
Algorithmica (2011) 61:1092–1104
DOI 10.1007/s00453-010-9413-1

Another Sub-exponential Algorithm for the Simple
Stochastic Game

Decheng Dai · Rong Ge

Received: 23 February 2010 / Accepted: 4 May 2010 / Published online: 18 May 2010
© Springer Science+Business Media, LLC 2010

Abstract We study the problem of solving simple stochastic games, and give both
an interesting new algorithm and a hardness result. We show a reduction from fine
approximation of simple stochastic games to coarse approximation of a polynomial
sized game, which can be viewed as an evidence showing the hardness to approximate
the value of simple stochastic games. We also present a randomized algorithm that
runs in Õ(

√|VR|!) time, where |VR| is the number of RANDOM vertices and Õ

ignores polynomial terms. This algorithm is the fastest known algorithm when |VR| =
ω(logn) and |VR| = o(

√
min |Vmin|, |Vmax|) and it works for general (non-stopping)

simple stochastic games.

Keywords Simple stochastic game · Subexponential algorithm

1 Introduction

1.1 Simple Stochastic Games

Simple stochastic games are games played by two players on a graph, it is a restricted
version of general stochastic games introduced by Shapley [5]. In a simple stochastic
game, two players (MAX and MIN) move a pebble along directed edges in a graph.

D. Dai was supported by the National Natural Science Foundation of China Grant 60553001
and the National Basic Research Program of China Grant 2007CB807900, 2007CB807901.

D. Dai (�)
Tsinghua University, Beijing, China
e-mail: ddc02@mails.tsinghua.edu.cn

R. Ge
Princeton University, Princeton, USA
e-mail: rongge@cs.princeton.edu

mailto:ddc02@mails.tsinghua.edu.cn
mailto:rongge@cs.princeton.edu

Algorithmica (2011) 61:1092–1104 1093

The vertices in the graph can have one of the three labels: MAX, MIN or RANDOM.
If the pebble is on a vertex labeled MAX (or MIN), then MAX (or MIN) player
decides through which out going edge the pebble should move; if the pebble is on a
vertex labeled RANDOM, then the pebble moves along a randomly chosen edge. The
graph also has a special vertex called the “1-sink”. If the pebble is moved to 1-sink,
the game ends and the MAX player wins; if the game never ends (i.e. the MIN player
forces it never go to 1-sink), the MIN player wins.

Simple Stochastic Games (SSG for short) have many interesting applications. In
complexity theory, SSGs are used in the analysis of space bounded computations with
alternations and randomness [1] (the MAX and MIN vertices correspond to universal
and existential quantifiers and RANDOM vertices correspond to coin tosses). It is
also a special case of general stochastic games. In complexity view, the decision
version of SSG is one of the few famous problems in NP ∩ coNP, whether it is in P
is one of the major open questions in theoretical computer science. In practice, SSGs
are used to model reactive systems. In such systems, RANDOM vertices are used to
model stochastic environmental changes, MAX vertices are used to model adversary
or arbitrary behaviors, MIN vertices are used to model choices of the system. The
1-sink vertex represents a failure. The goal of the system is thus minimizing the
probability of failure (reaching 1-sink vertex).

Finding the optimal strategies for SSGs has been an interesting open problem
for a long time. A lot of algorithms have been proposed. Condon [1] proved the
decision version of SSG is in NP ∩ coNP, and later in 1993, she showed several
iterative algorithms for SSG in [2], but all of these algorithms require exponential
time. She also suggested an approximation version of SSG problem, but there are no
polynomial time algorithms known. Our gap amplification result gives an evidence
on why the approximation problem is also difficult. Ludwig gave a sub-exponential
(Õ(2

√
n), Õ hides polynomial terms) time randomized algorithm for SSGs in [4],

which uses local search techniques. Somla [6] purposed a new iterative algorithm in
2004 which might be better than previous algorithms, however there’s no evidence
that shows the algorithm runs in polynomial time. Recently, Gimbert and Horn [3]
presented a new non-iterative algorithm that runs in time Õ(|VR!|). This highlights
one of the main reasons the problem has exponential complexity: the existence of
random vertices.

1.2 Our Results

In this paper, we investigate the SSG problem in both hardness and algorithmic as-
pects. On the hardness side, by constructing a polynomial time reduction, we show
that a coarse approximation of SSGs is as hard as a fine approximation. This is done
by constructing a new game G′ from a game G, such that G′ has polynomial size and
a coarse approximation to G′ would give a fine approximation of game G.

At the algorithmic side, we present an algorithm based on the algorithm of Gim-
bert and Horn [3]. They considered a set of strategies called f-strategies, and showed
at least one of f-strategies is optimal. However they were not able to distinguish
“good” f-strategies and “bad” f-strategies. By finding a way to evaluate the “cor-
rectness” of f-strategies, we are able to apply local search algorithms to find the op-
timal f-strategy, and reduce the running time to Õ(

√|VR|!). Our algorithm is the

1094 Algorithmica (2011) 61:1092–1104

fastest known randomized algorithm for solving SSGs when |VR| = ω(logn) and
|VR| = o(

√
min{|Vmax|, |Vmin|}).

In Sect. 2 we give definitions for Simple Stochastic Games and strategies. Then we
describe the reduction from fine approximation to coarse approximation in Sect. 3.
After that, we give a brief introduction to f-strategies and then present our algorithm.

2 Basic Definitions

There are many variations of SSGs, we define the game formally as follows

Definition 2.1 (Simple Stochastic Games) A simple stochastic game is specified by
a directed graph G = 〈V,E〉 and a starting vertex vstart ∈ V . Each vertex v ∈ V has
2 outgoing edges and a label (MAX, MIN or RANDOM). Vmin, Vmax, VR are the
sets of vertices with label MIN, MAX and RANDOM respectively. There’s a special
vertex v1 (the 1-sink) in the graph.

Initially the pebble is at vstart. If the pebble is at a MAX/MIN vertex, then the
corresponding player moves the pebble along one of the outgoing edges. If the pebble
is at a RANDOM vertex, then the pebble moves along a random outgoing edge (both
edges are chosen with probability 1/2). If the pebble reaches v1 then MAX player
wins, otherwise MIN player wins.

Solving SSGs means calculating the winning probabilities for the players if they
all follow optimal strategy. Informally, the strategy of a player decides which edge
should the pebble follow in the game. Although a strategy can decide the edge by
considering history and using random coins, it’s well known that positional optimal
strategies exist for simple stochastic games [1, 5]. A positional strategy makes the
decision only by the current position of the pebble. Formally, a positional strategy for
MAX player α is a function from Vmax to V , for any vertex v ∈ V , (v,α(v)) is an
edge and it is the outgoing edge that the MAX player would choose if the pebble is
currently at vertex v. Similarly, a positional strategy for MIN player β is a function
from Vmin to V . Hereafter when we mention strategy we mean positional strategy.
We define the value of a vertex to be the winning probability of the MAX player if
initially the pebble is at this vertex, and denote this by val(v), the value of the game
is val(vstart). When it’s not clear which game we are talking about, we use val[G](v)

to specify the value of v in game G.
In simple stochastic games, MIN player wins the game by forcing the pebble to

move infinitely many steps without reaching the 1-sink. Sometimes it’s easier to con-
sider the situation that the game has two sinks: a 0-sink and a 1-sink. The game
guarantees no matter what strategies the players use, with probability 1 the game will
reach one of the sinks in finitely many steps. The goal of MAX player is to reach the
1-sink and the goal of MIN player is to reach the 0-sink. This variation of SSG is
called stopping simple stochastic games (stopping-SSG). Condon showed in [1] that
any SSG can be converted to a stopping-SSG in polynomial time while the change in
the value of the game is exponentially small.

Algorithmica (2011) 61:1092–1104 1095

3 Coarse Approximation is As Hard As Fine Approximation

Since no polynomial time algorithms has been discovered for exactly solving SSGs,
Condon [1] purposed the following “approximation” version of the problem. Con-
sider the following sets,

Lyes =
{
G : the value of G is at least

1

2
+ ε

}
,

Lno =
{
G : the value of G is at most

1

2
− ε

}
.

An ε-gap SSG decision problem is to determine whether G is in Lyes or Lno given
it is in one of them. Intuitively it might seem for some large enough ε this problem
is easy to solve. However, we give a gap amplification reduction showing that when
enlarging ε from (1/poly(n)) to (1/2 − e−nρ

) for any ρ < 1, the problem does not
become easier. This reduction is analogue to the hardness amplification results for
clique and chromatic number problem.

Theorem 3.1 For any fixed constant 0 < ρ < 1 and c > 0, if the (1/2 − e−nρ
)-gap

SSG decision problem is in P, then the (n−c)-gap SSG decision problem is in P.

Proof First we prove the theorem for stopping SSG.
Now let’s assume G = 〈V,E〉 is a stopping-SSG with n vertices. There are 3 spe-

cial vertices in a stopping SSG: vstart, the starting vertex; v1, the 1-sink vertex; v0, the
0-sink vertex. We construct another game G′ = 〈V ′,E′〉 of size N (which is polyno-
mial in n) such that,

• G′ has value larger than (1 − e−Nρ
) if G has value larger than (1/2 + n−c).

• G′ has value less than e−Nρ
if G has value less than (1/2 − n−c).

Informally, G′ “repeats” G for polynomially many times, if the MAX(MIN) player
wins all these games, he wins G′; otherwise the pebble goes back to vstart and
restart G′. Since G is a stopping game, G′ is also a stopping game.

Let {G0,Gi,j |i ∈ {0,1}, j ∈ {1, . . . ,K}} be 2K + 1 copies of G. We replace the
out-going edges for v0 and v1 in each of these games to connect them together in the
following way (their two outgoing edges will point to the same location, so it doesn’t
matter what label they have)

• Connect v0 in G0 to vstart in G0,1, connect v1 in G0 to vstart in G1,1.
• Connect v1 in G0,j (1 ≤ j ≤ K) to vstart in G0, connect v0 in G0,j (j < K) to vstart

in G0,j+1.
• Connect v0 in G1,j (1 ≤ j ≤ K) to vstart in G0, connect v1 in G1,j (j < K) to vstart

in G1,j+1.
• The starting vertex in G′ is vstart in G0, and the 0-sink vertex is v0 in G0,K and the

1-sink vertex is v1 in G1,K .

In this constructed game G′ (as showed in Fig. 1), the MIN(MAX) player must
win G0 and all G0,j (G1,j) to win G′. Let p to be the value in G. By induction, it is
easy to prove the probability to reach v1 in G1,K is (pK)/(pK + (1 − p)K).

1096 Algorithmica (2011) 61:1092–1104

Fig. 1 An example on constructing G′ from G, for K = 3. Every ellipse is a copy of G. Three
solid vertices are vstart, v0, v1. It is easy to check that the probability to reach the v0 in G′ is exactly
p3/(p3 + (1 − p)3), in which p = val[G](v0)

Let K = nd where d = (c + 1)/(1 − ρ), then N = (2K + 1)n = O(nd+1) when
p ≤ 1/2 − n−c we have,

pK

pK + (1 − p)K
≤ (1

2 − n−c)K

(1
2 − n−c)K + (1

2 + n−c)K

≤ (1 − 2n−c)K ≤ e−nd−c

≤ e−Nρ

,

so the value of G′ is less than e−Nρ
in this case. Similarly, when p ≥ 1/2 + n−c, we

have the value of G′ is larger than 1 − e−Nρ
. That is,

val(G) ≤ 1

2
− n−c ⇒ val(G′) ≤ e−Nρ

,

val(G) ≥ 1

2
+ n−c ⇒ val(G′) ≥ 1 − e−Nρ

.

By applying the algorithm for (1/2 − e−nρ
)-gap SSG decision problem on G′, the

algorithm would be able to distinguish between val(G) > 1/2 + n−c and val(G) <

1/2 − n−c.
For general (possibly non-stopping) SSG, we use Condon’s reduction in [1] that

transforms a SSG G to a stopping SSG G′ whose value is arbitrarily close to the value
of G. The constructed stopping game G′ adopts all the vertices of G and inserts cnm

new vertices (m = |E| in G). For any vertex v, |val[G](v) − val[G′](v)| ≤ 2(2−c)n.
By combining these two constructions, we can reduce solving the (n−c)-gap decision
problem to (1/2 − e−nρ

)-gap SSG decision problem. �

Algorithmica (2011) 61:1092–1104 1097

4 Fast Algorithm for SSGs with Few Random Vertices

An interesting case for solving simple stochastic games is when there are a few
random vertices. Gimbert and Horn [3] found an algorithm that runs in Õ(|VR|!)
time. Their algorithm is based on enumerating a special kind of strategies called
f-strategies. To avoid simple and time consuming enumerations, our algorithm relies
on the following Lemma:

Lemma 4.1 (Main Lemma) There’s a partial order in f-strategies such that the fol-
lowing holds:

1. Any maximal f corresponds to a pair of optimal strategies.
2. Two f-strategies can be compared in polynomial time.
3. If f is not maximal, then in polynomial time we can find g which is better than f.

The f-strategies are first introduced in [3], and they proved a theorem (Lemma 4.3
in this paper) on testing whether the f-strategy is optimal or not. The bruct-force idea
is to enumerate all possible O(n!) f-strategies and use Lemma 4.3 to find the optimal
one. Our major contrubution is this main lemma, which reduces the problem to a
local maximal searching problem and thus enabled us to design faster algorithms.

4.1 f-strategies

In this section we’ll first briefly describe ideas in [3] on what are f-strategies and
how to test their optimality; this is first introduced in [3] and we mention it again for
completeness. Then we show how the partial order in Lemma 4.1 is defined and prove
the lemma. Finally we use existing randomized algorithms for local search problems
to improve the expected running time to Õ(

√|VR|!).
Let f = 〈r1, . . . , rm〉 (for simplicity let r0 = v1) be a permutation of the random

vertices, where m = |VR| is the number of the random vertices. A f-strategy is a pair
of positional strategies associated to f.

Let Ri be the first i random vertices in the permutation f. The consuming set Ci

is a set of vertices from which player MAX has a strategy σf for moving the pebble
to Ri and at the same time avoid touching any other random vertices, no matter what
strategy player MIN chooses. Similarly, there’s also a strategy τf for player MIN,
such that no matter what player MAX does, vertices outside Ci can never reach a
vertex in Ri without touching other random vertices. Obviously C0 ⊆ C1 ⊆ · · · ⊆ Cm.
The consuming sets and the strategies α β can be constructed using the following
algorithm:

1. C−1 = 	.
2. FOR i = 0 to |V |.
3. Ci = Ci−1 ∪ {ri}.
4. REPEAT until no more vertices can be added.
5. ADD a MAX vertex v to Ci if v has an edge (v,w) where w ∈ Ci , let

α(v) = w.

1098 Algorithmica (2011) 61:1092–1104

6. ADD a MIN vertex v to Ci if all remaining outgoing edges of v points to
a vertex in Ci , let β(v) be the endpoint of any remaining outgoing edge
of v.

7. REMOVE all outgoing edges from a MIN vertex in V \Ci to Ci .
8. For remaining vertices choose an arbitrary edge as the strategy.

For any strategy of MIN player, the vertices in Ci\Ci−1 can always reach ri by
strategy α, this can be proved using simple induction on the order of entering set Ci .
For any MAX strategy, the vertices outside Ci can never reach a vertex in {r0, . . . , ri},
because there’s no edge between V \Ci and Ci in the remaining graph. This pair
of strategies (σf, τf) is called the f-strategy regarding to the permutation f. For any
permutation f, let valf(ri) be the probability for player MAX to win if the game starts
at vertex ri , when players follow the f-strategies (σf, τf). The following lemmas are
first proved in [3].

Lemma 4.2 (f-strategy) Given any permutation f, the corresponding σf and τf always
exist and can be found in polynomial time.

Informally, a permutation f = 〈r1, . . . , rm〉 represents the preference of player
MAX and MIN over the random vertices: MAX prefer to begin the play from a
random vertex of index as high as possible, i.e., the higher index random vertices
have larger probability to reach the 1-sink. There exists a permutation f, such that the
f-strategy is an optimal strategy. Moreover, there are simple rules to check whether
the f-strategy is optimal or not.

Lemma 4.3 If f satisfies the Consistency and Progressive conditions, then the
f-strategy is an optimal strategy for the game.

Consistency: valf(r1) ≥ · · · ≥ valf(rm).
Progressive: For any random vertex ri (i > 0) with valf(ri) > 0, at least one of its

outgoing edges points to a vertex in Ci−1.

There always exists a permutation f that satisfy both conditions.

For constructing {Ci} in polynomial time and more discussions about the Con-
sistency and Progressive conditions, see [3]. The Consistency constraint is easy to
understand, however, the Progressive constraint is also important. If a permutation f
satisfies Consistency but does not satisfy the Progressive condition, its corresponding
f-strategy may not be optimal. Consider the case in Fig. 2. The permutation 〈r2, r1〉
is consistency and progressive. And in this permutation, the MIN’s strategy is to go
to r2, and the values are 0 for all the vertices. Consider the permutation 〈r1, r2〉, in
this case MIN’s strategy is to go to r1, and so the values are 1 for every vertices,
in this case the ordering is Consistent but not Progressive and the strategies are not
optimal.

However, the Progressive constraint is not a necessary constraint for optimality.
Consider two random vertices r1 and r2, all outgoing edges of r2 points to r1. Obvi-
ously the value of the two vertices are the same. If in the ordering, v2 ≥ v1 and their
value are greater than 0, then the ordering cannot be consistent because r2 can only

Algorithmica (2011) 61:1092–1104 1099

Fig. 2 Progressive is an
important condition. 〈r1, r2〉 is
an non-progressive but
consistent permutation.
According to this permutation,
player MIN prefers r1 over r2,
and his strategy will be totally
wrong

Fig. 3 Values cannot tell
whether the f-strategy is good or
bad

reach r1, which is lower in the ordering. However the f-strategy corresponding to the
ordering can be optimal because r1 and r2 are essentially the same vertex (we can
merge them without changing the value of other vertices).

4.2 The Partial Order for f-strategies

Gimbert and Horn [3] solve SSGs by enumerating all possible permutation f (and
f-strategies). A natural way to improve the algorithm by Gimbert and Horn would be
smartly updating f when it is not Consistent or Progressive. However, it is hard to
tell two permutations which is better by simply looking at the values. This is not
trivial because by simply looking at the values we have no way to tell whether
an ordering is “good” or “bad”. A wrong ordering would “fool” both the MAX
player and the MIN player, and the result is the value based on f-strategy can be
greater than, less than or even equal to the real value. Consider the example in
Fig. 3. The consistent and progressive permutation is f = 〈r1, r2, r3〉 and their corre-
sponding values are valf (r1) = 1/4, valf (r2) = 0.5, valf (r3) = 3/4. The permutation
g = 〈r3, r2, r1〉 is neither consistent nor progressive, and the corresponding values
are valg(r1) = 0, valg(r2) = 0.5, valg(r3) = 1, in which r1’s value is less than its true
value but r3’s value is larger than the true value.

To estimate whether a particular ordering is good or not, we construct a new SSG
with respect to the ordering.

Definition 4.1 (Value measure H(f)) Let G be a SSG and f be an ordering of random
vertices, Gf is a new SSG. Gf has all the vertices and edges in G and m new vertices

1100 Algorithmica (2011) 61:1092–1104

Fig. 4 (a) The game G,
 are
MIN vertices, � are MAX
vertices, © are RANDOM
vertices. (b) The graph Gf, in
which f = 〈r1, r2, r3, v1〉.
4 MAX vertices are added. The
dashed lines are the original
edges and the solid lines are the
added edges

u1, u2, . . . , um, all of them are MAX vertices. The two outgoing edges of ui go to ri
and ri+1 (the two outgoing edges of um both go to rm). All edges of the form (v, ri)

in G are replaced by (v,ui) in Gr . Let H(f) �
∑m

i=1 val[Gf](ui).

Let HOPT = ∑m
i=1 val[G](ri). An example on how to compute H(f) is showed in

Fig. 4. In G, the values are val(r1) = 0, val(r2) = 0.5, val(r3) = val(v1) = 1. In Gf,
the values are val(r1) = val(r2) = val(r3) = val(v1) = 1. So H(f) = 4 > HOPT.

Lemma 4.4 For any permutation f, H(f) ≥ HOPT. When f is both Consistent and
Progressive, H(f) = HOPT.

Proof Consider a permutation f and its corresponding Gf, assume α, β is a pair
of optimal strategies for the original game G. Now we construct a strategy α′ for
player MAX in Game Gf: α′(v) = α(v) for all v ∈ G; α′(ui) = ri for all ui,1 ≤
i ≤ m. When player MAX takes this strategy, it is easy to check β is the also best
response for player MIN in G′. So for every v ∈ G, val[Gα,β](v) = val[Gf,α′,β](v)

and
∑m

i=1 val(ui) = ∑m
i=1 val[Gf,α′,β](v) = HOPT. However, MAX may have better

strategies in Gf, so H(f) ≥ HOPT.
When f is Consistent and Progressive in G, we first prove that f is also Consis-

tent and Progressive in Gf. Let Ci be the consuming sets in G regarding to f. By
analyzing the structure of graph Gf, we have C′

i = Ci ∪ {u1, u2, . . . , ui} are consum-
ing sets in Gf. Consider the strategies (α′, β) as defined in the former case. Using
the definition of f-strategy, it is easy to verify that (α′, β) are f-strategy for Gf. So
val[Gf](ri) = val[G](ri), which means f is still Consistent and Progressive for Gf.
Therefore H(f) = HOPT. �

This lemma shows that the minimum value of H(f) is the corresponding value in
the optimal strategy. To compute the optimal strategy and values for Gf, we use the
following Lemma.

Lemma 4.5 For any permutation f and the f-strategy (σ, τ) in G, there is an optimal
strategy (σ ′, τ ′) for Gf such that for all v ∈ G, τ(v) = τ ′(v) and σ(v) = σ ′(v).

Proof Let the permutation f = 〈r0, . . . , rm〉 and the corresponding f-strategy (σf, τf).
Now we construct strategy for Gf satisfies the conditions.

Algorithmica (2011) 61:1092–1104 1101

Denote the consuming sets for f as {Ci}. Let g = (r0, rt1 , rt2 , . . . , rtm) be a per-
mutation for Gf which is consistent and progressive (this ordering always exists
by Lemma 4.3). Since G and Gf have the same random vertices, f and g are per-
mutations over the same set. Denote the consuming sets for g as {C′

i}, we have⋃
i Ci = ⋃

i C
′
i . By the construction of Gf, we have Ci = ⋃i

j=1(Cj ∪ {uj }) and

C′
i = ⋃max t1,t2,...,ti

j=1 (Cj ∪ {uj }). This is because in the f-strategy in G, player MAX’s
strategy ensures Ci can reach Ri while MIN strategy ensures that no other vertices
outside Ci can reach Ri .

Now the optimal strategies (σ ′, τ ′) are defined as follows.

σ ′(v) =

⎧⎪⎨
⎪⎩

σ(v), if v ∈ G,

rti , if v = uti and ti = maxj≤i tj ,

uti+1, if v = uti and ti < maxj≤i tj .

(1)

Since the MIN vertices in Gf are the same with G, we simply let τ ′(v) = τ(v).
Then for any i, the strategy σ ′ makes sure that no matter what strategy the MIN

player uses, C′
i always reach a vertex in {r0, r1, . . . , rti }. Similarly, the strategy τ ′

makes sure that no matter what strategy that the MAX player uses, vertices outside
C′

i can never reach a vertex in {r0, r1, . . . , rti }. So (σ ′, τ ′) is a valid f-strategy for the
permutation g. Since g is consistency and progressive, (σ ′, τ ′) is therefore optimal
by Lemma 4.3. �

By this lemma we can find the optimal strategy for MIN player in Gf in polynomial
time, because we know that the strategy for player MIN in f-strategy for G is also an
optimal strategy for MIN player in Gf. By using linear programming we can find the
optimal strategy for player MAX in polynomial time.

Definition 4.2 (Progressiveness measure P(f)) For an permutation f = 〈r1, . . . , rm〉,
P(f) is the smallest i (i > 0) such that ri does not have an outgoing edge to Ci−1. If
there’s no such i or val(ri) = 0 then P(r) = m + 1.

Denote the set of all permutations over the random vertices as �. It takes Õ(m!)
time to search this space and output the consistent and progressive one. How-
ever, a partial order over � may help us to find this ordering. We say f > g if
(1) H(f) < H(g) or (2) H(f) = H(g) and P(f) > P (g).

Any maximal element in (�,>) corresponds to an permutation that is both con-
sistent and progressive. Therefore we have proved the first 2 parts of Lemma 4.1. To
prove part 3 of Lemma 4.1, we use the following lemma as a tool to upperbound the
H value.

Lemma 4.6 If function f : V → [0,1] satisfy the following conditions, then val(v) ≤
f (v) for every vertex v.

1. For vertex v1, f (v1) = 1;
2. For vertex v ∈ VR, assume the two outgoing edges are (v,w1), (v,w2), f (v) ≥

(f (w1) + f (w2))/2;

1102 Algorithmica (2011) 61:1092–1104

3. For vertex v ∈ VMAX, assume the two outgoing edges are (v,w1), (v,w2), f (v) ≥
max(f (w1), f (w2));

4. For vertex v ∈ VMIN, assume the two outgoing edges are (v,w1), (v,w2), f (v) ≥
min(f (w1), f (w2)).

Proof We say functions f ≤ g if for any RANDOM vertex v f (v) ≤ g(v).
Consider a pair of optimal f-strategy (α,β) according to ordering r of G and the

corresponding consuming sets. By the construction of consuming sets we have for
any vertex v in Ci\Ci−1, f (v) ≥ f (ri) (this is just a simple reduction on the order of
entering consuming sets). For a random vertex ri , let its two out-going edges point to
vertex w1, w2, where w1 ∈ Cj\Cj − 1, w2 ∈ Ck\Ck−1, then val(ri) = 1/2(val(rj) +
val(rk)). The value of non-zero random vertices are the unique solution of a system of
linear equations val(ri) = 1/2(val(rj)+val(rk)), where if j = 0 val(rj) is replaced by
constant 1 and if val(rj) = 0 then it is replaced by constant 0 (the same replacement
also applies for val(rk)). By the definition of f , and for any vertex v in Ci\Ci−1,
f (v) ≥ f (ri), we can see that f values satisfy the same sets of constraints with
greater or equal signs: f (ri) ≥ 1/2(f (rj)+f (rk)) (with same replacements). Define
operator �f (ri) = 1/2(f (rj) + f (rk)), then the only fixed point of � is val. And �

will only decrease f , so f ≥ val. �

The next lemma shows that we can easily find a better ordering if the current
ordering is not maximal.

Lemma 4.7 If an permutation f = 〈r1, . . . , rm〉 is not maximal, then there exists an
element ri in f, by deleting ri and reinsert it in an appropriate place we get a new
ordering g such that g > f.

Proof If the ordering f is not consistent in Gf, then there exists some t such that
val[Gf](rt) < val[Gf](rt+1). Find a place q > t so that val[Gf](uq) < val[Gf](rt+1)

(if there’s no such place then let q = m + 1). Delete rt and reinsert it right before
q (if q = m + 1 then insert it at the tail). Define f (v) = val[Gf](v), then for graph
Gg f is a valid value function that satisfy the requirements of Lemma 4.6. Therefore
for any vertex v val[Gr](v) ≥ val[Gg](v). Particularly for the current position of rt ,
the corresponding u vertex is uq in Gg, f (uq) > max(f (uq+1), f (rt)), so even after
reducing f (uq) to max(f (uq+1), f (rt)), f is still valid. That is, H(g) < H(f), g > f.

If the ordering f is consistent but not progressive, then assume P(f) = t . Define a
graph among the random vertices and r0 as follows: if an original outgoing edge of ri
goes to a vertex v that is in Cj\Cj−1, then there’s an edge from ri to rj . Use breadth
first search to find t ′ > t , such that the following holds:

1. There’s an edge from rt ′ to {r0, r1, . . . , rt−1}.
2. There’s a path from rt to rt ′ .

Note that such t ′ must exist because otherwise following the f-strategy, starting
from rt , the pebble will never be able to reach r0, and therefore the value of rt
is 0, which contradict with the fact that P(r) �= m + 1. Also, val(rt ′) = val(rt), be-
cause if the path from rt to rt ′ is (w0,w1, . . . ,wk) (w0 = rt and wk = rt ′), then

Algorithmica (2011) 61:1092–1104 1103

since val(wi) = (val(wi+1) + val(r∗))/2, both wi+1 and r∗ are ranked lower than t ,
val(wi+1) ≤ val(rt), val(r∗) ≤ val(rt). But val(w0) = val(rt), by induction for all i

val(wi) = val(w0) = val(rt).
Now delete rt ′ and insert it back before rt to get a new ordering g. Define f (v) =

val[Gf](v), then for graph Gg f is a valid value function that satisfy the requirements
of Lemma 4.6. Therefore for any vertex v val[Gf](v) ≥ val[Gg](v). Either all values
are equal, in this case H(f) = H(g) but P(g) > P (f) so g > f; or some values are
different, in this case H(g) < H(f) so g > f.

Since there are only polynomially many ways to delete and reinsert an element,
a better ordering can always be found in polynomial time. �

4.3 The Randomized Algorithm

Now we can use the existing randomized local minimum searching algorithm to solve
the simple stochastic game. The following is the algorithm to solve the value of a
simple stochastic game G = (V ,E):

1. Randomly choose
√|VR|! log(|VR|!) permutations, and let f0 be the maximal per-

mutation among them;
2. Starting from f0, repeatedly find better permutations f1, f2, . . . by Lemma 4.7 until

a maximal permutation ft is found.

By Lemma 4.7, we can always find better permutations unless f is maximal, and
there are only |VR|! permutations, the algorithm will eventually find a maximal per-
mutation and thus the optimal strategy. Now we analyze the running time of the al-
gorithm:

The first step takes Õ(
√|VR|!) time, after that, each iteration of the loop will take

poly(|VR|) time, so the key is how many iterations Step 2 needs.

Lemma 4.8 The probability that Step 2 needs more than
√|VR|! steps is no more

than 1/(|VR|)!.

Proof Consider any total ordering of the permutations that agrees with the partial
ordering we defined. The probability that none of the

√|VR|! largest elements are
chosen is at most (1 − √|VR|!/(|VR|!))

√|VR|! log(|VR|!) = e− log(|VR|!) = 1/(|VR|)!. �

Therefore, the expectation of number of iterations is at most
√|VR|!. The running

time is Õ(
√|VR|!).

References

1. Condon, A.: The complexity of stochastic games. Inf. Comput. 96(2), 203–224 (1992)
2. Condon, A.: On algorithms for simple stochastic games. In: Advances in Computational Complexity

Theory. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 13, pp. 51–
73. American Mathematical Society, Providence (1993)

3. Gimbert, H., Horn, F.: Solving simple stochastic games. In: CiE ’08: Proceedings of the 4th conference
on Computability in Europe, pp. 206–209. Springer, Berlin/Heidelberg (2008)

1104 Algorithmica (2011) 61:1092–1104

4. Walter, L.: A subexponential randomized algorithm for the simple stochastic game problem. Inf. Com-
put. 117(1), 151–155 (1995)

5. Shapley, S.: Stochastic games. In: Proceedings of the National Academy of Sciences (1953)
6. Somla, R.: New algorithms for solving simple stochastic games. In: Proceedings of the Workshop on

Games in Design and Verification (GDV 2004). Electronic Notes in Theoretical Computer Science,
vol. 119, pp. 51–65. Elsevier, Amsterdam (2005)

	Another Sub-exponential Algorithm for the Simple Stochastic Game
	Abstract
	Introduction
	Simple Stochastic Games
	Our Results

	Basic Definitions
	Coarse Approximation is As Hard As Fine Approximation
	Fast Algorithm for SSGs with Few Random Vertices
	f-strategies
	The Partial Order for f-strategies
	The Randomized Algorithm

	References

