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Abstract

An antimagic labelling of a finite undirected simple graph with m edges and n vertices is a bijection from the set of edges to
the integers 1, ..., m such that all n vertex sums are pairwise distinct, where a vertex sum is the sum of labels of all edges incident
with the same vertex. A graph is called antimagic if it has an antimagic labelling. In 1990, Hartsfield and Ringel conjectured that
every connected graph, but K7, is antimagic. In [T.-M. Wang, Toroidal grids are antimagic, in: Proc. 11th Annual International
Computing and Combinatorics Conference, COCOON’2005, in: LNCS, vol. 3595, Springer, 2005, pp. 671-679], Wang showed
that the toroidal grids (the Cartesian products of two or more cycles) are antimagic. Two open problems left in Wang’s paper are
about the antimagicness of lattice grid graphs and prism graphs, which are the Cartesian products of two paths, and of a cycle
and a path, respectively. In this article, we prove that these two classes of graphs are antimagic, by constructing such antimagic
labellings.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

All graphs in this paper are finite, undirected and simple. In 1990, Hartsfield and Ringel [3] introduced the concept
of antimagic graph. An antimagic labelling of a graph with m edges and n vertices is a bijection from the set of edges
to the integers 1, ..., m such that all n vertex sums are pairwise distinct, where a vertex sum is the sum of labels of
all edges incident with that vertex. A graph is called antimagic if it has an antimagic labelling. Hartsfield and Ringel
showed that paths P, (n > 3), cycles, wheels and complete graphs K,, (n > 3) are antimagic. They conjectured that
all trees except K, are antimagic. Moreover, all connected graphs except K; are antimagic. These two conjectures are
unsettled. In 2004, Alon et al. [1] showed that the latter conjecture is true for all graphs with n vertices and minimum
degree {2(logn). They also proved that a graph G with n (>4) vertices and maximum degree A(G) > n — 2 is
antimagic, and all complete partite graphs except K, are antimagic. In [4], Hefetz proved several special cases and
variants of the latter conjecture. In particular, he proved that for integers k > 0 a graph with 3% vertices is antimagic
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Fig. 1. Antimagic labellings of P[n + 1] and C[m], forn =5,m = 5.

if it admits a K3-factor. In [5], Wang showed that the toroidal grids (the Cartesian products of two or more cycles) are
antimagic. Two open problems left in [5] are about the antimagicness of lattice grid graphs and prism graphs, which
are the Cartesian products of two paths, and of a cycle and a path, respectively.

In this paper, we prove that these two classes of graphs are antimagic, by constructing such antimagic labellings.
In contrast to toroidal grids, lattice grids and prisms have more different local structures, we will use new strategies
in the construction of the labellings. Our main results are the following two theorems, which are proved in Sections 3
and 4 respectively.

Theorem 1.1. All lattice grid graphs Pi[m + 1] x Py[n + 1] are antimagic, for integers m,n > 1.
Theorem 1.2. All prism graphs C[m] x P[n + 1] are antimagic, for integers m > 3,n > 1.

For more results, open problems and conjectures on antimagic graphs and various graph labelling problems, please
see [2].

2. Preliminaries

The Cartesian product G1 x Gy of two graphs G = (Vi, E1) and G, = (V;, E») is a graph with vertex set

Vi x Vo, and (u1, up) is adjacent to (v, v2) in G1 x G» if and only if u; = vy and urvy € E», or, uy = vy and
u1v] € Eq. The Cartesian product of two paths is a lattice grid graph, and the Cartesian product of a path and a cycle
is a prism grid graph.

Before proving our main results, we first describe antimagic labelling on paths and cycles respectively (see Fig. 1).
The labelling methods are the same as in [5], here we rephrase them for the sake of completeness.

Lemma 2.1. All paths P[m + 1] are antimagic for integers m > 2.

Proof. Suppose the vertex set is {vy, ..., vy,+1} and the edge set is arranged to be {vjvj42|i = 1,...,m — 1} U
{vmvm+1}- The following labelling f(vjvi42) = i,for 1 <i <m — 1, and f (v, vy+1) = m is antimagic, since we
have

1 i=1,2;
frn=1432—-2 i=3,...,m;
2m—1 i=m+1

Therefore,
ffoy < ff) < < fFnp). W
Lemma 2.2. All cycles C[m] are antimagic for integers m > 3.

Proof. Suppose the vertex setis {vy, ..., v;,} and the edge set is arranged to be {viva} U {vjviqoli = 1,...,m —2}U
{vim—1vm}. The following labeling f(viv2) = 1, f(vivig2) =i+ 1,for 1 <i <m —2,and f(vyu—1vy) = m is
antimagic, since we have

3 i=1;
) =142 i=2...,m—1;
2m—1 i =m.

Therefore,

ffon < frf) << ffow). N
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3. Proof of Theorem 1.1

Let f: E(Pi[m+ 1] x Po[n+1]) — {1,2,...,2mn + m + n} be an edge labelling of Pi[m + 1] x P>[n + 1],
and denote the induced sum at vertex (u, v) by f*(u,v) = Y f((u,v), (y, 2)), where the sum runs over all vertices
(v, z) adjacent to (u, v) in Pi[m+ 1] x P,[n+ 1]. To prove Theorem 1.1, first, we construct a labeling that is antimagic
on product graphs of two paths Pi[m + 1] and P>[n 4 1], for n > m > 2. Then, we give an antimagic labelling of
graphs P1[2] x Pp[n + 1], forn > 1.

3.1. Pi[m + 1] x Pp[n + 1] is antimagic, forn > m > 2

Assume that Pi[m + 1] has edge set {u;uj42li = 1,...,m — 1} U {upums1}, and Pr[n + 1] has edge set
{viviy1li = 1, ..., n}. We will construct an antimagic labelling of Pi[m + 1] x Py[n + 1] forn > m > 2, which
contains two phases.

Phase 1: For the mn + m edges contained in copies of Pi[m + 1] component (i.e. the edges ((;, v;), (u;42, v;)) and
((m, vj), Um+1, ), forl <i <m-—1,1<j <n+1),label them with even numbers 2, 4, ..., 2mn + 2m (notice
n>m).

Specifically, first label the edges of Pj[m + 1] with U and R such that uju3 is labelled with U, and two edges are
labelled with different letters if they are incident to a same vertex. Obviously, there is one unique such labelling. For
each edge u;u; € E(Pi[m + 1]) labelled with U, label the edges ((u;, v1), (uj, v1)), ((u;, v2), (uj, v2)), ..., ((u;,
Unt1), (Uj, Vyy1)) in usual order; for each edge wu;u; € E(Pi[m + 1]) labelled with R, label the edges
((ui, v1), (uj, v1)), (i, v2), (), v2)), ..., (Ui, Vyy1), (U}, vy41)) in reversed order, and

2, 4,...,2n+2, (labels for ((uy, v;), (uz, v;)),i =1,2,...,n+1)
2n+4, 2n+6, ...,4n + 4, (labels for ((u2, v;), (ug, v;)),i =1,2,...,n+1)

Phase 2: Denote by A : a; < ay < -+ < a, the sequence of all odd numbers in {1, 2, ..., 2mn 4+ m + n}, and denote
by B : by < --- < b, the sequence of all even numbers in {2mn + 2m + 1, ..., 2mn 4+ m + n}, i.e. the even numbers
that are not used in Phase 1. Notice that t < %(Zmn +m+n)— (mn+m)= %(n — m). We merge A and B into a
sequence C : ay,as,...,as—¢, b1, as—1+1,b2, ..., by, as of s + ¢t terms (s + ¢t = mn + n), and denote the sequence C
by c1, ¢2, ..., Cmn+n, Which are the labels for the other mn + n edges contained in copies of P>[n + 1] component.
For the i-th P[n + 1] component (with vertices (u;, v1), (u;, v2), ..., (Ui, vy41)), label its edges in usual order

according to the indices in the sequence C,i = 1,2, ..., m + 1, and:

c1, €2,...,Cpn, (labels forthe Ist P[n + 1] component)

Cn+1s Cn42,---,Con, (labels for the 2nd P>[n + 1] component)

Cmn+1s Cmn+2s - - - » Cmn+n» (labels for the (m + 1)-th P>[n + 1] component)

Notice that 2t < n — m, hence only the edges in the (m + 1)-th P>[n + 1] component may be labelled with even
numbers (see Fig. 2).

In what follows, we will show that the above labelling is antimagic. In the product graph Pi[m + 1] x Py[n + 1],
at each vertex (u, v), the edges incident to this vertex can be partitioned into two parts, one part is contained in a
copy of Pi[m + 1] component, and the other part is contained in a copy of P»[n + 1] component. Let fl+ (#, v) and
f;r (u, v) denote the sum at vertex (u, v) restricted to P;[m + 1] component and P>[n + 1] component respectively,
ie. f1+(u, v) = Y f((u,v), (y,v)), where the sum runs over all vertices y adjacent to u in Pi[m + 1], and
f2+(u, v) = Y f((u,v), (4, z)), where the sum runs over all vertices z adjacent to v in P;[n + 1]. Therefore,
fru,v) = f1+ (u,v) + f;r (u, v). The following two claims imply the antimagicness of the above labelling.

Claim 3.1. For the above labelling of P1[m + 1] x Pa[n + 1], n > m > 2, we have:

Frn,v) < fFunv) << fHu, o) <
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Fig. 2. Antimagic labelling of Pi[m + 1] x Pr[n + 1], form =3,n =17.

Frua, va) < fHua,vz) <+ < fHua, vp) <
Frm, v2) < fHum, v3) < < T (um, va) <
Frmer,v2) <+ < £ WUmi1, vn—2),

where t (< %(n —m)) is the number of even numbers in 2mn+2m+1, ..., 2mn+m+n}. In addition, all the above
sums are even numbers.

Proof. Since f;" (u1,v2) < fit(ui,v3) < -+ < f;7 (w1, vy) and £5F i, v2) < f i, v3) < -+ < 5 (ui, vy), we
have f¥(u1, v2) < fH(ur,v3) <+ < fQup, vp). fTur,ve) < fT(ua, v2) since fi(ur, va) < fi" (u2, v2) and
@i, o) < fof(ua, v2). fHua, v2) < fTua, v3) < -+ < fH(ua, vy) since f57 (ua, vig1) — 5 (ua, v;) > 4 and
f1+(u2, vit1) — f1+(u2, v;) > =2, it follows that fT(uz, viy1) — fT(uz,v;) > 2, fori =2,...,n—1.1fm = 2,
f1+(u3, V) = f1+(u3, vy) > f1+(M2, vy); if m > 2, f1+(u3, v2) > f((u3, v2), (uj, v2)) > f((u2, vy), (ug, vy)) =
f1+(u2, vy), where j = 4 or 5. Thus, in either case we have ffr(uz, vy) < ffr(ug, vp). Clearly, f;(uz, Un)
£ (u3, v2). Tt follows that £ (ua, va) < £+ (u3, v2).

For the vertices of degree 4, clearly, f1+(ui, ) = f1+(ui, v3) = -0 = f1+(ui, vy) fori = 3,...,m+ 1.
Moreover, f;"(u3,v2) < fi (ua, v2) < -+ < f{ (m1, v2) since f((ur, v2), (u3,v2)) < f((u2,v2), (us, v2))
coo < f(Um—1,v2), Wmt1, V2)) < f((Um, v2), (U1, v2)). It follows that

s, vw) = £z, vz) = = fif(uz, va) <
fif (ua, v2) = 7 (g, v3) = -+ = £ (g, va) <

f]+(um7 V) = f1+(um» v3) = - = f1+(’4m’ V) <

Fi @t v2) = = fiF (Ums1, Vn—2r).

A

A

On the other hand, since ¢; < ¢3 < -+ < Cmp4n—2t, We have that:

[ s, v) < £ (s, v03) < -+ < 57 (s, va) <
15 s, v) < 5 (g, v3) < -+ < foF(ug, va) <

I myv2) < foF @, v3) < -0 < f5 (U, vn) <

fo mg1,v2) < -0 < foF (g1, va—2).
Therefore,

frus,vw) < frus,ve) < < fHus,v) <

s, v) < frus,vz) <o < fHug, o) <
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FHum,v2) < fHum,v3) < - < f(um, vp) <
Frumer,v2) < - < T Umst, va—2r)-

All the above sums are even because each of them contains exactly two odd labels. W

Claim 3.2. The remaining 2m~+24-2t sums f+u1, v1), Wi, vas1), o, v1), fTW2, ves1)s .., fTWmet, v1),
FHWmat, vag1), and [ mgts Vng1=20), fHWmats vag2—20), - .o, W1, vy) are pairwise distinct. In addition,
they are all odd numbers.

Proof. Let us first consider the 2m+2 sums f+(uy, v1), f Wy, var1), f w2, v1), FT U2, vag1)s ..., fFWmat, v1),
Fmi1, Vns1), there are two natural cases:

Case 1. m is odd. In this case upus € E(Pi[m + 1]) is labelled with U, from the way we do the labelling, we
have fi7(u1, v1) < fi @1, va1) < fi2,v1) < T2, v041) < o < T @t 01) < (gt vagr) and
L) < @ vesn) < £z, o) < £y (o, vp) < o0 < fy (Umg1, 1) < f5 (Ume1, Vng1). Therefore,
Frur,v) < fHur, vee) < [T, v1) < T, vppn) < -0 < [T mar, v) < fHmgr, vasn)-

Case 2. m is even. In this case upu; € E(Pi[m + 1]) is labeled with R (where j = 3 ifm = 2, j = 4 if
m > 2), the ordering of the 2m + 2 sums f+(uy, v1), £ @i, vas1), FHua, v1), F W, vasl)s ...y fHWmat, v1),
f+(um+1, Un+1) is the same as in case 1, but between vertices (u2, v1) and (u2, v,41). Specifically, we have
Sit @i o) < fiF @ varn) < f7F e, v, £ 2, va) < fiF@s v <0 < AT e vagn) and £, v) <
5@, vagn) < fo (2, v1) < f5 o, vag1) < oo < fy (Umg1, V1) < f5 (a1, Vag1). Therefore,

Frur, vi) < fHur, vasn) < fTua,v1), £, vag1) < < fT a1, 01) < T Wmgt, Vas).

Since ftua,v1) = fif@a,v) + T, v) = @Gn+4) + Qn+ 1) = 6n+ 5 and [Tz, vpp1) =
fl"’(uz, Un+1) + f2+(u2, Upt1) = 2n +4) + (4n — 1) = 6n + 3, it follows that f+(u1, V) < f+(u1, Upt1) <
Frua, vagp) < fHuz,v1) < -+ < fHmer, v1) < fTWmgt1, Vag1).

Thus, in any of the above two cases, the 2m + 2 sums fF(ui,vy), fT(ui,vas1), fT(uz,v1),
Fruo, v )s oo fTmat, v1), fT(Wma1, Vny1) are pairwise distinct, and f+ (un41, vaa1) is the largest among
them. For the other 2¢ sums ¥ (41, Una1-2:)s £ (Umats Vna2—20)s - - -» f T (mi1, Uy), they are in strict increasing
order fT(umit, var1-2) < [T(Umyt.vpso2) < -+ < fTmp1,vn), since: fi (umit, Vari-2) =
I Wty Vngo—20) = -+ = fi Wmg1, va) and 57 g1, Vng1=20) < foF (Ume1, Vng2—20) < -+ < f5 U1, Vn).

At this point, the only remaining issue is to notice that f+(umt1, Vps1-2/) > f T (U1, Unt1), Since
fiF mat vng1=20) = £ @1, vas1) and f5F met, Vng1—2) = ag— + b1 > @mn+m+n—1-2t) + 2mn +
2m+2) > 2mn+m+n—1—m—m)+2mn+2m+2=4dmn+4m+1>2mn+m+n > a; = f2+(um+1, Upnt1)-
Hence, the 2m + 2¢ + 2 sums are pairwise distinct. They are all odd numbers since each of them contains exactly one
odd label. W

Combining Claims 3.1 and 3.2, we have proved that the above labelling of Pj[m + 1] x P;[n 4+ 1] is antimagic, for
n > m > 2. Please see Fig. 2 as an example of antimagic labelling of Pi[m + 1] x P[n + 1],form =3,n = 7.

3.2. P1[2] x Py[n + 1] is antimagic, forn > 1

Assume that P>[n + 1] has edge set {vjviy2li = 1,...,n — 1} U {vyv,41}. For n = 1, P1[2] x P>[2]

is isomorphic to C[4], hence by Lemma 2.2, it is antimagic. For n > 1, label 1,3,...,2n — 1 to the edges
((ula Ul), (I/l], U3)), ((M], UZ), (M], U4)), ceey ((ula vn—l)a (I/t], vn-ﬁ—l)), ((u17 Un), (l/l], vl’l+1))7 label 23 47 ceey 2n to the
edges ((uz, v1), (uz2,v3)), ((u2,v2), (U2,v4)), ..., ((u2, Vu—1), (U2, Vu11)), ((u2,vy), (U2, vy41)), and label 2n +

1,2n+2,...,3n 4+ 1to ((u1, v1), (u2,v1)), (1, v2), (U2, v2)), ..., ((U1, Vay1), (U2, vay1)) (see Fig. 3).

‘We will show that the above labelling (for n > 1) is antimagic. Since the vertex sums restricted to P[2] component
satisfy that f;"(u1, v1) = fi (w2, v1) < fi" (w1, v2) = fif (a2, v2) < -+ < fi7 (w1, vag1) = fi" (2, va41) (=" and
‘<’ alternate), and the vertex sums restricted to P>[n + 1] component are
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Pn+1]
I o~ 5 ~ 9 ~ 7 -~ 3
(u,v,) RI2] (,,%) (w4, v,) [CRY) (@, v,) (u,,v,) (u,,v,)
11 13 15 16 14 12
. 2 6 10 8 4
(u,,v,) (u,,v,) u(ur\-“) u(u_:,v_‘) U(u:,vh] u(uzi\-‘_‘) (u,,v,)

Fig. 3. Antimagic labellings of P{[2] x P>[2] and P;[2] X Pp[n + 1], forn = 5.

1 i =1 2 i=1;
3 i =2 4 =2
+ N ’ + N ’
LWL =146 23 n K =Ny 4 i3 n
dn—4 i=n+1; dn—2 i=n+1.
It follows that f5"(ur, v1) < f57(u2, v1) < f5 (u1,v2) < -+ < f (ua,v) = f5F i, vag1) < £ (U2, vas1)

(there is one equality). Therefore, f¥(u1, v1) < fT(uz,v1) < fT(ur, v2) < fH(uz, v2) < -+ < fHuy, vag1) <
f1(uz, vy41), implying the antimagicness of the above labelling.
Combining the above two cases, we have proved Theorem 1.1.

4. Proof of Theorem 1.2

Assume that in the product graph C[m] x P[n + 1], C[m] has edge set {ujuz} U {uju;q2|i = 1,...,m — 2} U
{um—1um}, and P[n + 1] has edge set {vjvi42li =1, ..., n—1}U{v,v,41}. To prove Theorem 1.2, first, we construct
a labelling that is antimagic on product graphs C[m] x P[n + 1] for m > 3,n > 2. Then, we give an antimagic
labelling of graphs C[m] x P[2] form > 3.

Lemma 4.1. C[m] x P[n + 1] is antimagic form > 3,n > 2.

Proof. The labelling contains two phases.

Phase 1: Using the same way as in the antimagic labelling of cycles in Lemma 2.2, label the edges on the i-th C[m]
component (with vertices (u1, v;), (U2, v;), ..., (Um, v;i)),fori =1,2,...,n+ 1, and:

1, 2,...,m, (labels for the 1st C[m] component)
m+1, m+2,...,2m, (labels for the 2nd C[m] component)

mn+1, mn+2,...,mn+m, (labels for the (n + 1)-th C[m] component)

Phase 2: Similarly, label the edges of P[n + 1] with U and R such that vjvs is labelled with U, and two edges are
labelled with different letters if they are incident to a same vertex. For each edge v;v; € E(P[n + 1]) labelled with
U, the edges ((u1, v;), (u1, vj)), ((u2, v;), (U2, v5)), ..., ((Um, vi), (Um, v;)) will be labeled in usual order; for each
edge v;v; € E(P[n + 1]) labeled with R, the edges ((u1, v;), (u1, vj)), ((u2, v;), (U2, v;)), ..., (W, vi), WUm, vj))
will be labelled in reversed order, and:

mn+m—+1, mn+m+2,...,mn+2m, (labels for ((u;, v1), (u;,v3)),i =1,2,...,m)
mn+2m+1,mn+2m+2,...,mn—+3m, (labels for ((u;, v2), (Ui, v4)),i =1,2,...,m)

2mn + 1,2mn +2,...,2mn +m, (labels for ((u;, vy), (Wi, vp41)),i =1,2,...,m)

Ifvv; € E(P[n+1]) (j =3ifn =2, j =4ifn > 2)is labeled with R (i.e. when n is even), we will take
a modification process on the 2nd C[m] component (with vertices (u1, v2), (U2, v2), ..., (uy, v2)), which goes as
follows. For each u;u; € E(C[m]), the edge ((u;, v2), (u;, v2)) will be relabelled with 3m + 1) — lo(i, j), where
lo(i, j) is the original label assigned to ((u;, v2), (1, v2)) in Phase 1 (i.e. we ‘reverse’ the labelling on the 2nd C[m]
component, whose edges will still be labelled with the same set of numbers {m+1, m+2, ..., 2m}). Then, we rename
each vertex (u;, v2) as (Uy41—i, v2), fori =1,2,...,m (see Fig. 4).
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(u,,v,) (ug,v,)
10 9
(3, ;) (uy,7,) modification (y,v,) (15,,)
B
8 9 8 7
(uy,v,) 10 (ug,v,) (u,,v,) 6 (u,,v,)

Fig. 4. Modification on the 2nd C[m] component in case n is even, form = 5.

Let f1+(u, v) and f2+(u, v) be the vertex sum at (u, v) € V(C[m] x P[n + 1]) restricted to C[m] component
and P[n + 1] component, respectively. Then, f¥(u, v) = f1+ (u,v) + f2+ (u, v) is the vertex sum at (u, v). It is easy
to see that, for the above labelling, independent of the parity of n (i.e., no matter whether there is a modification
process or not), the orderings f1+(u1, 1) < f1+(u2, m)<---< f1+(um, vp) and f2+(u1, V) < f2+(u2, m)<---<
15 (. v2) hold.

Using similar arguments, it is straightforward to prove that for the above labelling we have:

f1+(u1» V1) < f1+(u2» V) <--- < f1+(“ms vp) <

fifui,v) < fif o, v2) <o < £ (um, v2) <

S @1, vag1) < fiF (2, vpg1) < -0 < S (s Vng),
and

i o) < o v) < < S o) <

i, vw) < w2, v) < < £, v2) <

f2+(u1» Upt1) < f2+(u2, Upt1) <00 < f2+(um’ Unt1)-
Therefore,

i v) < ffuz,v) << fHum,v) <
fruiv) < ffuz,v) << fTum vn) <

Frur, vage) < U2, vag1) < -+ < [, vayg1),

which implies that the above labelling is antimagic. Please see Fig. 5 as an example of antimagic labelling of
Clm]x Pln+1],form=5n=3. A

Lemma 4.2. C[m] x P[2] is antimagic for m > 3.

Proof. Assume that C[m] has edge set {ujuz} U {u;jui2li = 1,...,m — 2} U {u—qup}. Label 1,3,...,2m —
1 tO the edges ((M], vl)’ (u27 U])), ((ula Ul)a (M}, vl))v ceey ((”mfz, U]), (uma v]))? ((MM717 vl)a (“ma vl))a la_
bel 27 4a LRI ) 2m tO the edges ((lfi], 02)» (u2» 02))’ ((l/ll, UZ)» (M3, vz))s M) ((“m—2» UZ)» (um» v2))7 ((um—la 02)»

(tm, v2)), and label 2m 4+ 1,2m + 2, ..., 3m to the edges ((u1, v1), (u1, v2)), (U2, v1), (U2, v2)), ..., ((Um, V1),
(um, v2)) (see Fig. 6).

We will show that the above labelling (m > 3) is antimagic. Since the vertex sums restricted to C[m] component
are:

4 i=1: 6 i=1
filrwi,v)=44i-2 i=2....m—1; fi i v) = 4 i=2,...,m—1;
dm —4 i =m; dm —2 [ =m.

It follows that fi*(u1, v1) < fi (1, v2) = fif o, v1) < -+ < fi @mo1,v2) = f; W, v1) < fiF (., v2) (there
are two equalities). In addition, f5"(u1, vi) = f5 (i, v2) < f5 (2, v1) = 3wz, v2) < -+ < f5 (o v1) =
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Fig. 5. Antimagic labeling of C[m] x P[n + 1], form = 5,n = 3.

(u,,v,) q

(u,,v,)

(y,v,)

10 (ugsvg)

Fig. 6. Antimagic labelling of C[m] x P[2], form = 5.

£ (um, v2) (‘=" and ‘<’ alternate). Therefore, f*(ui,v1) < fr@ui,v)) < fHwav) < fruz,m) < - <
FHum, v1) < f(um, v2), implying the antimagicness of the above labeling. W

Combining Lemmas 4.1 and 4.2, we have proved Theorem 1.2.
5. Open problems

In contrast to toroidal grids, it still seems challenging to prove the antimagicness for lattice grid graphs with
dimensions higher than two. For example, it may be interesting to construct antimagic labellings for the cubic lattice
grids P[n 4+ 1] x P[n+ 1] x P[n 4+ 1], forn > 1.
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