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Abstract

A family of subsets C of [n] def= {1, . . . , n} is (r, t)-
exclusive if for every S ⊂ [n] of size at least n − r, there
exist S1, . . . , St ∈ C with S = S1∪S2∪· · · ∪St. These fam-
ilies, also known as complement-cover families, have cryp-
tographic applications, and form the basis of information-
theoretic broadcast encryption and multi-certificate revoca-
tion. We give the first explicit construction of such families
with size poly(r, t)nr/t, essentially matching a basic lower
bound. Our techniques are algebraic in nature.

When r = O(t), as is natural for many applications,

we can improve our bound to poly(r, t)
(
n
r

)1/t
. Further,

when r, t are small, our construction is tight up to a fac-
tor of r. We also provide a poly(r, t, log n) algorithm for
finding S1, . . . , St, which is crucial for efficient use in ap-
plications. Previous constructions either had much larger
size, were randomized and took super-polynomial time to
find S1, . . . , St, or did not work for arbitrary n, r, and t.
Finally, we improve the known lower bound on the number
of sets containing each i ∈ [n]. Our bound shows that our
derived broadcast encryption schemes have essentially op-
timal total number of keys and keys per user for n users,
transmission size t, and revoked set size r.

1. Introduction

In [1], Aiello, Lodha, and Ostrovsky put forth the notion
of a complement-cover family, which, informally speaking,
is a family of sets for which every large subset of the uni-
verse can be written as the union of some small collection
of subsets from the family. This notion was rediscovered by
Kumar and Russell [10], who referred to such families as
exclusive set systems. More formally,

Definition 1 A family of subsets C = {S1, . . . , Sk} over [n]
is (n, k, r, t)-exclusive if for any subset R ⊂ [n] with |R| ≤
r, we can write [n] \ R = ∪t

j=1Sij
for some 1 ≤ ij ≤ k.

∗Some of this research was done while the authors were all at DoCoMo
Labs.

Determining the exact tradeoff between n, k, r, and t is a
fundamental combinatorial problem with significant appli-
cations in cryptography. One of the most notable of these is
information-theoretic broadcast encryption [4, 11]. In such
a scheme, there is a server sending broadcasts to n users.
Each broadcast consists of t encryptions of a session key,
with the property that any coalition of members from a re-
voked set R ⊂ [n] with |R| ≤ r learns no information from
the broadcast. Each encryption in the broadcast is done us-
ing a different key, held by both the server and some specific
set of users. Thus, k is the number of keys in the scheme,
which is proportional to the storage complexity, and Si de-
notes the users who hold the server’s ith key. If a broadcast
consists of encryptions under keys Si1 , . . . , Sit

, it should
hold that ∪t

j=1Sij
= [n] \ R. Then even if all the users in

R collude, they collectively lack each key in the broadcast.
Since each subset of t keys can correspond to at most one

set [n] \ R, we need
∑t

i=0

(
k
i

) ≥ ∑r
i=0

(
n
i

) ≥ (
n
r

)
. After

some algebra, this gives the lower bound k = Ω(t
(
n
r

)1/t).
Kumar and Russell [10] use the probabilistic method to

show that for sufficiently large n and any r ≤ t, there ex-
ist exclusive set systems with size O(t3(nt)r/t ln n). This,
however, is only an existence result and has several draw-
backs. First, it is not known how to efficiently verify that
the randomly chosen sets do indeed form an exclusive set
system. Second, the sets have a large description size since
they are chosen at random. Third, the number of sets grows

as nr/t rather than
(
n
r

)1/t
, which is important for large r.

Finally, and perhaps most importantly, [10] does not pro-
vide an efficient algorithm for generating Si1 , . . . , Sit

with
[n] \ R = Si1 ∪ · · · ∪ Sit

, which is equivalent to solving
Set-Cover on a certain input distribution. As far as we are
aware, this problem has not been extensively studied, with
the only results appearing in [15, 16]. The strongest result
is in [15], which shows how to obtain an additive, slightly
sublogarithmic approximation factor in poly(n)-time. Of-
tentimes though, even time polynomial in n is considered
too large, as r, t are usually much smaller. Hence, it is de-
sirable to have algorithms running in time1 poly(r, t, log n).

1This is the time to determine the members of a collection of sets that
form the desired union. However, it may not be enough time to output the
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In this paper, we give an explicit construction of an
(n, k, r, t)-exclusive set system with k = poly(r, t)nr/t

sets. Unlike previous constructions, our construction works
for any values of r, t, and n. Further, assuming that r =
O(t), this can be improved to poly(r, t)

(
n
r

)1/t
, which is op-

timal up to the poly(r, t) factor. In applications such as
broadcast encryption, usually the communication is at least
r since the server needs to describe the set R to the users.
Thus, it is likely that r ≤ t, and we can apply our improved
construction. For the case when r and t are slow-growing
functions of n, as is the case for broadcast encryption, we

can optimize our storage complexity to k = O(rt
(
n
r

)1/t).
This improves the previous best known complexity of [10],
and is tight up to a factor of r. Moreover, we provide a de-
terministic poly(r, t, log n)-time algorithm, which given R,
finds Si1 , . . . , Sit

with [n] \ R = Si1 ∪ · · · ∪ Sit
. Thus,

broadcasting is extremely efficient.
In [13], Luby and Staddon derive lower bounds on the

number of sets in an exclusive set system which contain a
given element i ∈ [n]. They show that there exists an i ∈ [n]
occurring in

(
n
r

)1/t
/(rt) sets. In this paper, we improve

their bound to
(
n
r

)1/t
/r using a variation of the sunflower

lemma. These bounds show that for broadcast encryption,
the total number of keys in our scheme is about the same as
the number of keys required per user in any scheme. Thus,
our number of keys per user is also essentially optimal.

There have been many other constructions of exclu-
sive set systems. Aiello, Lodha, and Ostrovsky [1] con-
struct (n, n2c/(c − 1), r, r logc n/r)-exclusive set systems
for any constant c ≥ 2. They also show how to use any
(n, k, r, t)-exclusive set system for efficient certificate revo-
cation. Here n refers to the number of users, k the number
of certificates held by the certificate authority, r the number
of revoked users, and t the communication complexity of an
update phase.

In the context of broadcast encryption, Gafni, Stad-
don, and Yin [5] provide an (n, (r log n/ log r)2,
r, (r log n/ log r)2)-exclusive set system. In the
same context, Lotspiech, Naor, and Naor [11] give
(n, 2n, r, r log n/r) and (n, n log n, r, 2r)-exclusive set
systems based on binary trees. Using algebraic-geometric
codes, Kumar, Rajagopalan, and Sahai [9] construct
(n, r3 log n/ log r, r, r3 log n/ log r)-exclusive set systems.

Although these schemes are equipped with efficient al-
gorithms for generating Si1 , . . . , Sit

with [n] \ R = Si1 ∪
· · · ∪ Sit

, a serious disadvantage of all of these schemes is
that once n and r are chosen, both the broadcast size t and
the number of keys (certificates) k are determined. How-
ever, as pointed out in [10], it is clear that given n, r and t,
for sufficiently large k there exists an (n, k, r, t)-exclusive
set system. In contrast with previous schemes, our schemes

members of each set, though for our applications this is not needed.

can support arbitrary n, r, and t. In fact, below we will see
that our schemes may even improve the parameters of these
specific schemes. Thus, our constructions significantly gen-
eralize the previous ones, and are almost tight.

Improved Cryptographic Applications: In the table
below, we have listed the previous results, as well as two
settings of parameters of our scheme. We stress that our re-
sults are listed for general n and r, and for small values of
r the degree of our polynomial factors is very small. Below
we also discuss the tradeoffs on the number of keys per user.

Paper Communication complexity Number of Keys
[9] O(r3 log n/ log r) O(r3 log n/ log r)

[5] O(r2 log2 n/ log2 r) O(r2 log2 n/ log2 r)
[1, 11] r log n/r 2n

[11](SD) 2r Θ(n log n)
this paper r log n/r poly(r, log n)

this paper 2r poly(r)n1/2

The first setting of parameters in this paper outperforms
[9] and [5] in terms of communication, while paying an ex-
tra poly(r, log n) factor in the key complexity. This is use-
ful when communication is the bottleneck. This setting also
provides an exponential improvement to the key complexity
of [1] and [11] for small r. Our improvement comes from
the fact that the schemes in [1] and [11] are not sensitive
to r, whereas we parameterize our complexity in terms of r,
which is likely to be small in practice. We note that the num-
ber of keys per user in our scheme is only poly(r, log n),
which is comparable to that of previous schemes.

The second setting of parameters in our scheme is use-
ful for a comparison to another scheme proposed in [11],
known as the subset-difference (SD) scheme. For the same
n, r, and t, we achieve O(r2n1/2) keys, roughly the square-
root of the SD scheme for small r. One may argue that the
SD scheme focuses instead on the number of keys per user.
At first glance, it appears that their scheme achieves only
Θ(log2 n) keys per user, contradicting our lower bound.
A more careful inspection shows that their scheme only
provides computational security, and thus is incomparable
with ours, which is information-theoretic. Making their
scheme information-theoretically secure requires Ω(n) keys
per user, while ours only requires poly(r)n1/2. We achieve
similar improvements over the LSD broadcast encryption
scheme of Halevy and Shamir [6].

Other Applications: Although the most immediate ap-
plications of our results are to broadcast encryption and cer-
tificate revocation, our results may also apply to data struc-
tures and group testing. We note that key distribution pat-
terns, a generalization of broadcast encryption, have been
studied in connection to group testing before [14].

Techniques: The idea behind our construction is to first
construct exclusive set systems for the case when r and t are
much smaller than n. We then create an exclusive system
for general n, r, and t with a divide-and-conquer approach:
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roughly speaking, we carefully partition the universe [n]
into blocks and use our smaller set systems independently
on each block.

The construction for small r, t is algebraic in nature.
Namely, we associate [n] with points in affine space. Sets
then correspond to functions f on this space. More pre-
cisely, a set corresponds to the points on which f does not
vanish. Then a point u belongs to the set union S1∪· · ·∪St

provided it does not vanish on all of the corresponding func-
tions f1, . . . , ft. Algebraically, this means that u is not in
the variety of f1, . . . , ft. The main problem is to find a
small explicit collection of functions for which every set
of at most r points is the variety of some t functions in
the collection. In this way, we have reduced the problem
to a specific algebraic question. We find an explicit fam-
ily using multivariate polynomials together with certain ex-
panders and MDS codes.

Our improved lower bound for the number of sets con-
taining each i ∈ [n] is based on the sunflower lemma with
relaxed disjointness.

Organization: In section 2, we develop our polynomial-
based system for small r and t. In section 2.1 we use ex-
panders to improve the first construction. In section 2.2
we use a small amount of randomness for further improve-
ments, while preserving deterministic, efficient broadcast.
In section 2.3 we balance the different types of sets that we
use, giving further improvements. In section 3, we con-
struct an exclusive set system for general n, r, and t. For
readability, we give our lower bound on the keys per user in
Appendix A. We also give more intuition for the scheme in
section 2 in Appendix B.

2. The Polynomial System

Recall that n is the universe size, n − r is the size of
the sets [n] \ R we wish to cover, and t the number of sets
we use to cover each set [n] \ R. We start by describing a
simplified scheme under the assumption that

rαt2 ≤ n1/t

for a constant α > 2 to be specified. For now the reader
should just think of r and t as being much smaller than n.
Let p ≥ n1/t be prime, and let F = Fp. For x ∈ [n], we
identify x with a point (x0, . . . , xt−1) ∈ F

t.
Our scheme works by choosing a small collection

C of polynomials in the ring F[X0, . . . , Xt−1], where
X0, . . . , Xt−1 are formal variables. For each f ∈ C, we
create a set Sf consisting of all the points u in F

t for which
f(u) �= 0. Given a set R ⊂ [n] with |R| ≤ r, we will find t
functions f0, . . . , ft−1 ∈ C for which Var(f0, . . . , ft−1) =
R, where Var(f0, . . . , ft−1) denotes the common zeros of
f0, . . . , ft−1, that is, the variety of these functions. By con-

struction, any u ∈ [n] \ R occurs in some set, while any
u ∈ R does not.

The problem is therefore to find an explicit polynomial
collection C with these properties. We consider the follow-
ing collection

C = {
r′∏

j=1

(X0 − ij) | r′ ≤ r, distinct i1, . . . , ir′ ∈ F}

∪ {f(Xi) − Xi+1 | 0 ≤ i ≤ t − 2, deg(f) ≤ r − 1}

The number of polynomials of the form
∏r′

j=1(X0 − ij) is∑r
i=0

(
p
i

) ≤ ∑r
i=0 pi ≤ 2pr, and the number of univari-

ate polynomials f of degree at most r − 1 is at most pr, so
|C| = O(tpr).

Intuition: The idea we use is that polynomials of the
form f(Xi) − Xi+1 implement an AND operation be-
tween adjacent coordinates. Since the polynomials have
degree r − 1, we can only use a given polynomial to im-
plement r constraints. By chaining t of the polynomials to-
gether, we can exclude exactly those points in R, coordinate
by coordinate. Finally, we need polynomials of the form∏r′

j=1(X0− ij) for the base case, that is, to begin the chain-
ing. One important observation is that by using polynomials
to implement these local constraints, we greatly reduce the
total number of sets k. The reason is that the mapping from
sets of r constraints to polynomials is many-to-one.

We start with the following lemma, which formalizes this
intuition.

Lemma 2 Suppose that for each i in [t], no two points
in R have the same ith coordinate. Then we can find
f0, . . . , ft−1 ∈ C for which Var(f0, . . . , ft−1) = R.

Proof: Since the coordinates have distinct values and
|R| ≤ r, we can choose f0 =

∏
u∈R(X0 − u0). For i > 1,

we find a univariate polynomial gi by interpolating from
gi(ui) = ui+1 for each u ∈ R, and then setting the mul-
tivariate polynomial fi = gi(Xi) − Xi+1. For any point
x /∈ R, if x ∈ Var(f0, . . . , ft−1), then f0(x0) = 0, so
that x0 = u0 for some u ∈ R. It inductively follows that
ui+1 = gi(ui) = gi(xi) = xi+1, where the first equality
follows from the definition of gi, the second equality fol-
lows from the inductive hypothesis, and the last equality
from the fact that fi(x) = gi(xi) − xi+1 = 0. Thus x = u,
a contradiction. On the other hand, if x ∈ R, then it is easy
to see that x ∈ Var(f0, . . . , ft−1).

The remaining problem is how to handle the case when
points in R share coordinates. One idea is to carefully
choose a small set of invertible linear transformations
L1, . . . , Lm on the space X0, . . . , Xt−1 so that for any set
R, there is some index B for which each row of LBR con-
sists of distinct entries. We then proceed as before in this
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new coordinate system. In this case we say that LB is good
for R. Here, LB is interpreted as a t × t matrix and R as a
t × r matrix. We then define C to be ∪m

B=1CB , where CB is
given by

CB = {
r′∏

j=1

(LBX0 − ij) | r′ ≤ r, distinct i1, . . . , ir′ ∈ F}

∪ {f(LBXi)−LBXi+1 | 0 ≤ i ≤ t−2, deg(f) ≤ r−1}.
The size of C is O(mtpr). For a given R with |R| ≤ r,
we find a B for which LB is good for R, and then apply
the previous scheme using the sets in CB . To complete the
specification, we use the following lemma.

Lemma 3 There is an explicit set of m = r2t linear trans-
formations L1, . . . , Lm such that for all R ⊂ [n] of size at
most r, there is some LB that is good for R.

Proof: Divide F into m = r2t disjoint blocks B =
{b1, . . . , bt} each containing t distinct elements. This is
possible since r2t2 ≤ n1/t ≤ p. Define the linear trans-
formations

LB =




1 b1 b2
1 . . . bt−1

1

1 b2 b2
2 . . . bt−1

2

. . . . . . . . . . . . . . .
1 bt b2

t . . . bt−1
t


 .

The LB are invertible, and LB(x) =
px(b1), px(b2), . . . , px(bt), where px(Y ) =

∑t−1
i=0 xiY

i.
As two distinct degree t − 1 polynomials can agree on
at most t − 1 points, it follows that for any given R, at
most

(
r
2

)
(t − 1) < r2t elements v of F can be such that

px(v) = py(v) for distinct x, y ∈ R. Therefore, one of the
LB is good for R.

We summarize our findings thus far. We use the term broad-
cast to mean, given a set R of cardinality at most r, find
i1, . . . , it for which [n] \ R = Si1 ∪ · · · ∪ Sit

. We refer to
R as the set of revoked points. This terminology coincides
with that for broadcast encryption, where points are users.

Theorem 4 Let α > 1
1−.525 be any constant, and assume

max(rα, r2t2) = O(n1/t). For sufficiently large n, there is
an explicit (n,O((rt)2nr/t), r, t)-exclusive set system. Fur-
ther, broadcasting can be done in poly(r, t, log n) time.

Proof: By lemma 3 we can set m = r2t in the discussion
above. Thus k = O((rt)2pr). It remains to find a small
prime p with p ≥ n1/t. Using a result of [3], we can find a
prime p with n1/t ≤ p < n1/t + nβ/t for any constant β >
.525 and sufficiently large n1/t. Since t ≤ n1/t, we have

t = O
(

log n
log log n

)
, and thus n1/t = Ω

(
log n

log log n

)
so that

n1/t → ∞ as n → ∞. Therefore we can find such a prime
for sufficiently large n. The number of sets is bounded by

O((rt)2pr) = O((rt)2(n1/t + nβ/t)r)
= O((rt)2nr/t(1 + n(β−1)/t)r)

= O((rt)2nr/ter/n(1−β)/t

)
= O((rt)2nr/t),

where we have used the bound on α to conclude that
r ≤ n(1−β)/t. The time for broadcasting is dominated by
the search for a good LB and the t − 1 degree-(r − 1)
polynomial interpolations, each of which can be done in
poly(r, t, log n) time.

2.1. Using expanders

We can do a bit better with a slightly different way of
handling points in R that share coordinates.

Intuition: The previous scheme had r2t coordinate sys-
tems, each of which was good for a different collection of
R ⊂ [n]. In each system we interpreted a point u ∈ F

t as
a polynomial, and evaluated it on t elements of F. The sys-
tem was good for R if for each of the t elements, each of the
at most r polynomials in R had different evaluations. The
disadvantage is that even if only one pair of polynomials
collided on one element in a coordinate system, the system
could not be used for R. In the worst case this happens r2t
times, so we need r2t systems.

But only r2t elements can have collisions, and so if we
had r2t + t elements, for any R we could find t elements
to use for a coordinate system. However, if we allow any
two elements to occur together in a system, the number of
sets in our overall system would be too large. Interpreting
the elements as nodes of a graph and pairs of elements that
can occur together as edges, the property we want is that the
graph is well-connected and has low degree. This is exactly
the property of an expander graph. We will find a connected
component of size t amongst collision-free elements and
use this as a coordinate system.

Choose m = γr2t elements 1, . . . , m ⊆ F for some
constant γ > 2 to be determined, and say an element v
is good for a set R if, using the notation of lemma 3, for
distinct x, y ∈ R, px(v) �= py(v). From the proof of lemma
3, for any R we can find (γ − 1)r2t good elements for R.

The idea is to consider graphs G with constant degree d,
vertex set [m], and the property that any induced subgraph
on a large constant fraction of vertices has a connected com-
ponent of size at least m/2 ≥ t. This property holds for cer-
tain expander graphs. Recall that a graph G is an (m, d, c)-
expander if it has m-vertices, each vertex has degree d, and
for every set of vertices W ⊂ V with |W | ≤ m/2, there are
at least c|W | vertices in V \ W adjacent to some vertex in
W .
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Lemma 5 Let G be an (m, d, c)-expander. Then any in-
duced subgraph on more than dm

c+d vertices of G has a con-
nected component of size at least m/2.

Proof: Let H be an arbitrary subgraph on more than dm
c+d

vertices, and let C1, . . . , Ck be its connected components. If
any of the Ci contain m/2 vertices, we are done. Otherwise,
since G is an expander and |Ci| < m/2, Ci is incident to at
least c|Ci| distinct vertices in G\Ci, and thus in G\H . The
multiset of vertices in G\H connected to H has cardinality
more than c dm

c+d , which is impossible since each of the (at
most) cm

c+d vertices in G \H can occur at most d times.

For an explicit family of expanders, we use the following.

Fact 6 [2, 12] There is an explicit family of (mi, 6, 1
2−

√
5

6 )
expanders with mi < mi+1 = O(mi).

Theorem 7 Let α > 1
1−.525 be any constant, and assume

max(rα, r2t) = O(n1/t). For sufficiently large n, there is
an explicit (n,O(r2tnr/t), r, t)-exclusive set system. Fur-
ther, broadcasting can be done in poly(r, t, log n) time.

Proof: In order to apply lemma 5, we choose our constant
γ and use fact 6 to construct an (m = γr2t, 6, 1

2 −
√

5
6 )-

expander, subject to

γ − 1
γ

>
6

6 + 1
2 −

√
5

6

.

Identify G = (V,E)’s vertices V with [m] ⊂ F, and define

C = {
r′∏

j=1

(
t−1∑
i=0

biXi−ij) | r′ ≤ r, distinct ij ∈ F, b ∈ V }

∪ {f(
t−1∑
i=0

biXi)−
t−1∑
i=0

ciXi | deg(f) ≤ r−1, (b, c) ∈ E}.

The size of C, and thus k, is O(mdpr). As in the proof
of theorem 4, we can choose p so that this quantity is
O(r2tnr/t).

To broadcast with a revoked set R, find (γ − 1)r2t ver-
tices in G which are good for R. Then, using lemma 5 and
the bound on γ, find a connected component C of at least
m/2 ≥ t vertices good for R. This step can be done effi-
ciently using a breadth-first search. Let v be the root of the
BFS tree containing the first t vertices visited in C. For a
vertex w in the tree, let par(w) be its parent. Set

f0 =
∏
u∈R

(
t−1∑
i=0

viXi − pu(v)).

Choose the remaining t−1 polynomials as follows: for each
w �= v, find gi by interpolating from

gi(
t−1∑
i=0

wiui) =
t−1∑
i=0

par(w)iui

for u ∈ R, and set

fi = gi(
t−1∑
i=0

wiXi) −
t−1∑
i=0

par(w)iXi.

Every u ∈ R vanishes on these t functions. To see that
no other point x vanishes, observe that if f0(

∑t−1
i=0 vixi) =

0, then
∑t−1

i=0 vixi = pu(v) for some u ∈ R since f0

has only |R| zeros. By induction on the height of the tree,∑t−1
i=0 wixi =

∑t−1
i=0 wiui for all vertices w. As there are t

vertices and px, pu are degree-(t−1) polynomials, px = pu,
so x = u, a contradiction.

The time complexity is dominated by the search for good
vertices for R, the breadth-first search, and the polynomial
interpolations, all of which can be done in poly(r, t, log n)
time.

2.2. Using randomness

An unfortunate drawback of the construction in [10] is
that there is no efficient algorithm given to find Si1 , . . . , Sit

whose union is [n] \ R. We removed this problem with our
explicit construction above. Further, our explicit construc-
tion achieved size O(r2tnr/t) versus the O(t3nr/t log n)
complexity of the randomized construction in [10], which
held only for r ≤ t.

In this section we improve our complexity further to
O(rtnr/t) via a randomized construction. Although the
construction is randomized, it does not suffer from the ef-
ficiency problems of [10]. Rather, broadcasting can still be
done in poly(r, t, log n) time, and C has a short description.

Intuition: The idea is to choose the set of m points in
section 2.1 randomly from F. For a given R it then becomes
unlikely that we will choose many points with collisions on
R. We show this allows us to choose O(rt) points rather
than O(r2t).

Lemma 8 Let ε > 0 and γ > 1 be any constants. Assume

r2t < n(1−ε)/t,

and choose a set of m = 2γrt/ε elements S uniformly at
random from F. With probability 1 − n−Θ(r), for all R, the
set S contains 2(γ − 1)rt/ε good elements for R.

Proof: Fix a revoked set R ⊆ [n]. For s ∈ S, let v be
the probability that s is not good for R, that is, there exist
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distinct x, y ∈ R for which px(s) = py(s). For fixed x �= y,
we have

Pr
s

[px(s) = py(s)] ≤ (t − 1)/p,

and thus

v ≤
(

r

2

)
(t − 1)/p ≤ r2t/n1/t < n−ε/t

by the assumption of the lemma. The probability that more
than 2rt/ε elements of S are not good for R is bounded by

m∑
i=2rt/ε

(
m

i

)
vi(1 − v)m−i ≤ m2mv2rt/ε

< 22mn−2r

= n−2r+2m/ log n.

For any n−Θ(r) ≤ δ < 1, this is less than δn−r if

−2r + 2m/ log n ≤ −r + log δ/ log n,

or equivalently, r log n ≥ 2m + log 1/δ. By assumption,
this holds for sufficiently large n because m = O(rt) and
δ > n−Θ(r), while t = O(log n/ log log n) since t < n1/t.
Then the probability there exists an R for which more
than 2rt/ε elements of S are not good for R is less than∑r

i=0

(
n
i

)
δn−r ≤ n−Θ(r).

Using the set S as the vertex set of an expander as in section
2.1, we conclude,

Theorem 9 Let α > 1
1−.525 and ε > 0 be any constants,

and assume

max(rα, r2t) < n(1−ε)/t.

There is an efficient algorithm that with probability 1 −
n−Θ(r), generates an (n,O(rtnr/t), r, t)-exclusive set sys-
tem. Broadcasting can be done in poly(r, t, log n) time.

Remark 10 We do not know how to derandomize the
choice of S, and consider it an interesting research di-
rection. For our construction, the derandomization comes
down to the following: find a set S of O(rt) points of F

such that any polynomial of the form
∏

i<j(qi − qj) does
not vanish on a constant fraction of S, where q1, . . . , qr are
arbitrary degree-(t − 1) polynomials in F[X].

2.3. Balancing the key complexity

We have shown how to achieve complexity k =
O(rtnr/t). In this section we achieve k = O(rt

(
n
r

)1/t).
To illustrate the technique, we first apply it to the scheme
of theorem 4. There are two types of sets, those of the form∏r′

j=1(LBX0 − ij) for r′ ≤ r and distinct i1, . . . , ir ∈ F,

and those of the form f(LBXi) − LBXi+1, where f is a
polynomial of degree at most r − 1. If m is the number
of linear combinations LB , then the number of sets of the
first type is m

∑r
i=0

(
p
i

)
. To apply theorem 4, we assume

r2t2 = O(n1/t), so that r = O(p1/2). It follows that2

m
∑r

i=0

(
p
i

)
= Θ(m

(
p
r

)
). On the other hand, the number

of sets of the second type is m(t − 1)pr.
Intuition: The complexity is dominated from sets of the

second type. We will reduce the alphabet size p to some
prime q, while including more alphabet symbols (other than
just the first) in sets of the first type. This balances the con-
tribution to the complexity from the two types.

Using [3], for large enough n we can choose a prime q
in the interval[(

n

r

)1/(rt)

,

(
n

r

)1/(rt)

+
(

n

r

)β/(rt)
]

for any constant β > .525. This follows if we assume
max(r1+ε, t) ≤ n1/t for some constant ε > 0. Indeed,
this implies n/r = nΩ(1) and t = O(log n/ log log n), so(
n
r

)1/(rt) ≥ (n/r)1/t, and the latter tends to ∞. We will
show k = O(mtqr). Note that

O(mtqr) = O

(
mt

(
n

r

)1/t
)

for r ≤ (nr)(1−β)/t
.

Since (n/r)r ≤ (nr) ≤ (ne/r)r, there is a constant 1 ≤
c ≤ e, with

(
n
r

)
= (nc/r)r. We represent [n] by points in

[
r/c�] × F
t
q.

This allows elements to have distinct representations. For
the moment, assume our revoked set R is such that no two
members of R share their ith cooordinate for any i > 1.
Sets of the first type contain those points x whose first two
coordinates do not agree with those of any element of R.
By the distinctness assumption, the number of such sets is

r∑
i=0

(
r/c�)r

(
q

i

)
= Θ((
r/c�)r

(
q

r

)
),

since the fact that r ≤ (nr)(1−β)/t
implies that r = O(

√
q),

so that the binomial sum is dominated by the last term. Sets
of the second type have the form f(Xi) − Xi+1, where f
has degree less than r and 2 ≤ i ≤ t. Since i ≥ 2, these
polynomials do not involve the first coordinate. The number
of sets of this type is (t − 1)qr. To show that k = O(tqr),

2To see this, for any constant c,
( p
c
√

p

)
/
( p
c
√

p−1

)
= Θ(

√
p), so that∑c

√
p

i=0

(p
i

)
=
( p
c
√

p

)
+
∑c

√
p−1

i=0

(p
i

)
= Θ(

( p
c
√

p

)
).
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we bound the sets of the first type. Up to a constant factor,
this number is,

⌈r

c

⌉r
(

q

r

)
≤

⌈r

c

⌉r (qc

r

)r

≤
((r

c
+ 1
) qc

r

)r

≤
(
1 +

c

r

)r

qr ≤ ecqr = O(qr),

where we used the constraints
(
n
r

)
= (nc/r)r and q ≤ n to

deduce that
(
q
r

) ≤ (qc/r)r.

Theorem 11 Let α > 1
1−β + 1

t and β > .525 be any con-
stants, and assume

max(rα, r2+1/tt2) = O(n1/t).

Then for sufficiently large n, there is an explicit

(n,O((rt)2
(
n
r

)1/t), r, t)-exclusive set system. Further,
broadcasting can be done in poly(r, t, log n) time.

Proof: If the revoked set R is such that no two members
share their ith coordinate for any i > 1, then if a point
x doesn’t appear in the broadcast its first two coordinates
must agree with those of some u ∈ R. It follows from
distinctness and our construction that x = u.

If points in R share their ith coordinate for some i > 1,
we simply proceed as in lemma 3, ignoring the first coordi-
nate. However, now we need the stronger assumption that
r2t2 ≤ q.

All that is left to show is that our three assumptions in
the discussion above

1. max(r1+ε, t) ≤ n1/t,

2. r ≤ (nr)(1−β)/t
,

3. r2t2 ≤ q

follow from max(rα, r2+1/tt2) = O(n1/t). The deriva-
tions are straightforward and are omitted.

To apply the technique to the construction of theorem 7, we
proceed as before, ignoring the first coordinate. The only
assumption in the proof of theorem 11 that changes is the
third one, which is now r2t = O(q). One can now show,

Theorem 12 Let α > 1
1−β + 1

t and β > .525 be any con-

stants, and assume max(rα, r2+1/tt) = O(n1/t). For suf-

ficiently large n, there is an explicit (n,O(r2t
(
n
r

)1/t
, r, t)-

exclusive set system. Further, broadcasting can be done in
poly(r, t, log n) time.

To adapt theorem 9, we just need to change the third as-
sumption to r2t = O(q1−ε) for some ε > 0. Indeed, as in

the proof of lemma 8, it is not hard to show that the proba-
bility v that some s ∈ S is not good for R can be bounded
above by q−ε. By our assumption that r1+ε ≤ n1/t, we
have n/r = nΩ(1) so that q−ε = n−Ω(1/t), and the proof of
lemma 8 goes through (with larger constants).

Theorem 13 Let α > 1
1−β + 1

t , β > .525, and ε > 0 be
any constants, and assume that we have

max(rα, r2+(1−ε)/tt) < n(1−ε)/t.

Then there is an efficient algorithm that with probability

1−n−Θ(r), generates an (n,O(rt
(
n
r

)1/t), r, t)-exclusive set
system. Broadcasting takes time poly(r, t, log n).

3. The General System

We reduce the case of arbitrary n, r, t to the schemes of
section 2. We construct many small exclusive set systems
on different subsets of [n] and take their union to obtain
the final explicit exclusive set system. Each of the small
systems will be constructed with parameters ni, ri, ti satis-
fying the requirements of the schemes in section 2.

The size of our final system will be poly(r, t)nr/t,
matching the lower bound up to the poly(r, t) factor and
the optimizations in section 2.3. At the end of the section

we show how to replace the nr/t term with
(
n
r

)1/t
when

r = O(t), and sketch how to improve the poly(r, t) factor.
We may assume that |R| = r because for each 0 ≤ i ≤ r

we can construct an exclusive set system for those R with
|R| = i, and then take their union. The complexity is largest
when |R| = r, so the union will be at most r+1 times larger.
Define,

d = Θ(log n/ log r2), and let q = Θ(r2d) be prime.

Then for an appropriate choice of constants.

• qd+1 ≥ n, and

• for any r degree-d polynomials in Fq[X] there is a
point in Fq on which the polynomials all differ.

We construct q different coordinate systems. For each sys-
tem we treat the set [n] as a collection of distinct univariate
polynomials and represent them by their evaluation on d+1
points in Fq. To identify the coordinate system, we choose
the evaluation on the field element i to be the first coordi-
nate of members in the ith system, and when broadcasting
to a set [n] \ R, we use a system for which the polynomials
R all differ on their first coordinate.

Each of the q coordinate systems will correspond to a
set system which is the union of q2 exclusive set systems.
When broadcasting to a set R, we choose a coordinate sys-
tem for which each element of R has a different first coor-
dinate in Fq. For each coordinate system, for each interval
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[i, j] with i ≤ j ∈ Fq, we restrict to points whose first co-
ordinate lies in [i, j]. Let ρ, τ be integer parameters to be
determined. The idea is to partition the line [1, q] into in-
tervals each containing ri ∈ {ρ − 1, ρ} elements of R and
consuming ti ∈ {τ, τ + 1} encryptions in the broadcast.
For an appropriate choice of ρ and τ , this allows us to use
the exclusive set systems of section 2 independently on each
interval.

The number of points in a given interval may be as small
as ρ− 1, but is certainly less than n. We make the simplify-
ing assumption that it is exactly n by artificially increasing
the universe size. When we take the union over all of these
set systems, we delete these extra points.

Since the numbers of sets for a given interval i has the
form poly(ri, ti)nri/ti for ri ∈ {ρ−1, ρ} and ti ∈ {τ, τ +
1}, we will choose ri/ti ≈ r/t. If it is already the case that
r4t < n

1
2t , we may use the scheme of either theorem 12 or

theorem 13. Otherwise, if possible, we will choose ρ and τ
to satisfy

Ω
(
n

1
4τ

)
≤ ρ4 τ < n

1
2τ , (1)

subject to the constraint

ρ − 1
τ

<
r

t
≤ ρ

τ
. (2)

The idea is that when bounding the total number of sets, this
will help us pull out an extra factor of n1/τ down into the
poly(r, t) factor. Note that due to integrality constraints our
bound may be of the form poly(r, t)nr/t+1/τ , and thus we
will need n1/τ to be polynomial in r and t. We now give an
efficient algorithm Generate for doing this. The basic idea
behind Generate is to keep decreasing τ and ρ until they
satisfy constraints 1 and 2, noting that as ρ and τ decrease
together, it is more likely that constraint 1 holds.

Generate(r, t):

1. Set integer variables ρ = r and τ = t.

2. i = 2.

3. While τ > 1,

(a) If ρ4τ < n
1
2τ , then exit.

(b) Else,

i. τ = �t/i�.

ii. Choose ρ so that ρ−1
τ < r

t ≤ ρ
τ .

iii. i = i + 1.

Lemma 14 If Generate outputs (ρ, τ) �= (r, t) and τ �= 1,
then ρ, τ satisfy constraints 1 and 2.

Proof: Suppose τ �= 1. Then in some iteration we have
ρ4τ < n1/(2τ). If this occurs in the first iteration, then we

have (ρ, τ) = (r, t). Otherwise, consider the last time for
which ρ4τ ≥ n1/(2τ). Suppose τ = �t/i�, and let τ ′ =
�t/(i + 1)� be the value of τ in the next iteration. Note
that τ, τ ′ > 1. Then τ ′/τ = �t/(i + 1)�/�t/i�. Suppose
�t/(i + 1)� = c. Then

t ≤ (c + 1)(i + 1) − 1,

so that

�t/i� ≤ �
(

i + 1
i

)
(c + 1) − 1

i
� = �c + 1 + c/i�.

Thus,

τ ′/τ ≥ c/(c + 1 + c/i) ≥ 1/(1 + 1/c + 1/i) ≥ 1/2,

since c, i > 1 are integers. We also claim that ρ′ ≥ ρ/4. In-
deed, if ρ ≤ 4, this follows from the fact that ρ′ is a positive
integer. On the other hand, if for ρ > 4 we had ρ′ < ρ/4,
then

ρ′

τ ′ <
ρ/4
τ/2

=
ρ/2
τ

<
ρ − 1

τ
≤ r

t
,

contradicting constraint 2, which holds because of step
3(b)ii. Thus,

(ρ′)4τ ′ ≥ ρ4τ

2 · 44
≥ n

1
2τ

2 · 44
= Ω(n

1
4τ′ ),

which shows that constraint 1 holds.

We can now, for instance, apply the explicit construction of
theorem 12.

Theorem 15 Let n, r, t be positive integers and suppose n
is sufficiently large. There is an explicit

(n,poly(r, t)nr/t, r, t)

-exclusive set system. Broadcasting can be done in
poly(r, t, log n) time.

Proof: To broadcast with a revoked set R, we first find
a coordinate system for which the polynomials R all differ
on their first coordinate. Then, we run Generate to obtain
ρ and τ . If (ρ, τ) = (r, t), then we run the protocol of
theorem 12, which gives the desired complexity.

Otherwise, we arbitrarily partition the line [1, q] into in-
tervals such that each interval contains ρ − 1 or ρ revoked
points. We also arbitrarily allocate either τ or τ + 1 en-
cryptions in the broadcast to each interval, subject to the
constraint that their sum is t.

Finally, for each interval, we use the exclusive set system
of theorem 12 with n points, ρ− 1 or ρ revoked points, and
broadcast size τ or τ + 1. Since the intervals for a given
coordinate system concern disjoint points, the correctness
of this scheme follows from that of the exclusive set system
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of theorem 12. Moreover, since ρ ≤ r and τ ≤ t, it is
easy to see that broadcasting can be done in poly(r, t, log n)
time given that the schemes used in each interval have this
property.

It remains to derive the size of our set system. There
are q coordinate systems. For each system, there are q2

intervals. Each interval corresponds to an exclusive set sys-
tem generated by theorem 12 on n points with the number
of revoked points ri ∈ {ρ − 1, ρ} and the broadcast size
ti ∈ {τ, τ + 1}. To analyze the number of sets per interval,
we divide the output of Generate into two cases (recall
that at this point we need only consider (ρ, τ) �= (r, t)).

Case 1: τ �= 1. In this case the number of sets per
interval is at most

poly(ri, ti)nri/ti ≤ poly(r, t)nρ/τ ≤
poly(r, t)nr/tn1/τ ≤ poly(r, t)nr/t,

where the second inequality follows by constraint 2 and the
third by constraint 1.

Case 2: τ = 1. Then by the analysis in lemma 14,
we have ρ4 = Ω(n1/4). We have the same sequence
of inequalities as in case 1, where the second inequality
follows by constraint 2, but now the third inequality follows
from the fact that r ≥ ri = nΩ(1), so that poly(r) = n1/τ .

Thus, we have q3poly(r, t)nr/t = poly(r, t)nr/t sets.

Corollary 16 Let n, r, t be positive integers with r = O(t)
and n sufficiently large. There is an explicit

(n,poly(r, t)
(

n

r

)1/t

, r, t)

-exclusive system with poly(r, t, log n) broadcasting time.

Proof: Because we have r = O(t),

nr/t = rr/t
(n

r

)r/t

≤ rr/t

(
n

r

)1/t

≤ poly(r)
(

n

r

)1/t

,

and thus the system above has poly(r, t)
(
n
r

)1/t
sets.

We defer a formal analysis which reduces the degree of the
poly(r, t) factor to the full version of this paper. The idea
there is to use randomness to spread the n points evenly
across the line [1, q] so that when broadcasting each interval
in the partition of [1, q] has roughly the same number of
points. Although we use randomness, this randomness will
preserve efficient broadcast and description size. We also
modify constraint 1, basing it on theorem 13 instead of
theorem 12, leading to slightly better bounds. We suspect

that similar techniques can be used to achieve an exclusive

set system with poly(r, t)
(
n
r

)1/t
sets even when r = ω(t),

though we have not worked out the details.

Open Questions: Can one achieve poly(r, t)
(
n
r

)1/t

family size when r = ω(t) (versus our poly(r, t)nr/t)? For

small r and t, is our O(rt
(
n
r

)1/t) bound on the family size

tight? The known lower bound is Ω(t
(
n
r

)1/t). How small
can the poly(r, t) factor be for general n, r, and t?
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A. A lower bound on the keys per user

Theorem 12 of [13] gives a lower bound on the number
of keys per user for the broadcast encryption schemes we
consider. It is also a lower bound on the number of sets in
an (n, k, r, t)-exclusive set system that some integer i must
occur in, and we restate their theorem in this language.

Theorem 17 ([13], restated) In any (n, k, r, t)-exclusive
set system, there is an integer i which occurs in at least

(
(
n
r

)1/t − 1)/(rt) sets.

Whereas [13] use the Sunflower lemma [8] to prove their
bound, we use the following relaxation of a sunflower to a
flower, and a corresponding lemma.

Definition 18 A set system F = {F1, . . . , FM} is a flower
with core Y and k petals if there is no set of size less than k
which intersects every element in the family FY = {F−Y |
F ∈ F , Y ⊆ F}.

Note that both the set Y and the intersecting set are allowed
to be arbitrary. We use lemma 7.33 of [8], which was first
discovered in [7]:

Lemma 19 Let D be a family of sets, each of cardinality at
most s. If |D| > (k − 1)s, then D contains a flower with k
petals.

Theorem 20 In any (n, k, r, t)-exclusive set system, there

is an integer i which occurs in at least (
(
n
r

)1/t − 1)/r sets.

Proof: Let C be an (n, k, r, t)-exclusive set system. Define
the collection C′ as follows. For each set [n] \R with |R| =
r, find a set T of at most t sets in C whose union equals
[n]\R. Add T to C′. It follows that C′ is a collection of size(
n
r

)
> (
(
n
r

)1/t −1)t, each of whose elements is a set of size
at most t.

It follows that C′ contains a flower F with some core Y
and

(
n
r

)1/t
petals. Fix some set F ∈ F . Then the union of

sets in F is [n] \ R for some set R of size r. We claim that
for any F ′ �= F with F ′ ∈ F , F ′ − Y contains some set
SF ′ which intersects R. Indeed, the union of elements in
F ′ equals [n] \ R′ for some R′ �= R with |R′| = |R|, so F ′

contains a set SF ′ that contains at least one element of R,
and this set cannot occur in Y since Y is a subset of F and
the union of sets in F does not intersect R.

Now suppose the number of sets in C intersecting R were

less than
(
n
r

)1/t − 1. Then, taking all of these sets together

3We note that it is easy to modify the proof to handle families of sets
each of cardinality at most s, even though the original lemma is stated for
sets of size exactly s.

with any element of F−Y gives a set of less than
(
n
r

)1/t
sets

which intersects F ′′−Y for every F ′′ ∈ F . This contradicts

the fact that F is a flower with core Y and
(
n
r

)1/t
petals.

Hence, there are at least
(
n
r

)1/t −1 sets in C which intersect

R. It follows that some element in R occurs in (
(
n
r

)1/t −
1)/r sets. This concludes the proof.

B. Intuition for the scheme in section 2

Here we give some intuition for the basic scheme of
section 2. Suppose that n1/t is an integer (so in partic-
ular, this intuition only works for t = O(log n)), and
that we only consider sets R of size exactly r, for some
r = o(n1/t). Then we can associate [n] with points in
[n1/t]t. Suppose, for the moment, we are given a set R
such that for every coordinate i, the points in R have dis-
tinct ith coordinates. Then the following construction has

size O(t
(
n1/t

r

)
nr/t), which for small r, t, is off by about a

factor of
(
n1/t

r

) ≈ (nr)1/t
from that in section 2.

For every choice of r distinct 1st coordinates, we form a
set which includes all points except those which have one of
these r distinct 1st coordinates. The number of these sets is(
n1/t

r

)
. Next, for each coordinate i, 1 ≤ i < t, we form a set

by choosing r pairs of ith and (i+1)st coordinates (cj , dj),
where the cj are all distinct and the dj are all distinct. We
exclude exactly those points which have ith coordinate and
(i+1)st coordinate equal to some (cj , dj) pair. The number

of these sets is
(
n1/t

r

)
n1/t(n1/t−1) · · · (n1/t− (r−1)). So

in total, the family size is O(tnr/t
(
n1/t

r

)
).

Then it is easy to find t sets to exclude a given set R
with distinct values for every coordinate i, and these t sets
are unique. Conversely, a simple induction shows that any
other point is included in one of these t sets.

The main idea of the first scheme in section 2 is to get
around this roughly quadratic blowup in size by using poly-
nomials. The source of the blowup is that we choose r val-
ues for coordinate i, and map them to r values for coordi-
nate i+1, while all other values for the ith and (i+1)st coor-
dinates are unconstrained. In the polynomial approach, we
also choose r values for coordinate i and map them to r val-
ues for coordinate (i + 1), but one polynomial can be used
to implement many of these “sets of pairs” constraints at
once. This is because the polynomial simultaneously con-

strains the other coordinates. Thus, we still have
(
n1/t

r

)
sets

for the 1st coordinate, but to implement constraints between
coordinate i and coordinate i+1, we only have roughly nr/t

sets, corresponding to the number of degree r − 1 polyno-
mials over a field of size roughly n1/t.

We then proceed as in section 2 to handle the case when
points in R agree on their ith coordinates for certain i ∈ [t].
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