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Abstract
Time-dependent density functional theory (TDDFT) is rapidly emerging as a
premier method for solving dynamical many-body problems in physics and
chemistry. The mathematical foundations of TDDFT are established through the
formal existence of a fictitious non-interacting system (known as the Kohn–-
Sham system), which can reproduce the one-electron reduced probability density
of the actual system. We build upon these works and show that on the interior of
the domain of existence, the Kohn–Sham system can be efficiently obtained
given the time-dependent density. We introduce a V-representability parameter
which diverges at the boundary of the existence domain and serves to quantify
the numerical difficulty of constructing the Kohn–Sham potential. For bounded
values of V-representability, we present a polynomial time quantum algorithm to
generate the time-dependent Kohn–Sham potential with controllable error
bounds.
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Despite the many successes achieved so far, the major challenge of time-dependent density
functional theory (TDDFT) is to find good approximations to the Kohn–Sham potential, V̂

KS
,

for a non-interacting system. This is a notoriously difficult problem and leads to failures of
TDDFT in situations involving charge-transfer excitations [1], conical intersections [2] or
photoionization [3]. Naturally, this raises the following question: what is the complexity of
generating of the necessary potentials? We answer this question and show that access to a
universal quantum computer is sufficient.

The present work, in addition to contributing to ongoing research about the foundations of
TDDFT, is the latest application of quantum computational complexity theory to a growing list
of problems in the physics and chemistry community [4]. Our result emphasizes that the
foundations of TDDFT are not devoid of computational considerations, even theoretically.
Further, our work highlights the utility of reasoning using hypothetical quantum computers to
classify the computational complexity of problems. The practical implications are that, within
the interior of the domain of existence, it is efficient to compute the necessary potentials using a
computer with access to an oracle capable of polynomial-time quantum computation.

Quantum computers are devices which use quantum systems themselves to store and
process data. On the one hand, one of the selling points of quantum computation is to have
efficient algorithms for calculations in quantum chemistry and quantum physics [5–7]. On the
other hand, in the worst case, quantum computers are not expected to solve all NP (non-
deterministic polynomial time) problems efficiently [8]. Therefore, it is an ongoing
investigation into when a quantum computer would be more useful than a classical computer.
Our current result points towards evidence of computational differences between quantum
computers and classical computers. In this way, we provide additional insights to one of the
driving questions of information and communication processing in the past decades concerning
practical application areas of quantum computing.

Our findings are in contrast to a previous result by Schuch and Verstraete [9], which
showed that, in the worst-case, polynomial approximation to the universal functional of ground
state density functional theory (DFT) is likely to be impossible even with a quantum computer.
Remarkably, this discrepancy between the computational difficulty of TDDFT and ground state
DFT is often reversed in practice where for common place systems encountered by physicists
and chemists, TDDFT calculations are often more challenging than DFT calculations.
Therefore, our findings provide more reasons why quantum computers should be built.

The practical utility of our results can be understood in multiple ways. First, we have
demonstrated a new theoretical understanding of TDDFT highlighting its relative simplicity as
compared to ground state DFT computations. Second, we have introduced a V-representability
parameter, which similar to the condition number of a matrix, diverges as the Kohn–Sham
formalism becomes less applicable. Finally, for analysis purposes, it is often useful to know
what the exact Kohn–Sham potential looks like in order to compare and contrast
approximations to the exchange-correlation functionals. However, this has been limited to
small dimensional or model systems and our results show that, with a quantum computer, one
could perform such exploratory studies for larger systems.
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1. Background

1.1. Time-dependent Kohn–Sham systems

To introduce TDDFT and its Kohn–Sham formalism, it is instructive to view the Schrödinger
equation as a map [10]

Ψ Ψˆ ↦{ }V t t n t t( ), ( ) { ( ), ( )}. (1)0

The inputs to the map are an initial state of N electrons, Ψ =t t( )0 , and a Hamiltonian,
ˆ = ˆ + ˆ + ˆH t T W V t( ) ( ) that contains a kinetic-energy term, T̂ , a two-body interaction term such
as the Coulomb potential, Ŵ , and a scalar time-dependent potential, V̂ t( ). The outputs of the
map are the state at later time, Ψ t( ) and the one-particle probability density normalized to N
(referred to as the density),

∫
Ψ Ψ

Ψ

ˆ = ˆ

=

Ψn x t n x t

N x x x t x x

( ) ( ) ( ) ( )

( , ,..., ; ) d ... d . (2)

t

N N

( )

2
2

2

TDDFT is predicated on the use of the time-dependent density as the fundamental variable
and all observables and properties are functionals of the density. The crux of the theoretical
foundations of TDDFT is an inverse map which has as inputs the density at all times and the
initial state. It outputs the potential and the wave function at later times t,

Ψ Ψˆ ↦ ˆΨ { }{ }n t V t t, ( ) ( ), ( ) . (3)t( ) 0

This mapping exists via the Runge–Gross theorem [11] which shows that, apart from a gauge
degree of freedom represented by spatially homogeneous variations, the potential is bijectively
related to the density. However, the problem of time-dependent simulation has not been
simplified; the dimension of the Hilbert space scales exponentially with the number of electrons
due to the two-body interaction Ŵ . As a result, the time-dependent Schrödinger equation
quickly becomes intractable to solve with controlled precision on a classical computer.

Practical computational approaches to TDDFT rely on constructing the non-interacting
time-dependent Kohn–Sham potential. If at time t the density of a system described by potential

and wave function, ΨV̂ t t{ ( ), ( )}, is 〈 ˆ〉Ψn t( ) , then the non-interacting Kohn–Sham system

( ˆ =W 0) reproduces the same density but using a different potential, V̂
KS
. The key difficulty of

TDDFT is obtaining the time-dependent Kohn–Sham potential.
Typically, the Kohn–Sham potential is broken into three parts: ˆ = ˆ + ˆ + ˆV V V V

H xcKS
. The

first potential is the external potential given in the problem specification and the second is the
Hartree potential ∫= ′ | − ′| ′−V x t n x t x x x( , ) ( , ) dH 1 3 . The third is the exchange-correlation
potential and requires an approximation to be specified wherein lies the difficulty of the
Kohn–Sham scheme. In this article, we discuss how difficult approximating the full potential is
but we make note that only the exchange-correlation is unknown. While we discuss the
computation of the full Kohn–Sham potential from a given external potential and initial density,
we will not construct an explicit functional for the exchange-correlation potential.

3
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The route to obtaining the Kohn–Sham potentials we focus on is the evaluation of the map,

Φ Φˆ ↦ ˆΨ { }{ }n t V t t, ( ) ( ), ( ) . (4)t( ) 0
KS

Here, the wave function of the Kohn–Sham system, AΦ ϕ ϕ ϕ=t t t t( ) [ ( ) ( )... ( )]N1 2 , is an anti-
symmetric combination of single particle wave functions, ϕ t( )i , such that for all times t, the
Kohn–Sham density, ϕ= 〈 ˆ〉 = ∑ | |Φ =n t n t( ) ( )t i

N iKS
( ) 1

2, matches the interacting density 〈 ˆ〉Ψn t( ) .

If such a map exists, we call the system V-representable while implicitly referring to non-

interacting VKS-representablity.
As the map in equation (4) is foundational for TDDFT implementations based on the

Kohn–Sham system, there are many articles [12–17] examining the existence of such a map.
Instead of attempting to merely prove the existence of the Kohn–Sham potential, we will
explore the limits on the efficient computation of this map and go beyond the scope of the
previous works by addressing questions from the vantage of computational complexity.

The first approach to the Kohn–Sham inverse map found in equation (4), was due to van
Leeuwen [12] who constructed a Taylor expansion in t of the Kohn–Sham potential to prove its
existence. The construction relied on the continuity equation, − · ˆ = ∂ ˆj nt , and the Heisenberg
equation of motion for the density operator to derive the local force balance equation at a given
time t:

 ∂ ˆ − ˆ ∂ ˆ = − · ˆ ˆ + ˆ⎡⎣ ⎤⎦ ( )n W n n V Qi , , (5)t t
2

where ˆ = ˆ ∂ ˆQ T ni[ , ]t is the momentum-stress tensor. In the past few years, several results have
appeared extending van Leeuwenʼs construction [13–17] to avoid technical problems (related to
convergence and analyticity requirements). Here previous rigorous results by Farzanehpour and
Tokatly [17] on lattice TDDFT are directly applicable to our quantum computational setting.

1.2. The discrete force balance equation

We summarize the details of the discretized local force-balance equation from [17]. More
detailed derivations are found in [17] and as well as a more general derivation we provide in
appendix A.

Consider a system discretized on a lattice of M points forming a Fock space. In second
quantization, the creation âi and annihilation ˆ †a j operators for arbitrary sites i and j must satisfy
ˆ ˆ = − ˆ ˆa a a ai j j i and δˆ ˆ = − ˆ ˆ† †a a a ai j ij j i. We define a discretized one-body operator as
ˆ = ∑ ∑ ˆ ˆ†A A a an

M
m
M

mn m n and designate A as the coefficient matrix of the operator. The matrix
elements are = 〈 | ˆ | 〉A m A nmn where | 〉m and | 〉n are the single electron sites corresponding to
operators âm and ân. Similar notation and definitions hold for the two-body operators.

The Hamiltonian, the density at site j, and the continuity equation are then given
respectively by

∑ ∑δˆ = + ˆ ˆ + ˆ ˆ ˆ ˆ† † †⎡⎣ ⎤⎦H t T V t a a W a a a a( ) ( ) , (6)
ij

ij ij i i j

ijkl

ijkl i j k l

ˆ = ˆ ˆ†n a a , (7)j j j

4
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∑ ∑∂ ˆ = − ˆ = − ˆ ˆ − ˆ ˆ† †( )n J i T a a a a . (8)t j

k

jk

k

kj j k k j

For the density of the Kohn–Sham system, = 〈 ˆ〉 Φn t n( ) t
KS

( ) , to match the density of the
interacting system, = 〈 ˆ〉Ψn t n( ) t( ) , the discretized local force balance equation [17] must be
satisfied,

∑= − ˆ ˆ + ˆ ˆ Φ
† †( )S V V T a a a a (9)j

k
j k kj j k k j t

aim KS KS
( )

∑ ∑Γ δ Γ= − ˆ + ˆ
Φ

T T V (10)
k

kj jk jk

m

mj jm

t

k

( )

KS

∑= K V . (11)
k

jk k
KS

Here Γ̂ = ˆ ˆ + ˆ ˆ† †a a a aij i j j i is twice the real part of the one-body reduced density operator. A

complete derivation of this equation is found the appendix A. The vector Saim is defined as

Ψ Φ = ∂ 〈 ˆ 〉 − 〈 ˆ 〉Ψ ΦS n Q( , )j t j t j t
aim 2

( )
KS

( ) . The force balance coefficient matrix, = 〈 ˆ 〉 ΦK K t( ) , is

defined through equations (10) and (11). Since the target density enters only through the second
derivative appearing in Saim, the initial state Φ t( )0 must reproduce the initial density, 〈 ˆ〉Ψn t( )0

,
and the initial time-derivative of the density, ∂ 〈 ˆ〉Ψnt t( )0

.
The system is non-interacting V-representable so long as K is invertible on the domain of

spatial inhomogeneous potentials. Moreover, the Kohn–Sham potential is unique [17]. Hence,
the domain of V-representability is Ω Φ Φ= | ={ }K Vkern ( ) { }const . To ensure efficiency, we
must further restrict attention to the interior of this domain where K is sufficiently well-
conditioned with respect to matrix inversion. The cost of the algorithm grows exponentially as
one approaches this boundary but can in some cases be mitigated by increasing the number of
lattice points.

2. Results overview

2.1. Quantum algorithm for the Kohn–Sham potentials

We consider an algorithm to compute the density with error ϵ in the 1-norm to be efficient when
the temporal computational cost grows no more than polynomially in ϵ1 , polynomially in

∥ ∥< < H s t( max ( ) )s t0 , polynomially in M, the number of sites, and polynomially in, N, the
number of electrons. We will describe such an algorithm within the interior of the domain of V-
representability.

To ensure that the algorithm is efficient, we must assume that the local kinetic energy and
the local potential energy are both bounded by constant EL and that there is a fixed number, κ
such that κ∥ ∥ = ∑ | | ⩽−

∞
−K Kmax ( )i j ij

1 1 . Note that, as we work in the Fock space, this
condition does not preclude Coulombic interactions with nuclei so long as the site orbitals have
finite spatial extent.

We will show that as long as ⩽E NlogL , the algorithm remains efficient for fixed κ. As
is typical in numerical matrix analysis [18, 19], the inversion of a matrix become extremely

5
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sensitive to errors as the condition number, = ∥ ∥ ∥ ∥−C K K 1 , grows. The Lipschitz constant
of the Kohn–Sham potential must also scale polynomially with the number of electrons.

The Lipschitz constant of the Kohn–Sham system could be different than that of the
interacting system [10, 20] and understanding of the relationship between these timescales
requires a better understanding of the initial state Φ t( )0 dependence. What can be done, in
practice, is to begin with an estimate of the maximum Lipschitz constant and if any two
consecutive Kohn–Sham potentials violate this bound, restart with a larger Lipschitz constant.

Our efficient algorithm for computing the time-dependent potential is depicted in figure 1.
There are two stages. The first stage involves a quantum computer and its inputs are the initial
many-body state Ψ t( )0 and the external potential V(t) on a given interval t t[ , ]0 1 . The quantum
computer then evolves the initial state with the given external potential and obtains the time-
evolved wave function at a series of discrete time-steps. The detailed analysis of the EEA found
in [21] is used to bound errors in the measurement of the density and to estimate its second time
derivative. In order to rigorously bound the error term, we assume that the fourth time derivative
of the density is bounded by a constant, c4.

Figure 1. In part a, the quantum computer takes as inputs the initial state and the time-
dependent Hamiltonian and outputs the density at sufficiently many times. The output
allows the numerical computation of the second derivative of the density at each time
step which is then utilized by the classical computer to solve the discrete force balance
equation equation (11). A consistent initial state at time t = 0 must also be given which
reproduces n (0) and ∂ n (0)t . Note that while the wave function is obtained from the
quantum computation, it cannot be processed for use in the classical part of the
computation. The classical algorithm uses the density to obtain the Kohn–Sham
potential at each subsequent time step through an iterated marching process as depicted
in part b.

6
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The total cost of both stages of the algorithm is dominated by the cost of obtaining the
wave function as this is the only step that depends directly on the number of electrons.
Fortunately, quantum computers can perform time-dependent simulation efficiently [22–24].
The cost depends on the requested error in the wave function, δψ , and depends on the length of
time propagated when time is measured relative to the norm of the Hamiltonian being
simulated. The essential idea is to leverage the evolution of a controllable system (the quantum
computer) with an imposed (simulation) Hamiltonian [6]. It should be highlighted that
obtaining the density through experimental spectroscopic means is equivalent to the quantum
computation provided the necessary criteria for efficiency and accuracy are satisfied.

The second stage involves only a classical computer, with the inputs being a consistent
initial Kohn–Sham state Φ t( )0 and the interacting ∂ 〈 ˆ〉Ψnt t

2
( ) on the given interval t t[ , ]0 1 . The

output is the Kohn–Sham potential at sufficiently many time steps to ensure the target accuracy
is achieved. The classical algorithm performs matrix inversion of a M by M matrix. The cost for
the matrix inversion is O M( )3 regardless of the other problem parameters (such as the number
of electrons).

In our analysis detailed in the next section, we only consider errors from the quantum and
classical aspects of our algorithm and we avoided some unnecessary complications by omitting
detailed analysis of the classical problem of propagating the non-interacting Kohn–Sham
system. Kohn–Sham propagation in the classical computer is well studied and can be done
efficiently using various methods [25]. Further, we have also assumed that errors in the
measured data are large enough that issues of machine precision do not enter. Thus, we have
ignored the device dependent issue of machine precision in our analysis and refer to standard
treatments [18, 19] for the proper handling of this issue.

2.2. Overview of error bounds

We demonstrate that our algorithm has the desired scaling by bounding the final error in the
density. We follow an explicit-type marching process to obtain the solution at time Δq t from the
solution at Δ−q t( 1) . The full technique is elaborated in the next section.

As the classical matrix inversion algorithm at each time step is independent of the number
of electrons and the quantum algorithm requires δ ϵ− ψ

− −N t tpoly( , , , )1 0
1 1 per time step (recall

that δψ is the allowed error in the wave function due to the quantum simulation algorithm), we
can utilize error analysis for matrix inversion and an explicit marching process to get a final
estimate of the classical and quantum costs for the desired precision ϵ

ϵ= − κ−( )L t t Mcost Classical poly , , , e , (12)E
1 0

1 64 L
2

ϵ= − κ−( )L t t r M Ncost Quantum poly , , , , , e . (13)E
1 0

1 16 L
2

The parameter r is the number of repetitions of the quantum measurement required to obtain a
suitably large confidence interval. We define the V-representability parameter as κ=R EL

2 and if
R is bounded by a constant, then the algorithm is efficient.

The intractability of the algorithm with growing R indicates the breakdown of V-
representability. Despite the exponential dependence of the algorithm on the representability
parameter, the domain of V-representability is known to encompass all time-analytic
Kohn–Sham potentials in the continuum limit [13–16]. Examining the exponential dependence,
it is clear that increases in κ can be offset by decreases in the local energy.

7
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3. Derivation of error bounds

3.1. Description of techniques used to bound cost

Before diving into the details, let us give an overview of our techniques and what is to follow.
In the first subsection, we look at the error in the wave function at time t. In each time step, the
error is bounded from the errors in the previous steps. This leads to a recursion relation which
we solve to get a bound for the total error at any time step. This error is propagated forward
because we must solve = = + ∂KV S Q nt

2 for V based on the data from the previous time step.
The error in ∂ nt

2 is due to the finite precision of the quantum computation and is independent of
previous times. In the second subsection, the error in the density is then derived followed by a
cost analysis in the final subsection.

We rescale time by factor c such − =t t 11 0 to get the final time step Δ=z t1 . This
rescaling is possible because there is no preferred units of time. That said the rescaling of time
cannot be done indefinitely for two reasons. First, the Lipschitz constant of both the real and the
KS system must be rescaled by same factor of c. Since the cost of the algorithm depends on the
Lipschitz constant, increasingly long times will require more resources. Second, the quantum
simulation algorithm does have an intrinsic time scale set by the norm of the H and its time
derivatives [22–24]. Rescaling time by c increases the norm of H by the same factor;
consequently, the difficulty of the quantum simulation is invariant to trivial rescaling of the
dynamics.

It is important to get estimates which do not directly depend on the number of sites. To do
this, we assume that the lattice is locally connected under the hopping term such that there are at
most d elements per row of T (since T is symmetric, it is also d-col-sparse). This is equivalent to
a bound for the local kinetic energy.

Throughout, we work with the matrix representations of the operators and the states. The
Lp vector norms [18] with p = 1, 2, and ∞ are defined by | | = ∑| |( )x xp i

p p1 . The induced matrix
norms are defined by ∥ ∥ = | || | =A Axmaxp x p1p . Induced norms are important because they are
compatible with the vector norm such that | | = ∥ ∥ | |Mx M xp p p. The vector 1-norm is
appropriate for probability distributions and the vector 2-norm is appropriate for wave
functions. The matrix 2-norm is also called the spectral norm and is equal to the maximum
absolute value of an eigenvalue. For a diagonal matrix, D, the matrix 2-norm is the vector
∞-norm of Ddiag( ). Note that | | ⩾ | | ′x xp p for < ′p p . Important, non-trivial characterizations of
the infinity norms are | | = | |∞x xmaxi i and ∥ ∥ = ∑ | |∞A Amaxi j ij .

3.2. Error in the wave function via recursion relations

We bound the error of the evolution operator from time Δk t to Δ−k t( 1) , denoted
Δ∥ − ∥U k k( , 1) 2, in terms of the previous time step in order to obtain a recursion relation.

We first bound the errors in the potential due to the time discretization and then those due to the
computation errors using lemma 1 found in appendix B. The computation errors will depend on
the error at the previous time step which will lead to the recursion relation sought after.

To bound the error in Δ∥ ∥U 2 we must bound the error in the potential
Δ Δ Δ| | ⩽ | | + | |Δ

∞ ∞ ∞V V Vt comp . We define =ΔV t V t( ) ( )t
k with k such that | − | ⩽ | − |t t t tk m

for all m. Here, V t{ ( )}k is the discretized potential with time step Δ| − | =+t t tj j 1 . The error due
to temporal discretization can be controlled assuming a Lipschitz constant L for the potential
such that for all t and ′t , | − ′ | | − ′| ⩽∞V t V t t t L( ) ( ) . Thus, for all t,

8
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Δ Δ= − ⩽Δ Δ
∞ ∞V V t V t L t( ) ( ) . (14)t t

The computational error Δ| |∞V comp is bounded using lemma 2 in appendix B with
κ∥ ∥ ⩽−

∞K 1 and the assumption | | ⩽∞V EL,

Δ κ Δ Δ Δ⩽ + ∂ + ∥ ∥∞ ∞ ∞ ∞( )V Q n K E . (15)t L
comp 2

Now we need to bound the errors in Δ| |∞Q and Δ∥ ∥∞K in terms of the error

δ ΔΓ= | − |Γ kmax ( 1)k ij ij at time step −k 1.
The error bound for Δ| |∞Q is obtained as

Δ ΔΓ⩽∞Q T Tmax ([ , ] ) (16)
i

i

∑ ∑ΔΓ ΔΓ

δ

⩽ −

⩽ Γ
−

⎛
⎝⎜

⎞
⎠⎟

T T T T

d T

max

2 max

,
i

pq

ip pq qi

mn

im mn ni

k
ij

ij1
2

2

Δ δ⩽ Γ
∞ −Q E2 . (17)k L1

2

The product | |d Tmax ij is the maximum local kinetic energy and is, by assumption, bounded by
EL. Similarly,

∑Δ∥ ∥ = − ˜∞K K Kmax (18)
i

j

ij ij

∑ ∑

∑ ∑

∑ ∑

ΔΓ δ ΔΓ

ΔΓ ΔΓ

δ δ

δ

= −

⩽ +

⩽ +

⩽

Γ Γ

Γ

−

−
⎛
⎝⎜

⎞
⎠⎟

T T

T T

T T

d T

max

max max

max max

2 max

i
j

ij ij ij

m

mj mj

i
j

ij ij
i

m

mi mi

k
i

j

ij k
i

m

mi

k
ij

ij

1

1

Δ δ∥ ∥ ⩽ Γ
∞ −K E2 . (19)k L1

We convert from errors in the real part of the 1-RDM to errors in the wave function via

δ ΔΓ

Φ Γ ΔΦ ΔΦ Γ Φ

=

⩽ +

Γ

( ) ( ) (20)

ij

ij ij

ij

9
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ΔΦ Γ Φ ΔΦ Γ

ΔΦ

⩽ ⩽ ∥ ∥
⩽

2 2

4
. (21)ij ij2 2 2 2

2

The inequality (21) follows because the maximum eigenvalue of 〈 〉 ψ
†a ai j for all ψ is bounded

by 1 and Γ = 〈 〉 ψ
†a a2realij i j . Taking the maximum over all i, j we have

δ δ δ= ⩽Γ Γ Φ
− − −( )max 4 (22)k

ij
k k1 1 1

ij

Here δ Φ
−k 1 bounds the error in the two-norm ΔΦ| |2 at time step −k 1.

Putting together equations (15), (17), (19), and (22) gives

Δ κ δ κ Δ⩽ + ∂Φ
∞ − ∞V E n16 . (23)L k t

comp 2
1

2

To obtain the desired recursion relation, we note that at time step k the error can be
bounded via

Φ Φ Δ δ− ˜ ⩽ ∥ − ∥ + Φ
−k k U k k( ) ( ) ( , 1) . (24)k2 2 1

obtained using an expansion similar to the one found in equation (20). Utilizing lemma 1
(see appendix B) and bound equation (23), we arrive at

Φ Φ δ Δ Δ

δ Δ Δ Δ

δ Δ Δ κ δ κ Δ

κ Δ δ

− ˜ ⩽ +

⩽ + +

⩽ + + + ∂

⩽ +

Φ

Φ Δ

Φ Φ

Φ

− − ∞

− ∞ ∞

− − ∞

−

( )
( )

( )

k k t V

t V V

t L t E n

E t

( ) ( )

16

16 1

k k k

k
t

k L k t

L k

2 1 , 1

1
comp

1
2

1
2

2
1

Δ Δ κ Δ+ + ∂
∞( )t L t n . (25)t

2

To obtain a recursion relation we let the LHS of equation (25) define the new upper bound at
time step k.

Recursion relations of the form = +−f af bk k 1 have closed solution = − − −f b a a( 1)( 1)k
k 1.

Thus, we have for the bound at time step k

δ
Δ κ Δ

κ
κ Δ=

+ ∂
+ −Φ ∞ { }( )

L t n

E
E t

16
16 1 1 . (26)k

t

L
L

k
2

2
2

Now consider the final time step at Δ=z t1 , and ⩾ +−xze ( 1)x z1 for < ∞z ,

δ
Δ κ Δ

κ
κ

=
+ ∂

+ −Φ ∞

⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎛
⎝⎜

⎞
⎠⎟

⎫
⎬
⎭

L t n

E

E

z16

16
1 1 (27)z

t

L

L
z2

2

2
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κ

Δ
⩽ +

∂
−κ∞

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ { }z

L

E

n

E

1

16 16
e 1 (28)

L

t

L

E
2

2

2
16 L

2

κ

δ
⩽ + −κ

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ { }z

L

E

c

E

1

16

2

16
e 1 . (29)

L

n

L

E
2

4

2
16 L

2

We applied lemma 3 from appendix B to obtain the last line. This bound is similar to the Euler
formula for the global error but arises from the iterative dependence of the potential on the
previous error; not from any approximate solution to an ordinary differential equation.

To ensure that the cost is polynomial in M and N for fixed κ, we must insist that

⩽E NlogL . Consider the exponential factor and assume that >E 1L . Then

κ κ⩽ = κE N Nexp (16 ) exp (16 log )L
2 16 is a polynomial for fixed κ.

3.3. Error bound on the density

To finish the derivation, we utilize our bound for the wave function at the final time to get a
bound on the error of the density at the final time. This will translate into conditions for the
number of steps needed and the precision required for the density. The error in the density is
bounded by the error in the wave function through the following,

Δ Φ Φ Φ Φ

Φ Φ Φ Φ Φ Φ Φ Φ

Φ ΔΦ ΔΦ Φ

= − ˜ ˜

= − ˜ + ˜ − ˜ ˜

⩽ +

n n n

n n n n

n n .

1
1

1

1 1

Now consider the i-th element, = †n a ai i i, and the Cauchy-Schwarz ∣〈 ∣ 〉∣ ⩽ ∣ ∣ ∣ ∣x y x y2 2,

Φ ΔΦ Φ ΔΦ ΔΦ

Φ ΔΦ ΔΦ

⩽ ⩽ ∥ ∥

⩽

† † †( )a a a a a a

n .

i i i i i i

i

2
2 2 2

1 2

Finally, from the definition of the 1-norm,

∑Δ ΔΦ Φ Φ ΔΦ

ΔΦ δ

⩽ +

⩽ ⩽

͠

Φ

( )n z z n z z n z

M z M

( ) ( ) ( ) ( ) ( )

2 ( ) 2 . (30)
i

i i

z

1

2

For final error ϵ in the 1-norm of the density, we allow error ϵ 2 due to the time step error
and ϵ 2 error due to the density measurement. Following equations (27) and (30), we have for
the number of time steps,

ϵκ
− ⩽κ

⎛
⎝⎜

⎞
⎠⎟ { }ML

E
z

4
e 1 . (31)

L

E
2

16 L
2
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The bound for the measurement precision also follows as,

ϵ
δ− ⩽κ −

⎛
⎝⎜

⎞
⎠⎟ { }Mc

E

2

4
e 1 . (32)

L

E
n

4
1 2

2

2

16
2

1L
2

3.4. Cost analysis

To obtain the cost for the quantum simulation and the subsequent measurement, we leverage
detailed analysis of the expectation estimation algorithm (EEA) [21]. To measure the density at
time ∈t t t[ , ]0 1 , a quantum simulation [22–24] of ψ ψ↦t t( ) ( )0 is performed at cost

δ⩽ − ψ
−q N t tpoly( , , )1 0

1 following an assumption that H(t) is simulatable on a quantum
computer which is usually the case for physical systems. In order to simplify the analysis, we
assume that δψ is such that δ δ δ+ ≈ψn n is a reasonable approximation. Given the recent
algorithm for logarithmically small errors [24], this assumption is reasonable.

The EEA was analyzed in [21]. The algorithm EEA ψ δA c( , , , ) measures ψ ψ〈 | | 〉A with
precision δ and confidence c such that Prob δ ψ ψ δ˜ − ⩽ 〈 | | 〉 ⩽ ˜ + >a A a c( ) , that is, the
probability that the measured value ã is within δ of ψ ψ〈 | | 〉A is bounded from below by c. The
idea is to use an approximate Taylor expansion:

ψ ψ ψ ψ≈ −−( )A i se 1 .Asi

The confidence interval is improved by repeating the protocol = | − |r clog (1 ) times. If the
spectrum of A is bounded by 1, then the algorithm requires on the order δO r( )3 2 copies of ψ
and δO r( )3 2 uses of −iAsexp ( ) with δ=s 3 2.

To perform the measurement of the density, we assume that the wave function is
represented in first quantization [6] such that the necessary evolution operator is:

− ˆ = ∏ − | 〉〈 |in s i j j texp ( ) exp ( )j k
N k( ) . Here each Hamiltonian | 〉〈 |j j k( ) acts on site j of the kth

electron simulation grid. Hence, each operation is local with disjoint support. Since there are
NM sites, this can be done efficiently. Comparing the costs, we will assume that the generation
of the state dominates the cost.

Combining these facts, we arrive at the conclusion that the cost to measure the density to
within δn precision is

δ

= +
≈
= −( )O rq

cost Quantum cost State Gen cost EEA
cost State Gen

. (33)n
3 2

Pairing this with equations (31) and (32), we have an estimate for the number of quantum
operations

δ

ϵ

=

= κ

−

−

( )
( )

O rqz

L r M N

cost Quantum

poly , , , , e .

n

E

3 2

1 64 L
2
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The classical computational algorithm is an ×M M[ ] matrix inversion at each time step costing

ϵκ

ϵ

=

= −

=

κ

κ−

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟{ }

( )

( )

O zM

O M
ML

E

L M

cost Classical

4
e 1

poly , , e .

L

E

E

3

3
2

16

1 16

L

L

2

2

4. Quantum computation and the computational complexity of TDDFT

Since the cost of both the quantum and classical algorithms scale as a polynomial of the input
parameters, we can say that this is an efficient quantum algorithm for computing the time-
dependent Kohn–Sham potential. Therefore, the computation of the Kohn–Sham potential is in
the complexity class described by bounded error quantum computers running in polynomial
time (BQP). This is the class of problems that can be solved efficiently on a quantum computer.

Quantum computers have long been considered as a tool for simulating quantum physics
[5–7, 26, 27]. The applications of quantum simulation fall into two broad categories: (1)
dynamics [28–30] and (2) ground state properties [31–33]. The first problem is in the spirit of
the original proposal by Feynman [26] and is the focus of the current work.

Unfortunately, unlike classical simulations, the final wave function of a quantum
simulation cannot be readily extracted due to the exponentially large size of the simulated
Hilbert space. The retrieval of the full state would require quantum state tomography, which in
the worst case, requires an exponential number of copies of the state and would take an
exponentially large amount of space to even store the data classically. If, instead, the simulation
results can be encoded into a minimal set of information and the simulation algorithm can be
efficiently executed on a quantum computer, then the problem is in the complexity class BQP.
Extraction of the density [21] is the relevant example of such a quantity that can be obtained.
Note that the densityʼs time-evolution is dictated by wave function and hence the Schrödinger
equation.

In summary, what we have proven is that computing the Kohn–Sham potential at bounded
κEL

2 is in the complexity class BQP. To be precise, two technical comments are in order. First,
we point out that we are really focused on promise problems since we require constraints on the
inputs to be satisfied (i.e. κ <EL

2 constant). Second, computing the map equation (4) is not a
decision problem and cannot technically be in the complexity class BQP. However, we can
define the map to b bits of precision by solving M blog accept-reject instances from the
corresponding decision problem, which is in BQP. These concepts are further elaborated in
[4, 34, 35].

While the quantum computer would allow most dynamical quantities to be extracted
without resorting to the Kohn–Sham formalism, we have attempted to understand the difficulty
of generating the Kohn–Sham potential. We only consider a polynomial time quantum
computer as a tool for reasoning about the complexity of computing Kohn–Sham potentials. In
essence, the Kohn–Sham potentials are a compressed classically tractable encoding of the
quantum dynamics that allows the quantum simulation to be performed in polynomial time on a
classical computer. This may have implications for the question of whether a classical witness
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can be used in place of quantum witness in the quantum Merlin Arthur game [35] (i.e. QMA =?

QCMA). A second useful by-product of our result is the introduction of the V-representability
parameter which has general significance for practical computational settings.

5. Concluding remarks

In this article, we introduced a V-representability parameter and have rigorously demonstrated
two fundamental results concerning the computational complexity of time dependent DFT with
bounded representability parameter. First, we showed that with a quantum computer, one need
only provide the initial state and external potential on the interval t t[ , ]0 1 in order to generate the
time-dependent Kohn–Sham potentials. Second, we show that if one provides the density on the
interval t t[ , ]0 1 , the Kohn–Sham potential can be obtained efficiently with a classical computer.

We point out that an alternative to our lattice approach may exist using tools from partial
differential equations. Early results in this direction have been pioneered using an iterated map
whose domain of convergence defines V-representability [15, 16]. The convergence properties
of the map have been studied in several one-dimensional numerical examples [15, 16, 36].
Analytical understanding of the rate of convergence to the fixed point would complement the
present work with an alternate formulation directly in real space.

While this paper focuses on the simulation of quantum dynamics, the complexity of the
ground state problem is interesting in its own right [4, 9, 34, 35]. In this context, ground state
DFT was formally shown [9] to be difficult even with polynomial time quantum computation.
Interestingly, in that work, the Levy-minimization procedure [37] was utilized for the
interacting system to avoid discussing the non-interacting ground state Kohn–Sham system and
its existence. We have worked within the Kohn–Sham picture, but it may be interesting to
construct a functional approach directly.

Future research involves improving the scaling with the condition number or showing that
our observed exponential dependence on the representability parameter is optimal. Our work
can likely be extended to bosonic and spin systems [38] since we have relied minimally on the
fermionic properties of electrons. Finally, pre-conditioning the matrix K can also help increase
the domain of computationally feasible V-representability.

Our findings provide further illustration of how the fields of quantum computing and
quantum information can contribute to our understanding of physical systems through the
examination of quantum complexity theory.
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Appendix A. Derivation of discrete local-force balance equation

The results found in Farzanehpour and Tokatly [17], are directly applicable to the quantum
computational case since a quantum simulation would ultimately require a discretized space [6].
In [17], they utilized a discrete space but derive all equations in first quantization. For this
reason, we think the derivation in second quantization may be useful for future inquiries into
discretized Kohn–Sham systems and provide the necessary details in this appendix. Throughout
this section, we consider the non-interacting Kohn–Sham system without an interaction term,
i.e. ˆ =W 0.

First note, δˆ ˆ ˆ = ˆ† † †a a a a[ , ]p q j p jq and δˆ ˆ ˆ = − ˆ†a a a a[ , ]p q i q ip to get the first derivative of the
density

∑∂ ˆ = − ˆ = ˆ ˆ⎡⎣ ⎤⎦n J i H n, , (A.1)t j

k

jk j

∑= ˆ ˆ ˆ ˆ† †⎡⎣ ⎤⎦i T a a a a, , (A.2)
pq

pq p q j j

∑= − ˆ ˆ − ˆ ˆ† †( )i T a a a a . (A.3)
k

kj j k k j

Here and throughout, we assume that there is no magnetic field present and conse-
quently =T Tij ji.

To get to the discrete force balance equation, consider
∂ ˆ = ˆ ∂ ˆ = ˆ ∂ ˆ + ˆ + ˆ ∂ ˆn i H n i V n Q i W n[ , ] [ , ] [ , ]t j t j t j j t j

2 with ˆ = ˆ ∂ ˆQ i T n[ , ]j t j , a term that does
not depend on the local potential. This is analogous to equation (5) first derived in van
Leeuwenʼs paper [12].

In the case that the non-interacting Kohn–Sham potential is desired, only the momentum-
stress tensor is needed since ˆ =W 0 in the non-interacting system. We will need the expression
for Q̂ j so let us compute it now for the KS system,

∑∑ˆ = ˆ ∂ ˆ = ˆ ˆ ˆ ˆ − ˆ ˆ† † †⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦Q i T n T T a a a a a a, , , (A.4)j t j

pq k

pq jk p q j k k j

∑∑ ∑∑δ δ= ˆ ˆ + ˆ ˆ − ˆ ˆ + ˆ ˆ† † † †( ) ( )T T a a a a T T a a a a (A.5)
pq k

pq jk p k k p jq

pq k

pq jk j p p j qk

∑∑ Γ δ Γ δ= ˆ − ˆ{ }T T (A.6)
pq k

pq jk kp jq jp qk

∑ ∑ ∑ ∑δ Γ δ Γ= ˆ − ˆ
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟T T T T (A.7)

pq

pq jq

k

jk kp

qk

jk qk

p

jp pq

∑ ∑ ∑ ∑Γ Γ= ˆ − ˆ
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟T T T T (A.8)

p k

jk kp pj

q p

jp pq qj

15

New J. Phys. 16 (2014) 083035 J D Whitfield et al



Γ= ˆ⎡⎣ ⎤⎦( )T T, . (A.9)
jj

Here we have defined the real part of the 1-RDM as Γ̂ = ˆ ˆ + ˆ ˆ† †a a a aij i j j i following the notation in
the main text and T is the coefficient matrix of the kinetic energy operator.

Next, we obtain more convenient representations for the local force balance equation. Beginning

with ∂ ˆ = ˆ ∂ ˆ = ˆ ∂ ˆ + ˆ ∂ ˆ = ˆ + ˆ ∂ ˆn i H n i T n i V n Q i V n[ , ] [ , ] [ , ] [ , ]t t t t t
2 . Defining ˆ = ∂ ˆ − ˆS n Qt

2 , we

have the following,

∑ ∑

∑ ∑ ∑ ∑

∑

ˆ = ˆ ∂ ˆ = ˆ ˆ − ˆ ˆ − ˆ ˆ

= ˆ ˆ + ˆ ˆ − ˆ ˆ − ˆ ˆ

= − ˆ ˆ + ˆ ˆ

† † †

† † † †

† †

⎡⎣ ⎤⎦
⎡
⎣
⎢
⎢
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
⎤
⎦
⎥
⎥( )

( )( )

S i V n i V a a i T a a a a

V T a a V T a a V T a a V T a a

V V T a a a a

, ,

(A.10)

j t j

m

m m m

k

kj j k k j

k

j kj j k

k

j kj k j

k

k kj j k

k

k kj k j

k

j k kj j k k j

∑ ∑ ∑

∑ ∑

δ

Γ δ Γ

= ˆ ˆ + ˆ ˆ − ˆ ˆ + ˆ ˆ

= − ˆ + ˆ

† † † †

⎪ ⎪

⎪ ⎪

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎧
⎨
⎩

⎫
⎬
⎭

( ) ( )T a a a a V T a a a a V

T T V . (A.11)

m

mj j m m j

k

jk k

k

kj j k k j k

k

kj jk jk

m

mj jm k

So now consider the LHS as vector Ŝ with components ˆ = ∂ ˆ − ˆS n Qj t j j
2 . Similarly consider the

potential V as a vector with components Vi, then we can write equation (A.11) as ˆ = ˆS KV .
Examining equation (A.10), if = ′V Vk k for all ′k k, then the rhs of equation (A.10) vanishes.
Hence, K always has at least one vector in the null space, namely the spatially constant
potential.

Farzanehpour and Tokatly [17] study the existence of a unique solution for the nonlinear
Schrödinger equation which follows from equation (A.11):

Φ Φ Φ Φ∂ = − ˆ + ˆ = − ˆ − ˆ ˆ = ˆ−( ) ( )i H V i H K S F( ) ( ). (A.12)t 0
KS

0
1

In the space where K̂ has only one zero eigenvalue, the Picard-Lindelöf theorem [39]
guarantees the existence of a unique solution.

The Picard-Lindelöf theorem concerns the differential equation ∂ =y t f t y t( ) ( , ( ))t with
initial value y t( )0 on ε ε∈ − +t t t[ , ]0 0 . If f is bounded above by a constant and is continuous
in t and Lipschitz continuous in y then, according to the theorem, for ε > 0, there exists a
unique solution y(t) on ε ε− +t t[ , ]0 0 . This solution can be extended until either y becomes
unbounded or y is no longer a solution. The conditions of the theorem are satisfied because

ΦK̂ ( ) and Ŝ are quadratic in Φ, the rhs is Lipschitz continuous in Φ in the domain where K̂ has
only one zero eigenvalue, and the continuity of K̂ and Ŝ in time follows immediately from the
continuity of Φ.

A nice connection of equation (A.11) to master equations in probabilistic processes can be
drawn. In equation (A.11), K̂ has the form of a master equation for a probability distribution P,
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∑∂ = −
′

′ ′ ′P t w P t w P t( ) ( ) ( ) (A.13)t n

n

nn n n n n

∑ ∑δ= −
′

′ ′ ′

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟w w P (A.14)

n

nn nn

m

mn n

with

Φ Φ= − ˆ ˆ + ˆ ˆ′ ′
†

′ ′
†( )w T t a a a a t( ) ( ) . (A.15)nn nn n n n n

The key difference is that the entries of K are not strictly positive ( Φ Φ〈 | ˆ ˆ | 〉†t a a t( ) ( )i j can be
positive or negative). Since K is Hermitian and its null space contains the uniform state, if all
transition coefficients were positive, then K would satisfy detailed balance.

Appendix B. Lemmas

Lemma 1. For two time-dependent Hamiltonians = +H t H V t( ) ( )0 and ˜ = + ˜H t H V t( ) ( )0 ,
the error in the evolution from t0 to t1 is bounded as

Δ∥ ∥ ⩽ − − ˜
⩽ ⩽ ∞

U t t t t V s V s( , ) ( ) max ( ) ( ) (B.1)
t s t

1 0 2 1 0
0 1

Proof.

∫

∫

∫

∫

− ˜ = ˜ ˜ −

= ˜ ˜

= − ˜ ˜ − ˜

= − ˜ ˜ − ˜

= − ˜ − ˜

†

†

†

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )
( )

( )

( )

( )

U t t U t t U t t U t t U t t

U t t
s

U s t U s t s

iU t t U s t H s H s U s t s

i U t t U t s V s V s U s t s

i U t s V s V s U s t s

( , ) ( , ) ( , ) ( , ) ( , ) 1

( , )
d
d

( , ) ( , ) d

( , ) ( , ) ( ) ( ) ( , )d

( , ) ( , ) ( ) ( ) ( , )d

( , ) ( ) ( ) ( , )d .

t

t

t

t

t

t

t

t

1 0 1 0 1 0 1 0 1 0

1 0 0 0

1 0 0 0

1 0 0 0

1 0

0

1

0

1

0

1

0

1

Using sub-additivity and the unitary invariance of the operator norm

∥ − ˜ ∥ ⩽ − ∥ − ˜ ∥
⩽ ⩽

U t t U t t t t V s V s( , ) ( , ) ( ) max ( ) ( ) .
t s t

1 0 1 0 2 1 0 2
0 1

To obtain the statement in equation (B.1), recall that for a diagonal matrix, the induced matrix
2-norm is the infinity norm of the corresponding vector of diagonal elements. Noting that V is
diagonal gives ∥ ∥ = | |∞V V2 to complete the proof. □

Lemma 2. When we approximate the solution x of Ax = b from the solution, x̃, of ˜ ˜ = ˜Ax b,
under the assumption that both A and Ã are invertible, the error in x is bounded by
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Δ α Δ Δ⩽ + ∥ ∥x b A x( ) (B.2)

where the vector and matrix norms are compatible (i.e. | | ⩽ ∥ ∥| |Mb M b ).

Proof. Define Δ = − ˜x x x and similarly for ΔA and Δb.

Δ

Δ

Δ

Δ
Δ α Δ Δ

− ˜ = − ˜ + ˜ − ˜ ˜

⩽ + − ˜ ˜

= + ˜ − ˜ ˜

= + ˜ − ˜

⩽ ∥ ∥ + ∥ ˜ ∥∥ ˜ − ∥
⩽ + ∥ ∥

− − − −

− − −

− − −

− −

− −

( )
( )

( )

x x A b A b A b A b

A b A A b

A b A A A b

A b A A A x

A b A A A x
x b A x

1

( ).

1 1 1 1

1 1 1

1 1 1

1 1

1 1

Here, α = ∥ ∥ ∥ ˜ ∥− −A Amax { , }1 1 . □

Lemma 3. Suppose density is measured with maximum error Δ δ| | <∞n n and the fourth
derivative in time is bounded as δ Δ| | <∞n cmax t

4
4, we have that

Δ δ∂ ⩽∞n c2 . (B.3)t n
2

4

Proof. We utilize the three point stencil to estimate the second derivative by Taylor expanding
to third order

ξ
ξ

ξ ξ

± = ± ∂ + ∂ + ± ∂ + ±

± =
!

∈ ±

∂ = + − + − +
− + +

∂ − ∂ ⩽
+
!

⩽
( ) ( )

f t h f t f t h f t h f t h R t h

R t h
f

h t t h

f t
f t h f t f t h

h
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2 2 3 3
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3

(4)
4

2
2

3 3

2
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(4)

1
(4)
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2

where c4 is a bound for the fourth derivative of the function f.
If δn is the maximum absolute difference between any component of the given density and

the true density (∞-norm of the difference) then from the triangle inequality,
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To get the best bound, select δ=h c48 N
2

4 . Substituting this into the previous equation gives,

Δ δ δ∂ ⩽ + <∞
⎛
⎝⎜

⎞
⎠⎟n c c

48
12

4

48
2 . (B.4)t n n

2
4 4

□
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