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Experimental realization of universal geometric
quantum gates with solid-state spins
C. Zu1, W.-B. Wang1, L. He1, W.-G. Zhang1, C.-Y. Dai1, F. Wang1 & L.-M. Duan1,2

Experimental realization of a universal set of quantum logic gates is
the central requirement for the implementation of a quantum com-
puter. In an ‘all-geometric’ approach to quantum computation1,2, the
quantum gates are implemented using Berry phases3 and their non-
Abelian extensions, holonomies4, from geometric transformation of
quantum states in the Hilbert space5. Apart from its fundamental
interest and rich mathematical structure, the geometric approach has
some built-in noise-resilience features1,2,6,7. On the experimental side,
geometric phases and holonomies have been observed in thermal en-
sembles of liquid molecules using nuclear magnetic resonance8,9; how-
ever, such systems are known to be non-scalable for the purposes of
quantum computing10. There are proposals to implement geomet-
ric quantum computation in scalable experimental platforms such as
trapped ions11, superconducting quantum bits12 and quantum dots13,
and a recent experiment has realized geometric single-bit gates in a
superconducting system14. Here we report the experimental realiza-
tion of a universal set of geometric quantum gates using the solid-state
spins of diamond nitrogen–vacancy centres. These diamond defects
provide a scalable experimental platform15–17 with the potential for
room-temperature quantum computing16–19, which has attracted strong
interest in recent years20. Our experiment shows that all-geometric
and potentially robust quantum computation can be realized with
solid-state spin quantum bits, making use of recent advances in the
coherent control of this system15–20.

Under adiabatic cyclic evolution, a non-degenerate eigenstate of a quan-
tum system acquires a phase factor, which has a dynamical component
proportional to the time integral of the eigenstate energy and a geomet-
ric component determined by the global property of the evolution path.
This geometric phase, first discovered by Berry3, has been linked with
many important physics phenomena21. If the system has degenerate eigen-
states, the Berry phase is replaced by a geometric unitary operator acting
on the degenerate subspace, called a holonomy by analogy with differ-
ential geometry. The holonomies do not in general commute with each
other. In the proposed geometric approach to quantum computation1,2,
such holonomies are exploited to realize a universal set of quantum gates,
compositions of which then can be used to perform arbitrary quantum
computation tasks. Because holonomies are determined by global geo-
metric properties, geometric computation is more robust to certain con-
trol errors1,2,6,7. The implementation of geometric quantum computation
has been proposed in several quantum bit (qubit) systems11–13; however,
it remains experimentally challenging to realize a universal set of gates
using holonomies alone, because of the requirements of slow adiabatic
evolution and a complicated level structure.

In the recent proposal of non-adiabatic geometric quantum compu-
tation6,22, universal quantum gates are constructed fully by geometric
means without the requirement of adiabatic evolution, thereby com-
bining speed with universality. Under a cyclic evolution of the system
Hamiltonian H(t) (with H(t) 5 H(0), where t is the cycle period), we
let jjl(t)æ (l 5 1, 2, …, M) denote instantaneous orthonormal bases (mov-
ing frames) which coincide with the basis vectors jjlæ of the computa-
tional space C at t 5 0 and t 5 t, with jjl(t)æ 5 jjl(0)æ 5 jjlæ. The evolution
operator U(t) for the basis states jjlæ has two contributions: a dynamic

part and a fully geometric part6. If the parallel-transport condition
Æjl(t)jH(t)jjl9(t)æ 5 0 is satisfied for any l and l9 at any time t, then the
dynamic contribution becomes identically zero and U(t) is given by

U tð Þ~T exp i
ðt

0

A dt

2
4

3
5 ð1Þ

where T indicates time-ordered integration and A 5 [All9] 5

[Æjl(t)jihtjjl9(t)æ] is the M 3 M connection matrix6. The form of U(t)
is identical to the Wilczek–Zee holonomy in the adiabatic case4,6.
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Figure 1 | Geometric gates in a diamond nitrogen–vacancy centre.
a, Illustration of a nitrogen–vacancy (NV) centre in a diamond with a proximal
C13 atom. b, Encoding of a qubit in the spin-triplet ground state of the nitrogen–
vacancy centre and the microwave coupling configuration. The spin-0 state
provides an ancillary level | aæ for geometric manipulation of the qubit.
c, A geometric picture of the holonomic gates. Under a cyclic Hamiltonian
evolution, the dark state | Dæ and the bright state | Bæ rotate by 2p around the
North Pole of the Bloch sphere and, respectively, along its equator, acquiring
geometric phase of 0 and, respectively, p (half of the swept solid angle).
When we choose different forms of the dark and bright states, by controlling
parameters in the Hamiltonian, this state-dependent geometric phase leads
to the corresponding holonomic gates. d, The time sequence for
implementation and verification of single-qubit geometric gates.
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Our experiment realizes a universal set of quantum gates using only
non-adiabatic holonomies6. Single-bit gates, together with entangling
controlled-NOT (CNOT) operation, are universal for quantum compu-
tation. Our realization is based on the control of electron and nuclear
spins in a diamond nitrogen–vacancy centre that effectively form a quan-
tum register20. To realize the single-bit geometric gates, we manipulate
the electron spin states of a nitrogen–vacancy centre (Fig. 1a) in a syn-
thetic diamond at room temperature (see Methods for a description of
the experimental set-up). The nitrogen–vacancy centre has a spin-triplet
ground state. We take the Zeeman components jm 5 21æ ; j0æ and
jm 5 11æ ; j1æ as the qubit basis states and use jm 5 0æ ; jaæ as an
ancillary level for geometric manipulation of the qubit. The spin state
is initialized through optical pumping to the jm 5 0æ level and read out
by distinguishing different fluorescence levels of the states under illu-
mination of a short green laser pulse20 (see Methods for the calibration
of fluorescence levels of different states). We apply a magnetic field of
451 G along the nitrogen–vacancy axis using a permanent magnet. Under
this field, the nearby nuclear spins are polarized by optical pumping23,
enhancing the coherence time of the electron spin.

The transitions from the qubit states j0æ and j1æ to the ancillary level
jaæ are coupled by microwave pulses controlled using an arbitrary-
waveform generator, with Rabi frequencies V0(t) (for the j0æ R jaæ tran-
sition) and V1(t) (for the j1æ R jaæ transition) (Fig. 1b). We vary the

amplitude V tð Þ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

0zV2
1

q
but fix the ratio V1/V0 5 eiQtan(h) to be

constant. The Hamiltonian for the coupling between these three levels
takes the form

H1 tð Þ~BV tð Þ cos (h) 0j izeiwsin( h) 1j i
� �

ah jzH:c:
� �

where B is Planck’s constant divided by 2p and H.c. denotes the Her-
mitian conjugate. We define the bright state as jBæ 5 cos(h)j0æ 1

eiQsin(h)j1æ and the dark state as jDæ 5 2e2iQsin(h)j0æ 1 cos(h)j1æ. When
V(t) makes a cyclic evolution with V(0) 5 V(t) 5 0, the bright state
evolves as jB(t)æ 5 eia(t)[cos(a(t))jBæ 1 sin(a(t))jaæ], where a tð Þ:Ð t

0 V t0ð Þ dt0, while the dark state remains unchanged. After a cyclic evo-
lution with a(t) 5p, the bright and dark states pick up geometric phases
of p and 0, respectively (Fig. 1c). We take the moving frame as jj0(t)æ
5 cos(h)jB(t)æ 2 eiQsin(h)jDæ, jj1(t)æ 5 e2iQsin(h)jB(t)æ 1 cos(h)jDæ,which
makes a cyclic evolution with jjl(0)æ 5 jjl(t)æ 5 jlæ (l 5 0, 1). For this
evolution, it can easily be checked that the condition Æjl(t)jH(t)jjl9(t)æ
5 0 is always satisfied, such that there is no dynamic contribution to
the evolution operator U(t) (ref. 6). Using equation (1), we find the
holonomy

U tð Þ~
{cos 2hð Þ {eiQsin 2hð Þ

{e{iQsin 2hð Þ cos 2hð Þ

� �

in the computational basis {j0æ, j1æ}.
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Figure 2 | Experimental results for single-bit
geometric gates. a–c, The measured process
matrix elements for the rotation gate A (a), the
NOT gate N (b) and the Hadamard gate H (c).
The measured tiny imaginary parts of the process
matrices for the NOT and Hadamard gates are not
shown. The hollow caps in these figures denote
the corresponding matrix elements for the ideal
gates. d, The measured fidelities of the final states
compared with the ideal output (error bars
denote s.d.) after application of a sequence of the
geometric NOT gates to initial states | 0æ and | 1æ.
By fitting the data under the assumption of
independent error for each gate, we obtain the error
induced by each NOT gate at (0.24 6 0.06)%.
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We evolve the Rabi frequencies Vi(t) along three different loops, with
the parameters (h, Q) chosen respectively as (3p/4, 0), (3p/4, p/8) and
(5p/8, 0). The three geometric gates resulting from these cyclic evolutions
are denoted by the NOT gate N, the rotation gate A and the Hadamard
gate H, respectively. The combination of gates N and A gives the well-
known p/8-gate T 5 NA. Together, N, A and H make a universal set of
single-bit gates. To characterize these geometric gates, we use quantum
process tomography by preparing and measuring the qubit in different

bases24, with the time sequence shown in Fig. 1d. The matrix elements
for each process are shown in Fig. 2a–c, which are shown, for compar-
ison, with the corresponding elements of the ideal gates. From the pro-
cess tomography (Methods), we find the process fidelities FP 5 (96.5
6 1.9)%, (96.9 6 1.5)% and (92.1 6 1.8)% for the N, A and H gates, re-
spectively. The major contribution to the infidelity actually comes from
the state preparation and detection error in the quantum process tomo-
graphy. To measure the intrinsic gate error, we concatenate a series of
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Figure 3 | Level scheme and pulse sequence for the geometric CNOT gate.
a, The level structure of the electron and the nuclear spins for the geometric
CNOT gate and the microwave and radio-frequency (RF) coupling
configuration. b, Optically detected magnetic resonance spectroscopy obtained
by measuring the fluorescence level while scanning the frequency of the
microwave that couples to the transition between | aæ (spin 0) and | 1æ (spin 1).
The two dips at 33.6 G (inset) represent the hyperfine splitting caused by the
unpolarized nuclear spin. The very asymmetric dips at 451 G indicate that the
nuclear spin has been polarized. c, The time sequence for implementation

and verification of the geometric CNOT gate between the electron and the
nuclear spins. The CNOT gate is implemented by applying the pulses MW0
and MW1 simultaneously. Microwave pulses MW2 and MW3 are used,
in addition to MW0 and MW1, to implement a spin echo to increase the
spin coherence time. To verify the CNOT gate, we use a combination of
MW0–MW3 and a radio-frequency pulse to prepare various initial
superposition states and measure the final output in different bases through
quantum state tomography.
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gates and examine the fidelity decay as the number of gates increases19.
As an example, we show in Fig. 2d the fidelity decay by concatenating
the NOT gates. From the data, we find that the intrinsic error per gate
is about 0.24%. This can be compared with the 1% error rate for the
dynamic NOT gate using optimized pulses and the same method of
measurement19. The achieved high fidelity indicates that geometric ma-
nipulation is indeed resilient to control errors.

To realize the geometric quantum CNOT gate, we use one nearby
C13 nuclear spin as the control qubit (with the basis vectors j"æ and Æ#j)
and the nitrogen–vacancy centre electron spin as the target qubit25. Both
the electron spin and the nuclear spin are polarized through optical
pumping under the 451 G magnetic field, which is confirmed by optic-
ally detected magnetic resonance spectroscopy (Fig. 3b). The spins are
interacting with each other through hyperfine and dipole couplings,
and the resultant level configuration is shown in Fig. 3a. By applying
state-selective microwave and radio-frequency pulses, we can couple
different levels. In particular, for the microwave pulses MW0 and MW1,
with respective Rabi frequencies V0(t) and V1(t), we have the following
coupling Hamiltonian:

H2 tð Þ~BV tð Þ 0,:j i{ 1,:j ið Þ a,:h jzH:c:½ �=
ffiffiffi
2
p

Here we have fixed the ratio V1/V0 5 21. Under cyclic evolution of

V(t) with
ðt

0
V tð Þ dt~p, we find the holonomy U(t) 5 j"æÆ"jfl N 1

j#æÆ#jfl I using equation (1), where I denotes the 2 3 2 unit matrix.
This achieves the quantum CNOT gate exactly.

To characterize the geometric CNOT gate, we apply the gate to the
qubit basis states as well as their superpositions, and measure the fi-
delity of the final states relative to the ideal outputs, by quantum state
tomography24. The superposition of the nuclear spin states required for
state preparation and measurement is generated using radio-frequency
pulses, which takes longer than it would with microwave pulses owing
to the much smaller magnetic moment of the nuclear spin. The electron
spin decoherence is significant during the slow radio-frequency pulses.
To correct that, we apply a Hahn spin echo in the middle of the whole
operation with the time sequence shown in Fig. 3c. The measured state
fidelities are listed in Fig. 4a under typical input states. A hallmark of
the entangling operation is that the geometric CNOT gate generates en-
tanglement from the initial product state. As an example, for the input
state j0æ fl (j"æ 1 j#æ) (unnormalized), the matrix elements of the out-
put density operator are shown in Fig. 4b, with a measured entangle-
ment fidelity of (90.2 6 2.5)% and a concurrence of 0.85 6 0.05, which
unambiguously confirms entanglement10.

Our experimental realization of a universal set of holonomic gates
using individual spins paves the way for all-geometric quantum com-
putation in a solid-state system. The electron and nuclear spins of dif-
ferent nitrogen–vacancy centres can be wired up quantum mechanically
to form a scalable network of qubits through, for example, direct dipole
interaction16,18, spin-chain assisted coupling by the nitrogen dopants17,26

or photon-mediated coupling15,27,28. The technique used here for the
geometric realization of universal gates may also find applications in
other scalable experimental systems, such as trapped ions or super-
conducting qubits. The geometric phase is closely related to the topo-
logical phase29,30, and the demonstration of gates using only holonomies
is a step towards realization of topological computation30, the most robust
way of quantum computing.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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METHODS
Experimental set-up. We use a home-built confocal microscopy, with an oil-
immersed objective lens (NA 5 1.49), to address and detect single nitrogen–vacancy
centres in a type-IIa, single-crystal synthetic diamond sample (Element Six). A 532 nm
diode laser, controlled by an acoustic optical modulator (AOM), is used for spin-
state initialization and detection. We collect fluorescence photons (wavelength ranging
from 637 to 850 nm) into a single-mode fibre and detect them using the single-
photon counting module (SPCM), with a counting rate of 105 kHz and a signal-to-
noise ratio of 15:1. The diamond sample is mounted on a three-axis, closed-loop
piezoelectric actuator for submicrometre-resolution scanning. An impedance-matched
gold coplanar waveguide (CPW) with a 70mm gap, deposited on a coverslip, is used
for delivery of radio-frequency and microwave signals to the nitrogen–vacancy centre.

In our experiment, we find a single nitrogen–vacancy centre with a proximal C13

of 13.7 MHz hyperfine strength (Fig. 1). To polarize the nearby nuclear spins (C13

and the host N14), we apply a magnetic field of 451 G along the nitrogen–vacancy
axis using a permanent magnet. Under this field, the electron spin levels jm 5 0æ
and jm 5 21æ become almost degenerate in the optically excited state (called the
esLAC, the electron-spin level anti-crossing23), which facilitates electron-spin/nuclear-
spin flip-flop process during optical pumping. The spin flip-flop process leads to
polarization of the nitrogen nuclear spin on the nitrogen–vacancy site and the
nearby C13 nuclear spins after 2 ms green laser illumination23. The Zeeman energy
from the 451 G magnetic field shifts the respective energy differences between elec-
tron spin states jm 5 0æ and j21æ and j0æ and j11æ from the zero-field splitting,
2,870 MHz, to 1,601 MHz and 4,141 MHz, and shifts the corresponding nuclear-
spin hyperfine splittings for the j21æ and j11æ levels from 13.7 MHz to 14.15 MHz
and 13.25 MHz. Owing to the large energy difference of the m 5 61 levels, we apply
two independent microwave sources (Rohde–Schwarz), locked by a 10 MHz ref-
erence rubidium clock, to address each transition. To adjust the frequency and phase
of the microwave pulses, we mix each microwave output with an arbitrary-waveform
generator (AWG; Tektronix; 500 MHz sample rate). Radio-frequency signals for
nuclear spin manipulation are generated directly by another analogue channel of
the AWG. All the microwave and radio-frequency signals are amplified by inde-
pendent amplifiers, combined through a home-made circuit, and delivered to the
CPW. The digital markers of the AWG are used to control the pulse sequence (in-
cluding the laser and the SPCM) with a timing resolution of 2 ns.

For each experimental cycle, we start the sequence with 2ms of laser illumina-
tion to polarize the nitrogen–vacancy electron spin and nearby nuclear spins, and
end it with a 3ms laser pulse for spin state detection. We collect signal photons for
300 ns right after the detection laser rises (reaches full intensity), and for another

300 ns for reference 2ms later. With a photon collection rate of 105 kHz, we have
an average of 0.03 photon counts per cycle. To measure each datum, we repeat the
experimental cycle at least 106 times, resulting in a total photon count of 3 3 104.
The error bars of our data account for the statistical error associated with the photon
counting. To calculate the error bar of each datum, we use Monte Carlo simulation
by assuming a Poissonian distribution for the photon counts. For each simulation
trial, we calculate the value of each datum. Then, by sampling over all the trails ac-
cording to the Poissonian distribution, we get the statistics of the data (including
their mean value and standard deviation (the error bar)).
Calibration of fluorescence levels for different states. Owing to the esLAC that
induces spin flip-flop during the detection and the imperfect initial polarization of
the electron and nuclear spins, each spin component jm, mnæ (m 5 0, 61; mn 5

", #) may fluorescence at different levels. We note that the spins are predominantly
in the state jm 5 0, mn 5 "æ after the optical pumping. To calibrate the fluorescence
level of each state, we therefore associate the detected fluorescence level right after
the optical pumping with the state jm 5 0, mn 5 "æ. With microwave or radio-
frequency p-pulses (the p-pulses are calibrated through Rabi oscillations), we can
make a complete transfer between jm 5 0, mn 5 "æ and any other jm, mnæ spin com-
ponent. For instance, with ap-pulse between jm 5 0, mn 5 "æ and jm 5 0, mn 5 #æ
right after the optical pumping, we associate the detected fluorescence level with
the jm 5 0, mn 5 #æ state. In this way, the characteristic fluorescence level of each
component jm, mnæ can be calibrated. With the calibrated fluorescence level for each
spin component, we then read out the system state after the geometric gates through
quantum state tomography24.
Quantum process tomography. A quantum process can be described by a com-
pletely positive map e acting on an arbitrary initial state ri, transferring it to rf ;
e(ri). In quantum process tomography (QPT), we choose a fixed set of basis oper-
ators {Em} so that the map e rið Þ~

P
mn EmriE

{
nxmn is identified with a process matrix

xmn. We experimentally measure this process matrix x by the maximum-likelihood
technique24. For single-bit QPT, we set the basis operators to be I 5 I, X 5 sx, Y 5

2isy, Z 5 sz and choose the four different initial states j0æ, j1æ, 0j iz 1j ið Þ
	 ffiffiffi

2
p

and
0j i{i 1j ið Þ

	 ffiffiffi
2
p

. We reconstruct the corresponding final density operators through
the standard quantum state tomography and use them to calculate the process
matrix xe. This process matrix xe is compared with the ideal one xid by calculating
the process fidelity FP 5 Tr(xexid). The process fidelity FP also determines the aver-
age gate fidelity �F according to the formula �F~ dFPz1ð Þ= dz1ð Þ (ref. 24), where �F
is defined as the fidelity averaged over all possible input states with equal weight and
d is the dimension of the state space (with d 5 2 for a single qubit).
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