracle EXC(), but now
we clearly differentiate between accesses to the oracle for learning purposes to
construct a hypothesis for the covertext channel, and accesses to get a covertext
that – using the hypothesis – can be modified into a stegotext.

Depending on the concept class, Alice may be able to derive a good hypothesis
– an exact or very close description of the channel – or not. Even if the concept
class is not known to be efficiently learnable it makes sense to consider a situation
where a precise description of the channel is given to Alice for free. Still, even in
this favourable case it is not clear how Alice can construct stegotexts. She must
be able to efficiently modify covertexts and test the modifications for membership
in the support of the channel.

Definition 7. The insecurity and unreliability of a stegosystem S with respect
to the channel family F are defined by

InSeccha
F ,S(t, q, λ) := max

C∈F
InSeccha

C,S(t, q, λ) and UnRelF ,S := max
C∈F

UnRelC,S .

We think this definition, which specifies the insecurity of stegosystems with re-
spect to families of channels instead of all channels, corresponds better to real
life intuition of insecurity than the commonly used definition. In fact, in real
life steganalysis, our grey-box steganography model is already implicitly used to
analyse the insecurity of particular stegosystems with respect to specific channel
families. For example, it is easy to see that the steganographic algorithm F5 for
JPEG images [23] is insecure with respect to the common insecurity definition,
because InSeccha

C,F5 is huge for almost all channels C deviating significantly from
images compressed by JPEG. But this observation seems to be useless for a ste-
goanalyst, for whom a much more appropriate approach to analyse the insecurity
of F5 would be to use our definition and restrict the channels to the family of
JPEG-compressed images, like it was done e.g. in [10].
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4 The Monomial Covertext Channels

In the rest of the paper we will present an example of a stegosystem showing that
the issues discussed above are relevant and the grey-box model makes sense. In
our study we consider a family of channels that can be described by monomials.

Consider a concept class over the document space Σ = {0, 1}σ consisting of
channels C where for each history H, CH is a uniformly distributed subset of Σ
that can be defined by a monomial. We denote such a channel family by MONOM.

A monomial over {0, 1}σ will be represented by a vector H = (h1, . . . ,hσ) ∈
{0, 1,×}σ and defines the subset of all 0-1-vectors, for which the i-th component
is 0 if hi = 0, and 1 if hi = 1. The other components are called free vari-
ables. So, e.g. the monomial represented as “0×0×1” describes the set of strings
{00001, 00011, 01001, 01011}. We denote the subset defined by a monomial H
by H.

One of the novel ingredients of our grey-box-stegosystems is a procedure called
Monomial-modify, which for a given monomial H and a cover-document c ∈
H, modifies c to a stego-document s ∈ H that encodes a b-bit message M in
a way that preserves the uniform probability distribution over H to guarantee
indistinguishability of stegotexts. This nontrivial task is described below.

Let, for short, σb := �σ/b� and define for a permutation π of {1, 2, . . . , σ}
and 1 ≤ j ≤ b the subset Iπ(j) as follows: Iπ(j) := {π(σb · (j − 1) + 1), π(σb ·
(j− 1) + 2), . . . , π(σb · j)}. These subsets partition a document c = a1 . . . aσ into
b subsequences of length σb, where the j-th set contains all elements ai with
index i in Iπ(j). Let FVπ(j) denote those indices in Iπ(j) that belong to free
variables. Each subsequence embeds one bit of the message M as the parity of
all its elements. If the parity does not match we want to flip at least one of
these bits. If a free variable is chosen for this purpose it is guaranteed that the
modified string still belongs to H.

Procedure Monomial-modify(M , c, H, K)
Input: hiddentext M = m1, m2, . . . , mb ∈ {0, 1}b; covertext document

c = a1a2 . . . aσ ∈ {0, 1}σ; hypothesis monomial
H = h1h2 . . .hσ ∈ {0, 1,×}σ; private key K;

let π be the permutation specified by key K;
for j := 1, . . . , b do

if [mj �=
⊕

i∈Iπ(j) ai and FVπ(j) �= ∅] then aνj = 1− aνj , where
νj := min FVπ(j)

end
Output: s = a1a2 . . . aσ

The following procedure is used to decode a stegotext document.
Procedure Document-decode(s, K)
Input: stegotext document s = a1a2 . . . aσ ∈ {0, 1}σ; private key K;
let π be the permutation specified by key K;
For j := 1, . . . , b do mj :=

⊕
i∈Iπ(j) ai;

Output: m1m2 . . . mb
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The crucial property of the procedure Monomial-modify says that if H
and C are monomials (corresponding to a hypothesis, respectively to a concept)
such that H ⊆ C and if c is chosen randomly in C, then Monomial-modify
preserves the uniform probability distribution over C. This is described formally
by the following claim.

Lemma 1. Let H and C be given monomials such that H ⊆ C and let K be an
arbitrary private key. Then for every s ∈ C it holds

Pr[Monomial-modify(M, c,H, K) = s] = 1/|C| ,

where the probability is taken over random choices of c ∈ C and M ∈ {0, 1}b.
Moreover, for every M , every H with ϕ free variables, and c ∈ C the probability
Pr[Document-decode(Monomial-modify(M, c,H, K), K)�= M ] ≤ b·e−ϕ/b+1

over random choices of K. The time complexity of both procedures is linear in σ.

5 Stegosystem for Monomial Channels

Now, we are ready to construct a stegosystem for monomial channels. The sys-
tem, denoted by S, is based on the following encoding and decoding procedures
using families of permutations F : {0, 1}k×{0, 1}n → {0, 1}n. For a stegosystem
S that is perfectly secure in the information-theoretic setting we choose k = n
and the function FK(x) = x⊕K. In the complexity-theoretic case a family F of
efficiently computable pseudorandom permutations is used in order to prevent
chosen hiddentext attacks. The following procedure is used by Alice to encode
the message M .

Procedure Encode(M , K)
Input: hiddentext M = m1 . . . mn ∈ {0, 1}n; private key K = K0, . . . , K2�;
let H be a current history;
choose T0 ∈R {0, 1}n and let T1 := FK0(T0 ⊕M);
parse T0T1 into t1t2 . . . t2�, where |ti| = b;
for i := 1, . . . , 2� do

ci := EXC(H);
access EXC(H) to learn a hypothesis Hi for CH;
si := Monomial-modify(ti, ci, Hi, Ki);
let H := H||si;

end
Output: s1 . . . s2�

The procedure below is used by Bob to decode a stegotext s.
Procedure Decode(s, K)
Input: stegotext s = s1 . . . s2� ∈ {0, 1}2n; private key K = K0, . . . , K2�;
for i := 1, . . . , 2� do

ti := Document-decode(si, Ki);
end
M := F−1

K0
(t�+1 . . . t2�)⊕ t1 . . . t�;

Output: M = m1 . . .m�
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Using the definition of perfect security according to Definition 4 and the se-
curity against chosen hiddentext attack given in Definition 6 we can now apply
the new framework and state the following practical result.

Theorem 1. Let the min-entropy of every channel C in MONOM be at least h. Let
b denote the rate of the stegoencoding and n the length of the secret message to
be embedded. Assume Alice has no a priori knowledge of C, but both Alice and
the warden have access to a sampling oracle EXC(). Then the stegosystem S is
computationally efficient and achieves the following reliability and security:

UnRelMONOM,S ≤ 2n · e−h/b+1 + 2−n and

– with encrypting function FK(x) = x⊕K perfect security, and
– with a family F of pseudorandom permutations

InSeccha
MONOM,S(t, q, λ) ≤ 2 · PRP-InSecF (p(t), λ/n) + ξ(λ, n)

where p is a fixed polynomial and the function ξ(λ, n) :=
(

λ2

n2 − λ
n

)
2−n is a

function related to the insecurity of the family F of pseudorandom permutations
used in S.

Note that this stegosystem is secure in both cases even if the adversary has
complete knowledge of the channel.

A parity-based approach to steganography has previously been suggested by
Anderson and Petitcolas [3]. They argue that the more bits are used for cal-
culating the parity, the less likely one can distinguish the stegotext from an
unmodified covertext. In our case, Alice produces stegotexts that are always
consistent with her hypothesis and thus cannot be distinguished from covertexts
by construction (modulo the error Alice makes when learning). Alice could also
use a pseudo-random function fK with key K instead of the parity, in which
case she would eventually have to try changing different free variables before ob-
taining the desired value to be embedded, thus increasing the time complexity
of her embedding algorithm.

Monomial concept classes may look too simple to describe covertexts in prac-
tice. However, in this setting we do not have to restrict the variables, in learning
theory also called attributes, to properties of the physical medium. If one can
efficiently implement a modification of a simple attribute, these attributes may
also represent semantic properties of a document. For example, pictures may be
classified according to their content – whether they were taken in summer or
winter, contain objects like lakes, mountains, etc. Thus, in a simple way one
can construct a secure system that may be called semantic steganography.

Recall the properties that were needed to achieve efficient and secure steganog-
raphy for the concept class of monomials: 1.) monomials are efficiently learnable
from positive examples, 2.) for each monomial H with enough entropy there is
an efficient embedding function for the hiddentext on the support of H, and 3.)
one can efficiently compute a uniformly selected stegotext (in this case the pro-
cedure Monomial-modify). This generic construction can be applied to other
concept classes fulfilling these properties.
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For the class of monomials one actually does not need the modification pro-
cedure Monomial-modify to generate a stegotext from a given covertext. In this
case, the hypothesis space even allows a direct generation of stegotexts by se-
lecting for all, but one free variable in each group values at random.

6 Conclusions and Future Work

This paper introduces a new approach to modeling and analysing steganography.
Previous models (e.g. [12], [7] or [16] either treat the covertext channel as a black-
box – resulting in a sampling complexity exponential in the number of bits per
covertext document – or assume a priori full knowledge about the covertext
distribution, which seems unrealistic. We overcome this situation by allowing
the encoder to modify covertexts, as done in most practical stegosystems. Our
grey-box model is more realistic in the sense that we assume the encoder to have
some partial knowledge about the channel.

Furthermore, a finer-grained distinction between the different ingredients for
securely hiding information into covertexts provides new insights and helps in
constructing stegosystems. We have shown that for efficiently learnable cover-
texts secure and efficient steganography is possible by presenting a construction
for monomial channels, which are efficiently PAC-learnable. So far, our construc-
tion is restricted to monomial channels with the uniform distribution. For general
distributions, note that the actual distribution on the support of the channels
has to be learned in addition to the support in order to achieve information
theoretic security. For arbitrary distributions this cannot be done efficiently.
However, in the complexity theoretic setting we think that our construction can
at least be generalized to the case where each free variables xi independently of
the others takes the value 1 with some arbitrary probability pi, so called product
distributions.

Even for channels that are hard to learn in the PAC-sense, assuming that by
some other means the encoder can get hypotheses about the channel, one can
design efficient stegosystems if the modification problem has an efficient solution.

Steganographic techniques like LSB-flipping for digital images can easily be
expressed by this approach. They can be viewed as variants of Monomial-
modify, with all but the last bits of each pixel being fixed and the least sig-
nificant bit being a free variable. The support of the covertext channel for a
given image I thus consists of all images that only differ in their least significant
bits. However, digital images taken by modern cameras do not tend to gener-
ate truly random LSBs. Thus, representing the hypothesis as a monomial may
be inappropriate for camera channels and the monomial stegosystem insecure.
An important future task will be the implementation of grey-box steganography
with practically relevant covertext channels.

In the grey-box setting there may still be a huge advantage for the adversary
if he has complete knowledge of the covertext channel. As a next step one should
investigate more carefully the case that the knowledge of the adversary is limited
similar to the situation of the stegoencoder.
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Abstract. We study the communication complexity of symmetric XOR
functions, namely functions f : {0, 1}n × {0, 1}n → {0, 1} that can be
formulated as f(x, y) = D(|x ⊕ y|) for some predicate D : {0, 1, ..., n} →
{0, 1}, where |x ⊕ y| is the Hamming weight of the bitwise XOR of x
and y. We give a public-coin randomized protocol in the Simultaneous
Message Passing (SMP) model, with the communication cost matching
the known lower bound for the quantum and two-way model up to a
logarithm factor. As a corollary, this closes a quadratic gap between the
previous quantum lower bound and the randomized upper bound in the
one-way model. This answers an open question raised in Shi and Zhang
[SZ09], and disqualifies the problem from being a candidate to separate
randomized and quantum one-way communication complexities.

1 Introduction

Communication complexity quantifies the minimum amount of communication
needed for two (or sometimes more) parties to jointly compute some function
f . Since introduced by Yao [Yao79], it has attracted significant attention in the
last three decades, not only for its elegant mathematical structure but also for
its numerous applications in other computational models [KN97, LS09].

The two parties involved in the computation, usually called Alice and Bob, can
communicate in different manners, and here we consider the three well-studied
models, namely the two-way model, the one-way model and the simultaneous
message passing (SMP) model. In the two-way model, Alice and Bob are allowed
to communicate interactively in both directions, while in the one-way model,
Alice can send message to Bob and Bob does not give feedback to Alice. An
even weaker communication model is the SMP model, where Alice and Bob
are prohibited to exchange information directly, but instead they each send a
message to a third party Referee, who then announces a result. A randomized
protocol is called private-coin if Alice and Bob each flip their own and private
random coins. If they share the same random coins, then the protocol is called
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public-coin. The private-coin model differs from the public-coin model by at
most an additive factor of O(log n) in the two-way and one-way models [New91].

We use Rpriv(f) to denote the communication complexity of a best private-
coin randomized protocol that computes f with error at most 1/3 in the two-
way protocol. Similarly, we use the R||,priv(f) to denote the communication
complexity in the private-coin SMP model, and R1,priv(f) for the private-coin
one-way model. Changing the superscript “priv” to “pub” gives the notation for
the communication complexities in the public-coin models. If we allow Alice and
Bob to use quantum protocols, then Q(f), Q1(f), Q||(f) represent the quantum
communication complexity in two-way model, one-way model and SMP model,
separately. In the quantum case the communication complexity is evaluated in
terms of the number of qubits in the communication. If Alice and Bob share prior
entanglement, then we use a star in the superscript to denote the communication
complexity.

Arguably the most fundamental issue in communication complexity is to de-
termine the largest gap between the quantum and classical complexities. In par-
ticular, there is no super-constant separation between quantum and classical
complexities in the one-way model; actually, it could well be the truth that they
are the same up to a constant factor for all total Boolean functions.

One way to understand the question is to study special classes of functions.
An important class of Boolean functions is that of XOR functions, namely those
in the form of f(x ⊕ y) where x ⊕ y is the bitwise XOR of x and y. Some
well-studied functions such as the Equality function and the Hamming Distance
function are special cases of XOR functions. XOR functions belong to a larger
class of “composed functions”; see [LZ10] for some recent studies.

While the general XOR function seems hard to study, recently Shi and Zhang
[SZ09] considered symmetric XOR functions, i.e. f(x ⊕ y) = D(|x ⊕ y|) for
some D : {0, 1, ..., n} → {0, 1}. Define r0 and r1 to be the minimum integers
such that r0, r1 ≤ n/2 and D(k) = D(k + 2) for all k ∈ [r0, n − r1) and set
r = max{r0, r1}. Shi and Zhang proved that the quantum lower bound for
symmetric XOR functions in the two-way model is Ω(r), and on the other hand,
they also gave a randomized protocol in communication of Õ(r) in the two-
way model and Õ(r2) in the one-way model. Pinning down the quantum and
randomized communication complexities of symmetric XOR functions in the
one-way model was raised as an open problem.

In this work, we close the quadratic gap by proving a randomized upper bound
of Õ(r), which holds even for the SMP model. Namely,

Theorem 1. For any symmetric XOR function f ,

R‖,pub(f) = O(rlog3 r/ log log r) (1)

Combining this upper bound with Shi and Zhang’s quantum lower bound in the
two-way model, we have the following.

Corollary 1. The (public-coin) randomized and quantum communication com-
plexities of symmetric XOR functions are Θ̃(r) in the two-way, the one-way, and
the SMP models.
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A good question for further exploration is the communication complexity of
XOR functions in the private-coin SMP model.

2 Preliminaries

In this part we review some known results on the randomized and quantum
communication complexities of the Hamming Distance function and the Equality
function.

Let Ham(d)
n be the boolean function such that Ham(d)

n (x, y) = 1 if and only if
the two n-bit strings x and y have Hamming distance at most d. Yao [Yao03]
showed a randomized upper bound of O(d2) in the public-coin SMP model, later
improved by Gavinsky, Kempe and de Wolf [GKdW04] to O(d log n) and further
by Huang, Shi, Zhang and Zhu [HSZZ06] to O(d log d). Let HDd,ε denote the
O(d log d log(1/ε))-cost randomized protocol by repeating the [HSZZ06] protocol
for O(log(1/ε)) times so that the error probability is below ε.

The parity function Parity(x) is defined as Parity(x) = 1 if and only if |x| is
odd.

A function f : {0, 1}n × {0, 1}n → {0, 1} is a symmetric XOR function if
f(x, y) = S(x⊕ y) for some symmetric function S. That is, f(x, y) = D(|x⊕ y|)
where D : {0, 1, . . . , n} → {0, 1}. Let D̃(k) = D(n− k) and S̃(x, y) = D̃(|x⊕ y|).
Define r0 and r1 to be the minimum integers such that r0, r1 ≤ n/2 and D(k) =
D(k + 2) for all k ∈ [r0, n − r1); set r = max{r0, r1}. By definition, D(k) only
depends on the parity of k when k ∈ [r0, n− r1]. Suppose D(k) = T (Parity(k))
for k ∈ [r0, n− r1] (for some function T ).

All the logarithms in this paper are to base 2.

3 A Public-Coin Protocol in the SMP Model

This section gives the protocol in Theorem 1. We will first give a subprocedure
Pk which computes the function in the special case of |x⊕y| ≤ k. It is then used
as a building block for the general protocol P .

In the protocols we will use random partitions. A random k-partition of [n] is
a random function p mapping [n] to [k], i.e. mapping each element in [n] to [k]
uniformly at random and independently. We call the set {i ∈ [n] : p(i) = j} the
block B(j). A simple fact about the random partition is the following.

Lemma 1. For any string z ∈ {0, 1}n with at most k 1’s, a random k-partition
has

Pr[All k blocks have less than c 1’s] ≥ 1−O(1/k2). (2)

where c = 4 log k/ log log k.

Proof. Consider the complement event. There are k possible blocks to violate
the condition,

(
k
c

)
choices for the c 1’s (out of k 1’s) put in the “bad” block, and
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for each of these 1’s, the probability of it mapped to the block is 1/k. Thus the
union bound gives

Pr[There exists a block with c 1’s] ≤ k ·
(

k

c

)
· 1
kc

(3)

≤
(

ek

c

)c

· 1
kc−1

=
(e

c

)c

· k (4)

It is easily verified that the chosen c makes this bound O(1/k2).

Now the protocol Pk is as in Box Pk. Recall thatHDd,ε is the O(d log d log(1/ε))-
communication randomized protocol for the Hamming Distance problem Ham(d)

n ,
with error probability below ε.

Box Pk:
A public-coin randomized protocol Pk for functions
f(x, y) = D(|x ⊕ y|), with promise |x ⊕ y| ≤ k, in the SMP
model

Input: x ∈ {0, 1}n to Alice and y ∈ {0, 1}n to Bob, with promise |x⊕y| ≤ k
Output: One bit f̄ by Referee satisfying f̄ = f(x, y) with probability at
least 0.9.

Protocol:
Alice and Bob:

1. Use public coins to generate a common random k-partition [n] =
(k

i=1B(i).
2. for i = 1 to k

for j = 0 to c = 4 log k/ log log k
run (Alice and Bob’s part of) the protocol HDj,ε on input

(xB(i), yB(i)) with ε = 1/(10k log c), sending a pair of messages
(ma,i,j(xB(i)), mb,i,j(yB(i))).

Referee:

1. for i = 1 to k

(a) On receiving {(ma,i,j(xB(i)), mb,i,j(yB(i))) : j = 1, . . . , c}, run
(Referee’s part of) the protocol HDj,ε which outputs hij .

(b) Use binary search in (hi1, . . . , hic) to find the Hamming distance hi

of (xB(i), yB(i)).

2. Output D(
∑k

i=1 hi).

Lemma 2. If |x ⊕ y| ≤ k, then Referee outputs D(|x ⊕ y|) with probability at
least 0.9. The cost of protocol Pk is O(k log3 k/ log log k).
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Proof. First, by Lemma 1, each block contains at most c different indices i
s.t. xi �= yi. Namely, the Hamming distance of xB(i) and yB(i) is at most c.
Thus running the protocols HDj,ε for j = 0, ..., c would give information to
find the Hamming distance hi of (xB(i), yB(i)). In each block B(i), hi is cor-
rectly computed as long as each of the $log c% values hij on the (correct) path
of the binary search is correct. Thus a union bound gives the overall error
probability upper bounded by k(log c)ε = 1/10. The cost of the protocol is
O(k · c · c log c log(1/ε)) = O(k log3 k/ log log k).

With the protocol Pk in hand, we now construct the general protocol as in Box
P.

Box P:
A public-coin randomized protocol P for functions f(x, y) = S(x⊕y)
in the SMP model

Input: x ∈ {0, 1}n to Alice and y ∈ {0, 1}n to Bob
Output: One bit b which equals to f(x, y) with probability at least 2/3.

Protocol:

1. Run the protocol HDr0,1/10 on (x, y) and the protocol HDr1,1/10 on
(x̄, y).

2. Run the protocol Pr0 for function S on (x, y) and the protocol Pr1 for
function S̃ on (x̄, y).

3. Alice: send Parity(x)
4. Bob: send Parity(y).
5. Referee:

(a) If HDr0,1/10 on (x, y) outputs 1, then output Pr0 on (x, y) and halt.
(b) If HDr1,1/10 on (x̄, y) outputs 1, then output Pr1 on (x̄, y) and halt.
(c) Output T (Parity(x) ⊕ Parity(y)).

Theorem 2. The protocol P outputs the correct value with probability at least
2/3, and the complexity cost is O(r log3 r/ log log r).

Proof. Correctness : If |x⊕y| ≤ r0, then with probability at least 0.9, the protocol
HDr0,1/10(x, y) outputs 1, thus Referee outputs Pr0 on (x, y), which equals to
f(x, y) with probability at least 0.9 by the correctness of the protocol Pr0 . Thus
the overall success probability is at least 0.81 > 2/3.

If |x ⊕ y| ≥ n − r1, then |x̄ ⊕ y| ≤ r1 and with probability at least 0.9,
the protocol HDr1,1/10(x̄, y) outputs 1, thus Referee outputs Pr1(S̃, x̄, y), which
equals to

S̃(x̄ ⊕ y) = D̃(n− |x⊕ y|) = D(|x⊕ y|) (5)

with probability at least 0.9 by the correctness of the protocol Pr1 . Thus the
overall success probability is at least 0.81 > 2/3.

If r0 < |x⊕ y| < n− r1, then the protocol proceeds to the very last step with
probability at least 1 − 0.1 − 0.1 = 0.8. And once this happens, then Referee
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outputs the correct value with certainty, since f(x, y) = T (Parity(x ⊕ y)) =
T (Parity(x)⊕ Parity(y)).

Complexity: The cost is twice of the cost of the protocol Pr, plus twice of the
cost of the protocol HDr,1/10, plus 2, which in total is O(r log3 r/ log log r).
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Abstract. The synchronized bit communication model, defined recently
by Impagliazzo and Williams in [1], is a communication model which al-
lows the participants to share a common clock. The main open problem
posed in this paper was the following: does the synchronized bit model
allow a logarithmic speed-up for all functions over the standard determin-
istic model of communication? We resolve this question in the negative
by showing that the Median function, whose communication complex-
ity is O(log n), does not admit polytime synchronized bit protocol with
communication complexity O

(
log1−ε n

)
for any ε > 0. Our results follow

by a new round-communication trade-off for the Median function in the
standard model, which easily translates to its hardness in the synchro-
nized bit model.

Keywords: communication complexity, median, synchronized bit model,
round complexity.

1 Introduction

Communication complexity, introduced by Yao in 1979 [6], is an important con-
cept in complexity theory which tries to determine the amount of communication
needed to compute a function whose input has been distributed among two or
more participants. A natural question, especially in the context of the proto-
cols used in distributed computing, is whether synchronous protocols, in which
the participants can use a common clock, are more powerful than asynchronous
ones, in which the players do not have this ability (note that the standard pro-
tocols studied in communication complexity are asynchronous). The synchro-
nization allows the participants to convey some information by not sending a
message at a given moment of time, which naturally leads us to examine the
time-communication trade-off of the protocol.

In their recent paper [1], Impagliazzo and Williams formalized the notion of
synchronous protocols and partially solved several interesting questions related
to them by introducing two models of communication, called the synchronized
bit model and the synchronized connection model, and studying their complex-
ity. We can briefly summarize the synchronized bit complexity model as an
extension of the standard deterministic model of communication, where a player
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in one step can send 0, 1 or a blank, and where blanks do not count towards
the communication complexity of the protocol. It is interesting to consider the
polytime bit complexity of a problem Π : the minimum complexity of any syn-
chronized bit protocol for the problem Π using a polynomial number of steps.
This function is denoted by PB(Π).

The authors prove in [1] the following bounds for the polytime bit complexity:

Ω

(
D(Π)
log n

)
≤ PB(Π) ≤ O

(
D(Π)

log log n

)
(1)

and conclude their paper with the following questions:

Question 1. Can the upper bound on the polytime bit complexity in (1) be
improved?

Question 2. What is the complexity of Median in this model?

We solve Question 2 and give a partial answer to Question 1 by proving the
following result:

Theorem 1. The Median function does not admit a polytime synchronized bit
protocol with communication complexity O

(
log1−ε n

)
for any ε > 0.

Since the deterministic complexity of the Median function is O(log n), we get
the following lower bound for the synchronized bit complexity of this problem:

ω

(
D(Median)

logε n

)
≤ PB(Median)

for each ε > 0, which of course forbids any significant improvement to the upper
bound in (1) in general.

Theorem 1 can be easily translated, using methods established in [1], in terms
of the round-communication trade-off in the standard deterministic model.

Theorem 2. The Median function does not admit a deterministic protocol using
O
(
log1−ε n

)
rounds and a logarithmic amount of communication at each round

for any ε > 0.

Our result provides a new round-communication trade-off for the Median func-
tion. The study of the round-communication trade-offs for various functions is
an important area of communication complexity with significant applications to
streaming algorithms (lower bounds for the rounds-communication trade-off in
the deterministic communication complexity model imply the same bounds for
the number of passes-memory trade-off in the streaming model; the opposite
implication usually does not hold). With Median being a central problem in the
streaming model, the fact that our approach can be used to prove some lower
bounds for it in this model (albeit slightly weaker than those already known,
[3]) in a completely different manner, can potentially be quite fruitful.

To facilitate our proofs we define a natural problem, Strategy, which is easily
seen as complete for the class of communication problems solvable in O(log n)
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rounds and O(log n) communication. Our reduction from Strategy to Median
allows us to show that Median is also a complete problem for that class.

The structure of the paper is as follows. In section 2 we briefly describe the
relation between synchronized bit complexity and round complexity, and define
the problem central to our paper, Strategy. In the following section we prove a
round-communication trade-off for the Strategy problem by showing a reduction
from the k(·)-Pointer-Jumping problem, whose round-communication trade-off
has been extensively studied ([4], [5]). The reduction uses an intermediate prob-
lem – k(·)-Level-Strategy. Although both reductions are quite straightforward,
they do not preserve the size of the instance, which leads us to a system of
asymptotic inequalities on the lower bound for Strategy. We then show a reduc-
tion from the Strategy problem to Median.

2 Preliminaries

We assume that the reader is familiar with the basic notions of communication
complexity [2].

We will use the straightforward two-way translation between the synchronized
bit protocols running in time O(t) and using O(b) bits of communication and
deterministic protocols using O(b) rounds and O(log t) communication at each
round, which is explained in detail in [1]. We can therefore approach the problem
in terms of round complexity: the existence of polytime synchronized bit protocol
using O(b) bits of communication is equivalent to the existence of a deterministic
protocol using O(b) rounds and O(log n) communication at each round.

Definition 1. We define the problem Strategy of size n as follows. Let T be a
full binary tree with n vertices. A function f assigns to each vertex of the tree
a number from the set {0, 1}. Alice knows the values of f in the vertices in the
odd layers of the tree (the vertices with odd depth), and Bob knows the values
of f in the vertices in the even layers. We define the leaf reached by f to be
the leaf which is an endpoint of the path starting at the root and going always
downwards – to the left son of v if f(v) = 0 and to the right son otherwise. The
players’ goal is to determine the index of the leaf they reach.

Remark 1. The Strategy problem is complete for the class of communication
problems solvable in O(log n) rounds and O(log n) communication.

Proof. We will reduce an arbitrary problem Π of this class to the Strategy
problem. The problem Π has a deterministic protocol using O(log n) rounds
and O(log n) communication. Without loss of generality we can assume that
the protocol makes the players alternate in sending messages containing just
one bit. In each Alice’s (and analogously Bob’s) vertex of the protocol tree
and corresponding to a communication history consistent with her input, the
message she sends depends only on her input and the communication history
(in all the other vertices of Alice we fix her message in an arbitrary way). We
can now transform the protocol tree into a Strategy tree by setting the value of
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the function f in each vertex of the tree to the message sent in that vertex, and
assigning to the leaves the outputs of the protocol for the given communication
history. �	

Remark 2. The Strategy problem can be solved in O
(

log n
log log n

)
rounds and

O(log n) communication at each round.

This upper bound may be easily obtained by using the reductions described
in [1] to change the model to the synchronized bit model, use the upper bound
proved therein for this model, and then translate the model back to the standard
deterministic model.

Definition 2. We define the problem k(·)-Level-Strategy of size n as follows. We
have an n-ary tree T of height k(n), with leaves indexed from 1 to nk(n). There
is a function f : T → [n] for each vertex v ∈ T , Alice knows this function for the
vertices in the odd layers and Bob knows it for the vertices in the even layers. As
in Strategy, they want to determine the index of the leaf they descend to starting
from the root and following the function f (f(v) = l means that if they arrive to
the vertex v they descend to the l-th son of v). Note that n is a parameter, and
not the input size; both Alice and Bob have input of size O

(
nk(n) log n

)
.

Definition 3. The problem k(·)-Pointer-Jumping is defined as follows. Alice
and Bob each hold a list of n pointers, each pointing to a pointer in the list of
the other. An initial pointer v0 is marked. They want to determine the k(n)-th
pointer they reach after following the pointers starting from v0.

In [4] it was proved that if we allow just k(n) − 1 rounds then k(n)-Pointer-
Jumping requires Ω(n) communication.

3 Round Complexity of Strategy

We will prove the following theorem by showing a sequence of reductions from
Pointer Jumping to Strategy:

Theorem 3. The Strategy function does not admit a deterministic protocol us-
ing O

(
log1−ε n

)
rounds and a logarithmic amount of communication at each

round for any ε > 0.

Let r(n) be some function such that r(Θ(n)) = Θ(r(n)) (we will fix it later). We
will prove the following easy lemmas:

Lemma 1. If the Strategy problem of size m can be solved in O(r(m)) rounds
using O(r(m) log m) communication, then, for each k(·), k(·)-Level-Strategy can
be solved in O

(
r
(
nk(n)

))
rounds using O

(
r
(
nk(n)

)
log nk(n)

)
communication.

Proof. For each k(·), there is a simple reduction from k(·)-Level-Strategy of size
n (i. e. with nk(n) leaves) to Strategy of size O

(
nk(n)

)
. We will create a Strategy

tree S by replacing each Alice’s vertex v of the tree T in k(·)-Level-Strategy with
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a binary tree of height $log n%, with n leftmost leaves corresponding to the sons
of v in T . On every vertex of even depth in the subtree we fix Bob’s input to be
0, and we fix Alice’s input in the subtree so that the correct leaf is reached. Note
that if n is not a power of two, then the Strategy tree S will be slightly larger
than T , with additional vertices and not corresponding to vertices of T , but that
is inconsequential, because our construction assures that these vertices are never
reached by the protocol. It is easy to see that this is a proper reduction. �	
Lemma 2. If k(·)-Level-Strategy of size n can be solved in O

(
r
(
nk(n)

))
rounds

using O
(
r
(
nk(n)

)
log nk(n)

)
communication, then k(·)-Pointer-Jumping of size

n can also be solved in O
(
r
(
nk(n)

))
rounds using O

(
r
(
nk(n)

)
log nk(n)

)
com-

munication.

Proof. Given an instance G of k(·)-Pointer-Jumping of size n we will create
an instance of k(·)-Level-Strategy of size n (with nk(n) leaves), which will be,
informally speaking, a tree of possible paths of length k(n) in the graph G. In
every odd layer (resp. even layer) every vertex that is an i-th son will point its
j-th son if and only if gA(i) = j, where gA is the Alice’s (resp. Bob’s) input
in the Pointer-Jumping instance. It is easy to see that in this reduction every
player can locally compute their input, and that the vertex reached by their
functions in k(·)-Level-Strategy is an i-th son if and only if the output for the
k(·)-Pointer-Jumping is i. �	
By combining the two lemmas we obtain the following

Corollary 1. If the Strategy problem of size m can be solved in O(r(m)) rounds
using O(r(m) log m) communication, then, for each k(·), k(·)-Pointer-Jumping
of size n can be solved in O

(
r
(
nk(n)

))
rounds using O

(
r
(
nk(n)

)
log nk(n)

)
com-

munication.

We can now prove the main theorem of this section.

Proof (of Theorem 3). In [4] it was shown that if we allow no more than k(n)−1
rounds then k(·)-Pointer-Jumping of size n requires Ω(n) communication. We
thus know that for every k(·) the protocol for Strategy must yield, after using the
reductions described, a protocol for k(·)-Pointer-Jumping using either a greater
number of rounds:

r
(
nk(n)

)
≥ k(n)

or a greater amount of communication:

r
(
nk(n)

)
log nk(n) ≥ Ω(n).

A function r(n) which for any k(n) violates both of these inequalities is
thus a viable lower bound for Strategy, that is no O(r(n))-round, O(r(n) log n)-
communication protocol for Strategy may exist.

It is easy to check that for all ε > 0 the function r(n) = log1−ε n fails to satisfy
both of these inequalities when we set k(n) =

√
n

log n , which proves Theorem 3.
�	
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Note here that if we were to prove a lower bound tightly matching the upper
bound for Strategy, that is O

(
log n

log log n

)
(proved in Remark 2), which we believe

may be the case, we would need to use a different method, because close ex-
amination of the inequalities obtained by setting r(n) = log n

log log n reveals that,
regardless of the function k(n), at least one of the inequalities must be satisfied.

4 Reduction from Strategy to Median

Proposition 1. If the Median problem of size n can be solved in O(r(n)) rounds
using O(c(n)) communication Strategy of size n can also be solved in O(r(n))
rounds using O(c(n)) communication.

Proof. We will show here a reduction from Strategy(T, f) to Median(S, A, B),
where S is a set of natural numbers and A, B are subsets of this set held by
Alice and Bob respectively. The reduction will work inductively on the height k
of the tree T of the Strategy problem.

It is easy to reduce Strategy on trees of height 1 to Median over S = {0, 1}: we
give the empty subset to Bob and to Alice either the subset {0} or {1} depending
on the value of f in the root. The two possible values of Median will correspond
to the two possible leaves reached by f .

Let us denote by li the size of the set S produced by the reduction for the
trees of size i, and by wi the the number of elements given to Alice and Bob
(wi = |A∪B|); we will construct the reduction inductively so that li and wi are
well defined.

We will now show the induction step for the trees of height k. Let Tl be the
tree of height k − 1 rooted at the left son of the root, ant Tr be the tree rooted
at the right son. We denote by r the root of the tree T and by Al the subset of
Sk−1 given to Alice by the reduction from Strategy(Tl, f |Tl

) (we define Ar, Bl, Br

analogously). The reduction will create the sets:

S = Sk = {1, ..., lk}, where lk = 2wk−1 + 2lk−1

A = (Bl + wk−1) ∪ (Br + (wk−1 + lk−1)) ∪

∪
{
{1, ..., wk−1} if f(r) = 0
{lk − wk−1 + 1, ..., lk} otherwise

B = (Al + wk−1) ∪ (Ar + wk−1 + lk−1)

where C + d = {c + d | c ∈ C}.
It is easy to check that this is a proper reduction. The basic idea is that we

give Alice some amount of small numbers if she turns left in r, and the same
amount of big numbers if she turns to the right, so that the problem reduces
either to finding the median in the subproblem of Median corresponding to Tl

or to finding the median in the subproblem corresponding to Tr, with the roles
of the players reversed (because it is now Bob who holds the roots of Tl and Tr).
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Easy calculations of the recurrence relations for wk and lk show that these
functions are exponential in k, so the reduction from Strategy on the tree of size
n produces an instance of Median of size O(n). �	
Combining this reduction with Theorem 3 yields the proof of our main result,
Theorem 1.

It is worth noticing that this reduction, together with Remark 1, proves as
well that Median is complete for the class of communication problems solvable
in O(log n) rounds and O(log n) communication.

5 Conclusions

Our results still hold in the randomized case.
It is possible that a stronger lower bound for Median in the synchronized bit

complexity model, tightly matching the upper bound of O
(

log n
log log n

)
, may be

proven. It would also be interesting to extend the synchronized bit model to the
multiparty case and to study the complexity of the model in this setting.

In [1] the authors define also another synchronized model: the connection
complexity model, which is based on the assumption that in each timestep every
party decides whether to try to establish a connection. Some information is
exchanged if and only if a connection has been established, and only successful
connections count toward the communication cost of the protocol. The model
turns out to be surprisingly powerful, enabling the participants to solve the
Disjointness problem in polynomial time and only one bit of communication.
We believe that also for this model the possible multiparty extension seems
worth further examination.
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aging me to write this paper and for fruitful discussions.
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Abstract. In 2009, Röglin and Teng showed that the smoothed number
of Pareto optimal solutions of linear multi-criteria optimization problems
is polynomially bounded in the number n of variables and the maximum
density φ of the semi-random input model for any fixed number of objec-
tive functions. Their bound is, however, not very practical because the
exponents grow exponentially in the number d+1 of objective functions.
In a recent breakthrough, Moitra and O’Donnell improved this bound
significantly to O

(
n2dφd(d+1)/2

)
.

An“intriguingproblem”,whichMoitraandO’Donnell formulate in their
paper, is how much further this bound can be improved. The previous lower
bounds do not exclude the possibility of a polynomial upper bound whose
degree does not depend on d. In this paper we resolve this question by con-
structing a class of instances with Ω((nφ)(d−log(d))·(1−Θ(1/φ))) Pareto op-
timal solutions in expectation. For the bi-criteria case we present a higher
lower bound of Ω(n2φ1−Θ(1/φ)), which almost matches the known upper
bound of O(n2φ).

1 Introduction

In multi-criteria optimization problems we are given several objectives and aim
at finding a solution that is simultaneously optimal in all of them. In most cases
the objectives are conflicting and no such solution exists. The most popular way
to deal with this problem is to just concentrate on the relevant solutions. If a
solution is dominated by another solution, i.e., it is worse than the other solution
in at least one objective and not better in the others, then this solution does
not have to be considered for our optimization problem. All solutions that are
not dominated by any other solution are called Pareto optimal and form the
so-called Pareto set. For a general introduction to multi-criteria optimization
problems, we refer the reader to the book of Matthias Ehrgott [Ehr05].

Smoothed Analysis. For many multi-criteria optimization problems the worst-
case size of the Pareto set is exponential. However, worst-case analysis is often
too pessimistic, whereas average-case analysis assumes a certain distribution
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on the input universe. Usually it is hard if not impossible to find a distribu-
tion resembling practical instances. Smoothed analysis, introduced by Spielman
and Teng [ST04] to explain the efficiency of the simplex algorithm in practice
despite its exponential worst-case running time, is a combination of both ap-
proaches and has been successfully applied to a variety of fields like machine
learning, numerical analysis, discrete mathematics, and combinatorial optimiza-
tion in the past decade (see [ST09] for a survey). Like in a worst-case analysis
the model of smoothed analysis still considers adverserial instances. In contrast
to the worst-case model, however, these instances are subsequently slightly per-
turbed at random, for example by Gaussian noise. This assumption is made to
model that often the input an algorithm gets is subject to imprecise measure-
ments, rounding errors, or numerical imprecision. In a more general model of
smoothed analysis, introduced by Beier and Vöcking [BV04], the adversary is
even allowed to specify the probability distribution of the random noise. The
influence he can exert is described by a parameter φ denoting the maximum
density of the noise.

Optimization Problems and Smoothed Input Model. Beier and Vöcking [BV04]
have initiated the study of binary bi-criteria optimization problems. In their
model, which has been extended to multi-criteria problems by Röglin and Teng
[RT09], one considers optimization problems that can be specified in the follow-
ing form. There are an arbitrary set S ⊆ {0, 1}n of solutions and d + 1 objective
functions wj : S → R, j = 0, . . . , d, given. While w0 can be an arbitrary function,
which is to be minimized, the functions w1, . . . , wd, which are to be maximized,
are linear of the form wj(s) = wj

1s1 + . . . + wj
nsn for s = (s1, . . . , sn) ∈ S.

Formally, the problem can be described as follows:

minimize w0(s), and maximize wj(s) for all j = 1, . . . , d

subject to s in the feasible region S.

As there are no restrictions on the set S of solutions, this model is quite general
and can encode many well-studied problems like, e.g., the multi-criteria knap-
sack, shortest path, or spanning tree problem. Let us remark that the choice
which objective functions are to be maximized and minimized is arbitrary and
just chosen for ease of presentation. All results also hold for other combinations
of objective functions.

In the framework of smoothed analysis the coefficients wj
1, . . . , w

j
n of the linear

functions wj are drawn according to (adversarial) probability density functions
fi,j : [−1, 1] → R that are bounded by the maximum density parameter φ, i.e.,
fi,j ≤ φ for i = 1, . . . , n and j = 1, . . . , d. The adversary could, for example,
choose for each coefficient an interval of length 1/φ from which it is chosen uni-
formly at random. Hence, the parameter φ determines how powerful the adver-
sary is. For large φ he can specify the coefficients very precisely, and for φ →∞
the smoothed analysis becomes a worst-case analysis. The coefficients are re-
stricted to the interval [−1, 1] because otherwise, the adversary could diminish
the effect of the perturbation by choosing large coefficients.
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Previous Work. Beier and Vöcking [BV04] showed that for d = 1 the expected
size of the Pareto set of the optimization problem above is O(n4φ) regardless
of how the set S, the objective function w0 and the densities fi,j are chosen.
Later, Beier, Röglin, and Vöcking [BRV07] improved this bound to O(n2φ) by
analyzing the so-called loser gap. Röglin and Teng [RT09] generalized the no-
tion of this gap to higher dimensions, i.e., d ≥ 2, and gave the first polynomial
bound in n and φ for the smoothed number of Pareto optimal solutions. Further-
more, they were able to bound higher moments. The degree of the polynomial,
however, was dΘ(d). Recently, Moitra and O’Donnell [MO10] showed a bound
of O(n2dφd(d+1)/2), which is the first polynomial bound for the expected size
of the Pareto set with degree polynomial in d. An “intriguing problem” with
which Moitra and O’Donnell conclude their paper is whether their upper bound
could be significantly improved, for example to f(d, φ)n2. Moitra and O’Donnell
suspect that for constant φ there should be a lower bound of Ω

(
nd
)
. In this

paper we resolve this question almost completely.

Our Contribution. For the bi-criteria case, i.e., d = 1, we prove a lower bound
of Ω

(
min

{
n2φ1−Θ(1/φ), 2Θ(n)

})
. This is the first bound with dependence on n

and φ and it nearly matches the upper bound O(min
{
n2φ, 2n

}
). For d ≥ 2

we prove a lower bound of Ω
(
min

{
(nφ)(d−log(d))·(1−Θ(1/φ)), 2Θ(n)

})
. Note that

throughout the paper “log” denotes the binary logarithm. This is the first bound
for the general multi-criteria case. Still, there is a significant gap between this
lower bound and the upper bound of O(min

{
n2dφd(d+1)/2, 2n

}
), but the expo-

nent of n is nearly d− log (d). Hence our lower bound is close to the lower bound
of Ω

(
nd
)

conjectured by Moitra and O’Donnell.

Restricted Knapsack Problem. To prove the lower bounds stated above we con-
sider a variant of the knapsack problem where we have n objects a1, . . . , an,
each with a weight wi and a profit vector pi ∈ [0, 1]d for a positive integer d.
By a vector s ∈ {0, 1}n we describe which objects to put into the knapsack. In
contrast to the unrestricted variant not all combinations of objects are allowed.
Instead, all valid combinations are described by a set S ⊆ {0, 1}. We want to
simultaneously minimize the total weight and maximize all total profits of a so-
lution s. Thus, the restricted knapsack problem, denoted by KS({a1, . . . , an}),
can be written as

minimize
n∑

i=1

wi · si, and maximize
n∑

i=1

(pi)j · si for all j = 1, . . . , d

subject to s in the feasible region S.

For S = {0, 1}n we just write K({a1, . . . , an}) instead of KS({a1, . . . , an}).
Note that the instances of the restricted knapsack problem that we use to

prove the lower bounds are not necessarily interesting on its own because they
have a somewhat artificial structure. However, they are interesting as they show
that the known upper bounds in the general model cannot be significantly
improved.
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2 The Bi-criteria Case

In this section we present a lower bound for the expected number of Pareto
optimal solutions in bi-criteria optimization problems that shows that the upper
bound of Beier, Röglin, and Vöcking [BRV07] cannot be significantly improved.

Theorem 1. There is a class of instances for the restricted bi-criteria knap-
sack problem for which the expected number of Pareto-optimal solutions is lower
bounded by

Ω
(

min
{
n2φ1−Θ(1/φ), 2Θ(n)

})
,

where n is the number of objects and φ is the maximum density of the profits’
probability distributions.

Note that the exponents of n and φ in this bound are asymptotically the same
as the exponents in the upper bound O(min

{
n2φ, 2n

}
) proved by Beier, Röglin,

and Vöcking [BRV07].
For our construction we use the following bound from Beier and Vöcking.

Theorem 2 ([BV04]). Let a1, . . . , an be objects with weights 21, . . . , 2n and
profits p1, . . . , pn that are independently and uniformly distributed in [0, 1]. Then,
the expected number of Pareto optimal solutions of K({a1, . . . , an}) is Ω

(
n2
)
.

Note that scaling all profits does not change the Pareto set and hence Theorem 2
remains true if the profits are chosen uniformly from [0, a] for an arbitrary a > 0.
We will exploit this observation later in our construction.

The idea how to create a large Pareto set is what we call the copy step. Let us
consider an additional object b with weight 2n+1 and fixed profit q. In Figure 1
all solutions are represented by a weight-profit pair in the weight-profit space.
The set of solutions using object b can be considered as the set of solutions that
do not use object b, but shifted by (2n+1, q). If the profit q is chosen sufficiently
large, i.e., larger than the sum of the profits of the objects a1, . . . , an, then there
is no domination between solutions from different copies and hence the Pareto
optimal solutions of K({a1, . . . , an, b}) are just the copies of the Pareto optimal
solutions of K({a1, . . . , an}). Lemma 3 formalizes this observation.

Lemma 3. Let a1, . . . , an be objects with weights 21, . . . , 2n and non-negative
profits p1, . . . , pn and let b be an object with weight 2n+1 and profit q >

∑n
i=1 pi.

Furthermore, let P denote the Pareto set of K({a1, . . . , an}) and let P ′ denote
the Pareto set of K({a1, . . . , an, b}). Then, P ′ is the disjoint union of P ′

0 :=
{(s, 0) : s ∈ P} and P ′

1 := {(s, 1) : s ∈ P} and thus |P ′| = 2 · |P|.
Now we use the copy idea to construct a large Pareto set. Let a1, . . . , anp be
objects with weights 21, . . . , 2np and with profits p1, . . . , pnp ∈ P := [0, 1/φ]
where φ > 1, and let b1, . . . , bnq be objects with weights 2np+1, . . . , 2np+nq and
with profits qi ∈ Qi := (mi − $mi% /φ, mi], where mi = (np + 1)/(φ− 1) · ((2φ−
1)/(φ− 1))i−1. The choice of the intervals Qi is due to the fact that we have to
ensure qi >

∑np

j=1 pj +
∑i−1

j=1 qj to apply Lemma 3 successively for the objects
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weight

profit

2n+1 2n+2

q

2q

0

P′0

P′1
n∑

i=1
2i

n∑
i=1

pi

Fig. 1. The copy step. The Pareto set P ′ consist of two copies of the Pareto set P .

b1, . . . , bnq . We will prove this inequality in Lemma 4. More interesting is the
fact that the size of an interval Qi is $mi% /φ which might be larger than 1/φ.
To explain this consider the case mi > 1 for some index i. For this index the
interval Qi is not a subset of [−1, 1] as required for our model. Instead of avoiding
such large values mi by choosing nq small enough, we will split Qi into $mi%
intervals of equal size which must be at least 1/φ. This so-called split step will
be explained later.

Lemma 4. Let p1, . . . , pnp ∈ P and let qi ∈ Qi. Then, qi >
∑np

j=1 pj +
∑i−1

j=1 qj

for all i = 1, . . . , nq.

Note that with Lemma 4 we implicitely show that the lower boundaries of the
intervals Qi are non-negative.

Proof. Using the definition of mi, we get

qi > mi − $mi%
φ

≥ mi − mi + 1
φ

=
φ− 1

φ
·mi − 1

φ

=
np + 1

φ
·
(

2φ− 1
φ− 1

)i−1

− 1
φ

.

On the other hand we have
np∑

j=1

pj +
i−1∑
j=1

qj ≤
np∑
j=1

1
φ

+
i−1∑
j=1

mj =
np

φ
+

i−1∑
j=1

np + 1
φ− 1

·
(

2φ− 1
φ− 1

)j−1

=
np

φ
+

np + 1
φ− 1

·
(

2φ−1
φ−1

)i−1

− 1
2φ−1
φ−1 − 1

=
np

φ
+

np + 1
φ

·
((

2φ− 1
φ− 1

)i−1

− 1

)

=
np + 1

φ
·
(

2φ− 1
φ− 1

)i−1

− 1
φ

. �	
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Combining Theorem 2, Lemma 3 and Lemma 4, we immediately get a lower
bound for the knapsack problem using the objects a1, . . . , anp and b1, . . . , bnq

with profits chosen from P and Qi, respectively.

Corollary 5. Let a1, . . . , anp and b1, . . . , bnq be as above, but the profits pi are
chosen uniformly from P and the profits qi are arbitrarily chosen from Qi. Then,
the expected number of Pareto optimal solutions of K({a1, . . . , anp , b1, . . . , bnq})
is Ω

(
n2

p · 2nq
)
.

Proof. Because of Lemma 4, we can apply Lemma 3 for each realization of the
profits p1, . . . , pnp and q1, . . . , qnq . This implies that the expected number of
Pareto optimal solutions is 2nq times the expected size of the Pareto set of
K({a1, . . . , anp}) which is Ω

(
n2

p

)
according to Theorem 2. �	

The profits of the objects bi grow exponentially and leave the interval [0, 1]. As
mentioned earlier, we resolve this problem by splitting each object bi into ki :=
$mi% objects b

(1)
i , . . . , b

(ki)
i with the same total weight and the same total profit,

i.e., each with weight 2np+i/ki and profit q
(l)
i ∈ Qi/ki := (mi/ki − 1/φ, mi/ki].

As the intervals Qi are subsets of R+, the intervals Qi/ki are subsets of [0, 1].
It remains to ensure that for any fixed index i all objects b

(l)
i are treated as

a group. This can be done by restricting the set S of solutions. Let Si =
{(0, . . . , 0), (1, . . . , 1)} ⊆ {0, 1}ki . Then, the set S of solutions is defined as
S := {0, 1}np ×∏nq

i=1 Si. By choosing the set of solutions that way, the objects
b
(1)
i , . . . , b

(ki)
i can be viewed as substitute for object bi. Thus, a direct conse-

quence of Corollary 5 is the following.

Corollary 6. Let S, a1, . . . , anp and b
(l)
i be as above, let the profits p1, . . . , pnp

be chosen uniformly from P and let the profits q
(1)
i , . . . , q

(ki)
i be chosen uni-

formly from Qi/ki. Then, the expected number of Pareto optimal solutions of
KS({a1, . . . , anp} ∪ {b(l)

i : i = 1, . . . , nq, l = 1, . . . , ki}) is Ω
(
n2

p · 2nq
)
.

The remainder contains just some technical details. First, we give an upper
bound for the number of objects b

(l)
i .

Lemma 7. The number of objects b
(l)
i is upper bounded by nq + np+1

φ ·
(

2φ−1
φ−1

)nq

.

Proof. The number of objects b
(l)
i is

∑nq

i=1 ki =
∑nq

i=1 $mi% ≤ nq +
∑nq

i=1 mi, and

nq∑
i=1

mi =
np + 1
φ− 1

·
nq∑
i=1

(
2φ− 1
φ− 1

)i−1

≤ np + 1
φ− 1

·
(

2φ−1
φ−1

)nq

2φ−1
φ−1 − 1

=
np + 1

φ
·
(

2φ− 1
φ− 1

)nq

. �	

Now we are able to prove Theorem 1.
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Proof (Theorem 1). Without loss of generality let n ≥ 4 and φ ≥ 3+
√

5
2 ≈

2.62. For the moment let us assume φ ≤ (2φ−1
φ−1 )

n−1
3 . This is the interesting

case leading to the first term in the minimum in Theorem 1. We set n̂q :=
log(φ)

log((2φ−1)/(φ−1)) ∈ [1, n−1
3 ] and n̂p := n−1−n̂q

2 ≥ n−1
3 ≥ 1. All inequalities

hold because of the bounds on n and φ. We obtain the numbers np and nq

by rounding, i.e., np := �n̂p� ≥ 1 and nq := �n̂q� ≥ 1. Now we consider objects
a1, . . . , anp with weights 2i and profits chosen uniformly from P , and objects b

(l)
i ,

i = 1, . . . , nq, l = 1, . . . , ki, with weights 2np+i/ki and profits chosen uniformly
from Qi/ki. Observe that P and all Qi/ki have length 1/φ and thus the densities
of all profits are bounded by φ. Let N be the number of all these objects. By
Lemma 7, this number is bounded by

N ≤ np + nq +
np + 1

φ
·
(

2φ− 1
φ− 1

)nq

≤ n̂p + n̂q +
n̂p + 1

φ
·
(

2φ− 1
φ− 1

)n̂q

= n̂p + n̂q +
n̂p + 1

φ
· φ = 2n̂p + n̂q + 1 = n .

Hence, the number N of objects we actually use is at most n, as required. As set
of solutions we consider S := {0, 1}np×∏nq

i=1 Si. Due to Corollary 6, the expected
size of the Pareto set of KS({a1, . . . , anp} ∪ {b(l)

i : i = 1, . . . , nq, l = 1, . . . , ki})
is

Ω
(
n2

p · 2nq
)

= Ω
(
n̂2

p · 2n̂q
)

= Ω

(
n̂2

p · 2
log(φ)

log( 2φ−1
φ−1 )

)
= Ω

(
n2 · φ

1

log( 2φ−1
φ−1 )

)

= Ω
(
n2 · φ1−Θ(1/φ)

)
,

where the last step holds because

1

log
(

2 + c1
φ−c2

) = 1−
log
(

1 + c1
2φ−2c2

)
log
(

2 + c1
φ−c2

) = 1−
Θ
(

c1
2φ−2c2

)
Θ (1)

= 1−Θ

(
1
φ

)

for any constants c1, c2 > 0. We formulated this calculation slightly more general
than necessary as we will use it again in the multi-criteria case.

For φ > (2φ−1
φ−1 )

n−1
3 we construct the same instance as above, but for maximum

density φ′ > 1 where φ′ = (2φ′−1
φ′−1 )

n−1
3 . Since n ≥ 4, φ′ exists, is unique and

φ′ ∈
[

3+
√

5
2 , φ

)
. This yields n̂′

p = n̂′
q = n−1

3 and, as above, the expected size of

the Pareto set is Ω
(

(n̂′
p)2 · 2n̂′

q

)
= Ω

(
n2 · 2Θ(n)

)
= Ω

(
2Θ(n)

)
. �	

3 The Multi-criteria Case

In this section we present a lower bound for the expected number of Pareto
optimal solutions in multi-criteria optimization problems. We concentrate our
attention to d ≥ 2 as we discussed the case d = 1 in the previous section.
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Theorem 8. For any fixed integer d ≥ 2 there is a class of instances for the
restricted (d + 1)-dimensional knapsack problem for which the expected number
of Pareto-optimal solutions is lower bounded by

Ω
(

min
{

(nφ)(d−log(d))·(1−Θ(1/φ)), 2Θ(n)
})

,

where n is the number of objects and φ is the maximum density of the profit’s
probability distributions.

Unfortunately, Theorem 8 does not generalize Theorem 1. This is due to the fact
that, though we know an explicit formula for the expected number of Pareto
optimal solutions if all profits are uniformly chosen from [0, 1], we were not able
to find a simple non-trivial lower bound for it. Hence, in the general multi-criteria
case, we concentrate on analyzing the copy and split steps.

In the bi-criteria case we used an additional object b to copy the Pareto set
(see Figure 1). For that we had to ensure that every solution using this object
has higher weight than all solutions without b. The same had to hold for the
profit. Since all profits are in [0, 1], the profit of every solution must be in [0, n].
As the Pareto set of the first np ≤ n/2 objects has profits in [0, n/(2φ)], we could
fit nq = Θ (log (φ)) copies of this initial Pareto set into the interval [0, n].

In the multi-criteria case, every solution has a profit in [0, n]d. In our con-
struction, the initial Pareto set consists only of a single solution, but we benefit
from the fact that the number of mutually non-dominating copies of the initial
Pareto set that we can fit into the hypercube [0, n]d grows quickly with d.

Let us consider the case that we have some Pareto set P whose profits lie
in some hypercube [0, a]d. We will create

(
d
dh

)
copies of this Pareto set; one for

every vector x ∈ {0, 1}d with exactly dh = $d/2% ones. Let x ∈ {0, 1}d be such
a vector. Then we generate the corresponding copy Cx of the Pareto set P by
shifting it by a + ε in every dimension i with xi = 1. If all solutions in these
copies have higher weights than the solutions in the initial Pareto set P , then the
initial Pareto set stays Pareto optimal. Furthermore, for each pair of copies Cx

and Cy, there is one index i with xi = 1 and yi = 0. Hence, solutions from Cy

cannot dominate solutions from Cx. Similarly, one can argue that no solution in
the initial copy can dominate any solution from Cx. This shows that all solutions
in copy Cx are Pareto optimal. All the copies (including the initial one) have
profits in [0, 2a + ε]d and together |P| · (1 +

(
d
dh

)) ≥ |P| · 2d/d solutions.
We start with an initial Pareto set of a single solution with profit in [0, 1/φ]d,

and hence we can make Θ (log (nφ)) copy steps before the hypercube [0, n]d is
filled. In each of these steps the number of Pareto optimal solutions increases by
a factor of at least 2d/d, yielding a total number of at least (2d/d)Θ(log(nφ)) =
(nφ)Θ(d−log(d)) Pareto optimal solutions.

In the following, we describe how these copy steps can be realized in the
restricted knapsack problem. Again, we have to make a split step because the
profit of every object must be in [0, 1]d. Due to such technicalities, the actual
bound we prove looks slightly different than the one above. It turns out that we
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need (before splitting) d new objects b1, . . . , bd for each copy step in contrast to
the bi-criteria case, where (before splitting) a single object b was enough.

Let nq ≥ 1 be an arbitrary positive integer and let φ ≥ 2d be a real. We
consider objects bi,j with weights 2i/dh and profit vectors

qi,j ∈ Qi,j :=
j−1∏
k=1

[
0,
$mi%

φ

]
×
(

mi − $mi%
φ

, mi

]
×

d∏
k=j+1

[
0,
$mi%

φ

]
,

where mi is recursively defined as

m0 := 0 and mi :=
1

φ− d
·
(

i−1∑
l=0

(ml · (φ + d) + d)

)
, i = 1, . . . , nq . (1)

The explicit formula for this recurrence is

mi =
d

φ + d
·
((

2φ

φ− d

)i

− 1

)
, i = 1, . . . , nq .

The d-dimensional interval Qi,j is of the form that the jth profit of object bi,j

is large and all the other profits are small. By using object bi,j the copy of the
Pareto set is shifted in direction of the jth unit vector. As mentioned in the
motivation we will choose exactly dh such objects to create additional copies.
To give a better intuition for the form of the single intervals the d-dimensional
interval Qi,j is constructed of we refer the reader to the explanation in the bi-
criteria case.

Let H(x) be the Hamming weight of a 0-1-vector x, i.e., the number of ones
in x, and let Ŝ := {x ∈ {0, 1}d : H(x) ∈ {0, dh}} denote the set of all 0-1-vectors
of length d with 0 or dh ones. As set S of solutions we consider S := Ŝnq .

Lemma 9. Let the set S of solutions and the objects bi,j be as above. Then, each
solution s ∈ S is Pareto optimal for KS({bi,j : i = 1, . . . , nq, j = 1, . . . , d}).
Proof. We show the statement by induction over nq and discuss the base case and
the inductive step simultaneously because of similar arguments. Let S′ := Ŝnq−1

and let (s, snq ) ∈ S′×Ŝ be an arbitrary solution from S. Note that for nq = 1 we
get s = λ, the 0-1-vector of length 0. First we show that there is no domination
within one copy, i.e., there is no solution of type (s′, snq ) ∈ S that dominates
(s, snq ). For nq = 1 this is obviously true. For nq ≥ 2 the existence of such a
solution would imply that s′ dominates s in the knapsack problem KS′({bi,j : i =
1, . . . , nq − 1, j = 1, . . . , d}). This contradicts the inductive hypothesis.

Now we prove that there is no domination between solutions from different
copies, i.e., there is no solution of type (s′, s′nq

) ∈ S with s′nq
�= snq that dom-

inates (s, snq ). If snq = 0, then the total weight of the solution (s, snq ) is at
most

∑nq−1
i=1 2i < 2nq . The right side of this inequality is a lower bound for the

weight of solution (s′, s′nq
) because s′nq

�= snq . Hence, (s′, s′nq
) does not dominate

(s, snq ). Finally, let us consider the case snq �= 0. There must be an index j ∈ [d]
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where (snq )j = 1 and (s′nq
)j = 0. We show that the jth total profit of (s, snq ) is

higher than the jth profit of (s′, s′nq
). The former one is strictly bounded from

below by mnq −
⌈
mnq

⌉
/φ, whereas the latter one is bounded from above by

nq−1∑
i=1

(
(dh − 1) · $mi%

φ
+ max

{$mi%
φ

, mi

})
+ dh ·

⌈
mnq

⌉
φ

.

Solution (s′, s′nq
) can use at most dh objects of each group bi,1, . . . , bi,d. Each

of them, except one, can contribute at most �mi�
φ to the jth total profit. One

can contribute either at most �mi�
φ or at most mi. This argument also holds for

the nth
q group, but by the choice of index j we know that each object chosen

by s′nq
contributes at most �mi�

φ to the jth total profit. It is easy to see that
$mi% /φ ≤ mi because of φ > d ≥ 1. Hence, our bound simplifies to

nq−1∑
i=1

(
(dh − 1) · $mi%

φ
+ mi

)
+ dh ·

⌈
mnq

⌉
φ

≤
nq−1∑
i=1

(
d · mi + 1

φ
+ mi

)
+ (d− 1) · mnq + 1

φ
(d ≥ 2)

=
1
φ
·
(nq−1∑

i=1

(mi · (φ + d) + d) + d · (mnq + 1)

)
− mnq + 1

φ

=
1
φ
·
(nq−1∑

i=0

(mi · (φ + d) + d) + d ·mnq

)
− mnq + 1

φ
(m0 = 0)

=
1
φ
· ((φ− d) ·mnq + d ·mnq )− mnq + 1

φ
(Equ. (1))

≤ mnq −
⌈
mnq

⌉
φ

.

This implies that (s′, s′nq
) does not dominate (s, snq ). �	

Immediately, we get a statement about the expected number of Pareto optimal
solutions if we randomize.

Corollary 10. Let S and bi,j be as above, but the profit vectors qi,j are arbi-
trarily drawn from Qi,j. Then, the expected number of Pareto optimal solutions
for KS({bi,j : i = 1, . . . , nq, j = 1, . . . , d}) is at least (2d/d)nq .

Proof. This result follows from Lemma 9 and |Ŝ| = 1 +
(

d
dh

)
= 1 + max

i=1,...,d

(
d
i

) ≥
1 + (

∑d
i=1

(
d
i

)
)/d = 1 + (2d − 1)/d ≥ 2d/d. �	



426 T. Brunsch and H. Röglin

As in the bi-criteria case we now split each object bi,j into ki := $mi% objects
b
(1)
i,j , . . . , b

(ki)
i,j with weights 2i/(ki · dh) and with profit vectors

q
(l)
i,j ∈ Qi,j/ki :=

j−1∏
k=1

[
0,

1
φ

]
×
(

mi

ki
− 1

φ
,
mi

ki

]
×

d∏
k=j+1

[
0,

1
φ

]
.

Then, we adapt our set S of solutions such that for any fixed indices i and j either
all objects b

(1)
i,j , . . . , b

(ki)
i,j are put into the knapsack or none of them. Corollary 10

yields the following result.

Corollary 11. Let S and b
(l)
i,j be as described above, but let the profit vectors

p
(1)
i,j , . . . , p

(ki)
i,j be chosen uniformly from Qi,j/ki. Then, the expected number of

Pareto optimal solutions of KS({b(l)
i,j : i = 1, . . . , nq, j = 1, . . . , d, l = 1, . . . , ki})

is at least (2d/d)nq .

Still, the lower bound is expressed in nq and not in the number of objects used.
So the next step is to analyze the number of objects.

Lemma 12. The number of objects b
(l)
i,j is upper bounded by d·nq+ 2d2

φ−d ·
(

2φ
φ−d

)nq

.

Proof. The number of objects b
(l)
i,j is

∑nq

i=1(d · ki) = d ·∑nq

i=1 $mi% ≤ d · nq + d ·∑nq

i=1 mi, and

nq∑
i=1

mi ≤ d

φ + d
·

nq∑
i=1

(
2φ

φ− d

)i

≤ d

φ + d
·
(

2φ
φ−d

)nq+1

(
2φ

φ−d

)
− 1

≤ d

φ
·
(

2φ

φ− d

)
·
(

2φ

φ− d

)nq

=
2d

φ− d
·
(

2φ

φ− d

)nq

. �	

Now we can prove Theorem 8.

Proof. Without loss of generality let n ≥ 16d and φ ≥ 2d. For the moment let us

assume φ−d ≤ 4d2

n ·
(

2φ
φ−d

) n
2d

. This is the interesting case leading to the first term

in the minimum in Theorem 8. We set n̂q :=
log((φ−d)· n

4d2 )
log( 2φ

φ−d ) ∈ [1, n
2d

]
and obtain

nq := �n̂q� ≥ 1 by rounding. All inequalities hold because of the bounds on n

and φ. Now we consider objects b
(l)
i,j , i = 1, . . . , nq, j = 1, . . . , d, l = 1, . . . , ki,

with weights 2i/(ki ·d) and profit vectors qi,j chosen uniformly from Qi,j/ki. All
these intervals have length 1/φ and hence all densities are bounded by φ. Let N
be the number of objects. By Lemma 12, this number is bounded by

N ≤ d · nq +
2d2

φ− d
·
(

2φ

φ− d

)nq

≤ d · n̂q +
2d2

φ− d
·
(

2φ

φ− d

)n̂q

≤ d · n̂q +
2d2

φ− d
· (φ− d) · n

4d2
≤ n .
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Hence, the number N of objects we actually use is at most n, as required. As
set S of solutions we use the set described above, encoding the copy step and the
split step. Due to Corollary 11, for fixed d ≥ 2 the expected number of Pareto
optimal solutions of KS({b(l)

i,j : i = 1, . . . , nq, j = 1, . . . , d, l = 1, . . . , ki}) is

Ω

((
2d

d

)nq)
= Ω

((
2d

d

)n̂q
)

= Ω

⎛
⎜⎝(2d

d

) log((φ−d)· n
4d2 )

log( 2φ
φ−d )

⎞
⎟⎠

= Ω

⎛
⎜⎝((φ− d) · n

4d2

) log
(

2d

d

)

log( 2φ
φ−d )

⎞
⎟⎠ = Ω

(
(φ · n)

d−log(d)

log( 2φ
φ−d )

)

= Ω
(

(φ · n)(d−log(d))·(1−Θ(1/φ))
)

,

where the last step holds because of the same reason as in the proof of Theorem 1.

In the case φ− d > 4d2

n ·
(

2φ
φ−d

) n
2d

we construct the same instance above, but

for a maximum density φ′ > d where φ′ − d = 4d2

n ·
(

2φ′

φ′−d

) n
2d

. Since n ≥ 16d,
the value φ′ exists, is unique and φ′ ∈ [65d, φ). Futhermore, we get n̂q = n

2d . As
above, the expected size of the Pareto set is Ω

(
(2d/d)n̂q

)
= Ω

(
(2d/d)n/(2d)

)
=

Ω
(
2Θ(n)

)
. �	
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Abstract. The source location problem is a problem of computing a
minimum cost source set in an undirected graph so that the connectivity
between the source set and each vertex is at least the demand of the
vertex. In this paper, the connectivity between a source set S and a vertex
v is defined as the maximum number of paths between v and S no two
of which have common vertices except v. We propose an O(d∗ log d∗)-
approximation algorithm for the problem with maximum demand d∗.
We also define a variant of the source location problem and propose an
approximation algorithm for it.

1 Introduction

Nowadays we enjoy many services through the Internet. As our life heavily de-
pends on these services, network failure may make enormous damage to our
society. Accordingly service providers are required to locate their servers effi-
ciently to guarantee that their services are always available. The source location
problem is a problem motivated by this situation.

In the source location problem, it is supposed that each vertex v ∈ V in
an undirected graph G = (V, E) has a demand d(v) ∈ Z+, where Z+ denotes
the sets of non-negative integers. With regards to a certain measurement ψ :
2V × V → Z+ on connectivity between a subset of V and a vertex in G, a set
S ⊆ V is called a source set when ψ(S, v) ≥ d(v) for every v ∈ V \S. The source
location problem is a problem of finding a minimum cost source set, which is
defined formally as follows.

Source location problem with connectivity measurement ψ
Input: An undirected graph G = (V, E), a demand d : V → Z+, and a cost

c : V → Q+, where Q+ denotes the set of non-negative rationals.
Output: A source set S ⊆ V (i.e., ψ(S, v) ≥ d(v) for each v ∈ V \ S) that

minimizes
∑

v∈S c(v).

Throughout the paper, we represent |V | by n and |E| by m. Moreover, the
maximum value maxv∈V d(v) of demands is denoted by d∗. We call the problem

M. Ogihara and J. Tarui (Eds.): TAMC 2011, LNCS 6648, pp. 428–439, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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with measurement ψ by ψ-SLP for short. In previous works on the source location
problem, three connectivity measurements λ, κ and κ̂ are mainly discussed. Their
definitions are given below, where a path connecting v ∈ V and a vertex in S is
called (S, v)-path, and a singleton {v} is written simply by v.

– Edge-connectivity λ: λ(S, v) is defined as the maximum number of (S, v)-
paths no two of which have a common edge. This notion represents the
tolerance to connection failures on edges.

– Vertex-connectivity κ: κ(S, v) is defined as the maximum number of (S, v)-
paths no two of which have a common vertex in V \ (S ∪ v). This notion
represents the tolerance to connection failures on vertices in V \ (S ∪ v). In
other word, it is supposed that located servers will not be broken.

– Vertex-connectivity κ̂: κ̂(S, v) is defined as the maximum number of (S, v)-
paths no two of which have a common vertex in V \v. This notion represents
the tolerance to connection failures on vertices in V \ v. In contrast with κ,
this considers a situation where located servers are possibly broken.

Although λ-SLP and κ-SLP are important, we only refer to several previous
works [1,7] because this paper focuses on κ̂-SLP. For κ̂-SLP with uniform de-
mand (i.e., d(v) = d∗ for v ∈ V ), Nagamochi, Ishii and Ito [12] presented an
O(min{d∗,√n}d∗n2)-time algorithm. For the general case, Sakashita, Makino
and Fujishige [15] presented a (1 + ln

∑
v∈V d(v))-approximation algorithm.

This result is almost best because they also proved that the problem admits
no C ln

∑
v∈V d(v)-approximation algorithm for some constant C unless every

problem in NP has an O(N log log N )-time algorithm. On the other hand, Ishii,
Fujita and Nagamochi [4,5] discussed the case where d∗ is bounded from the
above. In [4], they presented a linear-time algorithm for the case with d∗ ≤ 3
and uniform costs, and in [5], they presented a polynomial-time algorithm for
the case with d∗ ≤ 3 and general costs. As a negative result, Ishii, Fujita and
Nagamochi [4] showed that the problem is NP-hard even if the cost is uniform
and d∗ = 4. This NP-hardness is strengthen by Ishii [6], who proved that the
problem is APX-hard even if the cost is uniform and d∗ = 4, and presented a
max{d∗, 2d∗ − 6}-approximation algorithm for the uniform cost. His algorithm
achieves approximation factor 3 especially when the cost is uniform and d∗ ≤ 4.
Table 1 summarizes these results.

Considering these, an interesting question is whether κ̂-SLP with arbitrary
costs is approximable within a factor depending on d∗ only. This paper answers
to this question by presenting an O(d∗ log d∗)-approximation algorithm for κ̂-
SLP with arbitrary costs.

In addition, this paper considers a variant of the source location problem. In
the above definition of the problem, a subset S of V is a source set if ψ(S, v) ≥
d(v) for each v ∈ V \S. This means that once a source is located on a vertex v, the
demand of v is satisfied completely. However it is sometimes natural to suppose
that if a source is located on v, then only one unit of the demand of v is satisfied.
Moreover, in such a situation, it may be reasonable to consider the case where
more than one source can be located on a vertex. This motivates us to define
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Table 1. Results for κ̂-SLP with bounded d∗

uniform costs general costs

linear-time exact algorithm (d∗ ≤ 3) [4] exact algorithm (d∗ ≤ 3) [5]
APX-hardness (d∗ = 4) [6] O(d∗ log d∗)-approximation [This paper]
3-approximation (d∗ ≤ 4) [6]
max{d∗, 2d∗ − 6}-approximation [6]

a new vertex-connectivity measurement κ̃ and a new formulation of the source
location problem. In the new problem, we represent the numbers of sources
located on vertices by x : V → Z+. For x : V → Z+, let Sx = {v ∈ V | x(v) > 0}.
We define the node-connectivity κ̃(x, v) as x(v) + κ̂(Sx \ v, v). x is a source set
when κ̃(x, v) is not smaller than the demand of each v ∈ V . We assume that a
non-decreasing convex function cv is given for each vertex v ∈ V , and the cost
of x is defined as

∑
v∈V cv(x(v)).

We can observe that this new problem is contained by κ̂-SLP with a graph the
size of which depends on the total demand. Simultaneously it is a special case
of the survivable network design problem with root vertex-connectivity demand.
We explain these relationship in Section 3. As mentioned above, an O(d∗ log d∗)-
approximation algorithm will be presented for κ̂-SLP in this paper. For the
survivable network design problem with root vertex-connectivity demand, there
is an O(d∗ log d∗)-approximation algorithm presented by Nutov [13]. Either way,
we have an O(d∗ log d∗)-algorithm for the new problem. The other contribution
of this paper is to present a (2d∗− 1)-approximation algorithm for the problem,
described in Section 4. Our algorithm is based on the iterative rounding method,
which has been applied to the network design problem so far (e.g., [3,8,10,17]).

As a related work, we would like to mention the results due to Sakashita,
Makino and Fujishige [14,15]. They extended the demands on the connectivities
λ and κ to the demands on the flow values in edge-capacitated networks. A
solution in their problem is a supply on each vertex, and the cost is defined by a
monotone concave function given on each vertex. Refer to [14,15] for the detail.

The rest of this paper is organized as follows. Section 2 presents an
O(d∗ log d∗)-approximation algorithm for κ̂-SLP. Section 3 describes the relation-
ship between the new variant of the source location problem and other problems.
Section 4 gives a (2d∗ − 1)-approximation algorithm for it. Section 5 concludes
the paper. Due to the space constraints, we cannot present all proofs. Refer to
the full version for the omitted proofs.

2 O(d∗ log d∗)-Approximation Algorithm for κ̂-SLP

In this section, we discuss κ̂-SLP. For X ⊆ V , let d∗(X) denote maxv∈X d(v),
and N(X) be the set of neighbors of X , i.e., vertices in V \X which are adjacent
to some in X . We write |N(X)| simply by n(X). This function n satisfies both
of

n(X) + n(Y ) ≥ n(X ∩ Y ) + n(X ∪ Y ) (1)
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and
n(X) + n(Y ) ≥ n(X \ (Y ∪N(Y ))) + n(Y \ (X ∪N(X))) (2)

for any X, Y ⊆ V , which can be proven by counting the contribution of each
vertex to the both sides. A subset X of V is called deficient set if and only if
n(X) < d∗(X). We let X denote the family of all minimal deficient sets.

The next observation derived from Menger’s theorem is often observed in the
source location problem (its proof can be found in [6] for example).

Theorem 1. S ⊆ V is a source set if and only if S ∩X �= ∅ for each X ∈ X .

Given a subset family A ⊆ 2V of a finite set V , B ⊆ V is called a transversal
of A if and only if B ∩ A �= ∅ for each A ∈ A. The frequency fA(v) of v ∈ V
in the family A is defined as |{A ∈ A | v ∈ A}|. Since finding a minimum cost
transversal is equivalent to the set cover problem, it is known that a greedy algo-
rithm [2,9,11] achieves approximation factor 1+log f∗ for computing a minimum
cost transversal of A where f∗ = maxv∈V fA(v).

Theorem 1 implies that κ̂-SLP is equivalent to the problem of computing a
minimum cost transversal of X . Applying the greedy algorithm to X directly
does not result in a good approximation factor because we cannot bound the
maximum frequency in X . However we see that the greedy algorithm provides
an O(d∗ log d∗)-approximation algorithm.

Call a minimal deficient set X ∈ X by k-deficient set if n(X) = k. Let S be
a transversal of the family of k′-deficient sets for all k′ < k. X ∈ X is called S-
avoiding if S∩X = ∅. Let X (k, S) denote the family of all S-avoiding k-deficient
sets. We show that the maximum frequency in X (k, S) is small.

Lemma 1. Let X, Y ∈ X (k, S) be distinct S-avoiding k-deficient sets where
maxv∈X d(v) and maxv∈Y d(v) are respectively attained by x ∈ X and y ∈ Y . If
X ∩ Y �= ∅, then x ∈ N(Y ) or y ∈ N(X) holds.

Notice that Lemma 1 tells that each vertex v ∈ V attains maxv′∈X d(v′) for at
most one k-deficient set X ∈ X (k, s).

Lemma 2. maxv∈V \S fX (k,S)(v) ≤ 2k + 1.

Proof. Let v ∈ V \ S. We show that fX (k,S)(v) ≤ 2k + 1.
Let us consider a digraph Dv = (U, A) in which each vertex uX ∈ U corre-

sponds to a member X of X (k, S) such that v ∈ X . Notice that fX (k,S)(v) = |U |.
The arc set A of Dv is defined so that it contains an arc from uX ∈ U to uY ∈ U
if and only if a vertex x ∈ X attaining maxv∈X d(v) is in N(Y ).

Lemma 1 tells that each two vertices uX and uY are joined by an arc in Dv.
Thus Dv has at least |U |(|U | − 1)/2 arcs. On the other hand, since n(X) = k
for all X ∈ X (k, S), the in-degree of each vertex in Dv is at most k. Thus Dv

has at most k|U | arcs. Consequently k|U | ≥ |U |(|U | − 1)/2 holds, implying that
2k + 1 ≥ |U |. �	
Lemma 2 implies an O(d∗ log d∗)-approximation algorithm to κ̂-SLP.
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Theorem 2. The source location problem is approximable within a factor of
O(d∗ log d∗)

Proof. Our algorithm begins with S = ∅ and k = 1. It repeats the following
operations until S becomes a source set; Compute an approximate solution S′ ⊆
V \ S of the minimum cost transversal of X (k, S) by the greedy algorithm,
which achieves approximation factor 1 + log(2k + 1) by Lemma 2; Add S′ to
S and increase k by 1. For any (k, S) constructed in the above algorithm, the
minimum cost of transversals of X (k, S) is at most the minimum cost of source
sets. Hence this algorithm achieves approximation factor

∑d∗

k=1(1+log(2k+1)) =
O(d∗ log d∗).

Let us observe that X (k, S) has a polynomial size and can be computed in
polynomial time for each (k, S) appeared in the above algorithm. This fact indi-
cates that the greedy algorithm computes a transversal of X (k, S) in polynomial
time. Lemma 1 tells that each vertex x ∈ V \ S attains maxv∈X d(v) for at
most one S-avoiding k-deficient set X ∈ X (k, S). Hence |X (k, S)| ≤ |V \ S|. Let
G′ = (V ∪ s, E ∪ E′) be the graph obtained from G by adding a new vertex
s and the set E′ of edges joining s and all v ∈ S. In the above algorithm, S
is always a transversal of the family of all k′-deficient sets for k′ < k. Hence if
X ⊆ V \ S contains a vertex x ∈ X with d∗(x) > k, then n(X) ≥ k. This means
that X ⊆ V \S is an S-avoiding k-deficient set in G if and only if n(X) = k and
X is a minimal set such that N(X) is a minimum vertex-cut separating s and
some vertex x ∈ X with d∗(x) > k in G′. Thereby X (k, S) can be computed by
applying a max-flow algorithm at most |V \ S| times. �	

3 Formulation of the Source Location Problem with
Vertex-Connectivity κ̃

In Section 1, we have defined the vertex-connectivity κ̃ and the source location
problem with κ̃. We formulate this problem as a special case of the following
survivable network design problem.

Root vertex-connectivity survivable network design (RVSND)
Input: An undirected graph G = (V ∪ r, E) with the root r, a demand d : V →

Z+, a cost c : E → Q+ and a capacity u : E → Z+.
Output: x : E → Z+ minimizing

∑
e∈E c(e)x(e) such that x(e) ≤ u(e) for each

e ∈ E and κ(r, v) ≥ d(v) for each v ∈ V in the graph which consists of the
vertex set V ∪ r and the edge set containing x(e) copies of each edge e ∈ E.

For X ⊆ V and F ⊆ E in a graph G = (V ∪ r, E), let δF (X) denote the
set of edges in F joining vertices in X and those in (V ∪ r) \ X . The source
location problem with κ̃ is equivalent to the set of instances of RVSND such
that c(e) = 0 for each edge e ∈ E \δE(r). In such instances, we can let a solution
x satisfy x(e) = u(e) for each zero-cost edge e ∈ E because choosing these edges
does not increase the objective value. Hence the task in such instances is to
decide x(e) for positive-cost edge e ∈ E. We call this special case of RVSND root
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vertex-connectivity star-augmentation problem (RVSAP). Let us reformulate the
problem as follows.

Root vertex-connectivity star-augmentation problem (RVSAP)
Input: An undirected multigraph G = (V, E), a root r, a set F of edges joining

r with vertices in V , a demand d : V → Z+, a cost c : F → Q+ and a
capacity u : F → Z+. Note that r is not contained by V .

Output: For x : F → Z+, let G + x denote the graph obtained by adding
r and x(e) copies of e ∈ F to G. The output is x : F → Z+ minimizing∑

e∈F c(e)x(e) such that x(e) ≤ u(e) for each e ∈ F and κ(r, v) ≥ d(v) for
each v ∈ V in the graph G + x.

From a solution x to RVSAP, define x′ ∈ V → Z+ by x′(v) =
∑

e∈δF (v) x(e).
Then κ̃(x′, v) in G is equal to κ(r, v) in G + x. Order the edges e1, e2, . . . , ek in
δF (v) so that c(e1) ≤ c(e2) ≤ · · · ≤ c(ek). Since ei, ej ∈ δF (v) are parallel, if
x(ei) > 0 and x(ej) < u(ej), then decreasing x(ei) and increasing x(ej) by small
amount keeps the feasibility of x in RVSAP. Hence without loss of generality,
a solution x to RVSAP satisfies x(ei) > 0 whenever x(ej) = u(ej) for all j <
i. Define the cost function cv : Z+ → Q+ by cv(0) = 0 and cv(i) = cv(i −
1) + c(ej) for i > 0 such that

∑j−1
j′=1 u(ej′) < i ≤ ∑j

j′=1 u(ej′) where we let∑j−1
j′=1 u(ej′) = 0 if j = 1. Then cv is non-decreasing convex and

∑
e∈F c(e)x(e) =∑

v∈V cv(x′(v)). On the contrary, an instance of RVSAP can be constructed
from each instance of the source location problem with κ̃. Therefore RVSAP is
equivalent to the source location problem with κ̃.

Whereas RVSAP is a special case of RVSND, it is simultaneously contained by
κ̂-SLP with a graph the size of which depends on

∑
e∈F u(e). Let (G, r, F, d, c, u)

be an instance of RVSAP. For each v ∈ V and e ∈ δF (v), add new vertices
v1

e , v2
e , . . . , v

u(e)
e and edges vv1

e , vv2
e , vv

u(e)
e to G. We call the obtained graph G′ =

(V ′, E′), and the vertex vi
e a copy of e ∈ F . See Figure 1 for an example of this

construction. Moreover define the demand d′ : V ′ → Z+ and the cost c′ : V ′ →
Q+ by

d′(v) =

{
d(v) v ∈ V,

0 v ∈ V ′ \ V,

and

c′(v) =

{
+∞ v ∈ V,

c(e) v ∈ V ′ is a copy of e ∈ F .

By the setting of c′, we can assume without loss of generality that a solution S
to the instance (G′, d′, c′) of κ̂-SLP consists of only vertices in V ′ \V . From such
S, define x(e) as the number of copies of e contained in S for each e ∈ F . Then
S is feasible to the instance (G′, d′, c′) of κ̂-SLP if and only if x is feasible to the
instance (G, r, F, d, c, u) of RVSAP. Moreover

∑
v∈S c′(v) =

∑
e∈F c(e)x(e).
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...
...

...
...

...

......

Fig. 1. (G, r, F ) in RVSAP and G′ in κ̂-SLP

4 (2d∗ − 1)-Approximation Algorithm to RVSAP

Let (G = (V, E), r, F, d, c, u) be an instance of RVSAP. Throughout this section,
for X ⊆ V , N(X) denotes the set of neighbors of X in G, and n(X) denotes
|N(X)|. Notice that r is not contained by N(X). By the Menger’s Theorem,
x : F → Z+ is feasible to the instance (G, r, F, d, c, u) of RVSAP if and only
if
∑

e∈δF (X) x(e) ≥ d∗(X) − n(X) for every X ⊆ V . Therefore RVSAP can be
formulated by the next integer programming:

minimize
∑

e∈F c(e)x(e)
subject to

∑
e∈δF (X) x(v) ≥ d∗(X)− n(X) for all X ⊆ V ,

x(e) ∈ {0, 1, . . . , u(e)} for all e ∈ F .

Our algorithm is based on the iterative rounding method. Following the fash-
ion of the iterative rounding method, we consider a linear programming relax-
ation of the problem and repeatedly fix the values of variables to integers. The
relaxation we use is obtained by replacing the constraint x(e) ∈ {0, 1, . . . , u(e)}
by 0 ≤ x(e) ≤ u(e). We let F ′ ⊆ F be the set of edges whose corresponding
variables have not been fixed yet, and x̄ : F \ F ′ → Z+ represent the values to
which variables of F \ F ′ have been fixed. Then the relaxation is represented as
follows:

minimize
∑

e∈F ′ c(e)x(e)
subject to

∑
e∈δF ′(X) x(e) ≥ d∗(X)− n(X)−∑e∈δF\F ′ (X) x̄(e) for all X ⊆ V ,

0 ≤ x(e) ≤ u(e) for all e ∈ F ′.
(3)

The basic optimal solution x∗ to (3) is the optimal solution which is not
represented by a linear combination of the other feasible solutions. The key of
our result is to show that the basic optimal solution to (3) has a good property.
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Theorem 3. Let x∗ be the basic optimal solution to (3). Then there exists e ∈ F ′

such that x∗(e) = 0 or x∗(e) ≥ 1/(2d∗ − 1).

Our algorithm is a basic iterative rounding algorithm defined as follows.

Iterative rounding algorithm to RVSAP
Input: An instance (G = (V, E), r, F, d, c, u) of RVSAP
Output: x̄ : F → Z+

Step 1: Let F ′ := F .
Step 2: Compute the basic optimal solution x∗ to (3) with F ′.
Step 3: If there exists e ∈ F ′ such that x∗(e) = 0, then remove e from F ′ and

set x̄(e) := 0.
Step 4: If there exists e ∈ F ′ such that x∗(e) ≥ 1/(2d∗ − 1), then remove it

from F ′ and set x̄(e) := $x∗(e)%.
Step 5: If F ′ = ∅, then output x̄. Otherwise, return to Step 2.

An optimal solution of (3) can be computed in polynomial time by the ellipsoid
method because its separation can be reduced to the max-flow computation.
In another way, (3) can be transformed into a polynomial-size formulation by
adding variables to represent flow values. It is known that the basic optimal
solution of a linear programming can be computed in polynomial time if an
optimal solution of the linear programming can be computed in polynomial time
(see [16] for example). Hence Step 1 of the above algorithm can be implemented
in polynomial time. Alternatively, solving (3) with additional constraint x(e) = 0
or x(e) ≥ 1/(2d∗ − 1) for each e ∈ F , we can judge which edge satisfies the
conditions in Steps 2 and 3 without computing x∗ explicitly.

It can be proven similarly with other iterative rounding algorithms that the
above algorithm achieves (2d∗ − 1)-approximation if it outputs a solution. We
do not present the proof for it here. See [3,8] for example. If Theorem 3 holds,
then the above algorithm outputs a feasible solution. Hence in the rest of this
section, we concentrate on proving Theorem 3.

We have to introduce some notations. For X ⊆ V , let x∗(X) stand for∑
e∈δF ′ (X) x∗(e), and x̄(X) denote

∑
e∈δF\F ′(X) x̄(e). By counting contributions

of each edge, we can prove that

x∗(X) + x∗(Y ) ≥ x∗(X ∩ Y ) + x∗(X ∪ Y ) (4)

and

x∗(X) + x∗(Y ) ≥ x∗(X \ (Y ∪N(Y ))) + x∗(Y \ (X ∪N(X))) + 2x∗(X ∩Y ) (5)

hold for any X, Y ⊆ V . In the same way, it can be proven that

x̄(X) + x̄(Y ) ≥ x̄(X ∩ Y ) + x̄(X ∪ Y ) (6)

and
x̄(X) + x̄(Y ) ≥ x̄(X \ (Y ∪N(Y ))) + x̄(Y \ (X ∪N(X))) (7)



436 T. Fukunaga

hold for any X, Y ⊆ V . From the basic optimal solution x∗ to (3), define
fx∗(X) = x∗(X) + x̄(X) + n(X) for X ⊆ V . (1), (4) and (6) show that fx∗

satisfies
fx∗(X) + fx∗(Y ) ≥ fx∗(X ∩ Y ) + fx∗(X ∪ Y ) (8)

for any X, Y ⊆ V . Moreover (2), (5) and (7) show that fx∗ satisfies

fx∗(X)+fx∗(Y ) ≥ fx∗(X \(Y ∪N(Y )))+fx∗(Y \(X∪N(X)))+2x∗(X∩Y ) (9)

for any X, Y ⊆ V .
We let P = {v ∈ V | ∑e∈δF ′(v) x∗(e) > 0}, and T = {X ⊆ V | fx∗(X) =

d∗(X) > 0, X ∩P �= ∅}. Notice that each X ∈ T satisfies n(X) < d∗(X) because
d∗(X)− n(X) = fx∗(X)− n(X) ≥ x∗(X) > 0.

Lemma 3. Let v ∈ P . The number of minimal members containing v in T is
at most 2d∗ − 1.

Proof. Let X1, X2, . . . , Xp be the minimal members containing v in T . We sup-
pose that d∗(Xi) is attained by a vertex vi ∈ Xi for i ∈ {1, 2, . . . , p}.

First, assume that Xi ∩ Xj ∩ {vi, vj} �= ∅ holds for some i, j ∈ {1, 2, . . . , p}.
Then d∗(Xi ∩Xj) ≥ min{d∗(Xi), d∗(Xj)}. Since Xi ∪Xj contains both vi and
vj , d∗(Xi ∪Xj) ≥ max{d∗(Xi), d∗(Xj)} also holds. Hence

d∗(Xi) + d∗(Xj) ≤ d∗(Xi ∩Xj) + d∗(Xi ∪Xj).

This and the property (8) of fx∗ implies that

fx∗(Xi ∩Xj) + fx∗(Xi ∪Xj) ≤ fx∗(Xi) + fx∗(Xj)
= d∗(Xi) + d∗(Xj)
≤ d∗(Xi ∩Xj) + d∗(Xi ∪Xj).

Since x∗ is feasible to (3), fx∗(Xi ∩ Xj) ≥ d∗(Xi ∩ Xj) and fx∗(Xi ∪ Xj) ≥
d∗(Xi ∪Xj). These imply that Xi ∩Xj ∈ T and Xi ∪Xj ∈ T , but the former
fact contradicts the minimality of Xi or Xj .

Next, assume that vi ∈ Xi \ (Xj ∪N(Xj)) and vj ∈ Xj \ (Xi ∪N(Xi)) hold
for some i, j ∈ {1, 2, . . . , p}. In this case, d∗(Xi \ (Xj ∪ N(Xj))) = d∗(Xi) and
d∗(Xj \ (Xi ∪N(Xi))) = d∗(Xj) hold. Thus

d∗(Xi) + d∗(Xj) = d∗(Xi \ (Xj ∪N(Xj))) + d∗(Xj \ (Xi ∪N(Xi))).

Hence with (9), it shows that

fx∗(Xi \ (Xj ∪N(Xj)))+fx∗(Xj \ (Xi ∪N(Xi))) + 2x∗(Xi ∩Xj)
≤ fx∗(Xi) + fx∗(Xj)
= d∗(Xi) + d∗(Xj)
= d∗(Xi \ (Xj ∪N(Xj))) + d∗(Xj \ (Xi ∪N(Xi))).
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On the other hand, fx∗(Xi\(Xj∪N(Xj))) ≥ d∗(Xi\(Xj∪N(Xj))) and fx∗(Xj \
(Xi∪N(Xi))) ≥ d∗(Xj \(Xi∪N(Xi))) because x∗ is feasible to (3). These imply
that x∗(Xi ∩Xj) = 0. However, from v ∈ Xi∩Xj , it follows that x∗(Xi ∩Xj) ≥∑

e∈δF (v) x∗(e) > 0, a contradiction.
By these discussions, we see that at least one of vi ∈ N(Xj) and vj ∈ N(Xi)

holds for any 1 ≤ i < j ≤ p. Define a digraph D consisting of p vertices
u1, u2, . . . , up so that D has an arc from ui to uj whenever vi ∈ N(Xj). The
above fact implies that the underlying undirected graph of D is a clique. Hence
D has at least p(p − 1)/2 arcs. On the other hand, since n(Xi) < d∗ for each
i ∈ {1, 2, . . . , p}, the in-degree of each vertex in D is less than d∗. Hence D
has at most p(d∗ − 1) arcs. Therefore p(p − 1)/2 ≤ p(d∗ − 1), implying that
p ≤ 2d∗ − 1. �	
For X ⊆ V , let χ(X) denote the incidence vector of δF ′(X), i.e., |F ′|-dimensional
vector a component of which takes 1 if it is indexed by e ∈ δF ′(X), and 0
otherwise. We call T ′ ⊆ T independent if for any X ∈ T ′, χ(X) is not represented
by a linear combination of χ(Y ), Y ∈ T ′ \ {X}. By the linear algebra, the basic
optimal solution for a linear programming problem with n variables satisfies n
linearly independent constraints with equality. In our linear programming (3),
this indicates that there exists an independent subset T ∗ of T such that |T ∗| is
equal to the number of positive variables in x∗.

Proof of Theorem 3. Suppose that 0 < x∗(e) < 1/(2d∗−1) holds for each e ∈ F ′.
If F ′ contains two parallel edges e1 and e2, then xε : F ′ → Q+ defined by

xε(e) =

⎧⎪⎨
⎪⎩

x∗(e) e �∈ {e1, e2}
x∗(e1) + ε e = e1

x∗(e2)− ε e = e2

is also a feasible solution for any ε such that |ε| ≤ min{x∗(e1), x∗(e2), u(e1) −
x∗(e1), u(e2) − x∗(e2)}. The existence of such feasible solutions contradicts the
definition of x∗. Thus F ′ contains no parallel edges, and hence |F ′| = |P |. More-
over there exists an independent subset T ∗ ⊆ T such that |T ∗| = |F ′|. We
assume without loss of generality that T ∗ minimizes the number of crossing
pairs (i.e., (X, Y ) ∈ T ∗×T ∗ such that all of X∩Y , X \Y , Y \X are not empty)
among such subsets. Below we show that |T ∗| < |P | to derive a contradiction.

Suppose that v ∈ P distributes
∑

e∈δF ′(v) x∗(e) tokens to each of minimal
members containing v in T ∗. By Lemma 3, at most 2d∗ − 1 members of T ∗

receive the tokens from v ∈ P . Moreover
∑

e∈δF ′ (v) x∗(e) < 1/(2d∗ − 1) because
δF ′(v) contains at most one edge. In consequence, the total amount of distributed
tokens is less than |P |. Below we prove that each member of T ∗ obtains at least
1 tokens. This means that |T ∗| is at most the total amount of tokens.

Let X ∈ T ∗, and Y1, Y2, . . . , Yp be the subsets of X in T ∗. Obviously x∗(X) ≥
x∗(Y1) + x∗(Y2) + · · · + x∗(Yp). Since {X, Y1, Y2, . . . , Yp} is independent and
x∗(e) > 0 for all e ∈ F ′, this inequality holds strictly, i.e., x∗(X) > x∗(Y1) +
x∗(Y2) + · · ·+ x∗(Yp). Since d∗(X ′)− n(X ′)− x̄(X ′) is integer for any X ′ ⊆ V ,
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x∗(X) and all of x∗(Yi), i = 1, 2, . . . , p are integers. Hence x∗(X) ≥ x∗(Y1) +
x∗(Y2) + · · ·+ x∗(Yp) + 1. The amount of tokens X obtains is x∗(X)− (x∗(Y1) +
x∗(Y2) + · · ·+ x∗(Yp)) ≥ 1. �	

5 Conclusion

We have proposed a new approximation algorithm for κ̂-SLP. We have also con-
sidered a new formulation of the source location problem and have given an
approximation algorithm to it. Our algorithms are designed in different frame-
works; The former one is a greedy algorithm, and the latter one is based on the
iterative rounding method. However the key observations for their analyses are
proven in a unified way.

An interesting future work is to design O(d∗)-approximation algorithms for
κ̂-SLP and for RVSND. For κ̂-SLP, Ishii [6] also said that it is open whether the
problem is approximable within a constant independent from d∗. For RVSND,
Nutov [13] mentioned the existence of O(d∗)-approximation algorithms as an
open question. We believe that the discussion in Section 4 is useful for solving
these questions.
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Abstract. Manlove and O’Malley [9] proposed the Student-Project Al-
location Problem with Preferences over Projects (SPA-P). They proved
that the problem of finding a maximum stable matching in SPA-P is
APX-hard and gave a polynomial-time 2-approximation algorithm. In
this paper, we give an improved upper bound of 1.5 and a lower bound
of 21/19 (> 1.1052).

1 Introduction

Assignment problems based on the preferences of participants, which originated
from the famous Hospitals/Residents problem (HR) [4], are important almost
everywhere, such as in education systems where students must be allocated to
elementary schools or university students to projects. In the university case,
each student may have preferences over certain research projects supervised by
professors and usually there is an upper bound on the number of students each
project can accept. Our basic goal is to find a “stable” allocation where no
students (or projects or professors if they also have preferences over students)
can complain of unfairness. This notion of stability was first introduced by Gale
and Shapley in the context of the famous Stable Marriage problem in 1962 [3].

The Student-Project Allocation problem (SPA) is a typical formulation of this
kind of problem originally described by Abraham, Irving, and Manlove [1]. The
participants here are students, projects, and lecturers. Each project is offered by
a single lecturer, though one lecturer may offer multiple projects. Each project
and each lecturer has a capacity (called a quota in the original HR). Students
have preferences over projects, and lecturers have preferences over students. Our
goal is to find a stable matching between students and projects satisfying all of
the capacity constraints for projects and lecturers. They proved that all stable
matchings for a single instance have the same size, and proposed linear-time
algorithms to find one [1].

Manlove and O’Malley [9] proposed a variant of SPA, called SPA with Prefer-
ences over Projects (SPA-P), where lecturers have preferences over projects they
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offer rather than preferences over students. In contrast to SPA, they pointed out
that the sizes of stable matchings may differ, and proved that the problem of find-
ing a maximum stable matching in SPA-P, denoted MAX-SPA-P, is APX-hard.
They also presented a polynomial-time 2-approximation algorithm. Specifically,
they provided a polynomial-time algorithm that finds a stable matching, and
proved that any two stable matchings differ in size by at most a factor of two.

Our Contributions. In this paper, we improve both the upper and lower
bounds on the approximation ratio for MAX-SPA-P. We give an upper bound of
1.5 and a lower bound of 21/19 (> 1.1052) (assuming P �= NP). For the upper
bound, we modify Manlove and O’Malley’s algorithm spa-p-approx [9] using
Király’s idea [7] for the approximation algorithm to find a maximum stable
matching in a variant of the stable marriage problem (MAX-SMTI). We also
show that our analysis is tight. For the lower bound, we give a gap-preserving
reduction from the Minimum Vertex Cover problem, which is similar to the one
used in [5] to prove the approximation lower bound for MAX-SMTI.

2 Preliminaries

Here we give a formal definition of SPA-P and MAX-SPA-P, derived directly
from the literature [9]. An instance I of SPA-P consists of a set S of students, a
set P of projects, and a set L of lecturers. Each lecturer �k ∈ L offers a subset
Pk of projects. Each project is offered by exactly one lecturer, i.e., Pk1 ∩Pk2 = ∅
if k1 �= k2. Each student si ∈ S has an acceptable set of projects, denoted Ai,
and has a strict order on Ai according to preferences. Each lecturer �k also has
a strict order on Pk according to preferences. Also, each project pj and each
lecturer �k has a positive integer, called a capacity, cj and dk, respectively.

An assignment M is a subset of S × P where (si, pj) ∈ M implies pj ∈ Ai.
Let (si, pj) ∈ M and �k be the lecturer who offers pj. Then we say that si is
assigned to pj in M , and pj is assigned si in M . We also say that si is assigned
to �k in M and �k is assigned si in M .

For r ∈ S∪P ∪L, let M(r) be the set of assignees of r in M . If M(si) = ∅, we
say that the student si is unassigned in M , otherwise si is assigned in M . We say
that the project pj is under-subscribed, full, or over-subscribed with respect to M
according to whether |M(pj)| < cj , |M(pj)| = cj , or |M(pj)| > cj , respectively,
under M . If |M(pj)| > 0, we say that pj is non-empty, otherwise, it is empty.
Corresponding definitions apply to each lecturer �.

A matching M is an assignment such that |M(si)| ≤ 1 for each si, |M(pj)| ≤ cj

for each pj , and |M(�k)| ≤ dk for each �k. For a matching M , if |M(si)| = 1, we
may use M(si) to denote the unique project which si is assigned to. The size of
a matching M , denoted |M |, is the number of students assigned in M .

Given a matching M , a (student, project) pair (si, pj) blocks M , or is a blocking
pair for M , if the following three conditions are met:

1. pj ∈ Ai.
2. Either si is unassigned or si prefers pj to M(si).
3. pj is under-subscribed and either
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(a) si ∈M(�k) and �k prefers pj to M(si), or
(b) si �∈ M(�k) and �k is under-subscribed, or
(c) si �∈M(�k), �k is full, and �k prefers pj to the worst non-empty

project,
where �k is the lecturer who offers pj.

Given a matching M , a coalition is a set of students {si0 , si1 , . . . , sir−1} for
some r ≥ 2 such that each sij is assigned in M and prefers M(sij+1) to M(sij ),
where j+1 is taken modulo r. A matching that has no blocking pair nor coalition
is stable. Refer to [9] for the validity of this definition of stability. SPA-P is the
problem of finding a stable matching, and MAX-SPA-P is the problem of finding
a maximum stable matching.

We say that A is an r-approximation algorithm if it satisfies
max{opt(x)/A(x)} ≤ r over all instances x, where opt(x) and A(x) are the
sizes of the optimal and the algorithm’s solutions, respectively.

3 Approximability

3.1 Algorithm SPA-P-APPROX-PROMOTION

Manlove and O’Malley’s algorithm spa-p-approx [9] proceeds as follows. First,
all students are unassigned. Any student (s) who has non-empty preference list
applies to the top project (p) on the current list of s. If the lecturer (�) who offers
p has no incentive to accept s for p, then s is rejected. When rejected, s deletes
p from the list. Otherwise, (s, p) is added to the current matching. If, as a result,
� becomes over-subscribed, � rejects a student from �’s worst non-empty project
to satisfy the capacity constraint. This continues until there is no unassigned
student whose preference list is non-empty. Manlove and O’Malley proved that
the obtained matching is stable.

We extend spa-p-approx using Király’s idea [7]. During the execution of our
algorithm spa-p-approx-promotion, each student has one of two states, “un-
promoted” or “promoted”. At the beginning, all of the students are unpromoted.
The application sequence is unchanged. When a student (s) becomes unassigned
with her preference list exhausted, s is promoted. When promoted, s returns to
her original preference list (i.e., all of the previous deletions are canceled) and
starts a second sequence of applications from the top of her list. For the decision
rule for acceptance or rejection by the lecturers, they will prefer promoted stu-
dents to unpromoted students within the same project. The formal description
of spa-p-approx-promotion is given as Algorithm 1.

3.2 Correctness

It is straightforward to show that spa-p-approx-promotion outputs a match-
ing in polynomial time. We will now show that the output matching M is stable.
We first prove two useful lemmas:



Improved Approximation Bounds for MAX-SPA-P 443

Algorithm 1. spa-p-approx-promotion

1: M := ∅.
2: Let all students be unpromoted.
3: while (there exists an unassigned student si such that si’s list is non-empty or si

is unpromoted) do
4: if (si’s list is empty and si is unpromoted) then
5: Promote si.
6: end if
7: pj := first project on si’s list.
8: �k := lecturer who offers pj .
9: /* si applies to pj */

10: if (A. (pj is full) or (�k is full and pj is �k’s worst non-empty project)) then
11: if ((si is unpromoted) or (there is no unpromoted student in M(pj))) then
12: Reject si.
13: else
14: Reject an arbitrary unpromoted student in M(pj) and add (si, pj) to M .
15: end if
16: else if (B. �k is full and prefers si’s worst non-empty project to pj) then
17: Reject si.
18: else if (C. Otherwise) then
19: Add (si, pj) to M .
20: if (�k is over-subscribed) then
21: pz := �k’s worst non-empty project. (Note that pz �= pj .)
22: if (M(pz) contains an unpromoted student) then
23: Reject an arbitrary unpromoted student in M(pz).
24: else
25: Reject an arbitrary student in M(pz).
26: end if
27: end if
28: end if
29: end while
30: Return M .

Lemma 1. Suppose that, during the execution of spa-p-approx-promotion, a
project pa rejected a promoted student. Then (i) after that point, no new student
can be accepted to pa, and (ii) no unpromoted student can be assigned to pa

in M .

Proof. Suppose that a promoted student s is rejected by pa. Let �k be the lecturer
who offers pa. It is easy to see that just after this rejection, no unpromoted
student can be assigned to pa. We show that after that point, if a student s′

applies to pa when there is no unpromoted student assigned to pa, then s′ must
be rejected. It is easy to see that the lemma follows by using this fact inductively.

Note that just after this rejection, either (1) pa is full or (2) pa is under-
subscribed and �k is full. We consider Case (2) first. Since pa is under-subscribed
but s was rejected from pa, pa must be �k’s worst non-empty project before the
rejection. Then after this rejection, pa is still �k’s worst non-empty project or pa
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becomes worse than it was (if s was the only student assigned to pa). Note that
now �k remains full until the end of the execution. Then after this point, when
any student applies to pa, only Cases A (line 10) or B (line 16) of the algorithm
can apply. Since there is no unpromoted student in M(pa), s′ must be rejected.

In Case (1), if pa is still full when s′ applies to pa, Case A of the algorithm
applies and hence s′ must be rejected since M(pa) contains no unpromoted
student. If pa is under-subscribed when s′ applies to pa, then some student was
already rejected from pa. At that time, �k must have been full and pa was �k’s
worst non-empty project. Therefore, �k is still full and pa is �k’s worst non-
empty project or worse than it was. Then we can apply the same argument as
in Case (2). �	
The proof of the following lemma is basically similar and is omitted.

Lemma 2. Suppose that, during the execution of spa-p-approx-promotion,
a project pa has rejected a student. Then after that point, no new unpromoted
student can be accepted for pa.

To prove the stability, we need to prove that there is no coalition or blocking
pair.

Lemma 3. The output matching M is coalition-free.

Proof. Suppose that there is a coalition {si0 , si1 , . . . , sir−1} for some r ≥ 2. Let
pij = M(sij ) for each j (0 ≤ j ≤ r−1). Thus sij prefers pij+1 to pij (where j +1
is taken modulo r). Therefore, at some point of the execution, pij+1 was deleted
from sij ’s list. Note that during the execution of the algorithm, one project may
be deleted from a student’s list twice (because of a promotion). Hereafter, a
“deletion” means the final deletion unless otherwise stated.

Now suppose that among such deletions, the first occurrence was the deletion
of pi1 from si0 ’s list. First, suppose that si0 is eventually unpromoted. Note that
si1 applied to and was accepted by pi1 after si0 was rejected by pi1 . Therefore
si1 is eventually promoted by Lemma 2. Then si1 was rejected from pi2 when
si1 was promoted. This means that si2 is eventually promoted by Lemma 1(ii).
Repeating this argument, we can conclude that sir−1 is eventually promoted.
Then this contradicts Lemma 1(ii) since pi0 rejected the promoted student sir−1

but is assigned an unpromoted student si0 in M .
Next suppose that si0 is eventually promoted. Then since pi1 rejected a pro-

moted student, pi1 accepts no new students by Lemma 1(i). This contradicts the
fact that si1 was accepted to pi1 later. �	
Lemma 4. The output matching M has no blocking pair.

Proof. Assume that there exists a blocking pair (sr, pt) for M . Then it is clear
that sr was rejected from pt during the execution (recall that this rejection is
the second one if sr was eventually promoted). Let �k be the lecturer who offers
pt. Rejections occur at lines 12, 14, 17, 23, and 25. If this rejection occurred at
line 17, 23, or 25, then pt was already �k’s worst non-empty project or worse
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than that, and this is also the case in M . We know that �k was full at this
rejection point, and remains full in M . Therefore, (sr, pt) cannot block M . If
this rejection occurred at line 12 or 14 as a result of �k being full and pt being
�k’s worst non-empty project, then the same argument holds. Therefore suppose
that this rejection occurred at line 12 or 14 as a result of pt being full. Since
(sr, pt) blocks M , pt is under-subscribed in M . Then pt changed from being full
to being under-subscribed at some point. This can happen only when �k is full
and pt is �k’s worst non-empty project. Again, we can use the same argument
to show that (sr, pt) cannot block M , a contradiction. �	
The following lemma follows immediately from Lemmas 3 and 4.

Lemma 5. spa-p-approx-promotion returns a stable matching.

3.3 Analysis of the Approximation Ratio

For a given instance I, let M be a matching output from spa-p-approx-

promotion, and let Mopt be a largest stable matching for I.

Lemma 6. |Mopt| ≤ 3
2 |M |.

Proof. Based on M and Mopt, we define a bipartite graph GM,Mopt = (U, V, E)
as follows: Each vertex in U corresponds to a student in I, and each vertex
in V corresponds to a position of a project in I. Precisely speaking, for each
project pj whose capacity is cj , we create cj “positions” of pj, each of which
can accept at most one student, and each vertex in V corresponds to each such
position. We use si to denote the vertex in U corresponding to a student si and
pj,1, pj,2, . . . , pj,cj to denote the vertices in V corresponding to a project pj.

If a student si is assigned to a project pj in M (Mopt, respectively), we include
an edge (si, pj,t) for some t (1 ≤ t ≤ cj), called an M -edge (Mopt-edge, respec-
tively), in E. If si is assigned to the same project pj both in M and Mopt, then
M - and Mopt-edges corresponding to this assignment include the same position
of pj, which means we give parallel edges (si, pj,t) for some t. We also ensure
that there are no two vertices pj,t1 and pj,t2 such that pj,t1 is matched in M but
not in Mopt, and pj,t2 is matched in Mopt but not in M . In such a case, there will
be M -edge (si1 , pj,t1) and Mopt-edge (si2 , pj,t2). Then we can remove (si1 , pj,t1)
and add (si1 , pj,t2) instead.

Note that each vertex of GM,Mopt has degree at most two. Therefore its con-
nected components are alternating paths or alternating cycles. Now we will mod-
ify GM,Mopt while retaining this property and keeping the numbers of M -edges
and Mopt-edges unchanged. Note that the resulting graph may not correspond
to a feasible solution for I. We use this modification only for the purpose of
comparing the sizes of M and Mopt.

A connected component consisting of only one Mopt-edge is called a Type-
I component. A connected component which is a length-three alternating path
consisting of two Mopt-edges and one M -edge in the middle is called a Type-II
component. We show that there are no Type-I or Type-II components in the
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resulting bipartite graph. If this is true, the connected component having the
largest ratio of the number of Mopt-edges to that of M -edges is a length-five
alternating path with three Mopt-edges and two M -edges, which has the ratio of
1.5. This proves the lemma.

Consider a Type-I component (si, pj,t). Let �k be the lecturer who offers pj .
Since pj,t is not matched in M , pj is under-subscribed in M . Then �k must be
full in M since otherwise (si, pj) blocks M . Therefore, we can find a vertex pa,x

in V which is matched in M but not in Mopt, where pa is offered by �k. We can
remove (si, pj,t) and add (si, pa,x) to remove this Type-I component.

Consider a Type-II component si − pa,x − sj − pb,y. Note that pa �= pb due
to the construction of GM,Mopt . Since si is unassigned in M , si is promoted.
Then si applied to pa when promoted, but was rejected. Therefore sj must be
promoted by Lemma 1(ii). This means that sj applied to pb at least once, but
was rejected. Let �k be the lecturer who offers pb. As mentioned several times
before, this rejection can happen only when (1) pb is full or (2) �k is full and pb

is �k’s worst non-empty project or worse than that, and either (1) or (2) also
holds for the output matching M . However pb,y is unassigned in M , so only
(2) is possible. Since �k is full in M , there must be a vertex pc,z in V which is
matched in M but not in Mopt, where pc is offered by �k. We can remove the
edge (sj , pb,y) and add (sj , pc,z) to remove this Type-II component.

Note that in both of these cases, we used the property that �k is full in M . This
implies that for each Type-I or Type-II component, we can find a distinct vertex
in V which is matched only in M to perform the above mentioned replacement.
We do this replacement for all Type-I and Type-II components in GM,Mopt . This
operation does not change any M -edges, so the number of students assigned to
each lecturer or project in M is unchanged. In particular, a lecturer or a project
full in M is still full in the modified graph.

As a result of these operations, we may still have a Type-II component. This
can happen only when we removed a Type-I component, such as (si, pj,t), us-
ing a length-two path, such as pa,x − sr − pb,y, where (sr, pa,x) is an M -edge
and (sr, pb,y) is an Mopt-edge. In this example, we removed (si, pj,t) and added
(si, pa,x). Note that pa and pj must be offered by the same lecturer, such as �k,
because of the definition of the operation for Type-I components. Also, by the
construction of GM,Mopt , pa and pj must be different projects because pj,t is
matched only in Mopt and pa,x is matched only in M .

If pb is also offered by �k, then corresponding to the Mopt-edge (sr, pb,y), we
can find a vertex pc,z in V which is matched in M but not in Mopt, where pc is
offered by �k, since �k is full in M . Then we can remove this Type-II component
by replacing (sr, pb,y) with (sr, pc,z). Otherwise, let �k′(�= �k) be the lecturer who
offers pb. Suppose that sr prefers pb to pa. Since pb is under-subscribed in M , �k′

must be full in M , since otherwise (sr, pb) blocks M . Then we can use the same
argument as before to show the existence of a vertex pc,z which is matched in
M but not in Mopt, where pc is offered by �k′ . Suppose that sr prefers pa to pb.
If �k prefers pa to pj , then (sr, pa) blocks Mopt, a contradiction (note that pa,x

is not matched and hence pa is under-subscribed in Mopt). If �k prefers pj to
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pa, then (si, pj) blocks M , a contradiction. We have exhausted all of the cases,
and have shown that all Type-I and Type-II components can be removed. This
completes the proof. �	
The following theorem follows immediately from Lemmas 5 and 6.

Theorem 1. spa-p-approx-promotion is a 1.5-approximation algorithm for
MAX-SPA-P.

3.4 Tightness of the Analysis

We give an instance to show that our analysis of the approximation ratio is
tight. There are three students s1, s2, and s3 and one lecturer �1 with d1 = 3
who offers three projects p1, p2, and p3 with c1 = c2 = c3 = 1. The preferences
of the students and the lecturer are as follows:

s1: p1 �1: p3 p2 p1

s2: p1 p2

s3: p2 p3

Note that the matching {(s1, p1), (s2, p2), (s3, p3)} of size three is stable, but
the following execution of spa-p-approx-promotion yields a stable matching
of size two {(s2, p1), (s3, p2)}: (1) s1 applies to p1 and is accepted. (2) s3 applies
to p2 and is accepted. (3) s2 applies to p1 and is rejected. (4) s2 applies to p2

and is rejected. (5) s2 is promoted. (6) s2 applies to p1 and is accepted; s1 is
rejected. (7) s1 is promoted. (8) s1 applies to p1 and is rejected.

4 Inapproximability

The stable marriage problem (SM) [3,4] is the problem of finding a stable match-
ing, given sets of men and women and each person’s preference list over the mem-
bers of the opposite gender. If ties are allowed in the preference lists and if the
preference lists may be incomplete (i.e., unacceptable persons may be dropped
from the lists), then the problem of finding a maximum stable matching (MAX-
SMTI) is NP-hard even if ties appear on only one side (e.g., the men’s lists must
be totally ordered) [8]. We call this restricted problem MAX-SMTI-1T.

There is a similarity between MAX-SMTI-1T and MAX-SPA-P, so we can
define the following natural reduction from MAX-SMTI-1T to MAX-SPA-P:
Suppose that in the MAX-SMTI-1T instance I, the men’s lists are strict and
the women’s lists may contain ties. Then in the MAX-SPA-P instance I ′, the
students and lecturers correspond to men and women in I, respectively. For each
woman w’s list, we create a project for each tie in the list, where a man not in a
tie is considered as a tie of size one. These projects are offered by the lecturer �w

corresponding to the woman w, and the order of projects in �w’s list is consistent
with w’s list in I. Each project p is acceptable to the students corresponding
to the men in the tie associated with this project p. The order of projects in
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the preference list of a student is naturally generated from corresponding man’s
(strictly ordered) list in I. The capacity of each lecturer and each project is one.

Using the above reduction, we can prove that the sizes of a maximum sta-
ble matching of I and a maximum blocking-pair-free matching of I ′ coincide.
The only problem is that there is a coalition-freeness condition in the stabil-
ity definition of SPA-P. Therefore a reduction from the general instances of
MAX-SMTI-1T to MAX-SPA-P cannot be applied. However, it turns out that
if we use only the instances generated by the reduction in [5], then this prob-
lem can be resolved and the sizes of the optimal solutions for MAX-SMTI-1T
and MAX-SPA-P coincide, so that the approximation lower bound of 21/19 for
MAX-SMTI-1T proved in [5] applies to MAX-SPA-P. For the completeness of
this article, however, we give a direct reduction from the Minimum Vertex Cover
problem (MVC) to MAX-SPA-P.

For a graph G = (V, E), a subset C ⊆ V of vertices is called a vertex cover for
G if for any edge, at least one of its endpoints is in C. MVC is the problem of
finding a vertex cover of minimum size for a given graph. Let OPT (G) be the size
of a minimum vertex cover for G. We can now use the well-known Proposition 1.

Proposition 1. [2] For any ε > 0 and p < 3−√
5

2 , if there is a polynomial-time
algorithm that, given a graph G = (V, E), distinguishes between these two cases,
then P=NP.

(1) OPT (G) ≤ (1 − p + ε)|V |.
(2) OPT (G) > (1 −max{p2, 4p3 − 3p4} − ε)|V |.

For an instance I of MAX-SPA-P, let OPT (I) be the size of a maximum stable
matching for I. Then we can prove Theorem 2.

Theorem 2. For any ε > 0 and p < 3−√
5

2 , if there is a polynomial-time algo-
rithm that, given a MAX-SPA-P instance I of N students, distinguishes between
these two cases, then P=NP.

(1) OPT (I) ≥ 2+p−ε
3 N .

(2) OPT (I) < 2+max{p2,4p3−3p4}+ε
3 N .

Proof. Given a graph G = (V, E), we will construct, in polynomial time, an
instance IG of MAX-SPA-P with N students. Our reduction satisfies conditions
(i) N = 3|V | and (ii) OPT (IG) = 3|V | − OPT (G). Then it is not hard to see
that Proposition 1 implies Theorem 2.

Now we show the reduction. For each vertex vi of G, we construct three
students ai, bi, and ci and three lecturers xi, yi, and zi. Suppose that vi is
adjacent to k vertices vi1 , vi2 , · · · , vik

(i1 < i2 < · · · < ik). Then we construct
k + 4 projects Xi, Yi, Zi,−, Zi,i1 , · · ·, Zi,ik

and Zi,+, where Xi is offered by xi,
Yi by yi, and Zi,−, Zi,i1 , · · ·, Zi,ik

, Zi,+ by zi. The capacity of each project and
each lecturer is one.

Next, we define the acceptability of projects to students. The project Xi is
acceptable to only one student ai. The project Yi is acceptable to two students
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ai and bi. Zi,− is acceptable to only bi, and Zi,+ is acceptable to only ci. For
each j = 1, 2, . . . , k, the project Zi,ij is acceptable to only one student aij (cor-
responding to the adjacent vertex vij ). Finally, we define preference lists of the
students and lecturers corresponding to vi as:

ai: Yi Zi1,i Zi2,i · · · Zik,i Xi xi: Xi

bi: Yi Zi,− yi: Yi

ci: Zi,+ zi: Zi,− Zi,i1 · · · Zi,ik Zi,+

Obviously, this reduction can be performed in polynomial time. Since the
capacities of all of the projects and lecturers are one, for a project or a lecturer
r assigned in M , we may use M(r) to denote the unique student assigned to
r. Clearly condition (i) holds. In the rest of the proof, we show that condition
(ii) holds. To see this, we show that (A) if there is a vertex cover C of G, then
there is a stable matching M of IG such that |M | = 3|V | − |C|, and (B) if there
is a stable matching M of IG, then there is a vertex cover C of G such that
|C| = 3|V | − |M |. The statement (A) implies OPT (IG) ≥ 3|V | − OPT (G) and
(B) implies OPT (G) ≤ 3|V | −OPT (IG), which together implies condition (ii).

We show (A) first. Given a vertex cover C for G, we construct a stable
matching M for IG as follows: For each vertex vi, if vi ∈ C, let M(ai) = Yi,
M(bi) = Zi,−, and leave ci unassigned. If vi �∈ C, let M(ai) = Xi, M(bi) = Yi,
and M(ci) = Zi,+. Since the capacity of each lecturer is one, we can regard M as
a matching between students and lecturers. Fig. 1 shows a part of M correspond-
ing to vi. By an easy calculation, we can see that |M | = 2|C| + 3(|V | − |C|) =
3|V | − |C| as required.
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Fig. 1. A part of matching M

We will show that M is stable. We first show that there is no blocking pair.
For vi ∈ C, ai is assigned to the top project, so that ai cannot be part of a
blocking pair. The student bi is assigned to the second project, but the first
project Yi and the lecturer yi who offers Yi are both full and hence bi cannot
form a blocking pair. Student ci is unassigned but the lecturer zi, who offers
ci’s only acceptable project Zi,+, is full and prefers ci’s assigned project Zi,−
to Zi,+, so that ci cannot be part of a blocking pair. For vi �∈ C, bi and ci are
assigned to the top projects respectively. The only possibility is that ai forms a
blocking pair with some project among Yi, Zi1,i, Zi2,i, · · ·, Zik,i, but it is easy
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to see that Yi is excluded. Therefore, suppose that ai forms a blocking pair with
Zij ,i for some j. Then by construction there is an edge between vi and vij , and
the lecturer zij is assigned the student cij for the project Zij ,+ (since in the other
case, zij receives a student for the most preferred project and hence (ai, Zij ,i)
cannot be a blocking pair). This means that vij �∈ C by the construction of M .
Then this contradicts the assumption that C is a vertex cover for G. We then
show that M admits no coalition. Note that in M , each student corresponding
to the vertex vi of G is assigned to a project corresponding to vi. This implies
that any coalition must consist of students and projects corresponding to the
same vertex. However we can easily verify that there is no coalition in either the
case of vi ∈ C or vi �∈ C, which completes the stability proof.

Next we show (B). Let M be a stable matching for IG. First, if the project Yi

is unassigned, then both (ai, Yi) and (bi, Yi) block M , which is a contradiction.
Therefore either M(Yi) = ai or M(Yi) = bi.

First, suppose that M(Yi) = ai. Then M(bi) = Zi,− since otherwise, (bi, Zi,−)
blocks M . Then ci is unassigned and xi and Xi are empty in M . In this case,
we say that vi causes Pattern 1. A diagrammatic representation of Pattern 1 is
given in Fig. 2.
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Fig. 2. Five patterns caused by vi

Next, suppose that M(Yi) = bi. Then ai is assigned in M , since otherwise
(ai, Xi) blocks M . Since Yi is already taken by bi, there remain two cases:
(a) M(ai) = Xi and (b) M(ai) = Zij ,i for some j. Similarly, if zi is empty in M ,
then (ci, Zi,+) blocks M . This means either (c) M(zi) = ci or (d) M(zi) = aij

for some j. Hence, we have a total of four cases. These cases are referred to as
Patterns 2 through 5 (see Fig. 2). For example, a combination of cases (b) and
(c) corresponds to Pattern 4. Lemma 7, whose proof is omitted by the space
restriction, excludes the possibility of Patterns 3 or 4.

Lemma 7. Each vertex causes Pattern 1, 2 or 5.

By Lemma 7, each vertex vi will lead to Pattern 1, 2, or 5. We construct the
subset C of vertices in this way: If vi causes Pattern 1 or 5, then let vi ∈ C,
otherwise, let vi �∈ C.

We show that C is a vertex cover for G. Assume that C is not a vertex cover
for G. Then there are two vertices vi and vj in V \ C such that (vi, vj) ∈ E
and both of them cause Pattern 2. Then both (ai, Zj,i) and (aj , Zi,j) block M ,
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contradicting the stability of M . Hence, C is a vertex cover for G. It is obvious
that |M | = 2|C| + 3(|V | − |C|) = 3|V | − |C|. Hence, statement (B) holds. This
completes the proof of Theorem 2. �	
By letting p = 1

3 in Theorem 2, we have Corollary 1.

Corollary 1. Assume that P�=NP. Then for any constant δ > 0, there is no
polynomial-time (21/19− δ)-approximation algorithm for MAX-SPA-P.

Remark. Using the same argument as Remark 3.6 of [5], we can claim that
MAX-SPA-P is hard to approximate within 1.25− δ if MVC is hard to approx-
imate within 2− ε (where δ and ε are arbitrary positive constants).

5 Conclusions

In this paper, we improved the upper and lower bounds on the approximation
ratio for MAX-SPA-P. One research direction is to further improve the upper
bound. For example, a recent approximation algorithm for MAX-SMTI-1T [6]
generalizes Király’s idea [7] using Linear Programming approach. Its approxi-
mation ratio of 25/17(* 1.4706) is slightly better than 1.5. One possible next
step is to verify whether this idea can be applied to spa-p-approx-promotion.
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Abstract. Spanning tree congestion is a relatively new graph parameter, which
has been studied intensively. This paper studies the complexity of the problem
to determine the spanning tree congestion for non-sparse graph classes, while it
was investigated for some sparse graph classes before. We prove that the prob-
lem is NP-hard even for chain graphs and split graphs. To cope with the hardness
of the problem, we present a fast (exponential-time) exact algorithm that runs
in O∗(2n) time, where n denotes the number of vertices. Additionally, we pro-
vide a constant-factor approximation algorithm for cographs, and a linear-time
algorithm for chordal cographs.

1 Introduction

Spanning tree congestion is a graph parameter defined by Ostrovskii [18] in 2004. Si-
monson [21] also studied the same parameter under a different name as a variant of
cutwidth. After Ostrovskii [18], several graph-theoretic results have been presented [2,
6, 12–17, 19], and very recently the complexity of the problem for determining the
parameter has been studied [3, 20]. The parameter is defined as follows. Let G be a
connected graph and T be a spanning tree of G. The detour for an edge {u, v} ∈ E(G) is
a unique u–v path in T . We define the congestion of e ∈ E(T ), denoted by cngG,T (e), as
the number of edges in G whose detours contain e. The congestion of G in T , denoted
by cngG(T ), is the maximum congestion over all edges in T . The spanning tree conges-
tion of G, denoted by stc(G), is the minimum congestion over all spanning trees of G.
We denote by STC the problem of determining whether a given graph has spanning tree
congestion at most given k. If k is fixed, then we denote the problem by k-STC.
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Bodlaender, Fomin, Golovach, Otachi, and van Leeuwen [3, 20] studied the com-
plexity of STC and k-STC. They showed that k-STC is linear-time solvable for apex-
minor-free graphs and bounded-degree graphs, while k-STC is NP-complete even for
K6-minor-free graphs with only one vertex of unbounded degree if k ≥ 8. They also
showed that STC is NP-complete for planar graphs. Bodlaender, Kozawa, Matsushima,
and Otachi [2] showed that the spanning tree congestion can be determined in linear
time for outerplanar graphs. Although several complexity results are known as men-
tioned above, they are restricted to sparse graphs. The complexity for non-sparse graphs
such as chordal graphs and chordal bipartite graphs were unknown.

In this paper, we show that STC is NP-complete for these important non-sparse graph
classes. More precisely, we show that STC is NP-complete even for chain graphs and
split graphs. It is known that every chain graph is chordal bipartite, and every split
graph is chordal. The hardness for chain graphs is quite unexpected, since there is no
other natural graph parameter that is known to be NP-hard for chain graphs, to the
best of our knowledge. The hardness for chain graphs also implies the hardness for
graphs of clique-width at most three. To cope with the hardness of the problem, we
present a fast exponential-time exact algorithm. Our algorithm runs in O∗(2n) time,
while a naive algorithm that examines all spanning trees runs in O∗(2m) or O∗(nn)
time, where n and m denote the number of vertices and the number of edges. Note
that O∗( f (n)) = O( f (n) · poly(n)). The idea, which allows us to achieve this running
time, is to enumerate all possible combinations of cuts instead of all spanning trees.
Using this idea, we can design a dynamic-programming-based algorithm that runs in
O∗(3n) time. Then, by carefully applying the fast subset convolution method devel-
oped by Björklund, Husfeldt, Kaski, and Koivisto [1], we finally get the running time
O∗(2n). We also study the problem on cographs. It is known that cographs are precisely
the graphs of clique-width at most two. For some cographs such as complete graphs
and complete p-partite graphs, the closed formulas for the spanning tree congestion
are known [12, 14, 18]. Although the complexity of STC for cographs remains unset-
tled, we provide a constant-factor approximation algorithm for them. Furthermore, we
present a linear-time algorithm for chordal cographs.

Due to space limitation all proofs are omitted.

2 Preliminaries

Graphs in this paper are finite, simple, and connected, if not explicitly stated otherwise.
We deal with edge-weighted graphs in Subsections 2.2 and 3.1. Our exponential-time
exact algorithm runs in O∗(2n) time for edge-weighted graphs, too.

2.1 Graphs

Let G be a connected graph. For S ⊆ V(G), we denote by G[S ] the subgraph induced by
S . For an edge e ∈ E(G), we denote by G− e the graph obtained from G by the deletion
of e. Similarly, for a vertex v ∈ V(G), we denote by G − v the graph obtained from G
by the deletion of v and its incident edges. By NG(v), we denote the (open) neighbor-
hood of v in G; that is, NG(v) is the set of vertices adjacent to v in G. For S ⊆ V(G),
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we denote
⋃

v∈S NG(v) by NG(S ). We define the degree of v in G as degG(v) = |NG(v)|.
If degG(v) = |V(G)| − 1, then v is a universal vertex of G.

Let G and H be graphs. We say that G and H are isomorphic, and denote it by
G � H, if there is a bijection f : V(G) → V(H) such that {u, v} ∈ E(G) if and only if
{ f (u), f (v)} ∈ E(H). Now assume V(G) ∩ V(H) = ∅. Then the disjoint union of G and
H, denoted by G ∪ H, is the graph with the vertex set V(G) ∪ V(H) and the edge set
E(G) ∪ E(H). The join of G and H, denoted by G ⊕ H, is the graph with the vertex set
V(G) ∪ V(H) and the edge set E(G) ∪ E(H) ∪ {{u, v} | u ∈ V(G), v ∈ V(H)}.

For A, B ⊆ V(G), we define EG(A, B) = {{u, v} ∈ E(G) | u ∈ A, v ∈ B}. For S ⊆ V(G),
we define the boundary edges of S , denoted by θG(S ), as θG(S ) = EG(S ,V(G) \ S ).
Note that θG(∅) = θG(V(G)) = ∅. The congestion cngG,T (e) of an edge e ∈ E(T ) satisfies
cngG,T (e) = |θG(Ae)|, where Ae is the vertex set of one of the two components of T − e.
For an edge e in a tree T , we say that e separates A and B if A ⊆ Ae and B ⊆ Be, where
Ae and Be are the vertex sets of the two components of T − e. Clearly, if T is a spanning
tree of G and e ∈ E(T ) separates A and B, then cngG,T (e) ≥ |E(A, B)|. If e separates A
and B, we also say that e divides A ∪ B into A and B.

Let T be a tree rooted at r ∈ V(T ). Then we denote by prtT (v) the parent of v ∈ V(T )
in T . The parent of the root r is not defined. We denote by ChdT (v) the children of
v ∈ V(T ) in T . Clearly, NT (v) = {prtT (v)} ∪ ChdT (v) for every non-root vertex v.

2.2 Spanning Tree Congestion of Weighted Graphs

A graph G may be associated with an edge-weight function wei : E(G) → Z+. If a
graph has such a function, then we call it an edge-weighted graph or just a weighted
graph. Note that unweighted graphs can be considered as weighted graphs by setting
wei(e) = 1 for each edge e. For an edge-weighted graph G and F ⊆ E(G), we define
wei(F) =

∑
f∈F wei( f ) for F ⊆ E(G). We extend the notion of spanning tree congestion

to edge-weighted graphs by defining the congestion of an edge e as the sum of the
weights of edges whose detours pass through the edge e. If e ∈ E(T ) separates vertex
sets A and B, then cngG,T (e) ≥ wei(E(A, B)).

For a weighted graph G, we define the weighted degree of v in G as wdegG(v) =
wei(θG({v})). It is not difficult to see that the following fact holds.

Proposition 2.1. Let G be a weighted graph, and let S ⊆ V(G). Then

wei(θG(S )) =
∑

v∈S
wdegG(v) − 2wei(E(G[S ])).

It is known that STC for weighted graphs is equivalent to STC for unweighted graphs
in the following sense.

Lemma 2.2 ([3, 20]). Let G be a weighted graph and let e ∈ E(G). Let G′ be the graph
obtained from G by removing the edge e and adding wei(e) internally disjoint paths of
arbitrary lengths between the ends of e, where each edge in the added paths is of unit
weight. Then, stc(G) = stc(G′).
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2.3 Graph Classes

A graph is chordal if it has no induced cycle of length greater than three. A graph G is
a split graph if its vertex set V(G) can be partitioned into two sets C and I so that C is
a clique of G and I is an independent set of G. Clearly, every split graph is a chordal
graph (see [10]). A cograph (or complement-reducible graph) is a graph that can be
constructed recursively by the following rules:

1. K1 is a cograph;
2. if G and H are cographs, then so is G ∪ H;
3. if G and H are cographs, then so is G ⊕ H.

Note that if G is a connected cograph with at least two vertices, then G can be expressed
as G1⊕G2 for some nonempty cographs G1 and G2. A cograph is a chordal cograph if it
is also a chordal graph. Chordal cographs are also known as trivially perfect graphs [4,
10] and quasi-threshold graphs [22]. It is known that in the construction of a chordal
cograph by the above rules, we can assume one of two operands of ⊕ is K1 [22].

Analogous to chordal graphs, chordal bipartite graphs are defined as the bipartite
graphs without induced cycle of length greater than four. A bipartite graph G = (X, Y; E)
is a chain graph if there is an ordering < on X such that u < v implies NG(u) ⊆ NG(v).
It is known that every chain graph is 2K2-free [23], and thus chordal bipartite. It is also
known that every chain graph has clique-width at most three [5].

Clique-width is a graph parameter which generalizes treewidth in some sense. Many
hard problems can be solved efficiently for graphs of bounded clique-width. For the
definition and further information of clique-width, see a recent survey by Hliněný, Oum,
Seese, and Gottlob [11].

3 Hardness for Split Graphs and Chain Graphs

This section presents our hardness results for split graphs and chain graphs. Namely,
we prove the following theorems.

Theorem 3.1. STC is NP-complete for split graphs.

Theorem 3.2. STC is NP-complete for chain graphs.

Since every chain graph has clique-width at most three, we have the following corollary.

Corollary 3.3. STC is NP-complete for graphs of clique-width at most three.

The weighted edge argument [3, 20] allows us to present a simple proof for split graphs.
However, we are unable to present a simple proof based on the weighted edge argument
for chain graphs. This is because, in the process of modifying a weighted graph to
an unweighted graph, we may introduce many independent edges (see Lemma 2.2).
Although we need somewhat involved arguments for chain graphs, the proofs are based
on essentially the same idea.

Clearly, STC is in NP. The proofs of NP-hardness are done by reducing the following
well-known NP-complete problem to STC for both graph classes.
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Problem: 3-Partition [9, SP15]
Instance: A multi-set A = {a1, a2, . . . , a3m} of 3m positive integers and a bound B ∈ Z+

such that
∑

ai∈A ai = mB, a1 ≤ a2 ≤ · · · ≤ a3m, and B/4 < ai < B/2 for each ai ∈ A.
Question: Can A be partitioned into m disjoint sets A1, A2, . . . , Am such that, for 1 ≤

i ≤ m,
∑

a∈Ai
a = B? (Thus each Ai must contain exactly three elements from A.)

It is known that 3-Partition is NP-complete in the strong sense [9]. Thus we assume
a3m ≤ poly(m), where poly(m) is some polynomial on m. By scaling each a ∈ A, we can
also assume that a1 ≥ 3m + 2, m ≥ 3, B ≥ 8, and B/4 + 1 ≤ ai ≤ B/2 − 1.

3.1 Hardness for Split Graphs

In this subsection, we prove that STC is NP-hard for split graphs. We first show that STC
is NP-hard for edge-weighted split graphs with weighted edges only in the maximum
clique, by reducing an instance A of 3-Partition to an edge-weighted split graph GA

such that A is a yes instance if and only if stc(GA) ≤ k for some k. We then show
that GA can be modified to an unweighted split graph G′A in polynomial time so that
stc(GA) = stc(G′A). This proves Theorem 3.1.

Let A be an instance of 3-Partition. We now construct GA from A in polynomial
time. Let I = {ui | 1 ≤ i ≤ 3m} and C = {x} ∪ V ∪W, where V = {vi | 1 ≤ i ≤ m} and
W = {wi | m + 1 ≤ i ≤ a3m}. The graph GA has vertex set I ∪ C. The sets I and C are
independent set and a clique of GA, respectively. Each ui ∈ I is adjacent to all vertices
in V and vertices w1,w2, . . . ,wai . More formally, E(GA) is defined as follows:

E(GA) = {{c, c′} | c, c′ ∈ C} ∪ {{u, v} | u ∈ I, v ∈ V} ∪ {{ui,wj} | ui ∈ I,m + 1 ≤ j ≤ ai}.
Recall that ai > m for any i ≥ 1. The degrees of vertices in GA can be determined as
follows: degGA

(ui) = ai, degGA
(vi) = |C|+ |I| − 1, and degGA

(wi) = |C| + |{ j | a j ≥ i}| − 1.
Some edges of GA have heavy weights. Let k = 2B + 2|C| + 2|I| − 15. Then

wei(e) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

α := (k + 1)/2 if e = {x, vi},
βi := k − degGA

(wi) + 1 if e = {x,wi},
1 otherwise.

Clearly, GA is a split graph with weighted edges only in the clique C. The weighted
degrees of vertices in GA is as follows: wdegGA

(ui) = ai, wdegGA
(vi) = α+ |C|+ |I| − 2 =

k − B + 6, and wdegGA
(wi) = k.

Lemma 3.4. Let k = 2B + 2|C| + 2|I| − 15. Then A is a yes instance if and only if
stc(GA) ≤ k.

Proof (Sketch). ( =⇒ ) Let A1, . . . , Am be a partition of A such that
∑

a∈Ai
a = B for

1 ≤ i ≤ m. Let Ui denote the set {u j | a j ∈ Ai}. The desired spanning tree T of
GA can be obtained from the partition A1, . . . , Am as follows: E(T ) = {{x, c} | c ∈
C \ {x}} ∪⋃1≤i≤m

{
{vi, u j} | u j ∈ Ui

}
. We can show cngGA

(T ) ≤ k. (⇐= ) Omitted. ��
Now we prove the NP-hardness of STC for unweighted split graphs. To this end, we
first reduce an instance A of 3-Partition to a weighted split graph GA as stated above.
Recall that all weighted edges of GA are in GA[C]. We need the following lemma.
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Lemma 3.5. Let G be an edge-weighted split graph with a partition (C, I) of V(G),
where C and I are a clique and an independent set of G, respectively. If the weighted
edges are only in G[C] and the maximum edge weight is wmax, then an edge-unweighted
split graph G′ satisfying stc(G) = stc(G′) can be obtained from G in O(wmax · |E(G)|)
time.

Observe that the maximum edge-weight in GA is bounded by a polynomial function on
B and m. Thus the above lemma implies that from an instance A of 3-Partition, we can
construct in polynomial time an unweighted split graph G′A and k ∈ Z+ such that A is a
yes instance if and only if stc(G′A) ≤ k. This proves Theorem 3.1.

3.2 Hardness for Chain Graphs

Next we prove the NP-hardness for chain graphs. Given an instance A of 3-Partition,
we construct the graph GA = (P,Q; E). For convenience, let M = B + 3m − 4 and
γi = |{a j ∈ A | a j ≥ i}|. Note that 0 < γi ≤ 3m for m + 1 ≤ i ≤ a3m. In particular,
γm+1 = 3m and γa3m > 0. First we define the vertex sets P = U∪V∪W and Q = X∪Y∪Z
as follows:

U = {ui | 1 ≤ i ≤ m}, V = {vi | m + 1 ≤ i ≤ a3m}, W = {wi | 1 ≤ i ≤ M − a3m},
X = {xi | 1 ≤ i ≤ 3m}, Y = {yi | m + 1 ≤ i ≤ a3m}, Z = {zi | 1 ≤ i ≤ M − a3m}.

Next we define the edge set as follows:1

E = (X × U) ∪ (Y × (U ∪ V)
) ∪ (Z × (U ∪ V ∪W)

)

∪ {{xi, v j} | xi ∈ X,m + 1 ≤ j ≤ ai}
∪ {{yi,wj} | yi ∈ Y, 1 ≤ j ≤ M − a3m − γi}.

See Fig. 1 for a simplified illustration of GA.
Let G0 and G1 be two disjoint copies of GA. That is, GA � G0 � G1 and V(G0) ∩

V(G1) = ∅. By Pi, Qi, Ui, Vi, Wi, Xi, Yi, and Zi, we denote the vertex sets of Gi, i ∈ {0, 1},
that correspond to the vertex sets P, Q, U, V , W, X, Y, and Z of GA, respectively.
Similarly, we denote the vertices of Gi, i ∈ {0, 1}, that correspond to vertices u j, v j, wj,
x j, y j, and z j of GA by ui

j, vi
j, wi

j, xi
j, yi

j, and zi
j, respectively. We define the graph HA as

follows (see Fig. 1): V(HA) = V(G0)∪V(G1) and E(HA) = E(G0)∪E(G1)∪ (P0 ×P1).

Lemma 3.6. The graph HA is a chain graph.

Lemma 3.7. The degrees of vertices in HA satisfy the following relations: degHA
(ui

j) =

2M + 2m, degHA
(vi

j) = 2M − m + γ j > 2M − m, 2M − a3m ≤ degHA
(wi

j) ≤ 2M − m,

degHA
(xi

j) = ai, degHA
(yi

j) = M − γ j < M, and degHA
(zi

j) = M. Moreover, Δ(HA) =
2M + 2m and δ(HA) = a1.

Now we prove that A is a yes instance of 3-Partition if and only if stc(HA) ≤ k. We
divide the proof into two only-if part (Lemma 3.8) and if part (Lemma 3.9).

1 For simplicity, we denote by S × T the set of unordered pairs {{s, t} | s ∈ S , t ∈ T }.
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U V W

X Y Z

P

Q

P0

Q0

U0 V0 W0

X0 Y0 Z0 P1

Q1Z1 Y1 X1

W1 V1 U1

GA HA

Fig. 1. Graphs GA and HA. A solid line between two sets implies that the two sets induce a
complete bipartite graph, and a dotted line between two sets implies that there are some (but not
all) edges between the two sets. Two color classes of HA are P0 ∪ Q1 and Q0 ∪ P1.

Lemma 3.8. Let k = 3M − m − 2. If A is a yes instance, then stc(HA) ≤ k.

Proof (Sketch). Let T be a spanning tree of HA with the edge set as follows:

E(T ) = {{u0
1, v} | v ∈ Q0 ∪ P1} ∪ {{u1

j , x
1
h} | ah ∈ A j, 1 ≤ j ≤ m} ∪ {{u0

j , x
0
j} | 2 ≤ j ≤ m}

∪ {{vi
j, y

i
j} | i ∈ {0, 1}, m + 1 ≤ j ≤ a3m} ∪ {{wi

j, z
i
j} | i ∈ {0, 1}, 1 ≤ j ≤ M − a3m}.

Then, we can prove that cngHA
(T ) ≤ k. ��

Lemma 3.9. Let k = 3M − m − 2. If stc(HA) ≤ k, then A is a yes instance.

4 Exponential-Time Exact Algorithm

We have shown that STC is NP-complete even for very simple graphs. It is widely be-
lieved that NP-hard problems cannot be solved in polynomial time. Thus we need fast
exponential-time (or sub-exponential-time) algorithms for these problems. Nowadays,
designing fast exponential-time exact algorithms becomes an important topic in theo-
retical computer science. See a recent textbook of exponential-time exact algorithms
by Fomin and Kratsch [8]. For STC, we can easily design an O∗(2m)- or O∗(nn)-time
algorithm that examine all spanning trees of input graphs, where n and m denote the
number of vertices and the number of edges, respectively. In this section, we describe
an algorithm for STC that runs in O∗(2n) time. Although it is still an exponential-time
algorithm, it is significantly faster than a naive algorithm.

Let G = (V, E) be a given undirected graph. For convenience, we denote |θG(X)| by
c(X). Note that c(∅) = c(V) = 0. Consider a spanning tree T with congestion at most k.
We regard T as a rooted tree with root r ∈ V . We denote this rooted tree by (T, r). Let
e = {u, v} ∈ E(T ) be an edge of T , and without loss of generality, let u be the parent
of v. Then, the congestion of e in T is equal to c(DT,r(v)), where DT,r(v) denotes the
set of descendants of v in (T, r). Since the congestion of T is at most k, we see that
c(DT,r(v)) ≤ k. See Fig. 2. Conversely, if c(DT,r(v)) ≤ k for all v ∈ V \ {r}, then the
congestion of T is at most k. This is because there exists a one-to-one correspondence
between the edges e of T and the vertices v in V \ {r} so that v is a deeper endpoint of e.
We summarize this observation in the following lemma.
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r

v

DT,r(v)

Fig. 2. The definition of DT,r(v)

X

v

u

X \ {u}

v

(X, v) is good. (X \ {u}, u) is good ∧ c(X) ≤ k. (Y, v), (X \ Y, v) are good.

⇐⇒
or

v

Y X \ Y

Fig. 3. An illustration of Lemma 4.2

Lemma 4.1. The congestion of a rooted tree (T, r) is at most k if and only if c(DT,r(v)) ≤
k for every vertex v ∈ V \ {r}.
The lemma above suggests the following dynamic-programming approach. We call a
pair (X, v) of a subset X ⊆ V and a vertex v � X a rooted subset of V . By definition,
X � V for a rooted subset (X, v) of V . A rooted subset (X, v) of V is good if there exists
a rooted spanning tree (T, v) of G[X∪{v}] such that c(DT,v(u)) ≤ k for all u ∈ X. Here, c
is a cut function of G, not of G[X ∪ {v}]. By definition (X, v) is good when X = ∅. Note
that there exists a rooted spanning tree (T, r) of G with congestion at most k if and only
if the rooted set (V \ {r}, r) is good.

The following lemma provides a recursive formula that forms a basis of our algo-
rithm (see Fig. 3).

Lemma 4.2. Let (X, v) be a rooted subset of V with |X| ≥ 1. Then, (X, v) is good if and
only if at least one of the following holds.

1. There exists a vertex u ∈ X ∩ NG(v) such that c(X) ≤ k and (X \ {u}, u) is good.
2. There exists a non-empty proper subset Y ⊆ X such that both of (Y, v), (X \ Y, v) are

good.

Lemmas 4.1 and 4.2 above readily give an O∗(3n)-time dynamic programming algo-
rithm. However, the fast subset convolution method enables us to solve the problem in
O∗(2n) time. We give a more detail below.

Let S be a finite set. For two functions f , g : 2S → R, their subset convolution is a
function f ∗ g : 2S → R defined as

( f ∗ g)(X) =
∑

Y⊆X

f (Y)g(X \ Y)

for every X ⊆ S . Given f (X), g(X) for all X ⊆ S , we can compute ( f ∗ g)(X) for all
X ⊆ S in O∗(2n) total time, where n = |S | [1].
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Back to the spanning tree congestion problem, let v ∈ V be an arbitrary vertex. We
define the function fv : 2V\{v} → R by the following recursion: fv(X) = 1 if X = ∅;
otherwise,

fv(X) =
∑

u∈X∩NG(v)

fu(X \ {u}) max{0, k − c(X) + 1} +
∑

∅�Y�X

fv(Y) fv(X \ Y),

where the empty sum is defined to be 0. It is easy to verify that fv(X) is non-negative
for every v ∈ V and every X ⊆ V \ {v}.

The following lemma connects the functions fv, v ∈ V and good rooted sets.

Lemma 4.3. Let (X, v) be a pair of a subset X ⊆ V \ {v} and a vertex v ∈ V. Then,
fv(X) > 0 if and only if (X, v) is a good rooted subset of V.

To apply the subset convolution method, we use the following functions. For each i ∈
{0, 1, . . . , n − 1}, where n = |V |, and v ∈ V , let f i

v : 2V\{v} → R be defined by

f i
v(X) =

⎧
⎪⎪⎨
⎪⎪⎩

fv(X) if |X| ≤ i,

0 if |X| > i,

for all X ⊆ V \ {v}. Then, it is not difficult to see the following.

1. For all v ∈ X and X ⊆ V \ {v}, f n−1
v (X) = fv(X).

f n−1
v (X) = fv(X).

2. For all v ∈ V and X ⊆ V \ {v},

f 0
v (X) =

⎧
⎪⎪⎨
⎪⎪⎩

1 if X = ∅,
0 otherwise.

3. For all i ∈ {1, . . . , n − 1}, v ∈ V , and X ⊆ V \ {v}
f i
v(X) =

∑

u∈X∩NG(v)

f i−1
u (X \ {u}) max{0, k − c(X) + 1}

+
∑

∅�Y�X

f i−1
v (Y) f i−1

v (X \ Y)

=
∑

u∈X∩NG(v)

f i−1
u (X \ {u}) max{0, k − c(X) + 1}

+
∑

Y⊆X

f i−1
v (Y) f i−1

v (X \ Y) − 2 f i−1
v (∅) f i−1

v (X)

=
∑

u∈X∩NG(v)

f i−1
u (X \ {u}) max{0, k − c(X) + 1}

+ ( f i−1
v ∗ f i−1

v )(X) − 2 f i−1
v (∅) f i−1

v (X).

Our algorithm is based on these formulas.
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Step 1. For all v ∈ V and X ⊆ V \ {v}, compute f 0
v (X) based on the formulas above.

Step 2. For each i = 1, . . . , n − 1 in the ascending order, do the following.
Step 2-1. For all v ∈ V , compute the subset convolution f i−1

v ∗ f i−1
v .

Step 2-2. For all v ∈ V and all X ⊆ V \ {v}, compute f i
v(X) based on the formula

above.
Step 3. If f n−1

v (V) > 0, then output Yes. Otherwise, output No.

The correctness is immediate from the discussion so far. The running time is O∗(2n)
since the running time of each step is bounded by O∗(2n). This is an algorithm for
solving the decision problem, but a simple binary search on k ∈ {1, . . . , |E|} can provide
the spanning tree congestion. Thus, we obtain the following theorem.

Theorem 4.4. The spanning tree congestion of a given undirected graph can be com-
puted in O∗(2n) time.

Note that the algorithm also works for the weighted case with the O(n)-factor increase
of the running time, since the number of distinct cut values c(X) is bounded by 2n and
so the binary search over the all possible values of c(X) takes at most O(log(2n)) = O(n)
iterations. This is possible if we compute c(X) for all X ⊆ V beforehand, which only
takes O∗(2n) time.

5 Remarks on Cographs

We showed NP-completeness of STC for graphs of clique-width at most three. There-
fore, it is quite natural to ask whether or not STC is NP-complete for graphs of clique-
width at most two; that is, for cographs [7]. Although the complexity of STC for
cographs remains unsettled, we have the following results.

Theorem 5.1. The spanning tree congestion of cographs can be approximated within
a factor four in polynomial time. Furthermore, the spanning tree congestion of chordal
cographs can be determined in linear time.
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Department of Applied Mathematics�

Charles University
Malostranskénám. 25, 118 00 Praha, Czech Republic

eva@kam.mff.cuni.cz

Abstract. We study the problem of deciding if, for a fixed graph H , a
given graph is switching-equivalent to an H-free graph. In all cases of
H that have been solved so far, the problem is decidable in polynomial
time. We give infinitely many graphs H such that the problem is NP-
complete, thus solving an open problem [Kratochv́ıl, Nešetřil and Zýka,
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1 Introduction

Seidel’s switching is a graph operation which makes a given vertex adjacent to
precisely those vertices to which it was non-adjacent before, while keeping the
rest of the graph unchanged. Two graphs are called switching-equivalent if one
can be made isomorphic to the other one by a sequence of switches.

The concept of Seidel’s switching was introduced by the Dutch mathematician
J. J. Seidel in connection with algebraic structures, such as systems of equian-
gular lines, strongly regular graphs, or the so-called two-graphs, see [12,13,14].

Applications of Seidel’s switching can be found in various algorithms; for
example, it plays an important role in Hayward’s polynomial-time algorithm for
solving the P3-structure recognition problem [5]. The algorithm of Rotem and
Urrutia [11] to recognize circular permutation graphs is based on switching, as
well as its linear-time variant found later by Sritharan [15]. Switching also plays
part in the algorithm for bi-join decomposition of graphs by de Montgolfier and
Rao [10].

Several authors have addressed the problem of deciding if a given graph is
switching-equivalent to a graph having a certain desired property. As observed
by Kratochv́ıl et al. [8] and also by Ehrenfeucht at al. [2], there is no obvi-
ous correlation between the computational complexity of this problem and the
computational complexity of deciding if a graph itself has the property.

For example, the problems of deciding if a graph contains a Hamiltonian path
or cycle are well known to be NP-complete [3]. However, Kratochv́ıl et al. [8]
� Supported by project 1M0021620838 of the Czech Ministry of Education.
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proved that any graph is switching-equivalent to a graph containing a Hamilto-
nian path, and it is polynomial to decide if a graph is switching-equivalent to
a graph containing a Hamiltonian cycle. These results have been extended to
graph pancyclicity by Ehrenfeucht et al. [1].

On the other hand, the problem of deciding switching-equivalence to a regular
graph was proven NP-complete by Kratochv́ıl [9], and switching-equivalence to
a k-regular graph for a fixed k is polynomial, while both the regularity and k-
regularity of a graph can be tested in polynomial time. Three-colorability and
switching-equivalence to a three-colorable graph are both NP-complete [2].

We focus on the problem of deciding switching equivalence to an H-free graph,
i. e., to a graph which does not contain an induced copy of H , where H is a certain
fixed graph. Polynomial-time algorithms for some graphs H have already been
known.

Let Kn denote the complete graph on n vertices, let Kn,m be the complete
bipartite graph with partities of size n and m, and let Pn be the path with
n vertices. The algorithm for K2 is simple (see [4]), the one for K1,2 is due
to Kratochv́ıl et al. [8]. Hayward [5] and independently Hage at al. [4] found
an algorithm for K3; the result is a core of the polynomial-time algorithm for
recognizing P3-structures of graphs. The case of P4 has been solved by Hertz [6]
in connection to the so called perfect switching classes. The algorithm for K1,3

is due to Jeĺınková and Kratochv́ıl [7].
It can be observed that an algorithm for H , when run on a complement of

the input graph, gives an algorithm for the complement H . (The switching-
equivalence of H and H ′, however, does not yield any obvious relation of algo-
rithms for H and H ′.)

Thus, in the cases that have been solved so far, there are polynomial-time
algorithms for all graphs H with at most three vertices, and for some graphs H
with four vertices. No hardness result has been known.

In Section 3, we give infinitely many examples of graphs H for which the prob-
lem is NP-complete. Thus, we answer a question first mentioned by Kratochv́ıl
et al. [8].

2 Preliminaries

All graphs considered are finite, undirected, and without loops or multiple edges.
The set of vertices of a graph G is denoted by VG, and the set of edges of G is
denoted by EG.

We say that the graph H is an induced subgraph of G, written H ≤ G, if
VH ⊆ VG and EH =

(
VH

2

)∩EG. For a set A ⊆ VG we call the graph (A,
(

A
2

)∩EG)
the subgraph of G induced by A. If an isomorphic copy of H is an induced
subgraph of G, we shall say that G contains H as an induced subgraph or just
that G contains H . We say that a graph G is H-free if it does not contain H .

A graph G = (V,
(
V
2

)
) is called a complete graph; a complete graph with n

vertices is denoted by Kn. A complete subgraph of a graph is also called a clique.
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Definition 1. Let G be a graph. Seidel’s switch of a vertex v ∈ VG results in a
graph called S(G, v) whose vertex set is the same as of G and the edge set is the
symmetric difference of EG and the full star centered in v, i. e.,

VS(G,v) = VG

ES(G,v) = EG \ {xv : x ∈ VG, xv ∈ EG}) ∪ {xv : x ∈ VG, x �= v, xv �∈ EG}.
It is easy to observe that the result of a sequence of vertex switches in G depends
only on the parity of the number of times each vertex is switched. This allows
generalizing switching to vertex subsets of G.

Definition 2. Let G be a graph. Then the Seidel’s switch of a vertex subset
A ⊆ VG is called S(G, A) and

S(G, A) = (VG, EG + {xy : x ∈ A, y ∈ VG \A}),

where the symbol + denotes the symmetric difference of sets.

Definition 3. We say that two graphs G and G′ are switching equivalent (de-
noted by G ∼ G′) if there is a set A ⊆ VG such that S(G, A) is isomorphic to
G′.

We remark that in our case of switching to an H-free graph, the fact that the
above definition deals with isomorphism is not crucial; if S(G, A) is isomorphic
to an H-free graph, then S(G, A) is H-free, too. Hence, no isomorphism needs
to be explicitly tested.

3 Switching to Hedgehog-Free Graphs

In this Section, we provide infinitely many graphs H such that switching to an
H-free graph is NP-complete.

For each k ≥ 3 we define a graph called hedgehog on 2k + 3 vertices, denoted
by Hk. It is composed of a clique on 2k vertices called the body of the hedgehog,
and three other vertices called pins. Exactly k vertices of the body are adjacent
to all pins, and the remaining k vertices of the body are non-adjacent to any pin
(see Fig. 1).

Theorem 1. For each k ≥ 3 and each hedgehog Hk, it is NP-complete to decide
if a given graph can be switched to an Hk-free graph.

Proof. Consider a fixed k ≥ 3. We proceed by reduction of the problem Mono-

tone Not All Equal 3-SAT. An instance of Monotone Not All Equal

3-SAT is a formula in CNF, in which every clause contains exactly three vari-
ables and there are no negations. The formula is satisfiable if and only if there
exists a truth assignment so that in each clause, at least one variable is true and
at least one is false.
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Fig. 1. Hedgehogs H3 and H4

The problem is known to be NP-complete [3]. Clearly, we may assume that
the input formulas contain at least eight distinct variables.

Let ϕ be an instance of Monotone Not All Equal 3-SAT. We transform
ϕ into a graph G = Gϕ as follows. For each variable v, there is a vertex xv. A
clause c = (vi ∨ vj ∨ vl) is represented by two disjoint cliques Kc and K ′

c, each
having 4k − 2 vertices. Exactly 2k − 1 vertices of Kc and 2k − 1 vertices of K ′

c

are adjacent to xvi , xvj and xvl
, and are called outer vertices. Other vertices of

Kc and K ′
c are called inner. See Fig. 2 for illustration.

. . .xvi
xvj xvl

Kc

K ′
c

inner →

outer →

Fig. 2. An example of the graph Gϕ (for k = 3). The cliques Kc and K′
c represent a

clause c = (vi ∨ vj ∨ vl).

Suppose that there is a satisfying valuation μ of ϕ. Let A be the subset of
vertices corresponding to true variables, i. e., A = {xv : μ(v) = true}. We prove
that S(G, A) is Hk-free.

We use the following terminology: vertices in A are called switched, other
vertices of G are called non-switched. Vertices of G that correspond to a variable
of ϕ are called variable vertices, others are called non-variable vertices.

Assume that there is a hedgehog Hk in S(G, A).
As none of the non-variable vertices is switched, it is clear that they induce

the same cliques in S(G, A) as in G, and that vertices in distinct cliques are
not adjacent. Hence, the hedgehog body contains vertices of at most one such
clique. At the same time, it contains vertices of at least one such clique, because
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variable vertices form a complete bipartite graph in S(G, A), so at most two
variable vertices can be in the body. We denote this clique by K, the set of inner
vertices of K by I, and the set of outer vertices of K by O.

Let c be the clause represented by K. We further denote the set of non-
switched variable vertices representing the variables (literals) of c as L, the set
of other non-switched variable vertices as N (non-literals). LA and NA denote
the corresponding sets of switched variable vertices.

Since variable vertices induce a complete bipartite subgraph in S(G, A), the
hedgehog body contains at most two variable vertices, namely, one in NA and
one in L. We denote them by xNA and xL, respectively. The remaining body
vertices are elements of O ∪ I.

Now consider pins of the hedgehog; they are adjacent to exactly k body ver-
tices out of the total 2k. The adjacency of vertices of S(G, A) to the body is as
follows.

– Vertices in L are adjacent to vertices in O and to xNA ,
– vertices in LA are adjacent to vertices in I and to xL,
– vertices in N are adjacent to xNA ,
– vertices in NA are adjacent to vertices in O, I, and to xL,
– vertices of other cliques are adjacent only to xNA and/or xL.

We observe that in the latter three cases, vertices have either too few or too
many neighbors in the body, as k > 2. A vertex of the first case can be a pin, so
can a vertex of the second case, but not at the same time, as their neighborhoods
in the body are disjoint.

Then, the pins are either three vertices of L or three vertices of LA. In both
cases, the variables of the clause c are all assigned the same value, and c is
unsatisfied, which is a contradiction.

Now assume that there is a set A such that S(G, A) is Hk-free. We define a
valuation μ of variables so that μ(v) is true if and only if xv ∈ A (there may also
be non-variable vertices in A, but these do not influence μ).

Assume that a clause c = (vi∨vj ∨vl) is unsatisfied in μ. We prove that there
is a hedgehog Hk in S(G, A) whose body is in the union of vertices of Kc and
K ′

c, and whose pins are variable vertices.
Kc and K ′

c are two cliques in G and regardless of A, their vertices induce two
cliques in S(G, A) as well. One of these cliques contains at least 4k− 2 vertices.
We denote this clique by K.

Consider the role of a vertex of K in G and its relation to the set A. It is
either an outer vertex of a clique and not an element of A, or an inner vertex
and not in A, or outer in A, or inner in A. We denote the sets of these vertices
of K by O, I, OA, and IA, respectively.

Similarly, we divide all variable vertices according to whether they are literals
or non-literals of the clause c, and whether they belong to A, into sets L, N ,
LA, and NA.

In S(G, A), the adjacency between vertices of K and variable vertices is as
follows (“a” meaning adjacent and “n” meaning non-adjacent).



468 E. Jeĺınková

L N NA LA

O a n a n
I n n a a
IA a a n n
OA n a n a

To find a hedgehog, we discuss the sizes of the sets above. As we assume that
the clause c is unsatisfied, the three vertices xvi , xvj and xvl

are either all in L,
or all in LA. We consider the first case, the second being symmetrical. Then the
size of L is three.

Vertices in O and IA are adjacent to vertices in L, vertices in I and OA are
not. Hence, if there are at least k vertices in O ∪ IA, and at least k vertices in
I ∪OA, then these k + k vertices form a hedgehog with pins in L.

Otherwise, assume that |O ∪ IA| is at most k − 1. Then |I ∪ OA| is at least
3k− 1. By the construction, each of I and OA contains at most 2k − 1 vertices.
Then the sizes of OA and I are at least k, and these vertices form the body of
a hedgehog. The pins are either in N or in NA; we have assumed that there are
at most eight distinct variables in ϕ, and at most three of them occur in the
clause c, hence either N or NA contains at least three vertices. Fig. 3 shows an
example of a hedgehog with pins in N .

IA

I
OA

L
N

NAK

Fig. 3. A hedgehog in I ∪ OA ∪ N in S(G, A). The sets O and LA are empty. Vertices
in A are white.

If, on the other hand, |I ∪ OA| is at most k − 1, we proceed symmetrically
with the role of outer and inner vertices interchanged. Again, we find a hedgehog
with pins in N or in NA.

Hence, as S(G, A) is Hk-free, no clause can be unsatisfied. Then μ is a satis-
fying valuation, which we wanted to prove.

The transformation can clearly be done in polynomial time.
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It is easy to see that the problem is in NP. A certificate containing the set
A can be checked in polynomial time, we simply test each induced subgraph of
S(G, A) having 2k + 3 vertices, whether it is a hedgehog.

4 Concluding Remarks

We have examined the problem of switching-equivalence to an H-free graph, and
we have given infinitely many graphs H for which the problem is NP-complete.
Thus, in the solved cases there are polynomial-time algorithms for K2 (this is
easy to prove, see also [4]), K3 ([5,4]), K1,2 ([8]), P4 ([6]), K1,3 ([7]), and a
NP-hardness result for hedgehogs.

However, we are still very far from a complete characterization of graphs H .
Hence, the following problem remains open.

Problem 1. For which graphs H is the problem of deciding switching-equivalence
to an H-free graph polynomial? For which graphs H is it NP-complete? (Are
there some graphs for which it is neither?)

The most symmetrical case is the complete graph Kk. So far we have not been
able to solve this special case for any k ≥ 4, hence we find it worth interest.

Problem 2. What is the computational complexity of switching-equivalence to a
Kk-free graph, for any fixed k ≥ 4?
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Abstract. A Weight graph is a connected (multi)graph with two ver-
tices u and v of degree at least three and other vertices of degree two.
Moreover, if any of these two vertices is removed, the remaining graph
contains a cycle. A Weight graph is called simple if the degree of u and v
is three. We show full computational complexity characterization of the
problem of deciding the existence of a locally injective homomorphism
from an input graph G to any fixed simple Weight graph by identifying
some polynomial cases and some NP-complete cases.
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1 Introduction

Graphs in this paper are generally simple. The only graphs with allowed loops
and parallel edges are the Weight graphs. We denote the set of vertices of a graph
G by V (G) and the set of edges by E(G). The degree of a vertex v in a graph G
is denoted by degG(v) (recall that in multigraphs, degree of a vertex v is defined
as the number of edges going to other vertices plus twice the number of loops at
v) and the set of all neighbors of v by NG(v). We omit G in the subscript if G
is clear from the context. By [n] we denote the set of integers {1, . . . , n}.

A connected (multi)graph H is a Weight graph (or sometimes known also as
a dumbbell graph) if it contains two vertices u and v of degree at least three and
all other vertices are of degree two. Moreover, both H − u and H − v contain
a cycle or a loop. The Weight graph H is simple if both u and v have degree
3. Note that a simple Weight graph consists of a path connecting u and v and
two cycles. A simple Weight graph H is denoted by W(a, b, c) if H is a union of
cycles of lengths a and b and a path of length c. We call W(a, b, c) reduced if the
greatest common divisor of a, b and c is one.

Let G and H be graphs. A homomorphism f : G → H is an edge preserving
mapping from V (G) to V (H). If H is not a multigraph then homomorphism
is locally injective (resp. surjective, bijective) if NG(v) is mapped to NH(f(v))
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injectively (resp. surjectively, bijectively) for every v ∈ V (G). Locally bijec-
tive homomorphism is also known as a covering projection or simply a cover.
Similarly, locally injective homomorphism is known as a partial covering pro-
jection or a partial cover. In this paper we denote locally injective homomor-
phism as LI-homomorphism. In case that H is multigraph (and G is simple)
LI-homomorphism generalizes as a mapping f : V (G) ∪ E(G) → V (H) ∪ E(H)
such that:

i) for every u ∈ V (G): f(u) ∈ V (H)
ii) for every e = {u, v} ∈ E(G): f(e) ∈ E(H) and f(e) = {f(u), f(v)}

iii) for every u ∈ V (G) and every non loop edge e ∈ E(H) such that f(u) ∈ e,
there is at most one edge e′ ∈ E(G) such that u ∈ e′ and f(e′) = e

iv) for every u ∈ V (G) and every loop edge e ∈ E(H) on vertex f(u), there are at
most two edges e′, e′′ ∈ E(G) such that u ∈ e′, u ∈ e′′ and f(e′) = f(e′′) = e

We can generalize the definition of locally surjective, resp. locally bijective ho-
momorphism from simple graph to multigraph by simply changing the phrase
“at most” by “at least”, resp. “exactly” in iii) and iv). In the following text we
denote homomorphism f from G to H simply as f : G→ H .

We consider the following decision problem. Let H be a fixed graph and G be
an input graph. Determine the existence of a locally injective (surjective, bijec-
tive) homomorphism f : G → H . We denote the problem by H-LIHom (resp.
H-LSHom, H-LBHom). If there is no local restriction on the homomorphism,
the problem is called H-Hom.

In this paper we focus on the H-LIHom problem.

Problem: H-LIHom

Input: Graph G
Task: Determine the existence of a LI-homomorphism f : G→ H .

Locally injective homomorphisms are closely related to H(2, 1)-labelings, which
have an applications in frequency assignment. Let H be a graph. An H(2, 1)-
labeling of a graph G is a mapping f : V (G) → V (H) such that image of
every pair of adjacent vertices is two distinct and nonadjacent vertices. More-
over, image of every pair of vertices in distance two is two distinct vertices. For
simple graphs the mapping f corresponds to a LI-homomorphism from G to the
complement of H .

The computational complexity of H-Hom was fully determined by Hell
and Nešetřil [11]. They showed that the problem is solvable in polynomial time
if H is bipartite and it is NP-complete otherwise.

The study of H-LSHom was initiated by Kristiansen and Telle [15] and com-
pleted by Fiala and Paulusma [10] who gave a full characterization by showing
that H-LSHom is NP-complete for every connected graph on at least three
vertices.

The computational complexity of locally bijective homomorphisms was first
studied by Bodlaender [2] and Abello et al. [1]. Despite of the effort [12,13,14]
the complete characterization is not known.
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Similarly, for the locally injective homomorphism the dichotomy for the com-
putational complexity is not known. Some partial results can be found in [6,7,9].
Fiala and Kratochv́ıl [8] also considered a list version of the problem and showed
dichotomy. Note that no direct consequences of complexity of H-Hom or
H-LSHom to H-LIHom are known.

The authors of [7] show that H-LBHom is reducible in polynomial time to
H-LIHom. Hence it makes sense to study the complexity of H-LIHom where
H-LBHom is solvable in polynomial time.

In this paper we focus on graphs with at most two vertices of degree three.
Restriction on just two vertices of degree more than two is a parallel to boolean
logic where two values CSP is fully characterized from the complexity point of
view, but multi-value CSP is still open [3]. A complete dichotomy for locally
bijective homomorphism of graphs with at most two vertices of degree more
than two was shown in [12].

In case of LI-homomorphism this problem was solved for Theta graphs. Theta
graph is a graph with exactly two vertices u and v of degree at least three and
several paths connecting them. Note that u and v may be connected by parallel
edges. Study of LI-homomorphisms to the Theta graphs started by a work of
Fiala and Kratochv́ıl [6], continued in [9] and was finished by showing a complete
dichotomy by Lidický and Tesař [16].

Also Weight graphs, considered in this paper, have at most two vertices of
degree more than two. Study of Weight graphs was initiated by Fiala [5] by
showing the following theorems.

Theorem 1. W(a, a, a)-LIHom is NP-complete.

Theorem 2. W(a, a, b)-LIHom is polynomial time solvable, whenever a is di-
visible by strictly higher power of two than b, and is NP-complete otherwise.

Fiala and Kratochv́ıl [6] observed that it is sufficient to consider only reduced
Weight graphs.

Proposition 1. Let W be a Weight graph and d be the greatest common divisor
of lengths of simple paths in W . Let W ′ be obtained from W by shortening each
of its simple path by a factor of d. Then W -LIHom is reducible to W ′-LIHom

in polynomial time.

In this paper we continue the study of Weight graphs by showing complete
dichotomy for simple Weight graphs.

Theorem 3. Let H be a bipartite simple reduced Weight graph. Then H-LIHom

problem is solvable in polynomial time.

Theorem 4. Let H be a non-bipartite simple reduced Weight graph. Then
H-LIHom problem is NP-complete.

In the following section, we introduce several definitions and observations. Then
we give the proof of Theorem 3 and finish with Section 4 containing the proof
of Theorem 4. Some of the proofs are ommited due to page limit.
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2 Preliminaries

Let G be a graph and H be a spanning subgraph of G. We say that H is a
2-factor of G if for all v ∈ V (G) : degH(v) = 2. Let C be a set of colors. A
mapping ϕ : E(G) → C is called an edge coloring if for every e1, e2 ∈ E(G) that
share a common vertex holds ϕ(e1) �= ϕ(e2).

Let G be a graph and v0v1v2 . . . vn be a path P of length n in G. The path is
simple if v0 and vn are vertices of degree at least three and all inner vertices of
P have degree two. We denote a simple path of length n by SPn.

Let H be a Weight graph with vertices wA and wB of degree at least three.
Let f : G → H be a LI-homomorphism. Note that f must map all vertices of
degree at least three to wA or wB . Hence every end vertex of every simple path
of G must be mapped to wA or wB . We call a vertex big if it has degree at least
three. We denote the set of big vertices of G by B(G). Note that wA and wB are
also big vertices.

We need to control what are the possible LI-homomorphism of simple paths.
Hence we define a function gP

f (v0, vn) = x if the edge v0v1 is mapped by a
LI-homomorphism f to an edge of SPx in H . We also use notation stPf (v0, vn)
to denote f(v0v1). We omit the superscript P if there is only one simple path
containing v0 and vn and the subscript f if it is clear from the context.

We say that SPn allows decomposition x−y if there exists a graph G containing
a simple path P of length n with end vertices v0 and vn and a LI-homomorphism
f : G → H such that gP

f (v0, vn) = x and gP
f (vn, v0) = y. We denote the

decomposition by x −k y (resp. x −c y) if it forces that f(v0) = f(vn) (resp.
f(v0) �= f(vn)).

In the case of decomposition x−ky (resp. x−cy) we say, that the decomposition
keeps (resp. changes) the parity.

Let n be a positive integer and E ⊆ {a1, a2, . . . an}. The following notation
nH

E : x1 − y1, x2 − y2, . . . , xs − ys, (z1 − w1), (z2 − w2), . . . , (zt − wt)
describes the list of all decompositions x− y of SPn where x, y ∈ E . Decom-

positions xi − yi must be possible and decompositions zj − wj are optional for
all i ∈ [s] and j ∈ [t]. Moreover, −k and −c can be used instead of just −.

We call an edge e of H bridge edge if it is on a simple path with distinct end
vertices and loop edge otherwise. If an edge e′ is mapped by a LI-homomorphism
f to a bridge (loop) edge, we call e′ also a bridge (resp. loop) edge.

We denote the greatest common divisor of x1, . . . xn by GCD(x1, . . . , xn).

Proposition 2. Let a, b, d ∈ N such that GCD(a, b) = d. Then for every z ∈ Z
there exist s, t ∈ Z such that as + bt = zd.

3 Proof of Theorem 3 (Polynomial Case)

In this section we give the proof of Theorem 3.
First, we define W(1na , 1nb , 1nc) to be a Weight graph with na, resp. nb loops

on vertices wA, resp. wB and nc parallel edges between wA and wB . Next we
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define that Weight graph W(ana , bnb , cnc) is obtained from W(1na , 1nb , 1nc) by
subdividing all loops on vertex wA, resp. wB a − 1, resp. b − 1 times and all
parallel edges between wA and wB c − 1 times. Theorem 3 is a special case of
the following Theorem 5 for na = nb = nc = 1.

Theorem 5. Let H = W(ana , bnb , cnc), where a, b, c, na, nb, nc ∈ N such that
GCD(a, b, c) = 1, be bipartite. Then H-LIHom problem is solvable in polynomial
time.

Proof. Let H be a fixed Weight graph from the statement of the theorem. Let
wA, wB ∈ V (H) be of degrees 2na + nc and 2nb + nc respectively. As H is
bipartite and GCD(a, b, c) = 1, we conclude that c is odd and a and b are (not
necessarily distinct) even numbers.

Let G be an input graph. We assume that G is bipartite. If not, there is no
LI-homomorphism from G to H and the algorithm returns NO answer instantly.

First we partition big vertices of V (G) to two sets of the bipartition A and B.
Note that all vertices of A must be mapped to wA and all vertices of B to wB

or vice versa. We try both possibilities and without loss of generality we assume
that vertices of A are mapped to wA and vertices of B are mapped to wB .

We reduce H-LIHom problem to a flag factor problem of an auxiliary graph
G′ (of size polynomial in size of G).

Problem: Flag factor
Input: graph G′ and functions fl : V (G′) → N0 and fu : V (G′) → N
Output: spanning subgraph F of G′ satisfying fl(v) ≤ degF (v) ≤ fu(v) for all
v ∈ V (G′).

We call the edges of F matched edges. The flag factor problem is solvable
in polynomial time [6]. We use the flag factor to identify edges of G, which
should be mapped to bridge edges of H . Let us now describe G′. The auxiliary
graph G′ contains two sets of vertices A′ and B′ corresponding to A and B. We
define fu(v) = nc for all v ∈ B′ ∪ A′, fl(v) = degG(v) − 2na for all v ∈ A′ and
fl(v) = degG(v)− 2nb for all v ∈ B′.

For every (simple) path between big vertices u, v ∈ B(G) we construct a list
L of all possible mappings under some LI-homomorphism (since H is bipartite,
all these decompositions either change or keep parity) and we only distinguish
if these decompositions begin, resp. end by loop edge or bridge edge. In list L
we denote loop edge as “∼” and bridge edge as “−”. We join corresponding
u′ ∈ V (G′) and v′ ∈ V (G′) by gadget according to L as depicted in Figure 1
(note that corresponding lists for vertices u, v and v, u are symmetric and so
corresponding gadgets are symmetric as well).

We show that there exists a LI-homomorphism f : G → H if and only if there
exists a flag factor F of G′.

If f exists, we can get F in a following way: for every edge {u, w} ∈ E(G) such
that u ∈ B(G) and {u, w} is mapped to the bridge edge, we take an edge incident
to u′ in a gadget corresponding to a simple path containing an edge {u, w} to
F . For such F for every u ∈ B(G) holds that fl(u′) ≤ degF (u′) ≤ fu(u′) and
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u v u′ v′
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Fig. 1. Gadget joining vertices u′ and v′ in G′. The right gadget is chosen according
to possible decompositions of a simple path joining big vertices u and v in G. The
numbers below the vertices indicate the intervals given by fl and fu.

it is not hard to prove (because of choosing of appropriate gadgets in construction
of G′) that if F is not a flag factor then we can add to F some edges which are
not incident to any u′ for u ∈ B(G). So if a flag factor F does not exist, neither
does a LI-homomorphism f .

If a flag factor F exists, we show that a LI-homomorphism f : G → H also
exists. The choice of fl and fu assures that each vertex of A′, resp. B′ has at
most nc incident matched edges and at most 2na, resp. 2nb incident non-matched
edges.

Let v ∈ V (G) be big and v′ be the corresponding vertex in G′. Then if v ∈ A we
prescribe f(v) = wA and otherwise f(v) = wB . Let P be a simple path beginning
with v and g be the gadget corresponding to P in G′. If there is a matched edge
in g incident to v′, then f will map the beginning of P to some bridge edge and
to some loop edge incident to vertex f(v) otherwise. We do not define f on P
yet. We only prescribe one of decompositions {a−a, a−b, a−c, b−c, b−b, c−c},
which splits P into paths of lengths a, b and c and it prescribes which internal
vertices of P are mapped to wA and wB . So, we have fixed which vertices of G
are mapped to wA and wB.

Let T be vertices of G which are mapped to big vertices of H . Note that also
vertices of degree less than three may be in T . Also note that a path P where
T ∩P are the only endpoints of P has length in {a, b, c}. We just need to decide
to which loop or bridge of H the path P will be mapped.

We create auxiliary graphs Ua, Ub, resp. Uc with vertex set {u ∈ T | f(u) =
wA}, {u ∈ T | f(u) = wB}, resp. T . For all x ∈ {a, b, c} two vertices of Ux are
joined by an edge if they are connected by a path of length x which is internally
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disjoint with T and Ux contains a loop at vertex v if there is a cycle C of length
x where v = T ∩ C for x ∈ {a, b}. The graph Ua can be made 2na-regular by
adding vertices and edges. It is well known that any 2na-regular graph can be
partitioned to na 2-factors in polynomial time. For each 2-factor Z of Ua we use
one cycle Ca of length a of H and map vertices in cycles of Z to Ca.We treat
Ub in analogous way. Note that there are no loops in Uc. Graph Uc is bipartite
with maximum degree at most nc and by König’s theorem there exists an edge
coloring ϕ : E(Uc) → [nc]. We assign one simple path of length c of H to each
color class of ϕ. So f can be constructed from F .

All steps of the reduction can be computed in polynomial time and the flag
factor problem is also solvable in polynomial time. Hence we conclude that f can
be computed in polynomial time if exists or detect that it does not exist. 
�

4 Proof of Theorem 4 (NP-Complete Case)

The goal of this section is to give a proof of Theorem 4 by showing a reduction
from 1-in-3 SAT or NAE-3-SAT. These problems ask for existence of an eval-
uation of formula in CNF with clauses of size exactly 3 such that in every clause
there is exactly one positive literal, resp. in every clause there exist at least one
positive as well as at least one negative literal. Both problems are NP-complete
by Schaefer [17]. Note that H-LIHom is in NP as a description of the desired
homomorphism is of linear size and can be verified in polynomial time. Hence
we only need to proof NP-hardness.

We use the same basic notation as in the previous section. Let H be a fixed
non-bipartite Weight graph W(a, b, c) with big vertices wA and wB . Recall that
Theorem 2 implies a �= b.

We start by restricting a, b and c by the following corollary of Theorem 1.

Corollary 1. If there exist x, y ∈ N such that c = ax = by, then H-LIHom is
NP-complete.
(proof is ommited)

Lemma 1. Let a, b, c ∈ N such that GCD(a, b, 2c) = 1. Then exist s, t, z ∈ N
such that as = bt + 2cz + c and t > z.
(proof is in ommited)

We use the notation u ∼ n − v, where u, v ∈ {wA, wB} and n ∈ N to denote
existence of a LI-homomorphism f from a simple path u = v0v1 . . . vn = v to H
such that gf (v0, v1) is a loop edge and gf (vn, vn−1) is a bridge edge. Variants
where ∼ and − are combined differently are defined similarly. Also � is used
instead of ∼ and − if the exact mapping is not known. We say that f is beginning
with gf (v0, v1) and f is ending with gf(vn, vn−1) on path v0v1 . . . vn.

The following corollary connects Lemma 1 and mappings of simple paths to H .

Corollary 2. There exists k ∈ N such that there exist LI-homomorphisms f1

and f2 where f1 = wA ∼ k ∼ x, f2 = wB ∼ k − x and x ∈ {wA, wB}.
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Proof. As H is non-bipartite, a, b and c satisfy the assumptions of Lemma 1.
Let k = as + az = bt + 2cz + az + c and x = wA. As k is divisible by a, f1 can
just use the the cycle of length a to achieve wA ∼ k ∼ wA. We construct the
mapping f2 starting from wA by z repetitions of the pattern cbca and then by
adding c and finally (t − z) times b. As t > z, we have that gf2(vk, vk−1) = b.
Hence we constructed wA − k ∼ wB . 
�

In the following, we assume that k is the smallest possible number, whose exis-
tence is guaranteed by the previous Corollary, such that there exists mappings
f1 = wA ∼ k � x and f2 = wB ∼ k � x. We use y for the vertex of H such that
{x, y} = {wA, wB}.

Lemma 2. There do not exist mappings

1. both wA ∼ k − x and wB ∼ k − x

2. both wA ∼ k ∼ x and wB ∼ k ∼ x

Proof. In the first case we observe that there exist mappings f ′
1 = wA ∼ (k−c) �

y and f ′
2 = wB ∼ (k−c) � y contradicting the choice of k. In the second case we

consider mappings f ′′
1 = wA ∼ (k − d) � x and f ′′

2 = wB ∼ (k − d) � x, where
d is the length of the loop at x in H . This also contradicts the choice of k. 
�

Without loss of generality, in what follows we assume that f1 = wA ∼ k ∼ x
and f2 = wB ∼ k − x (since Lemma 2 and the fact that W(a, b, c) is isomorphic
to W(b, a, c)).

Lemma 3. There do not exist mappings

1. wA ∼ k ∼ y

2. wB ∼ k − y

(proof is ommited)

Let us now summarize the results of previous lemmas:

– mappings wA ∼ k ∼ x and wB ∼ k − x exist
– mappings wA ∼ k − y and wB ∼ k ∼ y may or may not exist
– mappings wA ∼ k − x, wA ∼ k ∼ y, wB ∼ k ∼ x, and wB ∼ k − y do not

exist

Next we introduce several gadgets. Let z ∈ {wA, wB} then Z-gadget is a graph
containing a vertex vz of degree one such that any LI-homomorphism from Z-
gadget to H maps vz to z and the edge incident with vz is mapped to a loop
edge. We call vz a z-vertex.

Lemma 4. For every z ∈ {wA, wB} there exists an Z-gadget.
(proof is ommited)
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If z is wA, wB, resp. x then we denote appropriate Z-gadget as A-gadget, B-
gadget, resp. X-gadget and appropriate z-vertex as a-vertex, b-vertex, resp. x-
vertex.

A variable gadget V G(i) for i ∈ N is a graph containing two subsets of vertices
A and B such that |A| = |B| = i and vertices of A ∪ B have degree two.
Moreover, if a graph G contains a copy of V G(i) and all vertices of A ∪ B are
big, then for every LI-homomorphism f : G → H holds that edges adjacent
to vertices of A ∪ B not contained in V G(i) are mapped to loop edges and
either ∀v ∈ A : f(v) = wA and ∀v ∈ B : f(v) = wB or in the other case
∀v ∈ A : f(v) = wB and ∀v ∈ B : f(v) = wA.

Lemma 5. If c is not divisible neither by a nor b then there exists a variable
gadget V G(i) for all i ∈ N.

Proof. We first describe a construction of V G(i) and then argue that it is indeed
a variable gadget.

We start the construction by taking i copies of the X-gadget X1, . . . , Xi with
x-vertices x1, . . . , xi (see Figure 2). We continue by adding paths xjajbjxj+1 of
length three for all j ∈ [i] where xi+1 is x1. Finally, we subdivide both edges
incident to xj that are not contained in gadget Xj k−1 times and the edge ajbj

c− 1 times for all j ∈ [i]. The resulting graph is V G(i) and A = {aj : 1 ≤ j ≤ i}
and B = {bj : 1 ≤ j ≤ i}.

x1 a1 b1
x2 a2 b2

x3bi
aixi

k c k k c kkck

X X XX

Fig. 2. Gadget V G(i) from Lemma 5. Light lines indicate edges which will be present
in a graph containing the gadget.

Let G be a graph containing a copy of V G(i) where A ∪ B ⊆ B(G) and
f : G→ H be LI-homomorphism. Observe that f(xj) = x because it belongs to
a copy of X-gadget and one of the two edges incident to xj not contained in the
X-gadget is mapped to a loop edge and the other one is mapped to a bridge edge
for all j ∈ [i]. Since neither a nor b divides c, the only decomposition of a simple
path of length c is c−c c and so gf (aj , bj) = c = gf (bj , aj) and f(aj) �= f(bj) for
every j ∈ [i].

Suppose that st(x1, a1) is a loop edge. We know that st(a1, x1) is a loop edge
(because st(a1, b1) is a bridge edge) and so f(a1) = wA and gf (a1, x1) = a
(because x ∼ k ∼ wA and Lemma 2). It means that f(b1) = wB and since
st(b1, x2) is a loop edge and f(x2) = x we have that st(x2, b1) is a bridge edge
and consequently st(x2, a2) is a loop edge. Now we can continue in the same way
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in gadget V G(i) and we get that st(aj , bj) as well as st(bj , aj) is a bridge edge,
f(aj) = wA and f(bj) = wB for all j ∈ [i], what proves that V G(i) is a variable
gadget.

If st(x1, a1) is a bridge edge then st(x1, bi) is a loop edge and we can continue
in a similar way (but in an opposite direction) as in the previous paragraph.
We get that st(aj , bj) as well as st(bj , aj) is a bridge edge, f(aj) = wB and
f(bj) = wA for all j ∈ [i], what proves that V G(i) is a variable gadget. 
�
Lemma 6. If c is divisible by exactly one of the numbers a or b then there exists
a variable gadget V G(i) for all i ∈ N.
(proof is ommited)

Recall that for every i ∈ N there exists variable gadget V G(i) such that there
exist LI-homomorphisms f1, f2 : V G(i) → H such that for every vertex v ∈ A∪B
one edge incident to v is mapped to loop edge and one is mapped to bridge
edge (for both f1 and f2) and ∀u ∈ A, ∀v ∈ B : f1(u) = f2(v) = wA and
f1(v) = f2(u) = wB . In the following text we use only such variable gadgets.

The last gadget is a gadget for representing clauses, so called CL-gadget. It
contains three vertices of degree one z1, z2 and z3 which are connected by three
internally disjoint paths of length k to a vertex z4 of degree three.

Lemma 7. Let f be a locally injective homomorphism from CL-gadget to H
such that f(z1), f(z2), f(z3) ∈ {wA, wB} and st(z1, z4), st(z2, z4) and st(z3, z4)
are loop edges. Then {f(z1), f(z2), f(z3)} = {wA, wB}.
Proof. Suppose for contradiction that |{f(z1), f(z2), f(z3)}| = 1. First, let
f(z1) = f(z2) = f(z3) = wA. If f(z4) = x, then we get a contradiction with
Lemma 2 as f implies existence of a decomposition wA ∼ k − x. If f(z4) = y,
then we get existence of wA ∼ k ∼ y contradicting Lemma 3.

The case f(z1) = f(z2) = f(z3) = wB is analogous. Both cases f(z4) = x and
f(z4) = y contradict Lemma 2 or Lemma 3. 
�
Let � be a formula in CNF with clauses C1, . . . , Cm and variables p1, . . . , pn where
all clauses contain exactly three literals. We denote the number of occurrences
of a variable p in � by occ(p).

Now describe a construction of a graph G�. First take a copy CLi of CL-
gadget for every i ∈ [m] and then take a copy V Gj of V G(occ(pj))-gadget for
every j ∈ [n] (see Figure 3 for an example). We denote A and B of V Gj by Aj

and Bj for every j ∈ [n] and {z1, z2, z3} of CLi by Zi and zj by zi
j for every

j ∈ {1, 2, 3, 4} and i ∈ [m].
Next we identify some vertices. If pj occurs as a positive literal in Ci, we

identify one vertex of Zi with one vertex of Aj and if the occurrence is negative,
we identify one of Zi with one of Bj . The identification can be done such that
every vertex is identified at most once as occ(pj) ≤ |Aj | = |Bj |. Finally, for every
w ∈ Aj ∪Bj of degree 2, we add a new vertex of degree one adjacent to w (so w
is big vertex).

We prove Theorem 4 as a consequence of the following Lemmas 8 and 9.
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Fig. 3. Clause C1 = (p1 ∨ p2 ∨ ¬p3)

Lemma 8. If there exist both decompositions wA ∼ k−y and wB ∼ k ∼ y, then
H-LIHom is NP-hard.

Proof. Let � be an instance of NAE-3-SAT.
If there exists a LI-homomorphism f : G� → H , then we evaluate pj true if

f(Aj) = wB and false otherwise for all j ∈ [n] (this evaluation is well defined
because of definition of variable gadget). Lemma 7 implies that there is no clause
with all literals equal.

On the other hand let ϕ be an NAE evaluation of �. We predefine a LI-
homomorphism f : G� → H by mapping V Gj while requiring f(Aj) = wB if
�(pj) is true and f(Aj) = wA otherwise. This can be done as V Gj ’s are disjoint.
Observe that Zi = {wA, wB}. Hence f can be also defined on CLi for all i ∈ [m].


�

Lemma 9. If at least one of decompositions wA ∼ k − y and wB ∼ k ∼ y does
not exist, then H-LIHom is NP-hard.

Proof. Let � be an instance of 1-in-3-SAT.
If there exists a LI-homomorphism f : G� → H , then we evaluate pj true

if f(Aj) = wB and false otherwise for all j ∈ [n]. The assumptions imply that
f(zi

4) = x for all i ∈ [n], hence exactly one vertex of f(zi
1), f(zi

2) and f(zi
3) is

wB and so every clause has exactly one literal evaluated as true.
On the other hand let ϕ be an 1-in-3 evaluation of �. We predefine a LI-

homomorphism f : G� → H by mapping V Gj while requiring f(Aj) = wB if
�(pj) is true and f(Aj) = wA otherwise. This can be done as V Gj ’s are disjoint.
Next we map f(zi

4) to x. As exactly one literal in every clause is true, exactly one
of f(zi

1), f(zi
2) and f(zi

3) is wB . Hence f can be extended to a locally injective
homomorphism to H . 
�

Recall that predefined mappings from proofs of Lemmas 8 and 9 can be easily
extended to edges and so to LI-homomorphisms (similarly as in the proof of
Theorem 5).
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ored directed multigraphs. In: Möhring, R.H. (ed.) WG 1997. LNCS, vol. 1335, pp.
242–257. Springer, Heidelberg (1997)

14. Kratochv́ıl, J., Proskurowski, A., Telle, J.A.: Complexity of graph covering prob-
lems. Nordic Journal of Computing 5, 173–195 (1998)

15. Kristiansen, P., Telle, J.A.: Generalized H-coloring of graphs. In: Lee, D.T., Teng,
S.-H. (eds.) ISAAC 2000. LNCS, vol. 1969, pp. 456–466. Springer, Heidelberg
(2000)
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Abstract. In this paper, we provide polynomial-time algorithms for dif-
ferent extensions of the matching counting problem, namely maximal
matchings, path matchings (linear forest) and paths, on graph classes of
bounded clique-width. For maximal matchings, we introduce matching-
cover pairs to efficiently handle maximality in the local structure, and
develop a polynomial time algorithm. For path matchings, we develop a
way to classify the path matchings in a polynomial number of equivalent
classes. Using these, we develop dynamic programing algorithms that
run in polynomial time of the graph size, but in exponential time of the
clique-width. In particular, we show that for a graph G of n vertices and
clique-width k, these problems can be solved in O(nf(k)) time where f
is exponential in k or in O(ng(l)) time where g is linear or quadratic in l
if an l-expression for G is given as input.

Keywords: maximal matching, path matching, counting, clique-width.

1 Introduction

Counting problems in graphs can be very difficult, i.e. #P -hard in the gen-
eral case, even for simple objects such as trees and independent sets. Research
on graph classes has been motivated by such “hard” decision or optimization
problems, and restricting the input to given graph classes has led to numer-
ous polynomial-time algorithms. Despite this, only a few useful algorithms for
counting problems exist, and these are relatively recent.

In this paper, we focus on counting maximal matching and path matching
(linear forest). Matching counting and all extensions considered in this paper
have been proved #P -complete in the general case. Some sparse graph classes
such as planar graphs or graphs of bounded tree-width allow polynomial-time
algorithms for perfect matching counting (see [13] and [1]); on the negative side,
Valiant, when introducing the class #P , proved that counting perfect match-
ings as well as general matchings in bipartite graphs is #P -complete [19,20].
Valiant’s proof concerning matchings has since been extended to 3-regular bi-
partite graphs [8], bipartite graphs of maximum degree 4 and bipartite planar
graphs of maximum degree 6 [18].
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The problem of counting perfect matchings in chordal and chordal bipar-
tite graphs is also #P -complete [16], but good results on independent sets
[15] give the impression that the chordal structure could nevertheless be in-
teresting regarding matching counting. This led us to focus on a related graph
class, the (5, 2)-crossing-chordal graphs. We especially make use of the bounded
clique-width of this graph class.

Courcelle et al. introduced clique-width in [5] as a generalization of tree-width,
and it attracted attention mainly for two reasons. On the one hand, in a similar
fashion as the tree width, putting a bound on the clique-width makes many
difficult problems decidable in polynomial time (see for example [6]). On the
other hand, this class contains dense graphs as well as sparse graphs, which
leads to more general results.

Makowsky et al. already proved as a consequence of a result in [14] that
matching counting on graphs of bounded clique-width is polynomial in the size
of the input graph. In this paper, we will extend this result by adapting their
method to maximal matchings and path matchings. Our algorithms are poly-
nomial of the graph size, but exponential of the clique-width k, i.e., O(npoly(k))
time. It might be hard to develop a fixed parameter tractable algorithm such as
an O(cpoly(k)poly(n)) time algorithm, since many graph algorithms, e.g. vertex
coloring, have to spend O(npoly(k)) time unless FPT �= W [1] [10].

The existing matching counting algorithms can not be used to count maximal
matchings directly. The algorithms in [14] classify matchings of local graphs ac-
cording to their sizes and the colors of the endpoints, and then get information
about larger graphs by merging the matchings. However, in this way, each clas-
sified group may contain both matchings included in maximal matchings and
those not included in any maximal matching. Actually, it seems to be difficult to
characterize the number of matchings included in some maximal matching, by
using only their sizes and their endpoints. In this paper, we introduce matching-
cover pairs for this task. When we restrict a maximal matching to a subgraph, it
can be decomposed into the matching edges belonging to the subgraph and end
vertices of matching edges not included in the subgraph. From the maximality,
the end vertices form a vertex cover of the edges of the subgraph. Thus, we count
such pairs of matching and vertex cover according to their sizes and colors, and
obtain a polynomial time algorithm for the problem.

For the problem of counting paths and path matchings, we must have some
way to handle the connectivity of edge sets. Actually, connectivity is not easy to
handle; for example, checking for the existence of Hamiltonian path is equivalent
to checking whether the number of paths of length n−1 is larger than zero or not.
Gimenez et al. devised an algorithm based on Tutte polynomial computation to
count the number of forests in bounded-clique-width graphs in sub-exponential
time, running in 2O(nc) time for constant c < 1 [11]. We use the properties
of bounded-clique-width graphs so that we can classify the path matchings in a
polynomial number of groups of equivalent path matchings, and thereby compute
the number of paths and path matchings in polynomial time.
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2 Clique Width

We shall introduce clique-width on undirected, non-empty labeled graphs by a
construction method. Let Gi be the subgraph of vertices labeled i in a graph G.
We define the singleton Si as the labeled graph with one vertex of label i and
no edge, and the following construction operations:

- Renaming : ρi→j(G) is G where all labels i are replaced by labels j;
- Disjoint union : (V1, E1)⊕ (V2, E2) = (V1 ∪ V2, E1 ∪E2);
- Edge creation : ηi,j((V, E)) = (V, E ∪ {(v1, v2) | v1 ∈ Gi, v2 ∈ Gj}).

The class of graphs with clique-width ≤ k is the smallest class containing the
singletons Si, closed under ρi→j ,⊕ and ηi,j (1 ≤ i, j ≤ k). In other words, the
clique-width of a graph G, denoted as cwd(G), is the minimal number of labels
necessary to construct G by using singletons and renaming, disjoint union and
edge creation operations.

For an unlabeled graph G, we define its clique-width by labeling all vertices
with label 1. This is necessarily the best labeling, since any labeling can be
renamed to a monochromatic labeling. Note that the clique-width of a graph of
order n is at most n.

(5, 2)-crossing-chordal graphs are known to have clique-width ≤ 3 [3] (we
recall that a (5, 2)-crossing-chordal graph is a graph where any cycle of length
≥ 5 has a pair of crossing diagonals). Other interesting results include: cographs
are exactly the graphs with cwd(G) ≤ 2, planar graphs of bounded diameter
have bounded clique-widths, and any graph class of treewidth ≤ k also has a
bounded clique-width of ≤ 3.2k−1 [4]. A complete review can be found in [12].

An l-expression is a term using Si, ρi→j , ηi,j and ⊕ (with i, j ≤ l) that respects
the arity of each operation. It can be represented more conveniently in a tree
structure, and we can inductively associate the current state of the construction
with each node. If G is the graph associated with the root, we say that this term
is an l-expression for G, and it is a certificate that G is of clique-width ≤ l. An
example is given in Fig.1.

Fellows et al. proved the NP-hardness of computing the minimum clique-
width for general graphs [9]. The current best approximation is due to Oum
and Seymour [17], who provided a linear time algorithm that, given a graph G
and an integer c as input, returns an 23c+2-expression for G or certifies that the
graph has a clique-width larger than c.

This implies that we can compute in quadratic time a 23k+2-expression for
a graph of clique-width k by applying this algorithm for c = 1, 2 . . . . As the
bound is independent of n, algorithms requiring expressions as input will still
work in polynomial time, although the time complexity will usually be extremely
poor. For (5, 2)-crossing-chordal graphs, though, this is not a concern since it is
possible to compute a 3-expression in linear time [3].

An l-expression is called irredundant if every edge-creation operation ηi,j is
applied to a graph where no two vertices in Gi and Gj are adjacent. Any l-
expression can be turned into an l-irredundant expression in linear time [7].
Therefore, we assume w.l.o.g. that the input expression is irredundant.
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Fig. 1. Graph of clique-width 3, and a possible 3-expression tree (the last renaming
operations are omitted)

3 Framework of Our Algorithms

The input of our algorithms is a graph G on n vertices and an l-expression for
G, and the output is the number of objects (ex. matchings, paths) in G. The
procedure works by counting these objects at each step of the construction, by
using the expression tree : we start from the leaves and process a node once all
its children have been processed. Finally, the value at the root of the tree is the
output of the algorithm. Instead of doing it directly with the considered object,
we introduce appropriate intermediate objects, and we compute tables of values
at each step.

To avoid tedious case studies, we shall assume that requesting the value of
any vector outside of the range {0 . . . n} returns the value 0. Also, Δr(l) is the
vector (δi,r)1≤i≤l, and Δr,s(l) is the vector (δi,r · δj,s) 0≤i≤j≤l

(i,j) �=(0,0)

, where δi,j is the

Kronecker delta:

δi,j =
{

1 if i = j;
0 otherwise. (1)

We will omit the l when it is obvious from the context.
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Fig. 2. Maximal matching of η1,2(G′), and the corresponding matching-cover pair of G′

4 Counting Maximal Matchings

Theorem 1. Computing the number of maximal matchings of a graph with n
vertices with a corresponding l-expression can be done in polynomial time in n
(but exponential w.r.t l).

We cannot directly use the previous framework on maximal matchings. Indeed,
consider M a maximal matching of G = ηi,j(G′) and M ′ the induced matching
in G′: M ′ is not necessarily maximal. However, we can keep track of the vertices
of G′ that are covered in M , and those vertices must form a vertex cover of the
subgraph left uncovered by M ′. See Fig.2 for an example.

A matching-cover pair of a graph G = (V, E) is a pair (m, c) such that:

– m ⊆ E is a matching of G (i.e. no vertex is covered more than once);
– c ⊆ V is a vertex cover of the subgraph left uncovered by m (i.e. every edge

is covered at least once).

We show that computing the number of matching-cover pairs of a graph with n
vertices with a corresponding l-expression can be done in polynomial time in n.

Let M = (mi)1≤i≤l and C = (ci)1≤i≤l be two vectors of non-negative integers.
For a graph G, we say that a pair (m, c) satisfies the condition ϕM,C(G) if m
covers mi vertices in Gi and c uses ci vertices in Gi for all i, and we denote by
mcM,C(G) the number of pairs that satisfy ϕM,C(G). Note that maximal match-
ings are exactly pairs with an empty cover; therefore, the number of maximal
matchings of G is

∑
k≤n mck·Δ1,0(G).

Now we will follow the framework described above and compute mcM,C for
all possible M and C, at each step of the construction. We associate to each
node of the tree a table of size n2l corresponding to the values of mcM,C on this
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graph for M and C ranging from (0, .., 0) to (n, .., n). For a singleton Si, we can
easily see that:

mcM,C(Si) =
{

1 if M = 0 and C = 0 or Δi;
0 otherwise. (2)

For the renaming operation G = ρi→j(G′), the graph is not modified, but all ver-
tices of label i are set to label j. Hence, we modify the entries i and j accordingly.

mcM,C(G) =
∑

M ′:(M,M ′)�φi,j

C′:(C,C′)�φi,j

mcM ′,C′(G′) (3)

where (X, X ′) � φi,j ⇔
⎛
⎝xj = x′

i + x′
j

xi = 0
∀k �∈ {i, j}, xk = x′

k

⎞
⎠ (4)

For the disjoint union of two graphs G = G1 ⊕G2, we have a bijection between
matching-cover pairs (m, c) in G and pairs (m1, c1), (m2, c2) of matching-cover
pairs in G1 and G2, respectively. Moreover, if (m, c) satisfies ϕM,C , (m1, c1)
satisfies ϕM1,C1 and (m2, c2) satisfies ϕM2,C2 , we have M = M1 + M2 and C =
C1 + C2.

mcM,C(G) =
∑

M1+M2=M
C1+C2=C

mcM1,C1(G1) ·mcM2,C2(G2) (5)

For the edge creation operation G = ηi,j(G′), we have to choose the extremities
of the edges added to the matching among the vertices in the vertex cover. If q
is the number of new edges, we have:

mcM,C(G) =
n∑

q=0

mcM ′,C′(G′) ·
(

c′i
q

)
·
(

c′j
q

)
· q! (6)

where M ′ = M − qΔi − qΔj , C′ = C + qΔi + qΔj (7)

Once the maximal matchings of all sizes are computed, it is straightforward to
count the number of perfect matchings and the number of minimum maximal
matchings in polynomial time. Note that counting perfect matchings can be
achieved in O(n2l+1) time by adapting the matching counting algorithm pre-
sented in [14] in a similar fashion.

Complexity study: Obviously, there are exactly n singleton operations, and
each operation requires a constant amount of time. Every other operation re-
quires one to compute n2l values. As the expression is irredundant, every edge
creation operation adds at least one edge, so there are at most n2 edge creation
operations, processed in linear time. As a disjoint union operation has two chil-
dren in the tree, and there are n leaves, there are n−1 disjoint union operations,
and they require O(n2l) time.
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For the renaming operation, consider the number of different labels at each
step of the construction. This number is one for a singleton, the edge creation
operation has no effect, the disjoint union is an addition in the worst case (no
shared label) and the renaming operation diminishes this number by one. There-
fore, there are at most n renaming operations, and they are done in O(n4) time.
The final sum requires O(nl) operations.

Therefore, the overall complexity of the algorithm is

O(n) + O(n2l) · (O(n5) + O(n2l+1) + O(n3)
)

+ O(nl) = O(n4l+1) (l ≥ 2). (8)

For (5, 2)-crossing-chordal graphs, we can compute an expression of width l = 3
in linear time and the algorithm runs in time O(n13).

5 Counting Paths and Path Matchings

A path matching (or linear forest) is a disjoint union of paths, in other words, a
cycle-free set of edges such that no vertex is covered more than twice.

Theorem 2. Computing the number of paths pth(G) and the number of path
matchings pm(G) of a graph of clique-width ≤ k can be done in polynomial time
(but exponential w.r.t. k).

Proof. Let K = (ki,j) 0≤i≤j≤l
(i,j) �=(0,0)

be a vector of non-negative integers. We say that

a path matching P of G satisfies the condition ψK if:

- ∀i > 0, k0,i vertices in Gi are left uncovered by P ;
- ∀(i, j), i ≤ j, ki,j paths in P have extremities in Gi and Gj .

We denote the number of path matchings in G satisfying ψK by pmK(G). If
i > j, we denote ki,j = kj,i. As K is of size l(l+3)

2 , we compute tables of size

n
l(l+3)

2 at each step.
For a singleton Si, the only possible path matching is empty and leave the

vertex uncovered.

∀K, pmK(Si) =
{

1 if K = Δ0,i;
0 otherwise. (9)

For the renaming operation G = ρi→j(G′), the method is the same as for maxi-
mal matchings.

pmK(G) =
∑

K′:(K,K′)�φ

pmK′(G′) (10)

where (K, K ′) � φ⇔

⎛
⎜⎜⎝

kj,j = k′
j,j + k′

i,j + k′
i,i

∀a �∈ {i, j}), ka,j = k′
a,i + k′

a,j

∀a, ka,i = 0
∀a �∈ {i, j}, b �∈ {0, i, j}, ka,b = k′

a,b

⎞
⎟⎟⎠ (11)
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For the disjoint union operation G = G1⊕G2, we have a bijection between path
matchings p in G and pairs (p1, p2) of path matchings in G1 and G2, respectively.
Plus, if p1 satisfies ψK1 , p2 satisfies ψK2 and p satisfies ψK , we have K = K1+K2.

pmK(G) =
∑

K1+K2=K

pmK1(G1) · pmK2(G2) (12)

Consider now the edge creation operation G = ηi,j(G′). We say a path matching
P in G is an extension of a path matching P ′ in G′ if P ∩ G′ = P ′, so that
P = P ′ ∪ Ei,j where Ei,j is a subset of the edges added by the operation. Now,
if we consider a path matching P ′ in G′ that satisfies ψK′ , we claim that the
number of extensions of P ′ in G that satisfy ψK depends only on i, j, K ′ and
K (and not on P ′ or G′), and we represent it as Ni,j(K, K ′). Since every path
matching of G is an extension of an unique path matching of G′, we have:

pmK(G) =
∑
K′

pmK′(G′) ·Ni,j(K ′, K) (13)

Moreover, we can compute all the Ni,j(K ′, K) beforehand in O(nl(l+4)) time.
The proof of these claims is given in the appendix.

We can then compute the number of paths pth(G) and the number of path
matchings pm(G) with the formulas:

pth(G) =
∑

0≤a≤n

pmK(a)(G) where K(a) = a ·Δ0,1 + Δ1,1

pm(G) =
∑

1≤a+2b≤n

pmK(a,b)(G) where K(a, b) = a ·Δ0,1 + b ·Δ1,1

(14)

Complexity study: A singleton operation requires constant time. Every other
operation requires us to compute n

l(l+3)
2 values. For each value, the renaming

operation in processed in linear time, the disjoint union operation in O(nl2 ) time
and the edge creation operation in O(n

l(l+3)
2 ) time.

The overall complexity of the algorithm is:{
O(nl2+4l) for l ≤ 5;

O(n
3
2 (l2+l)+1) for l > 5.

(15)

For (5, 2)-crossing-chordal graphs, we can compute in linear time an expression
of width l = 3 and we have an algorithm running in O(n21) time.

6 Conclusion

These results seem to confirm the intuition that bounding clique-width is an ef-
ficient restriction on the input of #P -hard problems in order to allow the use of
polynomial algorithms. Notably, being able to count paths and path matchings
in polynomial time is interesting because connected structures are usually very
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difficult to count. In that sense, the next logical step was to study the tree (or,
equivalently, forest) counting problem. However, our attempts to do so by using
a method similar to the one we used in the paper, only produced algorithms run-
ning in exponential time. Our feeling is that the tree counting problem remains
#P -complete for graphs of bounded clique-width, as this intuitive method keeps
giving bad results. It remains an open problem for now.
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Appendix

We now prove the case of Thm. 2 we have omitted. Let G and G′ be two labeled
graphs such that G = ηi,j(G′) (for some i < j) and P ′ a path matching of G′

satisfying ψK′ for some K ′. For any K, we want to compute the number of ex-
tensions of P ′ in G satisfying ψK .

Definitions. For any path matching satisfying ψK , a path with two extremities
x ∈ Gi and y ∈ Gj is called an (i, j)-path, and x and y are called partners.
We denote by Va(b) the vertices of Ga whose partner is in Gb, and by Va(0)
the uncovered vertices in Ga. We also note va,b = #Va(b), which means that
va,b = ka,b, except for va,a = 2ka,a (note that va,b depend only on K). An edge
which extremities are in Vi(a) and in Vj(b), respectively, is called an (a, b)-edge.

We use a dynamic programming technique to build all possible extensions of
P ′ by considering each vertex of G′

i one by one in the order Vi(j), Vi(0), .., Vi(l)
(the reason for this order will be explained later). If X = (x0, .., xl) is a vec-
tor of non-negative integers and P1 a path matching in G1 that satisfies ψK1 ,
Ti,j(G1, P1, K2, X) stands for the number of extensions of P1 in ηi,j(G1) that
satisfy ψK2 and that uses only the xk last vertices of Vi(k) for every k.

At each step of the computation, the equations show that knowing G1 and
P1 is not necessary as long as ψK1 is satisfied: this proves our first claim, and
we write Ti,j(K1, K2, X) for Ti,j(G1, P1, K2, X). Also, since i, j and K2 are not
modified during the computation, we write T (K1, X) for Ti,j(K1, K2, X).

We now detail the different steps by increasing difficulty (instead of the actual
order of the algorithm). First, assume that xj = x0 = .. = xk−1 = 0 and
xk �= 0 (for some k �= i). We consider the first vertex in Vi(k) that has not been
considered yet in the computation. We have only two possibilities:

- No new edge adjacent to this vertex is added to the path matching.
- One new (k, a)-edge (possibly a = 0) is added to the path matching: we have

vj,a choices for the edge. A (i, k)-path and a (j, a)-path are transformed into
a (k, a)-path.

In each case, the value of the current K is updated accordingly and the vertex is
deleted from X . Next to each term is the set that contains the other extremity
of the edge being considered.
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T (K”, X) = T (K”, X −Δk) ∅
+
∑

1≤a≤l

vj,a.T (K”−Δi,k −Δj,a + Δk,a, X −Δk) Vj(a)

+v0,j.T (K”−Δi,k −Δ0,j + Δj,k, X −Δk) Vj(0)

(16)

Note that if a (k, i)-edge is added, the partner of another vertex of Vi(j) is also
modified: this is why Vi(j) is considered first in the computation, so that it does
not appear in X anymore at this step. This remark holds for all the other cases
except for k = j.

Now, we consider the first step (k = j). The situation is similar, but the vertex
cannot be linked to its own partner when k′ = i. Note that adding a (j, i)-edge
changes the partner of another vertex of Vi(j), but the new partner is still in
Gj , so doing this brings no modification to X .

T (K”, X) = T (K”, X −Δj) ∅
+
∑

1≤a≤l
a�=i

vj,aT (K”−Δi,j , X −Δj) Vj(a)

+(vi,j − 1)T (K”−Δi,j , X −Δj) Vj(i)
+v0,j .T (K”−Δi,j −Δ0,j + Δj,j , X −Δj) Vj(0)

(17)

For the uncovered vertices (k = 0), up to two edges can be added to the path
matching. The possibilities are:

- No new edge adjacent to this vertex is added to the matching.
- One new (k, k′)-edge is added to the matching: we have vj,k′ choices for the

edge. An uncovered vertex and a (j, k′)-path are transformed into a (x, k′)-
path.

- Two new (k, k′) and (k, k”)-edges are added to the matching: we have vj,k′ .vj,k”

choices for the two edges (only half of those when k′ = k”). An uncovered
vertex, a (j, k′)-path and a (j, k”)-path are transformed into a (k′, k”)-path.

Then T (K ′′, X) =

T (K”, X −Δ0) ∅
+
∑

1≤a≤l

vj,a.T (K”−Δ0,i −Δj,a + Δi,a, X −Δ0) Vj(a)

+ v0,j .T (K”−Δ0,i −Δ0,j + Δi,j , X −Δ0) Vj(0)
+

∑
1≤a<b≤l

vj,a.vj,b.T (K”−Δ0,i −Δj,a −Δj,b + Δa,b, X −Δ0) Vj(a) | Vj(b)

+
∑

1≤a≤l

vj,a.v0,j .T (K”−Δ0,i −Δ0,j , X −Δ0) Vj(a) | Vj(0)

+
∑

1≤a≤l
a�=j

vj,a.(vj,a − 1)
2

.T (K”−Δ0,i − 2Δj,a + Δa,a, X −Δ0) Vj(a) | Vj(a)

+
v0,j .(v0,j − 1)

2
.T (K”−Δ0,i − 2Δ0,j + Δj,j , X −Δ0) Vj(0) | Vj(0)

+
vj,j .(vj,j − 2)

2
.T (K”−Δ0,i −Δj,j , X −Δ0) Vj(j) | Vj(j)

(18)
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For k = i , we consider the two extremities of the (i, i)-path at the same time.
Therefore, this situation is similar to the previous one, except that we have to
choose one of the extremities in each case. There are twice as many possibilities
as in the previous case. We have T (K”, X) =

T (K”, X − 2Δi) ∅
+
∑

1≤a≤l

2vj,a.T (K”−Δi,i −Δj,a + Δi,a, X − 2Δi) Vj(a)

+ 2v0,j .T (K”−Δi,i −Δ0,j + Δi,j , X − 2Δi) Vj(0)
+

∑
1≤a<b≤l

2vj,a.vj,b.T (K”−Δi,i −Δj,a −Δj,b + Δa,b, X − 2Δi) Vj(a) | Vj(b)

+
∑

1≤a≤l

2vj,a.v0,j .T (K”−Δi,i −Δ0,j , X − 2Δi) Vj(a) | Vj(0)

+
∑

1≤a≤l
a�=j

vj,a.(vj,a − 1).T (K”−Δi,i − 2Δj,a + Δa,a, X − 2Δi) Vj(a) | Vj(a)

+ v0,j .(v0,j − 1).T (K”−Δi,i − 2Δ0,j + Δj,j , X − 2Δi) Vj(0) | Vj(0)
+ vj,j .(vj,j − 2).T (K”−Δi,i −Δj,j , X − 2Δi) Vj(j) | Vj(j)

(19)
Now, if we have ∀k, xk = 0, then all the vertices have been considered and:

Ti,j(G1, K1, K2, 0) =
{

1 if K1 = K2

0 otherwise (20)

The table of all possible Ti,j(K1, K2, X) is of size l2.nl(l+4). Using the previ-
ous equations, we can compute the table by increasing X in O(nl(l+4)) opera-
tions (individual equations are independent of n). We now have Ni,j(K ′, K) =
Ti,j(K ′, K, X) where ∀k �= i, xk = k′

i,k and xi = 2k′
i,i.



Hide-and-Seek: Algorithms for Polygon Walk Problems�

Atlas F. Cook IV1, Chenglin Fan2, and Jun Luo2,��

1 Dept. of Computing Sciences, Utrecht University, Netherlands
atlas@cs.uu.nl

2 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
{cl.fan,jun.luo}@siat.ac.cn

Abstract. Jack and Jill want to play hide-and-seek on the boundary of a sim-
ple polygon. Given arbitrary paths for the two children along this boundary, our
goal is to determine whether Jack can walk along his path without ever being
seen by Jill. To solve this problem, we use a linear-sized skeleton invisibility di-
agram to implicitly represent invisibility information between pairs of points on
the boundary of the simple polygon. This structure has additional applications for
any polygon walk problem where one entity wishes to remain hidden throughout
a traversal of some path. We also show how Jack can avoid being seen not just by
one moving child but by an arbitrary number of moving children.

1 Introduction

Our problem is to determine whether two children can play hide-and-seek along the
boundary of a simple polygon. Specifically, if Jill moves with constant speed along a
given path on this boundary, then we want to determine whether Jack can control his
speed so that he reaches the end of his given path without being seen by Jill. Both
children have excellent eyesight and can see infinitely far inside the simple polygon.
However, neither child can see past any opaque segment that bounds the simple polygon.

We refer to a polygon walk problem as any situation where one or more entities
traverse the boundary of a simple polygon while maintaining certain properties. These
types of problems have been extensively studied. For example, Suzuki et al. [8] and Tan
[9] show how to search a simple polygon office space for an intruder by using a mobile
camera that is mounted on a cyclic track along the walls.

Related work by Icking and Klein [6] permits two guards to patrol the boundary of
a simple polygon art gallery. Both guards begin patrolling from a single entrance point,
and the two guards walk along the boundary. For security purposes, the guards always
maintain mutual visibility. The goal is to determine whether the two guards can always
detect an intruder if they begin their patrol at a given entrance point. Their solution
to this problem requires O(n log n) time, where n is the number of simple polygon
vertices. Heffernan [5] has improved this algorithm to optimal O(n) time. Additionally,
Zhang and Kameda [11] have given an O(n) time algorithm that detects all possible
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entrance points on the boundary that permit the two guards to successfully detect an
intruder.

Polygon walk problems with varying numbers of guards have also been studied. For
example, LaValle et al. [7] show how to search a polygonal region with a single guard
in O(n2) time. Efrat et al. [3] sweep a polygonal chain of guards along the boundary
of a simple polygon in O(n3) time. Each consecutive pair of guards in their chain are
always mutually visible, and the goal is to detect an intruder using the minimum number
of guards.

Our problem is different from previous approaches because we do not try to main-
tain mutual visibility between moving entities. Instead, we seek to maintain mutual
invisibility as two entities traverse paths on the boundary of a simple polygon. Note
that our problem could be applied to any scenario where an individual needs to reach
some destination without being seen. For example, a rabbit may want to reach its home
without being seen by one or more wolves, a person who is late for work may wish to
travel along roads without being seen by a police officer, and resources may need to be
covertly delivered through hostile territory.

Results. Let P be a simple polygon with n vertices, and let πJack and πJill be two
arbitrary paths on the boundary of P . Assume that Jill walks with constant speed from
the start point of πJill to the end point of πJill. This paper describes an O(n log n) time
and O(n) space algorithm that determines whether it is possible for Jack to control his
speed so that he walks from the start point to the end point of πJack without ever being
seen by Jill. The algorithm can additionally report any existing traversal for Jack in
output-sensitive time.

We also consider the following more general problem. Let πJack and πc1 ,...,πcm be
arbitrary paths along the boundary of P . Assume that m children c1,..., cm all walk
with constant speed along their respective paths. This paper describes an algorithm that
determines whether Jack can control his speed so that he reaches the end point of his
path without being seen by any child.

2 Preliminaries

Given a simple polygon P , two points p and q are mutually visible if the line segment
pq is completely contained inside P ; otherwise, p and q are mutually invisible. As in
[7,11], we define a configuration 〈p, q〉 ∈ ∂P × ∂P by a pair of points on the boundary
of P . We call such a configuration safe when p and q are mutually invisible and unsafe
otherwise. We pick an arbitrary point on the boundary ∂P as the origin, and we measure
all distances along ∂P in clockwise order from this origin. Let |∂P | denote the total
length of ∂P .

Let x1, x2, y1, y2 be points on ∂P such that Jack travels from x1 to x2 and Jill travels
from y1 to y2 (see Figure 1a). Define a two-dimensional configuration space such that
the x-axis represents the position of Jack on ∂P and the y-axis represents the position
of Jill on ∂P (see Figure 1b). Observe that if Jack and Jill are located at the same point
on ∂P , then they must be mutually visible. Consequently, every point on the lines y = x
and y = x− |∂P | in this configuration space is always unsafe. This permits us to prune
our search space to the area between the lines y = x and y = x − |∂P |. We shade
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Fig. 1. (a) Simple polygon P , (b) Invisibility diagram of P , (c) Skeleton invisibility diagram of
P . The numbers 0, 1, ..., 13 represent the 14 vertices of P

all safe configurations in this search space a gray color and refer to this augmented
space as an invisibility diagram. See Figure 1b. To speedup our algorithm, we will
use an implicit skeleton invisibility diagram that represents all safe configurations as
a discrete set of line segments. Although Zhang and Kameda [11] have also explored
these diagrams, they were interested in searching a simple polygon while maintaining
mutual visibility between a pair of guards. By contrast, we are interested in maintaining
mutual invisibility.

2.1 Cells and Skeletons

We now describe all safe configurations as a discrete set of shapes in the invisibility
diagram. To do this, it will be important to consider each reflex vertex of P . A reflex
vertex is a vertex r ∈ P whose interior angle inside P is at least π. For example, vertices
2, 5, 8, and 11 in Figure 1a are reflex vertices. Each reflex vertex of P has the capability
of blocking visibility inside P and will consequently be associated with a collection of
safe configurations that we will refer to as a cell.

As illustrated in Figure 1b, each cell is bounded by a horizontal segment and a ver-
tical segment that intersect on either y = x or y = x − |∂P |. We define the skeleton
of a cell as the union of these horizontal and vertical segments. The skeleton invisibility
diagram is simply the union of all skeletons in the invisibility diagram (see Figure 1c).

2.2 The Boundary of a Cell

This section shows that a cell in the invisibility diagram is always bounded by two
horizontal segments, two vertical segments, and a monotone curve. In order to describe
this boundary, it will be useful to think of the boundary of P as a clockwise sequence
of vertices. The vertices immediately preceding and succeeding a vertex r on ∂P are
denoted Pred(r) and Succ(r), respectively. Let B(r) ∈ ∂P be the backward extension
point where the extension of the edge from Succ(r) to r leaves P for the first time. Let
F (r) be the forward extension point where the extension of the edge from Pred(r) to
r leaves P for the first time.

Figure 2 illustrates how to calculate the boundary of the cell for a reflex vertex
r ∈ P . In Figure 2a, Jack moves from r to Succ(r) while Jill stands still at B(r).
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Fig. 2. A reflex vertex r ∈ P defines one cell in the invisibility diagram

This scenario corresponds to a horizontal line segment in the invisibility diagram that
has endpoints (r, B(r)) and (Succ(r), B(r)). The reason this line segment bounds a
cell is because Jill clearly sees Jack throughout this walk; however, if Jill moves in-
finitesimally clockwise on ∂P , then she no longer sees Jack at any point except r.

In Figure 2b, Jack moves along multiple line segments from Succ(r) to F (r) while
Jill moves from B(r) to Pred(r). Notice that all lines-of-sight from Jack to Jill that
pass through r will define a boundary of the cell for r because an infinitesimal motion
of either child can break visibility between the two children. Since all of these lines-of-
sight can be obtained by rotating a line through r about the point r, the portion of the
cell boundary from (Succ(r), B(r)) to (F (r), P red(r)) will be a piecewise monotone
curve with O(n) vertices.

In Figure 2c, Jack stands still at F (r) while Jill moves from Pred(r) to r. This de-
fines a vertical boundary segment for the cell because an infinitesimal movement of Jack
can break visibility. In Figure 2d, Jack moves from F (r) to r while Jill stands still at r.
This defines a horizontal boundary segment for the cell. Figure 2e shows Jack standing
still at r while Jill moves from r to B(r). This defines a vertical boundary segment for
the cell. Notice that the cell boundary is now a closed curve that is composed of two
horizontal segments, two vertical segments, and a monotone set of curves. All points
inside this cell represent safe points where Jack and Jill cannot see each other because
the reflex vertex r blocks visibility between the two children.

Although the boundary of a cell has a computable structure, we will show that an
implicit representation of a cell that we call a skeleton is often sufficient. Figure 2f
illustrates that the skeleton of a cell consists of just two segments: the vertical boundary
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segment from (r, B(r)) to (r, r) and the horizontal boundary segment from (r, r) to
(F (r), r). We will sometimes refer to (r, r) as a corner point.

3 Properties of the Skeleton Invisibility Diagram

This section proves that a pair of cells intersect if and only if their skeletons intersect.
This nice property will permit us to compute paths through the invisibility diagram
without explicitly computing any cells.

The following notation will be useful. For any two points a, b ∈ ∂P , the open and
closed portions of ∂P from a to b in clockwise order are, respectively, denoted by
∂P (a, b) and ∂P [a, b]. We now show that two skeletons can intersect in at most one
point.

Lemma 1. A pair of skeletons have at most one intersection point.

Proof. Let S and S′ be a pair of skeletons with respective corner points (r, r) and
(r′, r′) in the invisibility diagram. If both of these corners intersect the line y = x (or
both corners intersect the line y = x− |∂P |), then one skeleton’s vertical line segment
must lie entirely to the left of the other skeleton. This scenario guarantees that there is
at most one intersection point between S and S′. Please refer to Figure 3a.
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Fig. 3. A pair of skeletons have at most one intersection point

Suppose now that the corner of S lies on the line y = x and the corner of S′ lies on
the line y = x−|∂P |. Assume that the two skeletons S and S′ could have two intersec-
tion points (r′, r) and (r, r′) as illustrated in Figure 3b. Notice that the y-coordinates in
the skeletons appear from bottom-to-top as the sequence B(r), r′, r, F (r′). This means
that these four points must appear in clockwise order along ∂P . In particular, r′ must
precede r in the clockwise ordering around ∂P . Furthermore, the x-coordinates in the
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skeletons appear from left-to-right as the sequence B(r′), r, r′, F (r). However, this
implies that r must precede r′ in the clockwise ordering around ∂P . This is a contra-
diction. Thus, a pair of skeletons have at most one intersection point. 
�
We show next that a pair of cells intersect if and only if their skeletons intersect.

Lemma 2. Two cells intersect if and only if their skeletons intersect.

Proof. If two skeletons intersect, then the cells for these skeletons must also intersect.
This follows because a cell is always a superset of its skeleton. We will now prove that
if two cells intersect, then their skeletons must also intersect.

Recall that the corner point of every cell in the invisibility diagram must lie on either
the line y = x or the line y = x−|∂P |. Let c1 and c2 be cells in the invisibility diagram,
and assume that the boundaries of c1 and c2 intersect in at least one point (a, b). Let r1

and r2 be the reflex vertices of P that define these cells, and without loss of generality,
assume that r1 precedes r2 in the clockwise ordering on ∂P . By construction, the point
(a, b) in the invisibility diagram corresponds to a pair of points on the boundary of the
simple polygon P . Both r1 and r2 must affect the visibility between a and b; therefore,
all four points a, r1, r2, and b are collinear in P .

Assume for a moment that the two points B(r1) ∈ ∂P and F (r2) ∈ ∂P are on
the same side of the line segment ab (see Figure 4a). This scenario ensures that no
skeleton endpoint can appear between r1 and r2 in the clockwise ordering on ∂P . Thus,
no skeleton endpoint can appear in the invisibility diagram for any r1 < x < r2 or
r1 < y < r2. Consequently, the horizontal segment of the skeleton for r1 must intersect
the vertical segment of the skeleton for c2.
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Fig. 4. Two cells intersect if and only if their skeletons intersect

Now suppose that the two points B(r1) ∈ ∂P and F (r2) ∈ ∂P are on opposite sides
of the line segment ab (see Figure 4b). Since r1 precedes r2 in the clockwise ordering on
∂P , the point (r, B(r1)) ∈ c1 in the invisibility diagram is below the point (r2, r2) ∈ c2

and the point (B(r2), r2) ∈ c2 is to the left of the point (r1, r1) ∈ c1. Consequently, the
vertical segment of c1’s skeleton must intersect the horizontal segment of c2’s skeleton.
This means that whenever two cells intersect, their skeletons must also intersect. 
�
Recall that the start and end points of Jack are x1, x2 ∈ ∂P , and the start and end points
of Jill are y1, y2 ∈ ∂P (see Figure 1). Let s = (x1, y1) and t = (x2, y2) be points in
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the invisibility diagram. We define a safe path πsafe(s, t) as any path that connects the
points s and t in the invisibility diagram such that Jack and Jill do not see each other at
any point along this path. This means that a safe path is entirely contained in the gray
area that represents the union of the cells (see Figure 1b). Note that Jack can traverse
his path without being seen by Jill if and only if a safe path πsafe(s, t) exists in the
invisibility diagram. Lemmas 1 and 2 permit us to determine whether a safe path exists
without explicitly computing any cells. Instead, we only need to compute connected
components of skeletons.

4 Computing a Safe Path for Jack and Jill

A safe path πsafe(s, t) exists if and only if s and t lie in the same connected component
of gray points in the invisibility diagram. To decide whether the points s and t are in the
same connected component, we determine the skeleton that contains s and the skeleton
that contains t. We then decide whether these two skeletons are in the same connected
component of gray points.

4.1 Determining Skeletons for s and t

Recall that two points x, y ∈ ∂P define a point (x, y) in the invisibility diagram. Our
task is to determine one skeleton whose cell contains (x, y). To simplify this process,
we define the visibility polygon V is(P, x) as the set of all points in P that are directly
visible from x (see Figure 5).

y

x

r
V is(P, x)

Fig. 5. Determining the skeleton of a cell that contains a point (x, y) in the invisibility diagram

Lemma 3. Given any fixed point (x, y) in the invisibility diagram, the skeleton of a cell
that contains (x, y) can be determined in O(n) time.

Proof. Compute the visibility polygon V is(P, x) in O(n) time [4]. Traverse the bound-
ary of P and determine the maximally connected interval of ∂P that contains y and is
not directly visible from x (see Figure 5). If no such interval exists, then no cell con-
tains (x, y), so we report that the point (x, y) is unsafe. Otherwise, one endpoint of this
interval (e.g., r) must be a reflex vertex of P , and we associate (x, y) with the skeleton
for this reflex vertex. 
�
Lemma 3 implies that we can calculate in O(n) time the skeleton of a cell that contains
s = (x1, y1) and the skeleton of a cell that contains t = (x2, y2).
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4.2 Determining Connected Components of Skeletons

Given the skeleton of a cell that contains s and the skeleton of a cell that contains t, we
now wish to determine whether there exists a safe path between these two skeletons.
Given the horizontal and vertical line segments defining all O(n) skeletons in the skele-
ton invisibility diagram, we can compute the connected components of these orthogonal
line segments in O(n log n) time and O(n) space [10]. These connected components
are useful because Lemma 2 ensures that a pair of cells intersect if and only if the
skeletons for these cells intersect. Hence, a safe path will only exist from s to t when
the skeleton for s is in the same connected component as the skeleton for t.

We can now state one of our main results.

Theorem 1. Suppose Jack and Jill walk along fixed paths on the boundary of a simple
polygon that has n vertices. We can decide whether Jack and Jill can simultaneously
walk from their respective start points to their respective endpoints without ever seeing
each other in O(n log n) time and O(n) space.

Proof. Compute the skeletons of the invisibility diagram in a preprocessing step as in
[11], and compute the connected components for these skeletons [10]. Using Lemma
3, associate the start point s of Jack and Jill with the connected component of its as-
sociated skeleton. Now associate the end point t of Jack and Jill with the connected
component of its associated skeleton. If these two connected components are the same,
then a rectilinear path can be returned through the skeletons in this connected compo-
nent. Otherwise, no safe path exists. 
�

5 Hide-and-Seek with Multiple Children

This section describes an algorithm that determines whether Jack can traverse a path on
the boundary of a simple polygon without being seen by any of m children c1, ..., cm.
Recall that P is a simple polygon with n vertices and that ∂P is the boundary of P . Both
Jack and the m children c1, ..., cm will be traversing given paths along ∂P . Assume that
each child ci travels along his or her path with a constant velocity vi and that all children
(including Jack) begin moving at the same instant. The problem is to determine whether
Jack can control his speed so that he reaches the end of his path without being seen by
any child c1, ..., cm.

As in the previous sections, each pair of Jack with a child ci defines a unique start
point si in the invisibility diagram for P . Let Le be the vertical line that is associated
with the endpoint of Jack’s path in the invisibility diagram.

In order to determine whether Jack can traverse his path without being seen by any
child c1, ..., cm, we need to determine if a safe path exists from each start point si to the
vertical line Le. However, these safe paths cannot be computed independently because
Jack’s fixed velocity at any given x-coordinate affects the slopes of all m of these paths.

To keep things simple, assume for just a moment that each child moves with the
same velocity (i.e., v1 = ... = vm) and that each child moves in a clockwise manner
around ∂P . Create a copy of the invisibility diagram for each child c1, ..., cm. Denote
these invisibility diagrams as D1, ..., Dm, and associate the start point si with the in-
visibility diagram Di. Translate each of the m invisibility diagrams so that all start
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points s1, ..., sm lie at a common point s ∈ R2 after performing the translations. Let
I = D1 ∩ ... ∩ Dm be the intersection of the safe points in these translated invisi-
bility diagrams. Note that Jack can traverse his path without being seen by any child
c1, ..., cm if and only if some path exists in I that connects s and the vertical line Le

that is associated with the endpoint of Jack’s path in the invisibility diagram.
We now relax our assumptions so that each child is permitted to travel with a unique

constant velocity in either the clockwise or counter-clockwise direction around ∂P .
To permit children to move at different velocities, we vertically scale each invisibility
diagram Di by a factor of 1

vi
, where vi is the velocity of child ci. Furthermore, we

can vertically invert the invisibility diagram of any child that moves counter-clockwise
along ∂P . This process of vertically inverting, vertically scaling, and translating each
invisibility diagram has the effect of normalizing the invisibility diagrams D1, ..., Dm.
After this normalization, we can once again let I be the intersection of the safe points
in these normalized invisibility diagrams. We can now state the following result.

Theorem 2. Suppose Jack and m children walk along fixed paths on the boundary of
a simple polygon that has n vertices. We can determine whether Jack can traverse his
path without being seen by any child in O(m2n3 log mn) time and O(m2n3) space.

Proof. The invisibility diagram for a simple polygon with n vertices always has O(n)
cells, and each cell has O(n) complexity. Since each cell is a monotone shape, a pair of
cells intersect at most O(n) times. More generally, the arrangement of m normalized
invisibility diagrams D1, ..., Dm involves O(mn) cells. Each of the O(m2n2) pairs of
cells intersect O(n) times, so the intersection I of the safe points in these normalized
invisibility diagrams has O(m2n3) complexity. Any standard arrangement algorithm
such as [1] can be used to construct the intersection I in O(m2n3 log(mn)) time.

Recall that Le is the vertical line that is associated with the end point of Jack’s path.
To determine whether Jack can traverse his path without being seen by any child, we
need to determine whether any path exists from the start point of Jack s ∈ I to any
point on the vertical line Le. This implies that a simple scan through the faces of I is
sufficient to return a safe path for Jack or to report that no safe path exists. 
�

6 Conclusion

This paper has shown how to determine whether two children can possibly traverse
paths along the boundary of a simple polygon without ever seeing each other. We also
explore the scenario where one child should avoid being seen by multiple children.
Linear-sized structures are used to implicitly represent invisibility information between
pairs of points on the boundary of a simple polygon. These structures have applications
for any polygon walk problem where one entity wishes to remain hidden at all times
during a traversal of a path. For example, resources may need to be covertly delivered
to some destination in hostile territory. In the future, it might be interesting to consider
the problem where the movements of the children along the boundary of the simple
polygon are constrained by speed limits.
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Abstract. We present an alternative proof of a theorem by Courcelle,
Makowski and Rotics [6] which states that problems expressible in MSO1

are solvable in linear time for graphs of bounded rankwidth. Our proof
uses a game-theoretic approach and has the advantage of being self-
contained. In particular, our presentation does not assume any back-
ground in logic or automata theory. Moreover our approach can be
generalized to prove other results of a similar flavor, for example, that
of Courcelle’s Theorem for treewidth [3,19].

1 Introduction

In this paper we give an alternate proof of the theorem by Courcelle, Makowski
and Rotics [6]: Every decision or optimization problem expressible in MSO1 is
linear time solvable on graphs of bounded cliquewidth. We prove the same the-
orem for graphs of bounded rankwidth. Since rankwidth and cliquewidth are
equivalent width measures in the sense that a graph has bounded rankwidth iff
it has bounded cliquewidth, it does not matter which of these width measures
is used to state the theorem [21].

The proof by Courcelle et al. [6,7] makes use of the Feferman-Vaught Theo-
rem [10] adapted to MSO (cf. [14,15]) and MSO transductions (cf., [4]). Under-
standing this proof requires a reasonable background in logic and as such this
proof is out of reach of many practicing algorithmists. An alternative proof of
this theorem has been recently published by Ganian and Hliněný [11] who use
an automata-theoretic approach to prove the theorem. Our approach to proving
this theorem is game-theoretic, an outline of which follows.

It is known that any graph of rankwidth t can be represented by a t-labeled
parse tree [11]. Given any integer q, one can define an equivalence relation on the
class of all t-labeled graphs as follows: t-labeled graphs G1 and G2 are equivalent,
denoted G1 ≡MSO

q G2, iff for every MSO1-formula of quantifier rank at most q
G1 |= ϕ iff G2 |= ϕ, i.e., no formula with at most q nested quantifiers can
distinguish them. The number of equivalence classes depends on the quantifier
rank q and the number of labels t and each equivalence class can be represented
� This work is supported by the Deutsche Forschungsgemeinschaft (DFG) under grant
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by a tree-like structure of size f(q, t), where f is a computable function of q
and t only.

This tree-like representative of an equivalence class, called a reduced character-
istic tree of depth q and denoted by RCq(G), captures all model-checking games
that can be played on graphs in that equivalence class and formulas of quantifier
rank at most q (see Section 3). One can construct a reduced characteristic tree
of depth q given a t-labeled parse tree of an n-vertex graph in time O(f ′(q, t) ·n)
(Section 4). Finally to decide whether G |= ϕ, for some MSO1-formula ϕ of
quantifier rank at most q, we simply simulate the model checking game on ϕ
and G using RCq(G). This takes an additional O(f(q, t)) time and shows that
one can decide whether G |= ϕ in time O(f ′′(q, t) ·n) proving the main theorem:

The Main Theorem ([6,11]). Let ϕ be an MSO1-formula with qr(ϕ) ≤ q.
There is an algorithm that takes as input a t-labeled parse tree decomposition T
of a graph G and decides whether G |= ϕ in time O(f(q, t) · |T |), where f is some
computable function and |T | is the number of nodes in T .

The notions of q-equivalence ≡MSO
q and related two-player pebble games (such

as the Ehrenfeucht-Fräıssé game) are fundamental to finite model theory and
can be found in any book on the subject (cf. [9]). However for understanding
this paper, one does not need any prior knowledge of these concepts.

2 Preliminaries

Rankwidth was originally defined by Oum and Seymour in terms of branch-
width [22]. However this definition is not very useful from an algorithmic point-
of-view and this prompted Courcelle and Kanté [5] to introduce the notion of
bilinear products of multi-colored graphs and algebraic expressions over these
products as an equivalent description of rankwidth. Ganian and Hliněný [11]
formulated the same ideas in terms of labeling joins and parse trees which we
briefly describe here.

t-labeled graphs. A t-labeling of a graph G is a mapping lab : V (G) → 2[t] which
assigns to each vertex of G a subset of [t] = {1, . . . , t}. A t-labeled graph is a
pair (G, lab), where lab is a labeling of G and is denoted by Ḡ. Since a t-labeling
function may assign the empty label to each vertex, an unlabeled graph is consid-
ered to be a t-labeled graph for all t ≥ 1. A t-labeling of G may also be interpreted
as a mapping from V (G) to the t-dimensional binary vector space GF(2t) by as-
sociating the subset X ⊆ [t] with the t-bit vector x = x1 . . . xt, where xi = 1 if
and only if i ∈ X . Thus one can represent a t-labeling lab of an n-vertex graph
as an n× t binary matrix.

A t-relabeling is a mapping f : [t] → 2[t]. One can also view a t-relabeling as
a linear transformation from the space GF(2t) to itself and one can therefore
represent a t-relabeling by a t× t binary matrix Tf . For a t-labeled graph Ḡ =
(G, lab), we define f(Ḡ) to be the t-labeled graph (G, f ◦ lab), where (f ◦ lab)(v)
is the vector in GF(2t) obtained by applying the linear transformation f to the
vector lab(v). It is easy to see that the labeling lab ′ = f ◦ lab is the matrix
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product lab × Tf . Informally, to calculate (f ◦ lab)(v), apply the map f to each
element of lab(v) and “sum the elements modulo 2”.

We now define three operators on t-labeled graphs that will be used to define
parse tree decompositions of t-labeled graphs. These operators were first de-
scribed by Ganian and Hliněný in [11]. The first operator is denoted � and rep-
resents a nullary operator that creates a new graph vertex with the label 1. The
second operator is the t-labeled join and is defined as follows. Let Ḡ1 = (G1, lab1)
and Ḡ2 = (G2, lab2) be t-labeled graphs. The t-labeled join of Ḡ1 and Ḡ2, de-
noted Ḡ1 ⊗ Ḡ2, is defined as taking the disjoint union of G1 and G2 and adding
all edges between vertices u ∈ V (G1) and v ∈ V (G2) such that |lab1(u)∩ lab2(v)|
is odd. The resulting graph is unlabeled.

Note that |lab1(u) ∩ lab2(v)| is odd if and only if the scalar product lab1(u) •
lab2(v) = 1, that is, the vectors lab1(u) and lab2(v) are not orthogonal in the
space GF(2t). For X ⊆ V (G1), the set of vectors γ(Ḡ1, X) = { lab1(u) | u ∈ X }
generates a subspace 〈γ(Ḡ1, X)〉 of GF(2t). The following result shows which
pair of vertex subsets do not generate edges in a t-labeled join operation.

Proposition 1 ([12]). Let X ⊆ V (G1) and Y ⊆ V (G2) be arbitrary nonempty
subsets of t-labeled graphs Ḡ1 and Ḡ2. In the join graph Ḡ1⊗ Ḡ2 there is no edge
between any vertex of X and a vertex of Y if and only if the subspaces 〈γ(Ḡ1, X)〉
and 〈γ(Ḡ2, Y )〉 are orthogonal in the vector space GF(2t).

The third operator is called the t-labeled composition and is defined using the
t-labeled join and t-relabelings. Given three t-relabelings g, f1, f2 : [t] → 2[t], the
t-labeled composition ⊗[g|f1, f2] is defined on a pair of t-labeled graphs Ḡ1 =
(G1, lab1) and Ḡ2 = (G2, lab2) as follows:

Ḡ1 ⊗[g|f1, f2] Ḡ2 := H̄ = (Ḡ1 ⊗ g(Ḡ2), lab),

where lab(v) = fi ◦ labi(v) for v ∈ V (Gi) and i ∈ {1, 2}. Thus the t-labeled
composition first performs a t-labeling join of Ḡ1 and g(Ḡ2) and then relabels
the vertices of G1 using f1 and the vertices of G2 with f2. Note that a t-labeling
composition is not commutative and that {u, v} is an edge of H̄ if and only
if lab1(u) • (lab2(v) × Tg) = 1, where Tg is the matrix representing the linear
transformation g.

Definition 1 (t-labeled Parse Trees). A t-labeled parse tree T is a finite,
ordered, rooted subcubic tree (with the root of degree at most two) such that

1. all leaves of T are labeled with the � symbol, and
2. all internal nodes of T are labeled with a t-labeled composition symbol.

A parse tree T generates the graph G that is obtained by the successive leaves-
to-root application of the operators that label the nodes of T .

It is known that rankwidth can be defined using t-labeled parse trees.

Theorem 1 (The Rankwidth Parsing Theorem [5,11]). A graph G has
rankwidth at most t if and only if some labeling of G can be generated by a t-
labeled parse tree. Moreover, a width-k rank-decomposition of an n-vertex graph
can be transformed into a t-labeled parse tree on Θ(n) nodes in time O(t2 · n2).
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Monadic second-order logic (MSO) is an extension of first-order logic which
allows quantification over sets of objects. We briefly fix notation, for details
please refer to [9]. A vocabulary τ is a finite set of relation symbols P, Q, R, . . .
each associated with a natural number known as its arity. A τ-structure A
consists of a set A called the universe of A and a p-ary relation RA ⊆ Ap for
every p-ary relation symbol R in τ . Graphs can be expressed in a natural way as
relational structures with universe the vertex set and a vocabulary consisting of
a single binary (edge) relation symbol. To express a t-labeled graph G, we may
use a vocabulary τ consisting of the binary relation symbol E (representing,
as usual, the edge relation) and t unary relation symbols L1, . . . , Lt, where Li

represents the set of vertices labeled i.
The quantifier rank qr(ϕ) of a formula ϕ is the maximum number of nested

quantifiers occurring in it. A variable in a formula is free if it is not within
the scope of a quantifier. By free(ϕ) we denote the set of free variables of ϕ. A
formula without free variables is called a sentence.

An assignment in A is a function α that assigns values to the free variables
of ϕ. For a variable x and an assignment α, we let α[x/a] denote an assignment
that agrees with α except that it assigns the value a to x. We write A |= ϕ[α] if
ϕ holds in A , when the free variables of ϕ have been assigned the values given
by α.

3 The ≡MSO
q -Relation and Its Characterization

Given a vocabulary τ and a natural number q, one can define an equivalence
relation on the class of τ -structures as follows. For τ -structures A and B and q ∈
N, define A ≡MSO

q B (q-equivalence) if and only if A |= ϕ ⇐⇒ B |= ϕ for all
MSO sentences ϕ of quantifier rank at most q. In other words, two structures are
q-equivalent if and only if no sentence of quantifier rank at most q can distinguish
them. We provide a characterization of the relation ≡MSO

q using objects called
characteristic trees of depth q. We show that two τ -structures A and B have
identical characteristic trees of depth q if and only if A ≡MSO

q B. We shall see
that characteristic trees are specially useful because their size is “small” and for
graphs of bounded rankwidth can be constructed efficiently given their parse
tree decomposition. However before we can do that, we need a few definitions.

Definition 2 (Induced Structure and Sequence). Let A a τ -structure
with universe A and let c̄ = c1, . . . , cm ∈ Am. The structure A ′ = A [c̄] =
A [{c1, . . . , cm}] induced by c̄ is a τ -structure with universe A′ = {c1, . . . , cm}
and interpretations PA ′

:= PA ∩ {c1, . . . , cm}r for every relation symbol P ∈ τ
of arity r. For an arbitrary sequence of objects c̄ = c1, . . . , cm and a set U , we
let c̄[U ] be the subsequence of c̄ that contains only objects in U . For a sequence
of sets C̄ = C1, . . . , Cp we let C̄ ∩A denote the sequence C1 ∩U, . . . , Cp ∩U and
write C̄ ∩ c̄ for C1 ∩ {c1, . . . , cm}, . . . , Cp ∩ {c1, . . . , cm}.
Definition 3 (Partial Isomorphism). Let A and B be structures over the
vocabulary τ with universes A and B, respectively, and let π be a map such
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that domain(π) ⊆ A and range(π) ⊆ B. The map π is said to be a partial
isomorphism from A to B if (1) π is one-to-one and onto; and (2) for every
p-ary relation symbol R ∈ τ and all a1, . . . , ap ∈ domain(π), RA a1, . . . , ap iff
RBπ(a1), . . . , π(ap). If domain(π) = A and range(π) = B, then π is an isomor-
phism between A and B and A and B are isomorphic.

Let (A , Ā) and (B, B̄) be tuples, where Ā = A1, . . . , As and B̄ = B1, . . . , Bs,
s ≥ 0, such that for all 1 ≤ i ≤ s, we have Ai ⊆ A and Bi ⊆ B. We say that π is a
partial isomorphism between (A , Ā) and (B, B̄) if (1) π is a partial isomorphism
between A and B, and (2) for each a ∈ domain(π) and all 1 ≤ i ≤ s, it holds
that a ∈ Ai iff π(a) ∈ Bi. The tuples (A , Ā) and (B, B̄) are isomorphic if π is
an isomorphism between A and B.

In Definition 2 of an induced structure we ignore the order of the elements in c̄.
For the purposes in this paper, the order in which the elements are chosen is
important because it is used to map variables in the formula to elements in the
structure. Moreover, elements could repeat in the vector c̄ and this fact is lost
when we consider the induced structure A [c̄]. To capture both the order and
the multiplicity of the elements in vector c̄ in the structure A [c̄], we introduce
the notion of an ordered induced structure.

Let U be a set and ≡ be an equivalence relation on U . For u ∈ U , we let [u]≡ =
{ u′ ∈ U | u ≡ u′ } be the equivalence class of u under ≡, and U/≡ = { [u]≡ | u ∈
U} be the quotient space of U under ≡. A vector c̄ = c1, . . . , cm ∈ Am defines a
natural equivalence relation ≡c̄ on the set [m] = {1, . . . , m}: for i, j ∈ [m], we
have i ≡c̄ j if and only if ci = cj . For simplicity, we write [i]c̄ for [i]≡c̄ .

Definition 4 (Ordered Induced Structure). Let A be a τ -structure and c̄ =
c1, . . . , cm ∈ Am. The ordered structure induced by c̄ is the τ -structure H =
Ord(A , c̄) with universe H = [m]/≡c̄ such that the map h : ci �→ [i]c̄, 1 ≤
i ≤ m, is an isomorphism between A [c̄] and H . Thus Ord(A , c̄) is simply the
structure A [c̄] with element ci being called [i]c̄. Let C̄ = C1, . . . , Cp with Ci ⊆ A,
1 ≤ i ≤ p. Then we let Ord(A , c̄, C̄) :=

(
Ord(A , c̄), h̄, h(C̄ ∩ c̄)

)
, where h : ci �→

[i]c̄, 1 ≤ i ≤ m, h̄ = h(1), . . . , h(m) and h(C̄ ∩ c̄) = h(C1 ∩ c̄), . . . , h(Cp ∩ c̄). See
Figure 1.

3.1 Model Checking Games and Characteristic Trees

Testing whether a non-empty structure models a formula can be specified by a
model checking game (also known as Hintikka game, see [16,13]). Let A be a
τ -structure with universe A. Let ϕ be a formula and α be an assignment to the
free variables of ϕ. The game is played between two players called the verifier
and the falsifier. The verifier tries to prove that A |= ϕ[α] whereas the falsifier
tries to disprove this. We assume without loss of generality that ϕ is in negation
normal form, i.e., negations in ϕ appear only at the atomic level. This can always
be achieved by applying simple rewriting rules such as ¬∀xϕ(x) � ∃x¬ϕ(x). The
model checking game MC(A , ϕ, α) is positional with positions (ψ, β), where ψ
is a subformula of ϕ and β is an assignment to the free variables of ψ. The
game starts at position (ϕ, α). At a position (∀Xψ(X), β), the falsifier chooses



510 A. Langer, P. Rossmanith, and S. Sikdar

a1

a2

a3a4

a5
{1, 5}

{2}

{3, 4}

c̄

Fig. 1. The vector c̄ = a5a2a3a3a5 lists vertices in the graph G on the left. The resulting
ordered induced structure Ord(G , c̄) is depicted in black on the right.

a subset D ⊆ A, and the game continues at position (ψ, β[X/D]). Similarly, at
a position (∀xψ(x), β) or (ψ1 ∧ ψ2, β), the falsifier chooses an element d ∈ A
or some ψ := ψi for some 1 ≤ i ≤ 2 and the game then continues at posi-
tion (ψ, β[x/d]) or (ψ, β), respectively. The verifier moves analogously at exis-
tential formulas. If an element is chosen then the move is called a point move;
if a set is chosen then the move is a set move. The game ends once a position
(ψ, β) is reached, such that ψ is an atomic or negated formula. The verifier wins
if and only if A |= ψ[β]. We say that the verifier has a winning strategy if they
win every play of the game irrespective of the choices made by the falsifier. It is
well known that the model checking game characterizes the satisfaction relation
|=. The following lemma can easily be shown by induction over the structure
of ϕ.

Lemma 1 (cf., [13]). Let A be a τ-structure, let ϕ be an MSO formula, and
let α be an assignment to the free variables of ϕ. Then A |= ϕ[α] if and only if
the verifier has a winning strategy on the model checking game on A , ϕ, and α.

A model checking game on a τ -structure A and a formula ϕ with quantifier
rank q can be represented by a tree of depth q in which the nodes represent
positions in the game and the edges represent point and set moves made by the
players. Such a tree is called a game tree and is used in combinatorial game
theory for analyzing games (see [2], for instance). For our purposes, we define
a notion related to game trees called full characteristic trees which are finite
rooted trees, where the nodes represent positions and edges represent moves of
the game. A node is a tuple that represents the sets and elements that have been
chosen thus far. The node can be thought of as a succinct representation of the
state of the game played till the position represented by that node. However,
note that a full characteristic tree depends on the quantifier rank q and not on
a particular formula.

Definition 5 (Full Characteristic Trees). Let A be a τ -structure with uni-
verse A and let q ∈ N. For elements c̄ = c1, . . . , cm ∈ Am, sets C̄ = C1, . . . , Cp

with Ci ⊆ A, 1 ≤ i ≤ p, let T = FCq(A , c̄, C̄) be a finite rooted tree such that (1)
root(T ) = (A [c̄], c̄, C̄∩ c̄), and (2) if m+p+1 ≤ q then the subtrees of the root of
FCq(A , c̄, C̄) is the set

{
FCq(A , c̄d, C̄)

∣∣ d ∈ A
} ∪ {FCq(A , c̄, C̄D)

∣∣ D ⊆ A
}
.
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The full characteristic tree of depth q for A , denoted by FCq(A ), is defined
as FCq(A , ε, ε), where ε is the empty sequence.

Let T = (V, E) be a rooted tree. We let root(T ) be the root of T and for u ∈ V
we let childrenT (u) = { v ∈ V | (u, v) ∈ E } and subtreeT (u) be a subtree of T
rooted at u, and subtrees(T ) = { subtreeT (u) | u ∈ childrenT (root(T )) }.

We now define a model checking game MC(F, ϕ, x̄, X̄) on full characteristic
trees F = FCq(A , c̄, C̄) and formulas ϕ with qr(ϕ) ≤ q, where x̄ = x1, . . . , xm

are the free object variables of ϕ, X̄ = X1, . . . , Xp are the free set variables
of ϕ, c̄ = c1, . . . , cm ∈ Am, and C̄ = C1, . . . , Cp with Ci ⊆ A, 1 ≤ i ≤ p.
The rules are similar to the classical model checking game MC(A , ϕ, α). The
game is positional and played by two players called the verifier and the falsi-
fier and is defined over subformulas ψ of ϕ. However instead of choosing sets
and elements explicitly, the tree F is traversed top-down. At the same time,
we “collect” the list of variables the players encountered, such that we can
make the assignment explicit once the game ends. The game starts at the posi-
tion (ϕ, x̄, X̄, root(F )). Let (ψ, ȳ, Ȳ , v) be the position at which the game is being
played, where v = (H , d̄, D̄) is a node of FCq(A , c̄, C̄), and ψ is a subformula
of ϕ with free(ψ) = ȳ ∪ Ȳ . At a position (∀Xϑ(X), ȳ, Ȳ , v) the falsifier chooses
a child u = (H , d̄, D̄D) of v, where D ⊆ A, and the game continues at posi-
tion (ϑ, ȳ, Ȳ X, u). Similarly, at a position (∀xϑ(x), ȳ, Ȳ , v) the falsifier chooses a
child u = (H ′, d̄d, D̄), where d ∈ A, and the game continues in (ϑ, ȳx, Ȳ , u), and
at a position (ϑ1∧ϑ2, ȳ, Ȳ , v), the falsifier chooses some 1 ≤ i ≤ 2, and the game
continues at position (ϑi, ȳ, Ȳ , v). The verifier moves analogously at existential
formulas.

The game stops once an atomic or negated formula has been reached. Suppose
that a particular play of the game ends at a position (ψ, ȳ, Ȳ , v), where ψ is a
negated atomic or atomic formula with free(ψ) = {y1, . . . , ys, Y1, . . . , Yt} and
v = (H , d̄, D̄) some node of F , where d̄ = d1, . . . , ds and D̄ = D1, . . . , Dt. Let
α be an assignment to the free variables of ϕ, such that α(yi) = di, 1 ≤ i ≤ s,
and α(Yi) = Di, 1 ≤ i ≤ t. The verifier wins the game if and only if H |= ψ[α].
The verifier has a winning strategy if and only if they can win every play of
the game irrespective of the choices made by the falsifier. In what follows, we
identify a position (ψ, ȳ, Ȳ , v) of the game MC(FCq(A , c̄, C̄), ϕ, x̄, X̄), where
v = (H , d̄, D̄), with the game MC(FCq(A , d̄, D̄), ψ, ȳ, Ȳ ).

Lemma 2. Let A be a τ-structure and let ϕ be an MSO formula with qr(ϕ) ≤ q
and free variables {x1, . . . , xm, X1, . . . , Xm}. Let α be an assignment to the free
variables of ϕ. Then the verifier has a winning strategy in the model checking
game MC(A , ϕ, α) if and only if the verifier has a winning strategy in the model
checking game MC(FCq(A , c̄, C̄), ϕ, x̄, X̄), where c̄ = α(x1), . . . , α(xm) and C̄ =
α(X1), . . . , α(Xp).

Lemma 2 is shown by simulating each playof the model checkinggameMC(A , ϕ, α)
in MC(FCq(A , c̄, C̄), ϕ, x̄, X̄) and vice versa. Therefore, a full characteristic tree
of depth q for a structure A can be used to simulate the model checking game
on A and any formula ϕ of quantifier rank at most q. However the size of such
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a tree is of the order (2n + n)q, where n is the number of elements in the uni-
verse of A . We now show that one can “collapse” equivalent branches of a full
characteristic tree to obtain a much smaller labeled tree (called a reduced char-
acteristic tree) that is in some sense equivalent to the original (full) tree. We will
then show that for a graph G of rankwidth at most t, the reduced characteristic
tree of G is efficiently computable given a t-labeled parse tree decomposition
of G. We achieve this collapse by replacing the induced structures A [c̄] in the
full characteristic tree by a more generic, implicit representation — that of their
ordered induced substructures Ord(A , c̄).

Definition 6 (Reduced Characteristic Trees). Let A be a τ -structure and
let q ∈ N. For elements c̄ = c1, . . . , cm ∈ Am, sets C̄ = C1, . . . , Cp with Ci ⊆ A,
1 ≤ i ≤ p, we let RCq(A , c̄, C̄) be a finite rooted tree such that (1) the root of
RCq(A , c̄, C̄)) is Ord(A , c̄, C̄), and (2) if m + p + 1 ≤ q then the subtrees of the
root of RCq(A , c̄, C̄) is the set {RCq(A , c̄d, C̄) | d ∈ A } ∪ {RCq(A , c̄, C̄D) |
D ⊆ A }. The reduced characteristic tree of depth q for the structure A , denoted
by RCq(A ), is defined to be RCq(A , ε, ε), where ε is the empty sequence.

One can define the model checking game MC(R, ϕ, x̄, X̄) on a tree R =
RCq(A , c̄, C̄) in exactly the same manner as MC(FCq(A , c̄, C̄), ϕ, x̄, X̄). As
mentioned before, our interest in RCq(A , c̄, C̄) lies in that: (1) they are equiv-
alent to FCq(A , c̄, C̄); (2) they are “small”; and, (3) they are efficiently com-
putable if A is a graph of rankwidth at most t. We first show that RCq(A , c̄, C̄)
is equivalent to its full counterpart FCq(A , c̄, C̄).

Lemma 3. Let A be a τ-structure and let q ∈ N. Let c̄ = c1, . . . , cm ∈ Am

and C̄ = C1, . . . , Cp with Ci ⊆ A, 1 ≤ i ≤ p. Let F = FCq(A , c̄, C̄) and
R = RCq(A , c̄, C̄). Then the verifier has a winning strategy in the model checking
game MC(F, ϕ, x̄, X̄) if and only if the verifier has a winning strategy in the game
MC(R, ϕ, x̄, X̄), where ϕ ∈ MSO(τ) with qr(ϕ) ≤ q with free object variables
x̄ = x1, . . . , xm and free set variables X̄ = X1, . . . , Xp.

From Lemmas 1, 2, and 3, we obtain the important fact that reduced character-
istic trees are in fact equivalent to their full counterparts and characterize the
equivalence relation ≡MSO

q .

Corollary 1. Let A and B be τ-structures and q ∈ N. Then RCq(A ) =
RCq(B) iff A ≡MSO

q B.

The next lemma shows that reduced characteristic trees have small size. For i ∈ N,
we define exp(i)(·) as: exp(0)(x) = x, exp(1)(x) = 2x and exp(i)(x) = 22 exp(i−1)(x)

for i ≥ 2.

Lemma 4. Let A be a τ-structure with universe A such that each relation sym-
bol in τ has arity at most r, and q ∈ N. Then the number of reduced characteristic
trees RCq(A , c̄, C̄) for all possible choices of c̄, C̄ is at most exp(q+1)(|τ | · qr +
q log q + q2). The size of a reduced characteristic tree RCq(A , c̄, C̄) is at most
(exp(q)(|τ | · qr + q log q + q2))4.
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4 Constructing Characteristic Trees

In this section, we show how to construct reduced characteristic trees of depth q
for a graph G of rankwidth t when given a t-labeled parse tree decomposi-
tion of G. A t-labeled graph may be represented as τ -structure where τ =
{E, L1, . . . , Lt}. The symbol E is a binary relation symbol representing the edge
relation and Li for 1 ≤ i ≤ t is a unary relation symbol representing the set of
vertices with label i. In what follows, whenever we talk about a τ -structure A ,
we mean a graph viewed as a structure over the vocabulary {E, L1, . . . , Lt}.

Lemma 5. Let A be a τ-structure with |A| = 1. Let q ≥ 0 and c̄ ∈ Am and
C̄ = C1, . . . , Cp with Ci ⊆ A, 1 ≤ i ≤ p. Then RCq(A , c̄, C̄) can be constructed
in constant time for each fixed q.

In what follows, we let A1, A2 and A = A1 ⊗ A2 be τ -structures, where ⊗ =
⊗[g|f1, f2] for t-relabelings g, f1, and f2. Recall that if A = A1 ⊗A2, then we
assume that A1 and A2 (the universes of A1 and A2, respectively) are disjoint.
Furthermore for a fixed constant q ≥ 0, let m and p be nonnegative integers
such that m + p ≤ q, c̄ = c1, . . . , cm ∈ (A1 ∪ A2)m and C̄ = C1, . . . , Cp, where
Cj ⊆ A1 ∪A2, 1 ≤ j ≤ p. For i ∈ {1, 2}, we let c̄i = ci,1, . . . , ci,mi = c̄[Ai].

In the remainder of this section, we show how to construct RCq(A , c̄, C̄) given
RCq(A1, c̄1, C̄ ∩ c̄1) and RCq(A2, c̄2, C̄ ∩ c̄2). For the construction, we need to
know the order in which the elements in c̄1 and c̄2 appear in c̄. This motivates
us to define the notion of an indicator vector ind(A1, A2, c̄).

Definition 7. The indicator vector of c̄ = c1, . . . , cm, denoted ind(A1, A2, c̄), is
the vector d̄ = d1, . . . , dm, such that for i ∈ {1, 2} and all 1 ≤ j ≤ m it holds
that dj = (i, k) iff cj = ci,k. That is, dj = (i, k) iff cj is the kth element in
the vector c̄i = c̄[Ai]. If d̄ = d1, . . . , dm and (i, k) ∈ {1, 2} × [m + 1], then we
use d̄(i, k) to denote the vector d1, . . . , dm+1, where dm+1 = (i, k).

Constructing R = RCq(A , c̄, C̄) when given R1 = RCq(A1, c̄1, C̄ ∩ c̄1), R2 =
RCq(A2, c̄2, C̄ ∩ c̄2), and d̄ = ind(A1, A2, c̄) consists of the following two steps:
First construct the label for root(R) = Ord(A , c̄, C̄), and then recursively con-
struct its subtrees. Since Ord(A , c̄) ∼= A [c̄] and Ai[c̄i] ∼= Ord(Ai, c̄i), one easily
sees that Ord(A , c̄) ∼= Ord(A1, c̄1)⊗Ord(A2, c̄2). For the first step, we therefore
just need to rename elements in Ord(A1, c̄1)⊗Ord(A2, c̄2) in an appropriate way.
The information on how elements are to be renamed is stored in the indicator
vector d̄ of c̄. The formal definition of the renaming operator ⊗d̄ and Lemma 6
are technical and may be skipped if the reader believes that one can construct
Ord(A , c̄) from Ord(A1, c̄1) and Ord(A2, c̄2) using d̄.

Definition 8. For i ∈ {1, 2}, let Ord(Ai, c̄i, C̄ ∩ Ai) = (Hi, c̄
′
i, C̄

′
i). Define a

map f : [m] → H1 � H2 as follows: for all 1 ≤ j ≤ m, let f(j) = [k]c̄i iff
dj = (i, k). Then we define Ord(A1, c̄[A1], C̄ ∩A1)⊗d̄ Ord(A2, c̄[A2], C̄ ∩A2) as
Ord(H1 ⊗H2, f(1) . . . f(m), C̄′

1 ∪ C̄′
2).
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Lemma 6. Let A1 and A2 be τ-structures and let ⊗ =⊗[g|f1, f2] for some t-
relabelings g, f1, f2. Let c̄ = c1, . . . , cm ∈ (A1 ∪A2)m and C̄ = C1, . . . , Cp, where
Cj ⊆ A1 ∪ A2 for 1 ≤ j ≤ p. Also let d̄ = ind(A1, A2, c̄). Then Ord(A1 ⊗
A2, c̄, C̄) = Ord(A1, c̄[A1], C̄ ∩A1)⊗d̄ Ord(A2, c̄[A2], C̄ ∩A2).

We now define the tree cross product R1 ×(q,⊗, d̄) R2 of R1 and R2 and then
show that in fact R = R1 ×(q,⊗, d̄) R2. As motivated before, the root of the
tree cross product is simply root(R1) ⊗d̄ root(R2). For the construction of the
subtrees, recall that each subtree of R corresponds to either a set move U ⊆ A
or a point move a ∈ A. Here, {U ⊆ A } = {U1 � U2 | U1 ⊆ A1, U2 ⊆ A2 }
and A = A1 �A2. We can therefore reconstruct the subtrees of R by recursively
combining each subtree for a set U1 ⊆ A1 with a subtree for a set U2 ⊆ A2

(the set S2 in the following definition), and by choosing subtrees of R1 for point
moves in A1, and choosing subtrees of R2 for point moves in A2 (the set S1 in
the following definition).

Definition 9 (Tree Cross Product). Let A1 and A2 be τ -structures and
let ⊗ = ⊗[g|f1, f2] for some t-relabelings g, f1, f2. For a fixed constant q ≥ 0,
let m and p be nonnegative integers such that m + p ≤ q. Let c̄ = c1, . . . , cm ∈
(A1 ∪A2)m and C̄ = C1, . . . , Cp, where Cj ⊆ A1 ∪A2, 1 ≤ j ≤ p. For i ∈ {1, 2},
let c̄i = ci,1, . . . , ci,mi = c̄[Ai], qi ≥ q−m−p, and Ri = RCqi(Ai, c̄i, C̄∩Ai) with
root(Ri) = (Hi, c̄

′
i, C̄

′
i) = Ord(Ai, c̄i, C̄ ∩ Ai). We define the tree cross product

of R1 and R2, R = R1 ×(q,⊗, d̄) R2, be a finite, rooted tree such that (1)
root(R) = root(R1) ⊗d̄ root(R2), and (2) if m + p + 1 ≤ q, then subtrees(R) =
S1 ∪ S2, where

S1 =
{

subtreeR1(u1) ×(q,⊗, d̄(1, m1 + 1)) R2

∣∣
u1 = (H ′

1 , c̄′1c, C̄
′
1) ∈ childrenR1(root(R1))

} ∪{
R1 ×(q,⊗, d̄(2, m2 + 1)) subtreeR2(u2)

∣∣
u2 = (H ′

2 , c̄′2c, C̄
′
2) ∈ childrenR2(root(R2))

}
,

S2 =
{

subtreeR1(u1) ×(q,⊗, d̄) subtreeR2(u2)
∣∣

ui = (H ′
i , c̄′i, C̄

′
iDi) ∈ childrenRi(root(Ri)), 1 ≤ i ≤ 2

}
.

Lemma 7. Let A1 and A2 be τ-structures and let ⊗ = ⊗[g|f1, f2] for some
t-relabelings g, f1, f2. For nonnegative integers q, m, p with m + p ≤ q, let c̄ =
c1, . . . , cm ∈ (A1 ∪ A2)m and C̄ = C1, . . . , Cp, where Cj ⊆ A1 ∪ A2 for 1 ≤
j ≤ p. Also let d̄ = ind(A1, A2, c̄) and for 1 ≤ i ≤ 2 let qi ≥ q −m − p. Then
RCq(A1 ⊗A2, c̄, C̄) = RCq1(A1, c̄1, C̄ ∩A1) ×(q,⊗, d̄) RCq2(A2, c̄2, C̄ ∩A2).

Lemma 8. Given R1 and R2, the tree cross product R1 ×(q,⊗, d̄) R2 can be
computed time poly(|R1|, |R2|), where |Ri| denotes the number of nodes in Ri.

We can now finally prove the Main Theorem.

Proof (Main Theorem). It is no loss of generality to assume that G has at least
one vertex. Otherwise deciding whether G |= ϕ takes constant time. By Lem-
mas 1, 2 and 3, to prove that G |= ϕ it is sufficient to show that the veri-
fier has a winning strategy in the model checking game MC(RCq(G), ϕ, ε, ε).
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By Lemma 4, the size of the reduced characteristic tree RCq(G) of a t-labeled
graph is at most f1(q, t) for some computable function f1 of q and t alone.
By Lemma 8, the time taken to combine two reduced characteristic trees of
size f1(q, t) is f(q, t) = poly(f1(q, t)).

We claim that the total time taken to construct RCq(G) from its parse tree
decomposition T is O(f(q, t)·|T |). This is where we use the fact that the graph G
has rankwidth at most t. The proof is by induction on |T |. By Lemma 5, the
claim holds when |T | = 1. Suppose that Ḡ = Ḡ1 ⊗[g|h1, h2] Ḡ2, where g, h1, h2

are t-relabelings and let T1 and T2 be parse trees of Ḡ1 and Ḡ2, respectively.
Then |T | = |T1|+ |T2|+ 1, where T is a parse tree of Ḡ. By induction hypothe-
sis, one can construct the reduced characteristic trees RCq(G1) and RCq(G2) in
times O(f(q, t) · |T1|) and O(f(q, t) · |T2|), respectively. By Lemma 7, one can in-
deed construct RCq(G) given RCq(G1), RCq(G2) and d̄ = ε. By using Lemma 8,
the time taken to construct RCq(G) is O(f(q, t) + f(q, t) · |T1|+ f(q, t) · |T2|) =
O(f(q, t) · |T |), proving the claim.

In order to check whether the verifier has a winning strategy in the model
checking game MC(RCq(G), ϕ, ε, ε), one can use a very simple recursive algo-
rithm (see also [13]). A position p = (ψ, x̄, X̄, u) of the model checking game
can be identified with a call of the algorithm with arguments p. If ψ is uni-
versal, then the algorithm recursively checks whether the verifier has a winning
strategy from all positions u′ that are reachable from u in the model checking
game. If otherwise ψ is existential, then the algorithm checks whether there
is one subsequent position in the game from which the verifier has a win-
ning strategy. This algorithm visits each node of the reduced characteristic
tree RCq(G) at most once. Therefore the time taken to decide whether G |= ϕ
is O(f1(q, t) + f(q, t) · |T |) = O(f(q, t) · |T |), as claimed. 
�

5 Discussion and Conclusion

With some additional effort the proof of the Main Theorem can be extended
to linear optimization problems expressible in MSO1 (the LinMSO-framework).
Moreover the results of this paper naturally extend to directed graphs and bi-
rankwidth. This allows us to conclude that any decision or optimization prob-
lem on directed graphs expressible in MSO1 is linear-time solvable on graphs of
bounded birankwidth [6,18]. Finally, the game-theoretic approach has already
been used to prove Courcelle’s result for treewidth [3,1,8] with an emphasis on
practical implementability [19].

References

1. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs.
J. Algorithms 12(2), 308–340 (1991)

2. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for Your Mathematical
Plays. A.K. Peters, Wellesley (1982)

3. Courcelle, B.: The monadic second order theory of Graphs I: Recognisable sets of
finite graphs. Information and Computation 85, 12–75 (1990)



516 A. Langer, P. Rossmanith, and S. Sikdar

4. Courcelle, B.: Monadic second-order definable graph transductions: A survey.
Theor. Comput. Sci. 126(1), 53–75 (1994)
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balanced graph expressions. In: Brandstädt, A., Kratsch, D., Müller, H. (eds.)
WG 2007. LNCS, vol. 4769, pp. 66–75. Springer, Heidelberg (2007)

6. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear Time Solvable Optimization
Problems on Graphs of Bounded Clique Width. Theory Comput. Syst. 33, 125–150
(2000)

7. Courcelle, B., Makowsky, J.A., Rotics, U.: On the fixed parameter complexity
of graph enumeration problems definable in monadic second-order logic. Discrete
Applied Mathematics 108(1-2), 23–52 (2001)

8. Courcelle, B., Mosbah, M.: Monadic second-order evaluations on tree-
decomposable graphs. Theor. Comput. Sci. 109(1-2), 49–82 (1993)

9. Ebbinghaus, H.-D., Flum, J.: Finite Model Theory. Springer, Heidelberg (1999)
10. Feferman, S., Vaught, R.: The first order properties of algebraic systems. Fund.

Math. 47, 57–103 (1959)
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Abstract. This paper proposes new notions of polynomial depth
(called monotone poly depth), based on a polynomial version of mono-
tone Kolmogorov complexity. We show that monotone poly depth
satisfies all desirable properties of depth notions i.e., both trivial and
random sequences are not monotone poly deep, monotone poly depth
satisfies the slow growth law i.e., no simple process can transform a non
deep sequence into a deep one, and monotone poly deep sequences exist
(unconditionally).

We give two natural examples of deep sets, by showing that both the
set of Levin-random strings and the set of Kolmogorov random strings
are monotone poly deep.

1 Introduction

From the observation that nature contains both very simple and highly complex
structures, Bennett introduced the profound concept of logical depth [7], as a
formal definition of useful information, as opposed to (random) information in
the traditional algorithmic information theory sense. Bennett’s original idea is
to categorize structures in three groups: trivial, random and the remaining ones;
with the idea that trivial structures being completely predictable contain no use-
ful information; random ones, being completely unpredictable, do not contain
any useful information either; both (trivial and random) being therefore shallow
objects. On the other hand, structures that are neither random nor trivial i.e.,
that contain intricate patterns that are neither fully predictable nor completely
unpredictable, contain useful information; they are called deep structures. Al-
though random sequences contain a lot of information (in the sense of algorithmic
information theory), this information is not of much value, and such sequences
are shallow.

Bennett observed that deep objects, because they contain complex well-hidden
patterns, cannot be created by easy processes. This observation was formalized
in the so-called slow growth law, which states that if a simple process (a truth
table reduction) transforms some (source) sequence into an (image) sequence
that is deep, then the source sequence it started from must be deep i.e., no easy
process can transform a shallow sequence into a deep one.

M. Ogihara and J. Tarui (Eds.): TAMC 2011, LNCS 6648, pp. 517–527, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Bennett’s logical depth is based on Kolmogorov complexity. Intuitively, a bi-
nary sequence is deep, if the more time an algorithm is given, the better it
can compress the sequence. Although Bennett’s formulation is theoretically very
elegant, it is uncomputable, due the uncomputability of Kolmogorov complexity.

To overcome the uncomputability of logical depth, several notions of feasible
depth have been proposed so far [11,5,9]. In [5] Antunes, Fortnow, van Melke-
beek, and Vinodchandran studied several polynomial-time formulations of depth,
with connections to average-case complexity, nonuniform circuit complexity, and
efficient search for satisfying assignments to Boolean formulas. In [9], both a no-
tion of finite-state and polynomial depth were investigated, and the depth of
polynomial weakly useful languages was shown.

Unfortunately, the feasible notions proposed so far suffer some limitations,
e.g. a notion in [5] requires a complexity assumptions to prove the existence of
deep sequences; and the polynomial depth of [9] is based on polynomial time
predictors that cannot read their input (predictors must predict the nth bit of
a sequence without access to the history, i.e. bits 1, 2, . . . , n− 1).

As noticed in [14], depth is not an absolute concept, but depends on the power
of two competing group of observers Δ and Δ′. Informally a sequence is (Δ, Δ′)-
deep if for any observer O from Δ there is an observer O′ in Δ′ such that O′

performs (e.g. compresses, predicts, etc.) better than O on the sequence. Δ and
Δ′ can be the same class e.g. for recursive depth [11], Δ = Δ′ are recursive time
bounds, or different classes e.g. for Bennett’s depth [7], Δ are recursive time
bounds but Δ′ is unbounded Kolmogorov complexity.

In this paper, we use the idea of competing observers from [14] to construct
new notions of polynomial depth (called monotone-polynomial depth), aiming
at notions that satisfy the slow growth law, and for which deep objects can be
proved to exist unconditionally. The classes of observers (the classes Δ and Δ′)
we consider are based on the notion of monotone polynomial time compression
[8], which is a polynomial version of monotone Kolmogorov complexity, with the
advantage that unlike polynomial predictors [9], monotone polynomial compres-
sors can read their input. We show that our notions of monotone polynomial
depth have all the desired properties of a depth notion, i.e. both trivial and
random sequences are shallow, they satisfy a slow-growth law, and deep objects
can be shown to exist unconditionally.

Although logical depth is a very profound concept, there have not been many
examples of natural deep sequences in the literature so far. Bennett [7] showed
that the halting language is deep. Lathrop and Lutz [10] generalized Bennett’s
result by showing that every weakly useful sequence (i.e. a sequence such that
the set of languages that can be reduced to it has measure non-zero) is deep, a
result that was shown to hold in the context of polynomial depth [9]. In this pa-
per, we give two natural examples of deep languages, in the context of monotone
poly depth, namely the set of Levin-random strings and the set of Kolmogorov
random strings. Levin randomness is a standard randomness notion due to Levin
[12]; it is a computable approximation of Kolmogorov complexity, that enjoys
many useful properties, among others it provides a search strategy for finding
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solutions of NP problems, that is optimal up to a multiplicative constant (see
[13]). Curiously although random sequences are shallow, our result shows that
the set of Levin-random strings is not. This shows that in the context of poly-
nomial monotone depth, having a test that detects randomness (i.e the set of
Levin-random strings), is more useful than having access to randomness (a ran-
dom sequence).

Several authors [2,4,1,3] showed the computational power of the set of Kol-
mogorov random strings by reducing (using several types of reduction) a broad
range of complexity classes to it. Our observation that the set of Kolmogorov
random strings is monotone-poly deep is consistent with the results by these
authors [2,4,1,3] whose results intuitively show that this set contains a lot of
useful information.

Due to lack of space, some proofs are postponed to the full version of this
paper.

2 Preliminaries

We write N for the set of all nonnegative integers. Let us fix some notations
for strings and languages. A string is an element of {0, 1}n for some integer n.
We denote by s0, s1, . . . , sn the standard enumeration of strings in lexicographic
order. For a string x, its length is denoted by |x|. The empty string is denoted
by λ. We say string y is a prefix of string x, denoted y � x (also y � x), if
there exists a string a such that x = ya. We write x ∼ y if x is a prefix of y or
vice-versa. For a string x, dbl(x) is x with every bit doubled.

A sequence is an infinite binary string, i.e. an element of {0, 1}∞. For S ∈
{0, 1}∞ and i, j ∈ N, we write S[i..j] for the string consisting of the ith through
jth bits of S, with the convention that S[i..j] = λ if i > j, and S[1] is the leftmost
bit of S. We write S[i] for S[i..i] (the ith bit of S). For a sequence S divided
into blocks S = S1S2S3 . . ., where Si are strings, S 	 Si (resp S 
 Si) denotes
S1 . . . Si (resp. S1 . . . Si−1). For w ∈ {0, 1}∗ and S ∈ {0, 1}∞, we write w � S
if w is a prefix of S, i.e., if w = S[1..|w|]. Unless otherwise specified, logarithms
are taken in base 2.

A language is a set of strings. The characteristic sequence of a language L is
the sequence χL ∈ {0, 1}∞, whose nth bit is one iff sn ∈ L. We will often use
the notation L for χL.

TM stands for Turing machine. A monotone TM is a TM such that for any
strings x, y, M(xy)  M(x).

E denotes the standard linear exponential time complexity class E =
∪c∈NDTIME(2cn). A time bound is a monotone time constructible function
t : N → N, i.e. there is a TM that on input any string of length n halts in
exactly t(n) steps. We will consider the following standard time bound families:
Poly = ∪k∈N{t(n) = knk}, Lin = ∪k∈N{t(n) = kn}, Polylog = ∪k∈N{t(n) =
logk n} and Rec = {t| t is a time bound}.
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3 Polynomial Depth

Our polynomial depth notions are based on polynomial monotone compression
from [8].

Definition 1. Let Δ be a family of (at least linear) time bounds (e.g. Poly, Lin,
etc) and S ∈ {0, 1}∞. A Δ-compression of S is a 3-tuple (C, D, p) where C, D
are TMs and p ∈ {0, 1}∞ such that there exists a time bound t ∈ Δ such that

1. Decompression: For all j ∈ N, D(p[1..j]) outputs S[1..iD,j] in time t(i + j),
where iD,j is a monotone sequence of integers.

2. Compression: For all i ∈ N, C(S[1..i]) outputs several strings in time t(i),
one of which is a prefix p′ of p, such that D(p′)  S[1..i].

The integer iD,j is the number of bits the decompressor D can output given i
bits of input i.e., the larger the difference iD,j − j the greater the compression.

When Δ = Rec, we drop the compression requirement, i.e. a Rec-compression
is a 2-tuple (D, p). This is because the compressor C may be uncomputable.
When Δ = Rec we are in the realms of Kolmogorov complexity, where similarly
there is no (computable) compressor but only a computable decompressor (the
universal TM U).

To avoid extreme compressions of the form “On input n, output 22···2n

ze-
roes”, we fix the maximal compression factor we allow i.e., let MD (maximal
decompression) be a function such that MD(j) is computable in O(MD(j)) time

for any integer j (e.g. MD(j) = 222j

). We require that for any Δ-compression
(C, D, p), and for every integer j,

iD,j ≤ MD(j)

i.e. MD is the same for all compressors.
Let us introduce our (Δ, Δ′)-depth notion, based on competing observers’

classes Δ and Δ′.

Definition 2. S ∈ {0, 1}∞ is a.e. (resp i.o.) (Δ, Δ′)-deep if for every Δ-
compression (C, D, p) of S and any a > 0, there exists a Δ′-compression
(C’,D’,p’) of S such that for almost every (resp. infinitely many) j ∈ N

iD′,j − iD,j ≥ a log iD′,j. (1)

A sequence is (Δ, Δ′)-shallow if it is not (Δ, Δ′)-deep.
The choice of the log function in Equation 1 is arbitrary. In Bennett’s original

notion [7], it was only required the difference be unbounded and the rate was not
specified, but Bennett’s notion would also work with a log rate function. Most
feasible depth notions published after Bennett’s paper [5,9] used a logarithmic
rate function. We choose to do the same.

As noticed in [14], the notion of depth is a relative notion, that depends on
the power of the observers. Our goal is to study polynomial versions of Bennett’s
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original depth notion [7], and its recursive version called recursive depth [11].
Recursive depth [11] is defined in terms of recursive observers competing against
recursive observers, i.e. Δ and Δ′ have the same power. The natural polynomial
version is to choose Δ = Δ′ = Poly. We call this notion monotone-Poly-depth.

Bennett’s depth [7] on the other hand is based on observers of different
strength i.e., recursive observers competing against noncomputable Kolmogorov
complexity. For Bennett’s notion, there is no unique translation into the polyno-
mial world. We propose to study (Δ = Lin, Δ′ = Poly) as a polynomial version
of Bennett’s depth (called monotone-Lin-depth), which encompasses the idea of
observers of different strength (Lin vs Poly), but keeping both in the polynomial
setting. The choice (Δ = Lin, Δ′ = Poly) is actually flexible, and Poly (resp.
Lin) could be replaced by anything strictly stronger (resp. weaker ) than Lin,
e.g. O(n2) (resp. Polylog), without modifying our results on monotone-Lin-depth
from Section 5 (the choice Δ =Polylog, would require a modification of the no-
tion of Δ-compression [8] to allow for sublinear running time, in the same way as
martingales where modified to allow sublinear time bounds in [15]. We defer this
generalization to the full version of this paper). The choice Lin vs Poly somehow
reflects the difference in power of complexity classes E and EXP, which are the
complexity classes on which Δ-compression was first introduced [8], to define a
measure notion.

In [5] Antunes et al. proposed another resource-bounded version of Bennett’s
depth [7] called basic computational depth, by looking at bounded (sublinear or
polynomial) Kolmogorov complexity vs unbounded Kolmogorov complexity. We
introduce a translation of basic computational depth [5] in the setting of polyno-
mial monotone compressors, by choosing (Δ = Poly, Δ′ = Rec). We call this no-
tion basic-monotone-Poly-depth (bm-Poly-depth). bm-Poly-depth captures the
idea behind basic computational depth [5] but with Kolmogorov complexity re-
placed by monotone compressors.

The difference between a.e. and i.o. depth is similar to the difference between
(resource-bounded)-packing dimension and (resource-bounded)-dimension (see
e.g. [6]), where a compressor is required to compress infinitely many prefixes, or
almost all prefixes. Bennett’s depth [7] is an a.e. notion. Sometimes when the
observers are very weak e.g. finite-state, i.o. is the best achievable (e.g. see [9]).
All our results use the stronger formulation i.e. a.e. (which implies an i.o. result),
except Theorem 4.

4 Basic Properties of Monotone-Poly-Depth

In the next section we study the basic properties of monotone-Poly-depth. All
results remain true for both monotone-Lin-depth and bm-Poly-depth.

It is a key feature of logical depth [7] that both trivial (recursive) and random
sequences are shallow. In this section we show that a similar result holds in the
context of monotone-Poly-depth. Let us define what is meant by trivial sequences
in the context of polynomial depth. Informally a sequence is trivial if its prefixes
can be maximally compressed.
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Definition 3. Let S ∈ {0, 1}∞. S is Poly-optimally-compressible if there exists
a Poly-compression (C, D, p) of S, such that iD,j = MD(j) for almost every
j ∈ N.

As an example, it is easy to check that the characteristic sequences of languages
in E are Poly-optimally-compressible. The following result shows that optimally-
compressible sequences are shallow.

Theorem 1. Every Poly-optimally-compressible sequence is a.e. Poly-shallow.

On the other extremity of the scale of randomness, we have random sequences.
Here is a definition in the context of polynomial depth.

Definition 4. Let S ∈ {0, 1}∞. S is Poly-random if for every Poly-compression
(C, D, p) of S, there exists c ∈ N such that for almost every j ∈ N

iD,j ≤ j + c.

The following result shows that random sequences are shallow.

Theorem 2. Every Poly-random sequence is a.e. Poly-shallow.

4.1 Slow Growth Law

A key property of logical depth [7], is that depth cannot be easily created. The
formalization of this idea is known as the slow-growth law. It states that if a
simple process transforms some (source) sequence into an (image) sequence that
is deep, then the source sequence it started from must be deep i.e., no easy
process can transform a shallow sequence into a deep one. Bennett proved a
slow growth law for truth-table reductions (i.e. in the context of logical depth,
simple process corresponds to truth-table reductions).

In the following section, we prove a slow growth law in the context of
monotone-Poly-depth. As the power of polynomial monotone compressors is
much smaller than the unbounded time case considered for Bennett’s logical
depth, we need to reduce the power of “simple processes” accordingly, by choos-
ing weaker reductions. Here is a definition.

Definition 5. Let S, T ∈ {0, 1}∞. S is Poly-monotone reducible to T , if there
exists a Poly-time monotone TM M such that

1. Reduction: for every n ∈ N, M(T [1..n]) � S.
2. Honesty: There exists a > 0 such that for every n ∈ N

n− a log n ≤ |M(T [1..n])| ≤ n + a log n

3. Monotone injectivity: If M(x) ∼ M(y) then x ∼ y.

The following result is a slow-growth law for monotone-Poly-depth. A similar
result holds for both monotone-Lin-depth and bm-Poly-depth (provided the re-
duction is linear-time bounded for monotone-Lin-depth).
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Theorem 3. Let S, T ∈ {0, 1}∞, such that S is a.e. monotone-Poly-deep and
Poly-monotone reducible to T . Then T is a.e. Poly-deep.

A similar proof shows that the result holds for both monotone-Lin-depth and
bm-Poly-depth (provided the reduction is linear-time bounded for monotone-
Lin-depth).

4.2 A Poly Deep Sequence

Some previous polynomial depth notions (e.g. distinguishing complexity from
[5]) require complexity assumption to prove the existence of deep sequences.
The following result shows that our notion is unconditional. Similarly to other
feasible depth notions with restricted power [9], our result is an i.o. result.

The proof uses the equivalence between compressors and martingales from
[8]. A direct proof can be given without martingales, but using martingales
makes the proof easier to read since it is easier to sum and diagonalize against
martingales than it is against compressors directly. It is also interesting to see
the correspondence martingales-compressor in the context of depth.

Theorem 4. There exists an i.o. monotone-Poly-deep sequence.

5 The Set of Levin Random Strings Is Deep

Whereas random sequences are shallow, we show that the characteristic sequence
of the set of random strings is deep. Our result holds for the standard random-
ness notion due to Levin [12]; Levin’s notion is a computable approximation
of Kolmogorov complexity, that enjoys many useful properties, among others it
provides a search strategy for finding solutions of NP problems, that is optimal
up to a multiplicative constant (see [13]). Here is a definition.

Definition 6. Fix a prefix-free universal Turing machine U . The Levin com-
plexity of a string x is

Kt(x) = min{|p|+ log t : U(p) = x in at most t steps}.

The definition of Kt does not depend on the choice of the universal TM U , up
to an additive constant (see [13]).

The set of Levin random strings is

RKt = {x ∈ {0, 1}∗ : Kt(x) ≥ |x|+ log |x|}. (2)

By a standard program counting argument, it is easy to see that RKt �= ∅.
Although the strings in RKt are shallow, the characteristic sequence of RKt

contains useful information, i.e. is monotone-Lin-deep, as the following result
shows.

Theorem 5. RKt is a.e. monotone-Lin-deep.
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Proof. We need the following lemma.

Lemma 1. For every Lin-compression (C, D, p) and for almost every j ∈ N

iD,j < 223j+1.

Let us prove the lemma by contradiction. Suppose there is an infinite set J of
integers j such that iD,j ≥ 223j+1; in particular for every j ∈ J , iD, 1

3 log j > 2j+1.
Thus

RKt � D(p[1..
1
3

log j]) � RKt[1..2j+1].

Let j ∈ J be large (to be determined later). Letting d = p[1..13 log j] yields a
string with high Kt complexity: from π = 〈D, d〉 recover RKt[1..2j+1] and j (from
the length of d). Output the first y with |y| = j and RKt(y) = 1, i.e.

Kt(y) ≥ j + log j.

By encoding π the standard way, i.e. π = dbl(〈D〉)01d

|π| ≤ |d|+ O(1) ≤ 1
3

log j + O(1).

The time to construct j is the time to recover RKt[1..2j+1] (less than O(2j+1))
and the time to find y in RKt[1..2j+1] (less than O(2j+1) steps), i.e. a total of
at most O(2j+1) steps. Therefore

Kt(y) ≤ |π|+ log O(2j+1) ≤ 1
3

log j + j + O(1) < j + log j

for j large enough, which contradicts RKt(y) = 1; thus ending the proof of the
lemma. 
�
Lemma 2. There exists a Poly-compression (C, D, p) of RKt such that for al-
most every j ∈ N

iD,j = MD(j).

Let p = 0∞. D on input p[1..j] computes iD,j := MD(j). D constructs
RKt[1..iD,j] by simulating the universal TM on all programs πl of size at most
log iD,j + log log iD,j during tl steps (tl ≤ 2log iD,j+log log iD,j ), the results string
of such a simulation is denoted xl. All strings xl with |xl| ≤ log iD,j, for which
|πl|+ log tl ≤ |xl|+ log |xl| have membership bit 0 in the characteristic sequence
RKt[1..iD,j]. All remaining bits in RKt[1..iD,j] are 1s. The running time of D is
less than

O(2log iD,j+log log iD,j ) · 2log iD,j+log log iD,j ≤ (iD,j)c

for some c ∈ N.
The compressor C on input RKt[1..i] finds the smallest j such that MD(j) ≥ i,

and outputs 0j . C runs in time polynomial in i. This ends the proof of the lemma.

�
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Let us show that RKt is monotone-Lin-deep. Let a > 0 and (C, D, p) be a Lin-
compression of RKt, and let (C′, D′, p′) be the Poly-compression from Lemma
2. We have

iD′,j − iD,j = MD(j)− iD,j by Lemma 2

≥ MD(j)− 223j+1 by Lemma 2

≥ 1
2

MD(j) by definition of MD

=
1
2
iD′,j by definition of iD′,j

≥ a log iD′,j

for almost every j i.e. RKt is monotone-Lin-deep.

6 The Set of Kolmogorov-Random Strings Is Deep

The next result shows that the set of Kolmogorov random strings is bm-Poly-
deep.

Definition 7. Fix a prefix-free universal Turing machine U . The Kolmogorov
complexity of x is the length of the shortest program that outputs x.

K(x) = min{|p| : U(p) = x}.
The definition of K does not depend on the choice of the universal TM U , up
to an additive constant (see [13]).

For a time bound t, the t-bounded Kolmogorov complexity of x is

Kt(x) = min{|p| : U(p) = x, and U halts in at most t(|x|) steps}.
Let 0 < ε < 1. The set of Kolmogorov random string is

RK,ε = {x ∈ {0, 1}∗ : K(x) ≥ ε|x|}. (3)

Theorem 6. Let 0 < ε < 1. RK,ε is a.e. bm-Poly-deep.

Proof. Let 0 < ε < 1 We need the following lemma.

Lemma 3. For every Poly-compression (C, D, p) of RK,ε and for almost every
j ∈ N

iD,j < 2j+1.

Let us prove the lemma by contradiction. Suppose there is a Poly-compression
(C, D, p) of RK,ε and an infinite set N of integers j such that iD,j ≥ 2j+1. Let
c = 4/(1− ε) and j ∈ N .

Let y1, . . . , yc ∈ {0, 1}j such that K2n2

(〈y1, . . . , yc〉) ≥ cj − O(log j) but
K(〈y1, . . . , yc〉) ≤ O(log j). Such a c-tuple can be found by simulating U on all
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programs of appropriate size running in at most 2n2
steps. We have RK,ε(yt) = 0

for every t = 1, . . . , c.
Consider L = {(l1, · · · , lc)| 1 ≤ lt ≤ 2ε(j+1), t = 1, . . . , c}. Let Q = {ql|l ∈ L}

with ql = 〈code, p[1..j], l〉 be the set of programs such that U on input ql simulates
D(p[1..j]) to reconstruct RK,ε[1..iD,j]  RK,ε[1..2j+1], which takes time less than
O(2j) (U stops once D already output the 2j+1 first bits of RK,ε). U constructs

R0 = {r1 < r2 < . . . | rt ∈ {0, 1}≤j, RK,ε(rt) = 0}
the lexicographical ordered set of all strings of length at most j whose charac-
teristic bit in RK,ε is 0, which takes time O(2j). If rl1 , · · · , rlc ∈ R0 then output
〈rl1 , · · · , rlc〉 else halt, which takes time O(2j).

On any program ql ∈ Q, U runs in less than 2O(j) steps. Moreover all lt
(t = 1, . . . , c) can be encoded in at most ε(j + 1) bits i.e., all programs ql ∈ Q
have size bounded by

|ql| ≤ cε(j + 1) + j + O(log j) ≤ (cε + 1)j + O(log j).

Because RK,ε(yt) = 0 for every t = 1, . . . , c, let v = (v1, . . . , vc) ∈ L be the
vector of the positions of y1, . . . , yc in RK,ε i.e., rvt = yt for every t = 1, . . . , c.
Thus U on input qv outputs 〈y1, . . . , yc〉 i.e., qv is a program for 〈y1, . . . , yc〉 that
runs in less than 2O(j) steps. Thus we have

K2n2

(〈y1, . . . , yc〉) ≤ (cε + 1)j + O(log j) which implies

cj −O(log j) ≤ (cε + 1)j + O(log j) i.e.,
cj ≤ (cε + 1)j + O(log j) ≤ (cε + 2)j

thus c(1− ε) ≤ 2 which is a contradiction. 
�
Lemma 4. There exists a Rec-compression (D, p) of RK,ε such that for almost
every j ∈ N

2j+1 ≥ iD,j ≥ 2j/ε.

Let p = Ω[1..n] be the halting probability Ω =
∑

p:U(p)↓ 2−|p|. D on input
p[1..εj] can compute using standard Dove-tailing (see [13]) whether U(p) ↓ for
all programs p with |p| ≤ εj i.e., it can reconstruct RK,ε[1..2j+1 − 1]. We have
iD,εj ≥ 2j i.e., iD,j ≥ 2j/ε. By construction 2j+1 ≥ iD,j 
�

Let us show that RK,ε is bm-Poly-deep. Let a > 0 and (C, D, p) be a Poly-
compression of RK,ε, and let (D′, p′) be the Rec-compression from Lemma 4. We
have

iD′,j − iD,j ≥ 2j/ε − iD,j by Lemma 4

≥ 2j/ε − 2j+1 by Lemma 3

= 2j(2(1/ε−1)j − 2)

> 2j+1 for j large enough
≥ iD′,j by Lemma 4
≥ a log iD′,j

for almost every j i.e. RK,ε is a.e. bm-Poly-deep. 
�
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Abstract. Modifying a given graph to obtain another graph is a well-
studied problem with applications in many fields. Given two input graphs
G and H , the Contractibility problem is to decide whether H can be
obtained from G by a sequence of edge contractions. This problem is
known to be NP-complete already when both input graphs are trees of
bounded diameter. We prove that Contractibility can be solved in
polynomial time when G is a trivially perfect graph and H is a threshold
graph, thereby giving the first classes of graphs of unbounded treewidth
and unbounded degree on which the problem can be solved in polynomial
time. We show that this polynomial-time result is in a sense tight, by
proving that Contractibility is NP-complete when G and H are both
trivially perfect graphs, and when G is a split graph and H is a threshold
graph. If the graph H is fixed and only G is given as input, then the
problem is called H-Contractibility. This problem is known to be NP-
complete on general graphs already when H is a path on four vertices.
We show that, for any fixed graph H , the H-Contractibility problem
can be solved in polynomial time if the input graph G is a split graph.

1 Introduction

The problem of deciding whether a given graph can be obtained from another
given graph by contracting edges is motivated from Hamiltonian graph theory
and graph minor theory, and it has applications in computer graphics and cluster
analysis [11]. This problem has recently attracted increasing interest, in particu-
lar when restrictions are imposed on the input graphs [2,9,10,11,12]. We continue
this line of research with new polynomial-time and NP-completeness results.

For a fixed graph H , the H-Contractibility problem is to decide whether
H can be obtained from an input graph G by a sequence of edge contractions.
This problem is closely related to the well-known H-Minor Containment

problem, which is the problem of deciding whether H can be obtained from
a subgraph of G by contracting edges. A celebrated result by Robertson and
Seymour [16] shows that H-Minor Containment can be solved in polynomial
time on general graphs for any fixed H . As a contrast, H-Contractibility is

� This work has been supported by the Research Council of Norway.

M. Ogihara and J. Tarui (Eds.): TAMC 2011, LNCS 6648, pp. 528–539, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Edge Contractions in Subclasses of Chordal Graphs 529

NP-complete already for very simple fixed graphs H , such as a path or a cycle
on four vertices [2]. The version of the problem where both graphs are given as
input, called Contractibility, is NP-complete on trees of bounded diameter,
as well as on trees all whose vertices but one have degree at most 5 [15].

Given these hardness results, it is perhaps not surprising that hardly any
positive results are known on the Contractibility problem. So far, Con-

tractibility is known to be solvable in polynomial time only when G has
bounded treewidth and H has bounded degree [15]. A few more positive re-
sults are known on the H-Contractibility problem. For example, for every
fixed graph H on at most 5 vertices, H-Contractibility can be solved on
general graphs in polynomial time when H has a dominating vertex, and it is
NP-complete otherwise [11,12]. However, it is known that for larger fixed graphs
H , the presence of a dominating vertex in H is not a guarantee for polynomial-
time solvability of the problem [9]. Very recently, Kamiński, Paulusma and Thi-
likos [10] showed that H-Contractibility can be solved in polynomial time
on planar input graphs for every fixed H .

In this paper, we study the Contractibility and H-Contractibility prob-
lems on subclasses of chordal graphs. Chordal graphs constitute one of the most fa-
mous graph classes, with a large number of practical applications (see e.g., [5,6,17]).
Edge contractions preserve the property of being chordal. Since trees are chordal
graphs, it follows from the above-mentioned hardness result on trees that Con-

tractibility is NP-complete when G and H are both chordal. We show that
the problem remains NP-complete even when G and H are both trivially per-
fect graphs or both split graphs. Note that trees are neither trivially perfect nor
split. Trivially perfect graphs and split graphs are two unrelated subclasses of
chordal graphs, and both classes are well-studied with several theoretical appli-
cations [1,6]. These two classes share a common subclass called threshold graphs,
which is another well-known subclass of chordal graphs [14]. We prove that Con-

tractibility remains NP-complete even when G is split and H is threshold. On
the positive side, we show that Contractibility can be solved in polynomial
time when G is trivially perfect and H is threshold. This result can be considered
tight by the above-mentioned hardness results. For H-Contractibility, we give
a polynomial-time algorithm when G is a split graph and H is an arbitrary fixed
graph. The results of this paper are summarized in Table 1.

On the way to obtain our results, we show that the problems Contractibil-

ity and Induced Subgraph Isomorphism are equivalent on connected triv-
ially perfect graphs. Hence our results imply that the latter problem is
NP-complete on connected trivially perfect graphs, and that this problem can
be solved in polynomial time when G is trivially perfect and H is threshold.
We would like to mention that Induced Subgraph Isomorphism is known to
be NP-complete on split graphs and on cographs [3]. Trivially perfect graphs
constitute a subclass of cographs, and threshold graphs are both cographs and
split graphs. Hence our results tighten previously known hardness results on
Induced Subgraph Isomorphism. The relationships between the graph classes
mentioned in this paper are given in Figure 1.
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Table 1. The complexity of deciding whether G can be contracted to H , according to
our results; (i) stands for “part of the input”, (f) stands for “fixed”

G H Complexity

Trivially perfect (i) Trivially perfect (i) NP-complete

Trivially perfect (i) Threshold (i) Polynomial

Trivially perfect (i) Trivially perfect (f) Polynomial

Threshold (i) Arbitrary (i) Linear

Split (i) Threshold (i) NP-complete

Split (i) Arbitrary (f) Polynomial

interval

interval
proper trivially

perfect

chordal

threshold

cographforest split

Fig. 1. The graph classes mentioned in this paper, where → represents the ⊃ relation

2 Preliminaries

All graphs considered in this paper are undirected, finite and simple. A vertex
v ∈ V (G) is called universal if it is adjacent to every other vertex of G. For
any set S ⊆ V (G), we write G[S] to denote the subgraph of G induced by
S. We write G − v to denote the graph G[V (G) \ {v}]. The set S is said to
be connected if G[S] is connected. We say that two disjoint sets S, S′ ⊆ V (G)
are adjacent if there exist vertices s ∈ S and s′ ∈ S′ that are adjacent. A
connected component of a graph is called nontrivial if it contains at least one
edge. An ordering α = (v1, v2, . . . , vn) of the vertices of a graph G is called a
non-increasing degree ordering of G if d(v1) ≥ d(v2) ≥ · · · ≥ d(vn).

The contraction of edge uv in G removes u and v from G, and replaces them
by a new vertex, which is made adjacent to precisely those vertices that were
adjacent to at least one of the vertices u and v. Instead of speaking of the
contraction of edge uv, we sometimes say that a vertex u is contracted onto v
if the new vertex resulting from the contraction is still called v. We write G/uv
to denote the graph obtained from G by contracting the edge uv. We say that a
graph G can be contracted to a graph H , or is H-contractible, if H is isomorphic
to a graph that can be obtained from G by a sequence of edge contractions.
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Let S ⊆ V (G) be a connected set. If we repeatedly contract edges in G[S] until
only one vertex of G[S] remains, we say that we contract S into a single vertex.
Let H be a graph with vertex set {h1, . . . , h|V (H)|}. Saying that a graph G can be
contracted to H is equivalent to saying that G has a so-called H-witness structure
W , which is a partition of V (G) into witness sets W (h1), . . . , W (h|V (H)|), such
that each witness set induces a connected subgraph of G, and such that for every
two vertices hi, hj ∈ V (H), the corresponding witness sets W (hi) and W (hj) are
adjacent in G if and only if hi and hj are adjacent in H . By contracting each of
the witness sets into a single vertex, we obtain a graph which is isomorphic to H .
See Figure 2 for an example that shows that, in general, an H-witness structure
of G is not uniquely defined. For any subset S ⊆ V (H), we write W (S) to denote
the set of vertices of G that are contained in a witness set W (v) for some v ∈ S,
i.e., W (S) = ∪v∈SW (v).

H

Fig. 2. Three different H-witness structures of a threshold graph

Cographs are the graphs that do not contain a path on four vertices as an
induced subgraph. Interval graphs are the intersection graphs of intervals of a
line, and they form a subclass of chordal graphs. Chordal graphs are the graphs
without induced cycles of length more than 3.

Trivially perfect graphs have various characterizations [1,6,7,20]. For our pur-
poses, it is convenient to use the following characterization as a definition. A
graph G is trivially perfect if and only if each connected induced subgraph of G
contains a universal vertex [18,19]. Let α = (v1, v2, . . . , vn) be an ordering of the
vertices of a trivially perfect graph G. If α has the property that vi is universal
in a connected component of G[{vi, , vi+1, . . . , vn}] for i = 1, . . . , n, then α is
called a universal-in-a-component ordering (uco). A graph is trivially perfect if
and only if it has a uco, and if and only if every non-increasing degree ordering is
a uco [7,20]. Consequently, for every edge uv in a trivially perfect graph, either
N [u] ⊆ N [v] or N [v] ⊆ N [u] [20].

Every rooted tree T defines a connected trivially perfect graph, which is ob-
tained by adding edges to T so that every path between the root and a leaf
becomes a clique. In fact, all connected trivially perfect graphs can be created
this way, and there is a bijection between rooted trees and connected trivially
perfect graphs [20]. Given a connected trivially perfect graph G, a rooted tree
TG corresponding to G, which we call a uco-tree of G, can be obtained in the
following way. If G is a single vertex, then TG is this vertex. Otherwise, take a
universal vertex v of G, make it the root of TG, and delete it from G. In the
remaining graph, for each connected component G′, build a uco-tree TG′ of G′

recursively and make v the parent of the root of TG′ . All rooted trees that can
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be obtained from a connected trivially perfect graph in this way are isomorphic,
and hence TG is unique for every connected trivially perfect graph G. If G is
disconnected, then it has a uco-forest, which is the disjoint union of the uco-trees
of the connected components of G.

A graph G is a split graph if its vertex set can be partitioned into a clique
C and an independent set I, where (C, I) is called a split partition of G. If C
is not a maximum clique, then there is a vertex v ∈ I that is adjacent to every
vertex of C. In this case, C′ = C ∪ {v} is a maximum clique, and (C′, I \ {v})
is also a split partition of G. In this paper, unless otherwise stated, we assume
that the clique C of a split partition (C, I) is maximum. This implies that none
of the vertices in I is adjacent to every vertex of C. Split graphs form a subclass
of chordal graphs.

Threshold graphs constitute a subclass of both trivially perfect graphs and
split graphs. Threshold graphs have several characterizations [1,6,14], and we
use the following one as a definition. A graph G is a threshold graph if and only
if it is a split graph and, for any split partition (C, I) of G, there is an ordering
(v1, v2, . . . , vk) of the vertices of C such that N [v1] ⊇ N [v2] ⊇ . . . ⊇ N [vk],
and there is an ordering (u1, u2, . . . , u	) of the vertices of I such that N(u1) ⊆
N(u2) ⊆ . . . ⊆ N(u	) [14]. In that case, (v1, v2, . . . , vk, u	, . . . , u2, u1) is a non-
increasing degree ordering, and hence a uco, of G. Every connected threshold
graph has a universal vertex, e.g., vertex v1 in the ordering given above. Since
we assume the clique of any split partition to be maximum, a vertex of C of
smallest degree, e.g., vertex vk in the ordering given above, has no neighbors
in I. If a threshold graph is disconnected, then it has at most one nontrivial
connected component; all other connected components are isolated vertices.

Split graphs, trivially perfect graphs, and threshold graphs are hereditary
graph classes, meaning that the property of belonging to each of these classes is
closed under taking induced subgraphs. These graph classes can be recognized
in linear time; split partitions and uco-trees can also be obtained in linear time
[1,6,7,20].

3 Contractions and Induced Subgraph Isomorphisms of
Trivially Perfect Graphs

In this section, we will give results on the computational complexity of Con-

tractibility on trivially perfect graphs, corresponding to the first four rows
of Table 1. The first theorem reveals the equivalence of the problems Con-

tractibility and Induced Subgraph Isomorphism on the class of connected
trivially perfect graphs.

Theorem 1. For any two connected trivially perfect graphs G and H, the fol-
lowing three statements are equivalent:

(i) G can be contracted to H;
(ii) G contains an induced subgraph isomorphic to H;

(iii) TG can be contracted to TH .
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Proof. First we prove the equivalence between (i) and (ii). Suppose G is H-
contractible, and let uv be one of the edges of G that were contracted to obtain a
graph isomorphic to H . Since G is trivially perfect, we have either NG[u] ⊆ NG[v]
or NG[v] ⊆ NG[u]. Without loss of generality, assume that NG[u] ⊆ NG[v]. Then
contracting edge uv in G is equivalent to deleting vertex u from G. We can
repeat this argument for every edge that was contracted, and conclude that G
has an induced subgraph isomorphic to H .

For the opposite direction, suppose G′ is an induced subgraph of G isomorphic
to H . Let x be a universal vertex of G. We claim that G has an induced subgraph
G′′ isomorphic to H such that G′′ contains x. If G′ already contains x, then we
can take G′′ = G′. Suppose x /∈ V (G′). Since G′ is a connected trivially perfect
graph, it has a universal vertex x′. Since x is a universal vertex in G, we have
NG(x′) ⊆ NG[x]. Hence the graph G′′ = G[(V (G′) \ {x′}) ∪ {x}] is isomorphic
to G′, and is therefore also isomorphic to H . Now let y �= x be one of the
vertices that has to be deleted from G to obtain its induced subgraph G′′, i.e.,
y ∈ V (G) \ V (G′′). Since x is a universal vertex, we know that NG(y) ⊆ NG[x].
Then deleting vertex y from G is equivalent to contracting edge xy in G. Since
x ∈ V (G′′), we can repeat this argument for every vertex of V (G) \ V (G′′), and
conclude that G is H-contractible.

Next we prove the equivalence between (ii) and (iii). Suppose G contains an
induced subgraph G′ isomorphic to H , and let y be one of the vertices of G
that has to be deleted to obtain G′. As argued above, we can assume that G′

contains a universal vertex x �= y of G, which we can assume to be the root
of TG. This means in particular that G − y is connected. Let x be the parent
of y in TG, and let T ′ be the tree obtained from TG by contracting y onto x.
This makes x the parent in T ′ of all children of y in TG. Other than this, all
parent-children relations are the same in T ′ as they were in TG. Since x was
already adjacent in G to all the vertices in the subtree of TG rooted at y, we see
that T ′ is indeed a uco-tree of G− y, and hence T ′ is isomorphic to TG−y. Now
we can repeat this argument for every vertex of V (G)\V (G′), and conclude that
TG is TH -contractible.

For the opposite direction, suppose TG is TH-contractible, and let xy be one
of the edges of TG that were contracted to obtain a tree isomorphic to TH . Let
T ′ = TG/xy, and assume without loss of generality that x is the parent of y
in TG and that y is contracted onto x. Let G′ be the trivially perfect graph
having T ′ as a uco-tree. Note that a vertex u belongs to the subtree rooted at
a vertex v in T ′ if and only if it already belonged to the subtree of TG rooted
at v. Therefore, for every pair of vertices u, v ∈ V (G) \ {y}, uv ∈ E(G′) if and
only if uv ∈ E(G), and hence G′ is isomorphic to G− y. Now we can repeat this
argument for every edge of TG that was contracted, and conclude that G has an
induced subgraph isomorphic to H . 
�
Theorem 1 immediately gives us the result mentioned in the third row of Ta-
ble 1, since checking whether a fixed graph H appears as an induced subgraph
of an input graph G can be done trivially in polynomial time. Since Matoušek
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and Thomas [15] implicitly proved Contractibility to be NP-complete on
rooted trees, Theorem 1 also implies the following result.

Corollary 1. Both Contractibility and Induced Subgraph Isomorphism

are NP-complete on connected trivially perfect graphs.

The results below show that both problems can be solved in polynomial time
when G is a trivially perfect graph and H is a threshold graph, even if both G and
H are disconnected. Observe that these results are tight in light of Corollary 1.

Theorem 2. Given a threshold graph G and an arbitrary graph H, it can be
decided in linear time whether G can be contracted to H.

Proof. (Sketch.) It is not hard to see that we may assume that both G and H are
connected threshold graphs. We first compute the uco-trees TG and TH in linear
time. By Theorem 1, G is H-contractible if and only if TG is TH-contractible.
Since G is a threshold graph, TG contains a unique maximal path S = s1 · · · sg,
starting from the root, such that each vertex on the path has at least one child.
Let T = t1 · · · th be the analogous path in TH . If TG is TH -contractible, then a
TH-witness structure W of TG can be generated as follows. For increasing i from
1 to h, we build the witness set W (ti) by repeatedly adding vertices from S to
W (ti), each time picking the vertex of S with the lowest possible index that has
not yet been assigned to a witness set, until the vertices in W (ti) together have
at least as many neighbors in TG as vertex ti has neighbors in TH . After the
witness sets W (t1) . . . , W (th) have been generated, witness sets for the pi leafs
adjacent to vertex ti in TH are formed by arbitrarily picking pi leaves in TG that
are adjacent to the set W (ti), for every i ∈ {1, . . . , h}. Greedily assigning the
remaining vertices of TG to appropriate witness sets yields W . It can be shown
that if the procedure described above does not yield a TH -witness structure of
TG, then TG is not TH -contractible. 
�
Theorem 3. Given a trivially perfect graph G and a threshold graph H, it can
be decided in polynomial time whether G can be contracted to H.

Proof. (Sketch.) Using the fact that a threshold graph has at most one nontrivial
connected component, it can be argued that we may assume both G and H to
be connected graphs. Let TG and TH be the uco-trees of G and H , respectively.
For every path S in TG from the root to a leaf, we define C(S) to be the graph
obtained by contracting every edge of TG, apart from those edges that have
both endpoints in S or that are incident to a leaf. By Theorem 1, C(S) is the
uco-tree of an induced subgraph GS of G, and it is not hard to see that GS is a
threshold graph. Note also that C(S) has as many leaves as G. It can be shown
that G is H-contractible if and only if there is a path S in TG such that C(S)
is TH-contractible. Hence, in order to prove Theorem 3, we do as follows. For
each distinct maximal path S of TG from the root containing only vertices that
have at least one child, we check whether C(S) is contractible to TH using the
linear-time procedure described in the proof of Theorem 2. Since the number of
distinct paths S is O(|V (G)|), the total running time is polynomial. 
�
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By Theorem 1, Induced Subgraph Isomorphism is equivalent to
Contractibility on connected trivially perfect graphs. Hence the only dif-
ference between the proofs of the following results and those of the two previous
theorems is in the connectivity arguments.

Theorem 4. Given a trivially perfect graph G and a threshold graph H, it can be
decided in polynomial time whether G contains an induced subgraph isomorphic
to H.

Theorem 5. Given a threshold graph G and an arbitrary graph H, it can be
decided in linear time whether G has an induced subgraph isomorphic to H.

4 Contracting Split Graphs

In the previous section, we showed that deciding whether a threshold graph G
can be contracted to an arbitrary graph H can be done in linear time. The next
theorem shows that this result is not likely to be extendable to split graphs. A
hypergraph F is a pair (Q,S) consisting of a set Q = {q1, . . . , qk}, called the
vertices of F , and a set S = {S1, . . . , S	} of nonempty subsets of Q, called the
hyperedges of F . A 2-coloring of a hypergraph F = (Q,S) is a partition (Q1, Q2)
of Q such that Q1 ∩ Sj �= ∅ and Q2 ∩ Sj �= ∅ for j = 1, . . . , �.

Theorem 6. Contractibility is NP-complete on input pairs (G, H) where G
is a connected split graph and H is a connected threshold graph.

Proof. We use a reduction from Hypergraph 2-Colorability, which is the
problem of deciding whether a given hypergraph has a 2-coloring. This problem,
also known as Set Splitting, is NP-complete [13]. The problem remains NP-
complete when restricted to hypergraphs in which every vertex is contained in
at least two hyperedges.

Let F = (Q,S) be a hypergraph with Q = {q1, . . . , qk} and S = {S1, . . . , S	}
such that every vertex of Q appears in at least two hyperedges. We construct
a split graph G as follows. We start with a clique A = {a1, . . . , ak}, where the
vertex ai ∈ A corresponds to the vertex qi ∈ Q for i = 1, . . . , k. We add an
independent set B = {b1, . . . , b	}, where the vertex bi ∈ B corresponds to the
hyperedge Si ∈ S for i = 1, . . . , �. Finally, for i = 1, . . . , k and j = 1, . . . , �, we
add an edge between ai and bj in G if and only if qi ∈ Sj. We also construct
a threshold graph H from a single edge x1x2 by adding an independent set
Y = {y1, . . . , y	} on � vertices, and making each vertex of Y adjacent to both x1

and x2. We claim that G can be contracted to H if and only if F has a 2-coloring.
Suppose F has a 2-coloring, and let (Q1, Q2) be a 2-coloring of F . Let (A1, A2)

be the partition of A corresponding to this 2-coloring of F . Note that A1 and
A2 both form a connected set in G, since the vertices of A form a clique in G.
We contract A1 into a single vertex p1, and we contract A2 into a single vertex
p2. Let G′ denote the resulting graph. Since (Q1, Q2) is a 2-coloring of F , every
vertex in B is adjacent to at least one vertex of A1 and at least one vertex of A2
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in the graph G. As a result, every vertex in B is adjacent to both p1 and p2 in
G′. Hence G′ is isomorphic to H , which means that G can be contracted to H .

Now suppose G can be contracted to H , and let W be an H-witness structure
of G. Since we assumed that every vertex of F appears in at least two hyperedges,
every vertex in A has at least two neighbors in B. This means that B is the only
independent set of size � in G. Since Y is an independent set of size � in H ,
the witness sets W (y1), . . . , W (y	) each must contain exactly one vertex of B. In
fact, since every vertex of A has at least two neighbors in B, we have W (Y ) = B.
This means that the two witness sets W (x1) and W (x2) form a partition of the
vertices of A. By the definition of an H-witness structure and the construction
of H , each witness set W (yi) is adjacent to both W (x1) and W (x2). Hence the
partition (W (x1), W (x2)) of A corresponds to a 2-coloring of F . 
�

Although the problem of deciding whether a split graph G can be contracted
to a split graph H is NP-complete when both G and H are given as input, we
will show in the remainder of this section that the problem can be solved in
polynomial time when H is fixed.

Definition 1. Let G and H be two split graphs with split partitions (CG, IG)
and (CH , IH), respectively. A set U ⊆ IG with |U | = |IH | is called H-compatible
if G has an H-witness structure W such that W (IH) = U .

Lemma 1. Let G and H be two split graphs. Then G is H-contractible if and
only if G contains an H-compatible set.

If U is an H-compatible set of G, then, by Definition 1, G has an H-witness
structure W such that W (IH) = U . The next technical lemma shows that each
of the witness sets of W contains a small subset, bounded in size by a function
of |V (H)| only, such that the collection of these subsets provide all the necessary
adjacencies between the witness sets of W .

Lemma 2. Let G and H be two connected split graphs with split partitions
(CG, IG) and (CH , IH), respectively. Let CH = {x1, . . . , xk}. A set U ⊆ IG

with |U | = |IH | is H-compatible if and only if there exists a collection M of
pairwise disjoint subsets M(x1), . . . , M(xk) of V (G) \U satisfying the following
properties:

(i) at most one set of M contains a vertex of IG, and such a set has cardinality
1 if it exists;

(ii) for every subset X ⊆ U , M(xi) contains at most two vertices a and b such
that NG(a) ∩ U = NG(b) ∩ U = X, for i = 1, . . . , k;

(iii)
⋃k

i=1 |M(xi)| ≤ |CH | · 2|IH |+1;
(iv) for every v ∈ V (G) \ (U ∪⋃k

i=1 M(xi)), there is a set in M that is adjacent
to every vertex in NG(v) ∩ U ;

(v) the graph G′ = G[U ∪⋃k
i=1 M(xi)] has an H-witness structure W ′ such that

W ′(IH) = U and W ′(xi) = M(xi) for i = 1, . . . , k.
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We call the collection M in Lemma 2 an essential collection for U , and the
sets M(xi) are called essential sets. The fact that the total size of an essential
collection does not depend on the size of G plays a crucial role in the proof of
the following lemma.

Lemma 3. Let G and H be two split graphs with split partitions (CG, IG) and
(CH , IH), respectively. Given a set U ⊆ IG with |U | = |IH |, it can be decided
in f(|V (H)|) · |V (G)|3 time whether U is H-compatible, where the function f
depends only on H and not on G.

Proof. (Sketch.) Let U be a subset of IG with |U | = |IH |, and let CH =
{x1, . . . , xk}. We present an algorithm that checks whether or not there exists an
essential collection for U . By Lemma 2, it can be shown that U is H-compatible
if and only if such a collection exists. We distinguish two cases, depending on
whether or not every vertex of CH has at least one neighbor in IH . Here we only
describe the case where every vertex of CH has at least one neighbor in IH . The
other case, as well as the correctness proof and running time analysis, have been
omitted due to page restrictions.

For every subset X ⊆ U , we define the set ZX = {v ∈ V (G)\U | NG(v)∩U =
X}. Note that there are at most 2|U| non-empty sets ZX , and that these sets
form a partition of V (G) \ U . Let Z = {ZX | X ⊆ U} be the collection of these
sets ZX . Let A be the power set of Z, i.e., A is the set consisting of all possible
subsets of Z. For every element A ∈ A, we have A = {ZX1 , . . . , ZX�

} for some
1 ≤ � ≤ 2|U|, where Xi ⊆ U for i = 1, . . . , � and Xi �= Xj whenever i �= j.
Finally, let B be the set of all ordered k-tuples of elements in A, where elements
of A may appear more than once in an element B ∈ B. For any element B ∈ B,
we have B = (A1, A2, . . . , Ak), where Ai ∈ A for i = 1, . . . , k.

For every B = (A1, A2, . . . , Ak) ∈ B, we generate a “candidate” essential set
M(xi) for every vertex xi ∈ CH as follows. At the start, all the vertices of CG

are unmarked, and all the vertices of IG \U are marked. Of every set in A1 that
contains at least one unmarked vertex, we add one unmarked vertex to M(x1).
We mark all the vertices that are added to M(x1). We then generate a candidate
essential set M(x2) as before, adding an unmarked vertex from every set in A2

that contains such a vertex to M(x2), and marking all the vertices added to
M(x2). After we have generated a candidate essential set M(xi) for every vertex
xi ∈ CH in the way described, we define M =

⋃k
i=1 M(xi), i.e., M is the set

of marked vertices of CG. Let M denote the collection of all candidate essential
sets M(xi). Note that the sets of M are pairwise disjoint subsets of CG. It is
clear that, by construction, M satisfies properties (i), (ii), and (iii) of Lemma 2.

We now check whether M satisfies properties (iv) and (v). In order to check
property (iv), we determine for every vertex v ∈ V (G) \ (U ∪M) whether M
contains a candidate essential set that is adjacent to every vertex in NG(v)∩U .
M satisfies property (iv) if and only if such a set exists for every vertex of
V (G) \ (U ∪M). In order to check property (v), we first delete all the vertices
in V (G) \ (U ∪M), and then contract each of the candidate essential sets M(xi)
into a single vertex. M satisfies property (v) if and only if the obtained graph is
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isomorphic to H . If M satisfies properties (iv) and (v), then M is an essential
collection for U , and the algorithm concludes that U is H-compatible. If M
does not satisfy properties (iv) and (v), then we unmark all vertices of CG (the
vertices of IG \U remain marked) and repeat the procedure on the next element
of B. If we have processed all elements of B without finding an essential collection
for U , then we conclude that U is not H-compatible due to Lemma 2. 
�

Theorem 7. For every fixed graph H, the problem of deciding whether a given
split graph G can be contracted to H can be solved in polynomial time.

Proof. Let G be a split graph with split partition (CG, IG), and suppose G is
an input graph of H-Contractibility. Observe that contracting any edge of
a split graph yields another split graph. Hence G can be contracted to a graph
H only if H is a split graph with |V (G)| ≥ |V (H)|. We can check this in time
linear in the size of H , which is constant. Suppose H is a split graph, and let
(CH , IH) be a split partition of H . By Lemma 1, G can be contracted to H if
and only if G contains an H-compatible set. The number of different subsets of
IG of cardinality |IH | is

(|IG|
|IH |
) ≤ |V (G)||IH |. For each of those sets, we can test

in f(|V (H)|) · |V (G)|3 time whether it is H-compatible by Lemma 3. Since the
graph H is fixed, it can be decided in time polynomial in |V (G)| whether G can
be contracted to H . 
�

5 Concluding Remarks

It is known that Induced Subgraph Isomorphism is NP-complete on cographs
and on interval graphs [3,4]. Hence Corollary 1 strengthens these existing NP-
completeness results. The Induced Subgraph Isomorphism problem is also
known to be NP-complete on another subclass of interval graphs, called proper
interval graphs [3,4], but only if the input graph H is disconnected [8]. Thus
we find it interesting that this problem is NP-complete on connected trivially
perfect graphs.

The positive results on H-Contractibility given in this paper and in [10]
give rise to other interesting questions as well. Is H-Contractibility solvable
in polynomial time when G is a chordal graph? Is Contractibility fixed pa-
rameter tractable, parameterized by the size of H , when G is a split graph or a
planar graph, i.e., is there an algorithm with running time f(|V (H)|)·|V (G)|O(1),
where the function f only depends on H and not on G?
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Abstract. Planarity Testing is the problem of determining whether a
given graph is planar while planar embedding is the corresponding con-
struction problem. The bounded space complexity of these problems has
been determined to be exactly deterministic logarithmic space by Al-
lender and Mahajan [AM00] with the aid of Reingold’s result [Rei08].
Unfortunately, the algorithm is quite daunting and generalizing it to,
say the bounded genus case, seems a tall order.

We present a simple planar embedding algorithm running in logspace.
The algorithm uses the unique embedding of 3-connected planar graphs,
a variant of Tutte’s criterion on the conflict graphs of cycles and an
explicit change of basis for the cycle space.

We also present a logspace algorithm to find an obstacle to planarity,
viz. a Kuratowski minor, for non-planar graphs. To the best of our knowl-
edge this is the first logspace algorithm for this problem.

1 Introduction

Planarity Testing is a fundamental problem in algorithmic graph theory. Along
with the problem of actually obtaining a planar embedding, it is a prerequisite
for algorithms designed to work specifically for planar graphs.

Our focus is on the bounded space complexity of the planar embedding
problem because we know that many graph theoretic problems like reach-
ability [BTV09], perfect matching [DKR10, DKT10], and even isomorphism
[DLN08, DLN+09] have efficient bounded space algorithms when provided
graphs embedded on the plane.

Almost a decade ago, building on previous work by Ramachandran and Reif
[RR94], Allender and Mahajan [AM00, AM04], proved that Planarity Testing is
contained in SL and is L-hard. With Reingold’s result [Rei08] proving SL = L,
this gave a tight complexity theoretic classification for the problem. This seemed
to be the end of the story as far as the problem of Planarity Testing vis-a-vis
the logspace world was concerned.

The only catch was, the algorithm described in the paper was quite compli-
cated - in fact a simpler SL algorithm was listed as one of the open questions in
[AM00]. We would be satisfied with a complicated algorithm if all we were con-
cerned with was pigeonholing the complexity of the problem. Planarity testing,
however, happens to be a fundamental task in Topological Graph theory and
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a first step towards problems like toroidicity testing and bounded genus test-
ing (also listed as open problems in [AM00]). Therefore, if we are to make any
progress towards a tighter classification of these problems (for which no efficient
bounded space algorithm is known), especially, through non-blackbox use of a
planarity algorithm, it is advisable to search for a less daunting algorithm. This
work is the result of this search.

In addition to its simplicity, the interplay between the properties of 3-
connected planar graphs lends a certain elegance to the algorithm, at least in
our, necessarily, biased eyes. We also describe a logspace algorithm to identify a
Kuratowski minor if the graph is non-planar.

2 Related Work

Here we survey the related work very briefly - see the paper by Allender and
Mahajan [AM00] for a detailed survey. The algorithmic aspects of Planarity
Testing have been studied since the inception of Computer Science. It is clear
that as far as sequential computation is concerned, a linear algorithm is opti-
mal. Such algorithms include the one by Hopcroft and Tarjan [HT74]. The next
result concerns parallel models of computation. Ramachandran and Reif pro-
posed a complicated algorithm which worked in logarithmic time and performed
almost linear work and can be interpreted as placing the problem in the com-
plexity class AC1. The final frontier was bounded space computation and initial
sorties had already taken place in the early eighties. Reif [Rei84] proved that
planarity testing for degree 3 graphs is in the SL-hierarchy while JáJá and Si-
mon [JS82a, JS82b] proved that planarity testing is in the NL-hirerarchy. After
Nisan and TaShma’s result [NTS95] and the Immerman-Szelpcsenyi Theorem
[Imm88, Sze88] these bounds become SL and NL respectively. The paper by Al-
lender and Mahajan completed the campaign when they proved that Planarity
Testing is SL-complete and Reingold’s result [Rei08] set the final seal by proving
SL = L.

2.1 Comparison with [AM04]

[AM04] works with biconnected graphs. The main steps of [AM04] are given
below. Given biconnected graph G as input

1. Construct the open ear decomposition.
2. Direct the ears to get an acyclic graph Gst also known as the (s, t)-numbering

graph.
3. Construct a local replacement graph Gl.
4. Gst and Gl uniquely specify a spanning tree Tst.
5. Construct conflict graphs w.r.t each fundamental cycle. For each cycle obtain

the constraint graph G∗ by adding some additional constraints.
6. This gives an embedding of Gl from which we obtain an embedding of G.
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Our algorithm deals with 3-connected components of the graph. This signif-
icantly simplifies the subsequent steps primarily because 3-connected planar
graphs have a unique planar embedding. In other words, the conflict graph is con-
nected, therefore it has a unique 2-coloring (if any). Given a 3-connected graph
G, our algorithm constructs the conflict graphs w.r.t the fundamental cycles of
some spanning tree of G, obtains the unique 2-coloring of each of these conflict
graphs and extracts the embedding of G by a change of cycle basis. Putting to-
gether the (unique)embeddings of the triconnected components of a graph is not
difficult. Therefore we side-step the more complicated steps of [AM04] including
the algorithm to obtain an open-ear decomposition.

3 Definitions and Preliminaries

We assume familiarity with basic complexity theory, in general, and bounded
space classes, in particular, as described in any standard text e.g [AB09]. We
will also assume familiarity with graph theory as described in texts like [Die05,
Wes00]. Below, we explicate all non-standard material we will have occasion to
use.

Definition 1. The bridges of a cycle C consist of:

– For every connected component X of G \ C, the induced graph G[X ∪ AX ]
where AX ⊆ C are the vertices of C adjacent to some vertex of X (the
vertices in AX are also called points of attachment).

– The chords of C - here the endpoints of the chord are its points of attachment

Definition 2. Two bridges B1, B2 of a cycle C conflict iff either of the following
conditions hold:

1. ai, a
′
i are two points of attachment of Bi on C for i ∈ {1, 2} such that they

occur in the order a1, a2, a
′
1, a

′
2 along the cycle C.

2. B1, B2 have three common points of attachment on the cycle C.

Definition 3. The conflict graph HC(G) of a graph w.r.t. a cycle C is the graph
obtained by taking the bridges of C as vertices and joining two vertices by an
edge iff the corresponding bridges conflict.

Definition 4. Given a spanning tree T of a biconnected graph G, and an edge
e ∈ E(G) \ E(T ), the subgraph T ∪ e contains a unique cycle C(e) called the
fundamental cycle of e. We say that a face of an embedded planar graph is
fundamental if it is a fundamental cycle w.r.t some fixed spanning tree.

The following is an easy consequence of Reingold’s result [Rei08] We single it
out of a set of similar elementary graph computations summarized in Section 3.2
of [AM00] which can be done in logspace because it is of special significance for
us.

Fact 1. The list of edges in each fundamental cycle of G w.r.t. a spanning tree
T can be obtained by a logspace transducer.
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Fact 2. (Proposition 4.2.10 and Theorem 4.5.2 [Die05]) The faces of a 3-
connected planar graph G are exactly the induced non-separating cycles of G.
Further, a 3-connected graph is planar iff every edge lies on exactly two induced,
non-separating cycles.

Definition 5. A Combinatorial Embedding of a graph is a set of cyclic orders
of the edges around each of the vertices.

We omit the proof of the following proposition.

Proposition 1. Given the faces of a 3-connected embedded graph, it is possible
to construct in logspace, a combinatorial embedding of the graph.

4 Outline of Algorithms

4.1 Outline of Planar Embedding Algorithm

We now motivate and informally describe the planarity Testing Algorithm. It
is easy to to see that the conflict graph w.r.t any cycle in a planar graph G is
bipartite .

Conversely, Tutte [Tut58] has shown that a graph is planar iff the conflict
graph with respect to every cycle is bipartite. But since a graph potentially
has exponentially many cycles a direct application of this result does not yield
even a polynomial time algorithm. Thus we ought to seek a small set of cycles
such that restricting our attention to the bipartiteness of their conflict graphs
suffices to yield a planarity test. The set of fundamental cycles w.r.t. some span-
ning tree seems to be a natural candidate. Unfortunately, there are non-planar
graphs which have a spanning tree such that the conflict graph w.r.t. each of
the fundamental cycles is bipartite. For instance, in a K5 with the spanning tree
being a star centered at some vertex, the conflict graph w.r.t. every fundamental
cycle has a single vertex.

Suppose, however that we are able to find a deterministic algorithm that
constructs a valid planar embedding whenever its input is a planar graph and
either fails when supplied with a non-planar graph or outputs a non-planar
embedding.

Theorem 1 describes how we can eliminate any non-planar graphs at this
stage.

Thus it suffices to focus on finding an embedding algorithm that works cor-
rectly under the promise that the given graph is planar. We can without much
loss of generality, strengthen the promise and assume that the graph is, in addi-
tion to being planar, also 3-connected. This is because finding the triconnected
components is known to be in logspace (see Lemma 1 and so is patching to-
gether the given planar embeddings of triconnected components of a graph. (see
Lemma 2).

Concentrating on 3-connected planar graphs we observe that:
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– The graph has a unique planar embedding.
– The conflict graphs w.r.t. any cycle is connected (see Section 5.2), which

enables us to bipartition the bridges in a unique way so that bridges in a
partition lie on one side of the cycle in question.

– Ideally we would like to pick a small set of cycles and determine which edges
lie inside them and somehow piece together the combinatorial embedding
from this information. A natural choice for such a set is the set of fundamen-
tal cycles w.r.t. an arbitrary spanning tree. But the following two problems
crop up:
• Though we have a bipartition of bridges for each fundamental cycle , it

is not clear which partition is mapped inside and which outside.
• How do we actually piece together a combinatorial embedding once we

know this information?
– The first problem can be solved if we knew at least one face of the unique

embedding, because then we can just think of the face as the external face
and stipulate that every edge (not part of the face) is contained inside it.
Thus for every fundamental cycle, any bridge containing edges of the external
face would lie outside the cycle - this fixes which bridges lie inside and which
outside. But Corollary 1 tells us that for the graphs in question there is
always a fundamental cycle which is a face. This, combined with Fact 2
ensures that we can find such a face in logspace.

– We solve the second problem in Section 5.4, where we first show that finding
a solution is equivalent to a change of the cycle basis from fundamental cycles
to faces. Then we show an explicit way to perform this change of basis in
logspace.

4.2 Outline of Algorithm to Find Kuratowski Minors

In Section 6 we describe an algorithm to find a Kuratowski (i.e. a K5 or K3,3)
minor in a non-planar graph. The algorithm indentifies a cycle with a non-
bipartite conflict graph. It then finds an induced odd cycle in this conflict graph.
Finally, it contracts/ deletes some of the bridges and edges of attachment of
these bridges to yield a Kuratowski minor.

5 Planarity Testing

5.1 Reduction to the Triconnected case

It is a well known fact that if a graph is non-planar then one of it’s 3-connected
components is non-planar. [Wes00]

Lemma 1. (Lemma 3.3 [DNTW09]) The triconnected components of a graph
can be obtained in logpace.

We omit the following proof due to space constraints.

Lemma 2. Given a combinatorial planar embedding of the triconnected compo-
nents of a graph, it is possible to obtain the planar embedding of the graph in
logspace.

See [DP11] for the proof.
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5.2 The Conflict Graph

Lemma 3. Given a 3-connected graph G and an arbitrary cycle C in the graph
the conflict graph HC(G) is connected.

Proof. It is easy to see that for an embedded planar graph G and any cycle C
contained in it, the conflict graph, HC(G) is bipartite (with the bipartition being
given by whether a bridge is mapped “inside” or “outside” the cycle). We now
show that HC(G) is connected.

For every pair of points x, y ∈ C there are two paths from x to y along C. We
will call these paths Px,y and P ′

x,y. Let B be a set of bridges that correspond to
one of the connected components of HC(G).

Pick a pair u, v such that:(a) u and v are points of attachment of bridges in
B. (b) u and v are not adjacent. (c) The points of attachment of all bridges in
B lie in either Pu,v or P ′

u,v. (Assume WLOG that they lie in Pu,v).
We now show that one can always find such a pair u, v. Pick a bridge B′ /∈ B.

The points of attachment of B′ divide C into a number of segments .(atleast 3
since every bridge has 3 or more points of attachment.) Since no bridge in B
conflicts with B′ and the vertices corresponding to B in HC(G) form a connected
component, it follows easily that all points of attachments of B must lie in one
of the segments(as B′ /∈ B . This implies that there is a point w in C(a point of
attachment of B′) that is not a point of attachment of any bridge in B. Therefore
we can find a pair u, v with the properties listed above because we can pick u, v
to be points of attachment of B on either side of w.

Now, for every point x /∈ {u, v} on Pu,v, ∃ a bridge B ∈ B with points of
attachment b1, b2 s.t b1 precedes x and b2 succeeds x in Pu,v. If not then ∀B ∈ B
either all points of attachment of B lie between u and x or all of them lie between
x and v. This implies that in HC(G) vertices corresponding to bridges in B with
u as a point of attachment are not connected to vertices corresponding to bridges
with v as a point of attachment. This is a contradiction since B corresponds to
a connected component in HC(G).

Now, if {u, v} is not a separating pair then ∃ a bridge B′ /∈ B with points
of attachment in both Pu,v \ {u, v} and P ′

u,v \ {u, v}. From the above it follows
that B′ conflicts with a bridge in B which is not possible. Therefore, {u, v} is a
separating pair. 
�
Fact 3. In a planar graph G the conflict graph with respect to every cycle is
bipartite.

See [Tut58].

5.3 Inside and Outside a Fundamental Cycle

Next we determine which bridges w.r.t. each of the fundamental cycles are
mapped inside and which are mapped outside the concerned cycle. Basically
we find one face of the graph and call it the external face. Thus w.r.t every cycle
bridges containing edges from this face are mapped outside. This completely
fixes the 2-coloring of conflict graphs w.r.t all fundamental cycles.
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Proposition 2. Any biconnected embedded planar graph has a fundamental face
(i.e. a fundamental cycle which is also a face) w.r.t. each of its spanning trees.

Proof. Given a biconnected planar graph and a spanning tree in the graph, it is
easy to see that the set of dual edges corresponding to the non-tree edges of the
biconnected planar graph form a tree (after reducing all multi-edges to a single
edge) - the so called dual tree. This follows from observing that cycles in the
primal correspond to cuts in the dual (Proposition 4.6.1 [Die05]) and therefore
the set of edges dual to the non-tree edges are connected in the dual graph, the
proof being completed by applying Euler’s relation to verify that the number of
such edges is exactly one less than the number of faces(vertices in the dual). It
is easy to see that the face of the original graph corresponding to a leaf of the
dual tree is a fundamental face. 
�
A direct consequence of Fact 1, Proposition 2, Fact 2 is the following (since
finding whether a cycle is induced and non-separating is a logspace predicate
given the list of edges in the cycle on the input tape).

Corollary 1. Every 3-connected planar graph has at least one fundamental face
and this can be found by a Logspace transducer.

Knowing which edges of the graph map to the region enclosed by each of the
fundamental cycles, we proceed to construct a purported embedding of the given
graph. If the graph is indeed planar we will obtain a valid planar embedding, else
we will either fail to obtain an embedding or obtain a non-planar embedding.
Theorem 1 describes how we eliminate any non-planar graphs.

5.4 Obtaining a Planar Embedding

Here we exhibit a way to identify the edges in each face of the given planar
3-connected graph. We also describe how to reject non-planar graphs. Let C(e0)
be the fundamental face which is picked to be the external face.

At the heart of the proof is a change of basis in the cycle space over Z2. No-
tice that we have an “implicit” representation of the faces (see below) and we are
seeking an explicit representation in terms of which edges constitute a face. Since
fundamental cycles and internal faces both form a basis of the cycle space over Z2,
we just need to invert the matrix that expresses the fundamental cycles as a linear
combination of faces. Though seemingly this would place the problem in ⊕L we
give an explicit way to perform this inversion which yields a L upper bound.

Returning to the “implicit” representation of faces, given an embedding of the
graph, there is a natural bijection between non-tree edges and faces(excluding
the external face) viz. one that maps a non-tree edge e to that face f(e) adjacent
to e which lies inside the fundamental cycle C(e) (w.r.t. the external face C(e0)).
With faces labeled in this way, the 2-coloring of the conflict graph described in
the preceding section tells us which faces are contained within the fundamental
cycle C(e).

Let us start by fixing some notation. For distinct non-tree edges e1, e2, define
e1 ≺ e2 iff in a 2-coloring of the conflict graph HC(e2)(G), the colors of the
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vertices corresponding to bridges containing e0, e1 get different colors. Intuitively,
this means that (if G is planar) C(e2) separates e1 from e0 in the unique planar
embedding of G.

For each e ∈ E(G) \ {e0}, let P (e) denote:

{e′ ∈ E(G) \ (E(T ) ∪ {e})|e′ ≺ e ∧ �e′′ : e′ ≺ e′′ ≺ e},

i.e, P (e) is the set of maximal elements w.r.t ≺ in {e′|e′ ≺ e} in other words
it is the set of immediate predecessors of e w.r.t ≺. Further, let F (e) denote⊕

e′∈P (e)∪{e}
C(e′)

Note that for sets A, B the set A ⊕ B denotes the symmetric difference of the
two sets and the notation above refers to an iteration of this operation.

If the graph is 3-connected planar then in its unique planar embedding with
C(e0) as the external face, P (e) consists of the set of non-tree edges that are
enclosed by C(e) but not by any C(e′′) which is also enclosed by e. Intuitively,
it clear that these are exactly the non-tree edges occurring on the face f(e) (see
description in the preceding paragraph). We will make this intuition precise and
in fact, show the following:

Lemma 4. For each non-tree edge e, the face f(e) consists exactly of the edges
in the set F (e).

Proof. Given a fundamental cycle C let φ(C) represent the number of faces
that lie inside C and ψ(C) represent the number of fundamental cycles that lie
inside C including C. Notice that for fundamental cycles which are also faces,
φ(C) = ψ(C) = 1. In fact for every fundamental cycle C, as an easy consequence
of Euler’s formula it follows that φ(C) = ψ(C).

Let e ∈ E(G) \ E(T ). We will first show that F (e) is a face. Since each
e′ ∈ P (e) lies inside C(e) and for every non-tree e′′ �∈ P (e), such that e′′ ≺ e,
there is exactly one e′ ∈ P (e) such that e′′ ≺ e′. There is one such e′ because
we know that every non-tree edge enclosed by C(e) is either enclosed by some
other fundamental cycle C(e1) or otherwise is in P (e). Thus by induction on
the “enclosure depth” of an edge we get an e′ ∈ P (e) which encloses it. The
uniqueness follows from observing that if both e ≺ e′∧e ≺ e′1 then either e′1 ≺ e′

or e′ ≺ e′1. - this is due to planarity - therefore both e′, e′1 cannot be in P (e).
Thus we get,

ψ(C(e)) = 1 +
∑

e′∈P (e)

ψ(C(e′))

therefore:
φ(C(e)) = 1 +

∑
e′∈P (e)

φ(C(e′))

Now since every fundamental cycle can be written as a sum of internal faces of G
and F (e) is a sum of a set of fundamental cycles (where all computation is over
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Z2), it is also a sum of some internal faces. Since only faces contained within
C(e) figure in this sum, F (e) must be a disjoint sum of some cycles enclosed by
C(e). We can be more specific, the sum:⊕

e′∈P (e)

C(e′)

includes exactly the faces inside C(e) which are also faces inside some C(e′) for
e′ ∈ P (e). Thus F (e) includes exactly the faces contained inside C(e) but not in
any C(e′) for e′ ∈ P (e). Now, it is easy to see from the expression for φ(C(e))
that there is exactly one such face, so it follows from the linear independence of
the faces that this must be f(e). 
�
Thus, we can complete the proof of the following:

Theorem 1. Given a graph G, constructing a planar embedding for G if it is
planar and otherwise rejecting it, can be done in logspace.

Proof. Given a graph we obtain its 3-connected components using Lemma 1.
If each triconnected compoenent is planar, we will successfully obtain a pla-
nar embedding for each component and then obtain the proof with the aid of
Lemma 2. If some triconnected component is not planar, we will either obtain
an F (e) which is not induced or is separating or we will obtain an edge lying on
at least three F (e)’s and therefore reject. 
�

6 Finding Kuratowski Subgraphs

We describe an an algorithm to obtain a Kuratowski subgraph given a cycle
with a non-bipartite conflict graph. As a consequence, to obtain a Kuratowski
subgraph, it is sufficient to find such a cycle in a subgraph G′ of G. We do this
in a series of lemmas:

Lemma 5. Given a non-planar graph G, we can, in logspace, find a non-planar
subgraph G′ and a cycle C ⊆ G′ s.t. HC(G′) is non-bipartite.

Proof. Given access to a routine for planarity checking, and a non-planar graph
G, we can find a minimal non-planar subgraph G′ of g in the following sense.
Order the edges of G arbitrarily as e1, . . . , em. Now consider the smallest i such
that the graph G′ formed by the union of the first i edges e1, . . . , ei is non-planar.
Notice that this means that G′ \ ei is necessarily planar.

Now, we show how one can find a cycle in this graph G′ such that the conflict
graph HC(G′) is non-bipartite. Construct a planar embedding of G′ \ {e}. The
endpoints, say x, y, of ei must lie on different faces of this embedding because
G′ is non-planar.

Find a path in the dual graph of the embedding between any two faces Fx, Fy

incident respectively on x, y. (this path must avoid any other faces incident on
x or y.) The symmetric difference of the faces in this path is a cycle C one of
whose bridges is ei.
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We claim that HC(G′) is non-bipartite. If it were bipartite then it would be
possible to give an orientation to each of it’s bridges such that conflicting bridges
got opposing orientations. But since the bridges of C are all planar, this would
imply that G′ is planar . Therefore, HC(G′) is non-bipartite. 
�
Lemma 6. Given a non-planar graph G′ and a cycle C witnessing this via the
non-bipartiteness of HC(G′), we can, in logspace, find an induced odd cycle C̄
in HC(G′).

Proof. Since the conflict graph HC(G′) is non-bipartite, it contains an odd cycle.
We aim to find an induced odd cycle in this graph. For this consider a spanning
tree of HC(G′). 2-color the spanning tree. Notice that there must exist a non-tree
edge between two vertices with the same color (else the graph would have been
bipartite). Find a non-tree edge e such that all the chords of the fundamental
cycle C(e) get opposite colors - a simple induction on the number of chords that
a fundamental cycle has, shows that such an edge must exist and locating it in
logspace is easy.

We will construct a chordless cycle from C(e) by replacing some tree paths
by chords of C(e). To do this, let e = (u1, uk) and let the vertices of the tree
path from u1 to uk be u2, . . . , uk−1 in order. Call the point ui of a chord (ui, uj)
for i < j as the origin of the chord and uj the end of the chord. Now start
walking from u1 to uk along the tree path, outputting tree edges till the origin
of a chord is encountered. Output the chord and move on to the end of the
chord and repeat. It is easy to see that the edges output by this procedure along
with the non-tree edge (u1, uk) form an induced cycle because either the origin
or endpoint of any other chord of C(e) is not on this cycle. Also, because the
endpoints of all edges on this cycle are oppositely colored except for (u1, uk),
this is an odd cycle. 
�
At this point we have a cycle C in G with a non-bipartite conflict graph HC(G′)
and an induced odd cycle C̄ in HC(G′) witnessing this. Now we prove the fol-
lowing,

Lemma 7. Given an induced odd cycle C̄ in HC(G′), we can, in logspace, find
a Kuratowski subgraph.

Proof. First, suppose that two conflicting bridges B1 and B2 in the odd cycle
share 3 points of attachment a1, a2 and a3. If either of the bridges( B1 say.) has
another point of attachment a4 then, clearly the points of attachment a1, a3 of
B2 alternate with the points of attachment a2, a4 of B1. Therefore, it is sufficient
to deal with the case when the case where both B1 and B2 have just 3 points
of attachment. In this case it is not difficult to see that any bridge that conflicts
with B1 also conflicts with B2 and vice-versa. Hence C̄ must be a 3-cycle. We
deal with this case in lemma 8.

Next, consider the case where C̄ is an odd cycle of size greater than 3 and the
conflict of a bridge B in the odd cycle with any other bridge in the odd-cycle is
witnessed by 2 points of attachment of B i.e we exclude the possibility that 2
bridges share 3 points of attachment.
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It is easy to see that ∃ 2 points of attachment for every bridge that witness
both it’s conflicts. Thus by contracting all bridges (excluding points of attach-
ment) to single points and removing edges of attachment, one can reduce all
bridges to paths while maintaining all conflicts. This can be done in logspace
since for each bridge one only needs to remember the witnesses of conflict of the
bridge with its neighbours (in C̄).(atmost 8 points.)

If we label the vertices of C̄ as vB0 , vB1 , . . . , vB2k
(k > 1) for some positive

integer k, and the points of attachment of bridge Bi as ui, vi then the points
occur along C in the order: u0, v2k, u1, v0, u2, v1, . . . , u2k−1, v2k−2, u2k, v2k−1.

Now, consider the cycle u2k, u0, v2k, v0, U
′ (Where U ′ = {{v1, u3}∪B3∪{v3}∪

. . .∪{u2k−1}) along with the bridges B2k , B0 the paths connecting u0 and U ′, v2k

and U ′ and the path {v0, u2}∪B2 . . . {v2k−2, u2k} Clearly, this is a K5 minor.(see
appendix for an example). 
�
Finally we are left with the following case:

Lemma 8. Given a cycle in G′ with three mutually conflicting bridges, it is
possible to extract a Kuratowski minor of G′ in logspace.

Proof. Clearly, it is sufficient to consider 4 points of attachment for each bridge
since 4 points of attachment suffice to witness conflict with two other bridges.
We can contract the bridges (excluding the points of attachment) to single points
and reduce the problem of finding a Kuratowski subgraph in the above graph to
that of finding a Kuratowski minor in a non-planar graph with atmost 15 vertices
and 24 edges. Since this is a constant sized graph we can find a Kuratowski minor
by brute-force. 
�
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Abstract. The standard reasoning problem, concept satisfiability, in
the basic description logic ALC is PSPACE-complete, and it is EXPTIME-
complete in the presence of unrestricted axioms. Several fragments of
ALC, notably logics in the FL, EL, and DL-Lite families, have an eas-
ier satisfiability problem; sometimes it is even tractable. We classify the
complexity of the standard satisfiability problems for all possible Boolean
and quantifier fragments of ALC in the presence of general axioms.

1 Introduction

Standard reasoning problems of description logics, such as satisfiability or sub-
sumption, have been studied extensively. Depending on the expressivity of the
logic, the complexity of reasoning for DLs between fragments of the basic DL
ALC and the OWL 2 standard SROIQ is between trivial and NEXPTIME.

For ALC, concept satisfiability is PSPACE-complete [32]. In the presence of
unrestricted axioms, it is EXPTIME-complete due to the correspondence with
propositional dynamic logic [30, 34, 17]. Since the standard reasoning tasks are
interreducible, subsumption has the same complexity.

Several fragments of ALC, such as logics in the FL, EL or DL-Lite families,
are well-understood. They usually restrict the use of Boolean operators and of
quantifiers, and it is known that their reasoning problems are often easier than
for ALC. We now need to distinguish between satisfiability and subsumption
because they are no longer obviously interreducible if certain Boolean operators
are missing. Concept subsumption with respect to acyclic and cyclic terminolo-
gies, and even with general axioms, is tractable in the logic EL, which allows
only conjunctions and existential restrictions, [4, 11], and it remains tractable
under a variety of extensions such as nominals, concrete domains, role chain
inclusions, and domain and range restrictions [5, 6]. Satisfiability for EL, in
contrast, is trivial, i.e., every EL-ontology is satisfiable. However, the presence
of universal quantifiers usually breaks tractability: Subsumption in FL0, which
allows only conjunction and universal restrictions, is coNP-complete [27] and in-
creases to PSPACE-complete with respect to cyclic terminologies [3, 21] and to
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EXPTIME-complete with general axioms [5, 20]. In [15, 16], concept satisfiability
and subsumption for several logics below and above ALC that extend FL0 with
disjunction, negation and existential restrictions and other features, is shown to
be tractable, NP-complete, coNP-complete or PSPACE-complete. Subsumption
in the presence of general axioms is EXPTIME-complete in logics containing
both existential and universal restrictions plus conjunction or disjunction [18],
as well as in AL, where only conjunction, universal restrictions and unquali-
fied existential restrictions are allowed [14]. In DL-Lite, where atomic negation,
unqualified existential and universal restrictions, conjunctions and inverse roles
are allowed, satisfiability of ontologies is tractable [13]. Several extensions of
DL-Lite are shown to have tractable and NP-complete satisfiability problems in
[1, 2]. The logics in the EL and DL-Lite families are so important for (medical
and database) applications that OWL 2 has two profiles that correspond to logics
in these families.

This paper revisits restrictions to the Boolean operators in ALC. Instead of
looking at one particular subset of {
,�,¬}, we are considering all possible sets
of Boolean operators, and therefore our analysis includes less commonly used
operators such as the binary exclusive or ⊕. Our aim is to find for every pos-
sible combination of Boolean operators whether it makes satisfiability of the
corresponding restriction of ALC hard or easy. Since each Boolean operator cor-
responds to a Boolean function—i.e., an n-ary function whose arguments and
values are in {0, 1}—there are infinitely many sets of Boolean operators that
determine fragments of ALC. The complexity of the corresponding concept sat-
isfiability problems without theories has already been classified in [19] between
being PSPACE-complete, coNP-complete, tractable and trivial for all combina-
tions of Boolean operators and quantifiers.

The tool used in [19] for classifying the infinitely many satisfiability problems
was Post’s lattice [29], which consists of all sets of Boolean functions closed un-
der superposition. These sets directly correspond to all sets of Boolean operators
closed under composition. Similar classifications have been achieved for satisfi-
ability for classical propositional logic [22], Linear Temporal Logic [8], hybrid
logic [24], and for constraint satisfaction problems [31, 33].

In this paper, we classify the concept satisfiability problems with respect to
theories for ALC fragments obtained by arbitrary sets of Boolean operators and
quantifiers. We separate these problems into EXPTIME-complete, NP-complete,
P-complete and NL-complete, leaving only two single cases with non-matching
upper and lower bound. We will also put these results into the context of the
above listed results for ALC fragments.

This study extends our previous work in [25] by matching upper and lower
bounds and considering restricted use of quantifiers.

2 Preliminaries

Description Logic. We use the standard syntax and semantics of ALC [7], with
the Boolean operators 
, �, ¬, $, ⊥ replaced by arbitrary operators ◦f that
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correspond to Boolean functions f : {0, 1}n → {0, 1} of arbitrary arity n. Let
NC, NR and NI be sets of atomic concepts, roles and individuals. Then the set of
concept descriptions, for short concepts, is defined by

C := A | ◦f(C, . . . , C) | ∃R.C | ∀R.C,

where A ∈ NC, R ∈ NR, and ◦f is a Boolean operator. For a given set B of
Boolean operators, a B-concept is a concept that uses only operators from B. A
general concept inclusion (GCI) is an axiom of the form C � D where C, D are
concepts. We use “C ≡ D” as the usual syntactic sugar for “C � D and D � C”.
A TBox is a finite set of GCIs without restrictions. An ABox is a finite set of
axioms of the form C(x) or R(x, y), where C is a concept, R ∈ NR and x, y ∈ NI.
An ontology is the union of a TBox and an ABox. This simplified view suffices
for our purposes.

An interpretation is a pair I = (ΔI , ·I), where ΔI is a nonempty set and ·I
is a mapping from NC to P(ΔI), from NR to P(ΔI ×ΔI) and from NI to ΔI

that is extended to arbitrary concepts as follows:

◦f(C1, . . . , Cn)I = {x ∈ ΔI | f(‖x ∈ CI
1 ‖, . . . , ‖x ∈ CI

n‖) = 1},
where ‖x ∈ CI

1 ‖ = 1 if x ∈ CI
1 and ‖x ∈ CI

1 ‖ = 0 if x /∈ CI
1 ,

∃R.CI = {x ∈ ΔI | {y ∈ CI | (x, y) ∈ RI} �= ∅},
∀R.CI = {x ∈ ΔI | {y ∈ CI | (x, y) /∈ RI} = ∅}.

An interpretation I satisfies the axiom C � D, written I |= C � D, if CI ⊆
DI . Furthermore, I satisfies C(x) or R(x, y) if xI ∈ CI or (xI , yI) ∈ RI . An
interpretation I satisfies a TBox (ABox, ontology) if it satisfies every axiom
therein. It is then called a model of this set of axioms.

Let B be a finite set of Boolean operators and Q ⊆ {∃, ∀}. We use ConQ(B),
TQ(B) and OQ(B) to denote the set of all concepts, TBoxes and ontologies
that use operators in B only and quantifiers from Q only. The following decision
problems are of interest for this paper.

Concept satisfiability CSATQ(B):
Given a concept C ∈ ConQ(B), is there an interpretation I s.t. CI �= ∅ ?

TBox satisfiability TSATQ(B):
Given a TBox T ⊆ TQ(B), is there an interpretation I s.t. I |= T ?

TBox-concept satisfiability TCSATQ(B):
Given T ⊆ TQ(B) and C ∈ ConQ(B), is there an I s.t. I |= T and CI �= ∅ ?

Ontology satisfiability OSATQ(B):
Given an ontology O ⊆ OQ(B), is there an interpretation I s.t. I |= O ?

Ontology-concept satisfiability OCSATQ(B):
Given O ⊆ OQ(B) and C ∈ ConQ(B), is there an I s.t. I |= O and CI �= ∅ ?

By abuse of notation, we will omit set parentheses and commas when stating
Q explicitly, as in TSAT∃∀(B). The above listed decision problems are interre-
ducible independently of B and Q in the following way:
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CSATQ(B) ≤log
m OSATQ(B)

TSATQ(B) ≤log
m TCSATQ(B) ≤log

m OSATQ(B) ≡log
m OCSATQ(B)

Some reductions in the main part of the paper consider another decision problem
which is called subsumption (SUBS) and is defined as follows: Given a TBox T
and two atomic concepts A, B, does every model of T satisfy A � B ?

Complexity Theory. We assume familiarity with the standard notions of com-
plexity theory as, e.g., defined in [28]. In particular, we will make use of the
classes NL, P, NP, coNP, and EXPTIME, as well as logspace reductions ≤log

m .

Boolean operators. This study is complete with respect to Boolean operators,
which correspond to Boolean functions. The table below lists all Boolean func-
tions that we will mention, together with the associated DL operator where
applicable.

Table 1. Boolean functions with description and corresponding DL operator symbol

Function symbol Description DL operator symbol

0, 1 constant 0, 1 ⊥, �
and, or binary conjunction/disjunction ∧, ∨ �, �
neg unary negation ·̄ ¬
xor binary exclusive or ⊕ �
andor x ∧ (y ∨ z)
sd (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)
equiv binary equivalence function

A set of Boolean functions is called a clone if it contains all projections (also
known as identity functions, the eponym of the I-clones below) and is closed
under composition (also referred to as superposition). The lattice of all clones has
been established in [29], see [10] for a more succinct but complete presentation.
Via the inclusion structure, lower and upper complexity bounds can be carried
over to higher and lower clones under certain conditions. We will therefore state
our results for minimal and maximal clones only, together with those conditions.

Given a finite set B of functions, the smallest clone containing B is denoted
by [B]. The set B is called a base of [B], but [B] often has other bases as well.
For example, nesting of binary conjunction yields conjunctions of arbitrary arity.
The table below lists all clones that we will refer to, using the following defini-
tions. A Boolean function f is called self-dual if f(x1, . . . , xn) = f(x1, . . . , xn),
c-reproducing if f(c, . . . , c) = c for c ∈ {0, 1}, and c-separating if there is an
1 ≤ i ≤ n s.t. for each (b1, . . . , bn) ∈ f−1(c), it holds that bi = c.

From now on, we will use B to denote a finite set of Boolean operators. Hence,
[B] consists of all operators obtained by nesting operators from B. By abuse of
notation, we will denote operator sets with the above clone names when this
is not ambiguous. Furthermore, we call a Boolean operator corresponding to
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Table 2. List of all relevant clones in this paper with their standard bases

Clone Description Base

BF all Boolean functions {and, neg}
R0, R1 0-, 1-reproducing functions {and, xor}, {or, equiv}
M all monotone functions {and, or, 0, 1}
S1 1-separating functions {x ∧ y}
S11 1-separating, monotone functions {andor, 0}
D self-dual functions {sd}
L affine functions {xor, 1}
L0 affine, 0-reproducing functions {xor}
L3 affine, 0- and 1-reproducing functions {x xor y xor z xor 1}
E0, E conjunctions and 0 (and 1) {and, 0}, {and, 0, 1}
V0, V disjunctions and 0 (and 1) {or, 0}, {or, 0, 1}
N2, N negation (and 1) {neg}, {neg, 1}
I0, I 0 (and 1) {0}, {0, 1}

a monotone (self-dual, 0-reproducing, 1-reproducing, 1-separating) function a
monotone (self-dual, ⊥-reproducing, $-reproducing, $-separating) operator.

Known complexity results for CSAT. In [19], the complexity of concept satisfia-
bility has been classified for modal logics corresponding to all fragments of ALC
with arbitrary combinations of Boolean operators and quantifiers: CSATQ(B)
with Q ⊆ {∃, ∀} is either PSPACE-complete, coNP-complete, or in P. Some of
the latter cases are trivial, i.e., every concept in such a fragment is satisfiable.
These results generalize known complexity results for ALE and the EL and FL
families. On the other hand, results for ALU and the DL-Lite family cannot be
put into this context because they only allow unqualified existential restrictions.
See [25] for a more detailed discussion.

3 Complexity Results for TSAT, TCSAT, OSAT, OCSAT

In this section we will almost completely classify the above mentioned satisfia-
bility problems for their tractability with respect to sub-Boolean fragments and
put them into context with existing results for fragments of ALC. Full proofs of
every theorem and auxiliary lemmata are given in [26].

We use �SATQ(B) to speak about any of the four satisfiability problems
TSATQ(B), TCSATQ(B), OSATQ(B) and OCSATQ(B) introduced above; for
the three problems having the power to speak about a single individual, we
abuse this notion and write �SAT∼

Q(B) for the problems �SATQ(B) without
TSATQ(B).

3.1 Both Quantifiers

Theorem 1 ([30, 34, 17]). OCSAT∃∀(BF) ∈ EXPTIME.
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Due to the interreducibilities stated in Section 2, it suffices to show lower bounds
for TSAT and upper bounds for OCSAT. Moreover one can show that a base
independence result holds which enables us to restrict the proofs to the standard
basis of each clone for stating general results. Several proof sketches involve the
ability to express the constant $ through a fresh concept. This technique goes
back to Lewis 1979 [22] and often will be referred to as $-knack.

The following theorem improves [25] by stating completeness results.

Theorem 2. Let B be a finite set of Boolean operators.

1. If I ⊆ [B] or N2 ⊆ [B], then TSAT∃∀(B) is EXPTIME-complete.
2. If I0 ⊆ [B] or N2 ⊆ [B], then �SAT∼

∃∀(B) is EXPTIME-complete.
3. If [B] ⊆ R0, then TSAT∃∀(B) is trivial.
4. If [B] ⊆ R1, then �SAT∃∀(B) is trivial.

Proof sketch. 1. Membership is immediate from Theorem 1. Hardness can be
shown in two steps: via a reduction from the positive entailment problem for
Tarskian set constraints (cf. [18]) to TSAT∃∀(E) and eliminating in this reduction
the conjunction operator. The latter is achieved by an extended version of the
normalization algorithm in [12]. The case N2 ⊆ [B] then follows directly from
Lemma 1 in [25]. 2. follows from 1. by simulating the constant $ with a fresh
concept. 3. and 4. follow from [25]. �
Part (2) for I0 generalizes the EXPTIME-hardness of subsumption for FL0 and
AL with respect to GCIs [18, 14, 5, 20]. The contrast to the tractability of sub-
sumption with respect to GCIs in EL, which uses only existential quantifiers,
undermines the observation that, for negation-free fragments, the choice of the
quantifier affects tractability and not the choice between conjunction and dis-
junction. DL-Lite and ALU cannot be put into this context because they use
unqualified restrictions.

Parts (1) and (2) show that satisfiability with respect to theories is already
intractable for even smaller sets of Boolean operators. One reason is that sets
of axioms already contain limited forms of implication and conjunction. This
also causes the results of this analysis to differ from similar analyses for sub-
Boolean modal logics in that hardness already holds for bases of clones that are
comparatively low in Post’s lattice.

Part (3) reflects the fact that TSAT is less expressive than the other three
decision problems: it cannot speak about one single individual.

3.2 Restricted Quantifiers

In this section we investigate the complexity of the problems OCSATQ, OSATQ,
TCSATQ, and TSATQ, where Q contains at most one of the quantifiers ∃ or
∀. Even the case Q = ∅ is nontrivial: for example, TSATQ(B) does not reduce
to propositional satisfiability for B because restricted use of implication and
conjunction is implicit in sets of axioms.
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TSAT-Results

Theorem 3. Let B be a finite set of Boolean operators.

1. If L3 ⊆ [B] or M ⊆ [B], then TSAT∅(B) is NP-complete.
2. If E = [B] or V = [B], then TSAT∅(B) is P-complete.
3. If [B] ∈ {I, N2, N}, then TSAT∅(B) is NL-complete.
4. Otherwise (if [B] ⊆ R1 or [B] ⊆ R0), then TSAT∅(B) is trivial.

Proof sketch. For the monotone case in 1. it holds that IMP(M) ≤log
m TSAT∅(M)

where IMP(M) being coNP-complete is shown in [9]. For L3 using a knack from The-
orem 2 lets us easily state a reduction from the NP-complete problem 1-in-3-SAT
involving the binary exclusive-or. Hardness in the E-case of 2. is achieved via the
hypergraph accessibility problem HGAP; for V = [B] we argue via contraposition.
Membership comes from containment in OCSAT∃(E). In case 3. hardness is shown
for I = [B] by reducing from the graph inaccessibility problem GAP. Membership
is entailed by TCSAT∅(N). 4. follows from Theorem 2. �
Theorem 4. Let B be a finite set of Boolean operators and Q ∈ {∀, ∃}.

1. If M ⊆ [B] or N2 ⊆ [B], then TSATQ(B) is EXPTIME-complete.
2. If E = [B], V = [B], or I = [B], then TSATQ(B) is P-complete.
3. Otherwise (if [B] ⊆ R1 or [B] ⊆ R0), then TSATQ(B) is trivial.

Proof sketch. In case 1. with M ⊆ [B] and Q = ∃ we reduce from ELU-SUBS,
the subsumption problem of the logic ELU , whose EXPTIME-completeness has
been proven in [5]. For Q = ∀ we reduce from TSAT∃(B) in combination with
a contraposition argument. For N2, negation can simulate both constants which
leads to a simple reduction from TSAT∃∀(I). The hardness results of item 3.
follow from TSAT∃(I) whose hardness is via a reduction from the word problem
for a particular Turing machine model of the class P. The P-algorithm for the
case ∀ and ∃ extends the algorithm in [11]. The upper bound for TSAT∃(E)
results from OCSAT∃(E); for the remainder we use a contraposition argument.�
Part (3) generalizes the fact that every EL- and FL0-TBox is satisfiable, and the
whole theorem shows that separating either conjunction and disjunction, or the
constants is the only way to achieve tractability for TSAT.

TCSAT-, OSAT-, OCSAT-Results.

Theorem 5. Let B be a finite set of Boolean operators.

1. If S11 ⊆ [B] or L3 ⊆ [B] or L0 ⊆ [B], then �SAT∼
∅ (B) is NP-complete.

2. If [B] ∈ {E0, E, V0, V}, then �SAT∼
∅ (B) is P-complete.

3. If [B] ∈ {I0, I, N2, N}, then �SAT∼
∅ (B) is NL-complete.

4. Otherwise (if [B] ⊆ R1), then �SAT∼
∅ (B) is trivial.
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Proof sketch. Hardness in 1. follows from the respective TSAT∅(B) case together
with the fact that these fragments can simulate $. Membership is via a reduction
to SAT involving a construction using implication for the terminology. In case 2.
we can adjust the lower bounds from TSAT∅(B) and [B] ∈ {V, E} by simulating
$ again. Membership is due to OCSAT∃(E). In 3., membership for N is via
an algorithm that searches for cycles containing a concept and its negation in
the directed graph induced by the terminology. Hardness results from the case
TSAT∅(I) plus the $-knack. The last item is due to Theorem 1. �
Theorem 6. Let B be a finite set of Boolean operators, and Q ∈ {∀, ∃}.
1. If S11 ⊆ [B], N2 ⊆ [B], or L0 ⊆ [B] then �SAT∼

Q(B) is EXPTIME-complete.
2. If I0 ⊆ [B] ⊆ V, then TCSAT∃(B) and �SAT∼

∀ (B) are P-complete1.
3. If [B] ∈ {E0, E}, then �SAT∼

∀ (B) is EXPTIME-complete,
and �SAT∼

∃ (B) is P-complete.
4. If [B] ⊆ R1, then �SAT∼

Q(B) is trivial.

Proof sketch. For 1., combine EXPTIME-completeness of TSATQ(B) with the$-
knack. EXPTIME-hardness of TCSAT∀(B) in case 3. is achieved via a reduction
from FL0-SUBS which is EXPTIME-complete [5, 20]. P-hardness in 2. and 3.
result from TSATQ(I) again with the help of the $-knack. P-membership of
OCSAT∃(E) is accomplished through a reduction to the subsumption problem for
the logic EL++ [6], and a contraposition argument is used to reduce OCSAT∀(V)
to OCSAT∃(E). 4. is due to Theorem 2. �
Theorem 6 shows one reason why the logics in the EL family have been much
more successful as “small” logics with efficient reasoning methods than the FL
family: the combination of the ∀ with conjunction is intractable, while ∃ and
conjunction are still in polynomial time. Again, separating either conjunction
and disjunction, or the constants is crucial for tractability.

Table 3. Complexity overview for all Boolean function and quantifier fragments. All
results are completeness results for the given complexity class, except for the case
marked §: here, OCSAT and OSAT are in EXPTIME and P-hard.

TSATQ(B) I V E N/N2 M L3 to BF otherwise

Q = ∅ NL P NL NP trivial

|Q| = 1 P EXPTIME trivial

Q = {∃,∀} EXPTIME trivial

SAT∼
Q(B) I/I0 V/V0 E/E0 N/N2 S11 to M L3/L0 to BF otherwise

Q = ∅ NL P NL NP trivial

Q = {∃} P P§ P EXPTIME trivial

Q = {∀} P EXPTIME trivial

Q = {∃,∀} EXPTIME trivial

1 OSAT∃(B) and OCSAT∃(B) are P-hard for [B] ∈ {V0, V} and in EXPTIME.
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Table 3 gives an overview of our results. [26] contains figures showing how the
results arrange in Post’s lattice.

4 Conclusion

With Theorems 2 to 6, we have completely classified the satisfiability prob-
lems connected to arbitrary terminologies and concepts for ALC fragments ob-
tained by arbitrary sets of Boolean operators and quantifiers—only the fragments
emerging around ontologies with existential quantifier and disjunction as only
allowed connective resisted a full classification. In particular we improved and
finished the study of [25]. In more detail we achieved a dichotomy for all problems
using both quantifiers (EXPTIME-complete vs. trivial fragments), a trichotomy
when only one quantifier is allowed (trivial, EXPTIME-, and P-complete frag-
ments), and a quartering for no allowed quantifiers ranging from trivial, NL-
complete, P-complete, and NP-complete fragments.

Furthermore the connection to well-known logic fragments of ALC, e.g., FL
and EL now enriches the landscape of complexity by a generalization of these
results. These improve the overall understanding of where the tractability bor-
der lies. The most important lesson learnt is that the separation of quantifiers
together with the separation of either conjunction and disjunction, or the con-
stants, is the only way to achieve tractability in our setting.

Especially in contrast to similar analyses of logics using Post’s lattice, this
study shows intractable fragments quite at the bottom of the lattice. This il-
lustrates how expressive the concept of terminologies and assertional boxes is:
restricted to only the Boolean function false besides both quantifiers we are still
able to encode EXPTIME-hard problems into the decision problems that have a
TBox and a concept as input. Thus perhaps the strongest source of intractabil-
ity can be found in the fact that unrestricted theories already express limited
implication and disjunction, and not in the set of allowed Boolean functions
alone.

For future work, it would be interesting to see whether the picture changes
if the use of general axioms is restricted, for example to cyclic terminologies—
theories where axioms are cycle-free definitions A ≡ C with A being atomic.
Theories so restricted are sufficient for establishing taxonomies. Concept satis-
fiability for ALC w.r.t acyclic terminologies is still PSPACE-complete [23]. Is
the tractability border the same under this restriction? One could also look at
fragments with unqualified quantifiers, e.g., ALU or the DL-lite family, which
are not covered by the current analysis. Furthermore, since the standard rea-
soning tasks are not always interreducible under restricted Boolean operators, a
similar classification for other decision problems such as concept subsumption is
pending.
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Berger, André 184
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