
Decision Trees, Protocols, and

the Fourier Entropy-Influence Conjecture

Andrew Wan∗

Harvard University
atw12@seas.harvard.edu

John Wright†

Carnegie Mellon University
jswright@cs.cmu.edu

Chenggang Wu‡

IIIS,Tsinghua University
wcg06@mails.tsinghua.edu.cn

August 23, 2013

Abstract

Given f : {−1, 1}n → {−1, 1}, define the spectral distribution of f to be the distribution on

subsets of [n] in which the set S is sampled with probability f̂(S)2. Then the Fourier Entropy-
Influence (FEI) conjecture of Friedgut and Kalai [FK96] states that there is some absolute

constant C such that H[f̂2] ≤ C · Inf [f]. Here, H[f̂2] denotes the Shannon entropy of f ’s
spectral distribution, and Inf [f] is the total influence of f . This conjecture is one of the major
open problems in the analysis of Boolean functions, and settling it would have several interesting
consequences.

Previous results on the FEI conjecture have been largely through direct calculation. In
this paper we study a natural interpretation of the conjecture, which states that there exists a
communication protocol which, given subset S of [n] distributed as f̂2, can communicate the
value of S using at most C · Inf [f] bits in expectation. Using this interpretation, we are able
show the following results:

• First, if f is computable by a read-k decision tree, then H[f̂2] ≤ 9k · Inf [f].
• Next, if f has Inf [f] ≥ 1 and is computable by a decision tree with expected depth d, then

H[f̂2] ≤ 12d · Inf [f].
• Finally, we give a new proof of the main theorem of O’Donnell and Tan [OT13], i.e. that

their FEI+ conjecture composes.

In addition, we show that natural improvements to our decision tree results would be sufficient
to prove the FEI conjecture in its entirety. Thus, our results are effectively the “last word”
on the FEI conjecture as it relates to decision trees. We believe that our methods give more
intuitive and illuminating proofs than previous results about the FEI conjecture.

∗This research was partially supported by NSF grant CCF-964401.On leave from Tsinghua University.
†Supported by NSF grants CCF-0747250 and CCF-1116594 and a grant from the MSR–CMU Center for Compu-

tational Thinking.
‡This work was supported in part by the National Basic Research Program of China Grant 2011CBA00300,

2011CBA00301, the National Natural Science Foundation of China Grant 61033001, 61061130540. Research done
while visiting Carnegie Mellon University.

1

1 Introduction

Given a Boolean function f : {−1, 1}n → {−1, 1}, define the spectral distribution of f to be the
distribution on subsets of [n] in which the set S is sampled with probability f̂(S)2. Overloading
notation, we will denote this distribution by f̂2. Write X ∼ f̂2 for the random variable which
is distributed according to f̂2. The Fourier Entropy-Influence (FEI) Conjecture of Friedgut and
Kalai [FK96] states that there is some absolute constant C such that H[X] ≤ C · Inf [f], where
Inf [f] is the total influence of f , and H[X] is the spectral entropy of f (equivalently, the Shannon
entropy of X), which equals

H[X] =
∑
S⊆[n]

f̂(S)2 log

(
1

f̂(S)2

)
.

The FEI Conjecture has been shown to have several interesting consequences, including a learning
algorithm for DNFs in the agnostic learning model [Man94, GKK08] , the famed KKL Theorem
[KKL88], and resolving it is a central question in the analysis of Boolean functions. See [Kal07,
OWZ11] for a comprehensive introduction to the subject.

Verifying the conjecture for individual functions—such as Majority, AND/OR, and Tribes(see [O’D03]
for definitions)—can be done via straightforward calculation. Verifying it for larger classes of
functions requires more subtle argumentation. To date, it has been shown to hold for random
DNFs [KLW10], symmetric functions and read-once decision trees [OWZ11], and read-once formu-
las [OT13, CKLS13]. Unfortunately, this conjecture lends itself to proofs which are at times opaque
and conceptually unilluminating. Perhaps one of the reasons is that whereas the total influence
Inf [f] is a central quantity in the analysis of Boolean functions, the spectral entropy H[X] is rarely
encountered and poorly understood.

In this paper we consider the natural interpretation of the FEI conjecture as stating the existence
of a coding scheme for the random variable X with a certain performance. Roughly speaking, the
coding scheme must use, on average, some fixed constant times the size of X (see Section 1.1
for a precise description). Using this interpretation, we give three results concerning the FEI
conjecture; we believe our proofs demonstrate that, for many cases, this interpretation could be the
more natural way to reason about spectral entropy and can yield straightforward and conceptually
interesting proofs.

For our first result, we verify the conjecture for read-k decision trees, where k is a constant. This
is the class of decision trees in which each variable is queried at no more than k distinct locations
in the entire tree. Previous results—those for read-once decision trees [OWZ11] and read-once
formulas [OT13, CKLS13]—failed to generalize even to the read-twice case, as allowing a decision
tree to be read-twice introduces correlations between different parts of the tree, and this is difficult
to analyze. In this paper, we surmount this barrier, proving:

Theorem 1.1. Suppose f : {−1, 1}n → {−1, 1} can be computed by a read-k decision tree, and let
X ∼ f̂2. Then H[X] ≤ 9k · Inf [f].

A natural question is whether this can be improved to show the FEI conjecture for read-
k(n) decision trees, where k(n) = ω(1) is a slowly growing function of n. However, a simple
padding argument shows that this would be sufficient to prove the full FEI conjecture: given
f : {−1, 1}n → {−1, 1}, one could add enough dummy variables to f so that k(·) is at least 2n, and
since any n-variable function is trivially computable by a read-2n decision tree, f would satisfy the
conjecture. Thus, it is natural that one should be able to prove the conjecture for read-constant
decision trees but go no further.

2

Using much of the same proof as for Theorem 1.1, we then verify the conjecture for decision
trees with expected depth d, where d is a constant. The FEI conjecture trivially holds for depth-d
decision trees, which have a bounded number of variables, and so what makes this interesting is
that we only require a bound on the expected depth of the tree. Our result is:

Theorem 1.2. Suppose f : {−1, 1}n → {−1, 1} is computable by a decision tree whose expected
depth is d. Further, suppose Inf [f] ≥ 1. Then H[f̂2] ≤ 12d · Inf [f].

As before, if we could show the FEI conjecture for decision trees with expected depth d(n), where
d(n) = ω(1) is a slowly growing function of n, we would be able to show the full FEI conjecture.
In addition, the requirement in Theorem 1.2 that Inf [f] be reasonably large is necessary, as we
show in Appendix E. We note that this result (with a better constant) also follows from the bound
H[f̂2] ≤ 2d, which was proven independently by [CKLS13].

For our final result, we give a new proof of the main theorem from [OT13]. Let f and g1, . . . , gk
be Boolean functions, and consider the composition h = f(g1, . . . , gk), where each gi is over its own
set of variables. Their paper considers the following question: supposing that f and gi’s satisfy the
FEI conjecture with constant C, what can one conclude about h? Perhaps their main contribution
is in noting that from f ’s perspective, it is not receiving perfectly unbiased bits as inputs, but
E[gi]-biased bits. Thus it is natural that it shouldn’t matter whether f satisfies the FEI conjecture,
but rather whether it satisfies some E[gi]-biased version of the FEI conjecture. They formulate
this biased version of the FEI conjecture, which they call the FEI+ conjecture 1, and prove the
following composition theorem:

Theorem 1.3 (Informal). Suppose f and g1, . . . , gk satisfy the FEI+ conjecture with constant C.
Then h = f(g1, . . . , gk) also satisfies the FEI+ conjecture with constant C.

They proved this by expanding the expressions H[X] and Inf [h] in terms of the Fourier co-
efficients of f and g1, . . . , gk, and comparing the results. Owing to our interpretation of the FEI
conjecture as being about codes, our new proof of this theorem shows that codes compose in a very
clean way.

We now describe our interpretation of the FEI conjecture and discuss our main results in more
detail.

1.1 The FEI Conjecture as a Coding Bound

Let X ∼ f̂2. We view the Fourier Entropy-Influence Conjecture as stating the existence of highly
efficient coding schemes for communicating the value of X . To explain this, we begin with some
standard information theory background. Given a domain D and an output alphabet Σ, a code on
D is a function c : D → Σ∗. We say that c is prefix-free if c(x) is never a prefix of c(y) for distinct
x, y ∈ D. If x is a random variable which takes values in D, then the average number of characters
output by c, called the length of c, is E[|c(x)|], and we often care about finding a code c which
minimizes this quantity. The source coding theorem of Shannon says that H[x] is roughly the best
possible length achievable by a prefix-free code:

Theorem 1.4 (Shannon’s source coding theorem [Sha48]). Let x be a random variable over a
domain D and let Σ be a finite alphabet.

1. If c : D → Σ∗ is a prefix-free code for x, then H[x]/ log2 |Σ| ≤ E[|c(x)|].
1Another key aspect of their definition, necessary for composition to work, is that the functions f and g1, . . . , gk

must satisfy a slightly stronger relationship between entropy and influence.

3

2. Furthermore, there exists a prefix-free code c : D → Σ∗ such that E[|c(x)|] ≤ H[x]/ log2 |Σ|+1.

(In fact, this theorem applies to the more general class of uniquely decodable codes, but it is
sufficient for our purposes that we only consider prefix-free codes.)

This suggests that if we want to upper bound the entropy of X ∼ f̂2, we should try to design
an efficient protocol for communicating the value of X . The formula Inf [f] =

∑
S |S| · f̂(S)2

shows that Inf [f] is actually the expected size of the set X . Thus, showing a bound of the form
H[X] ≤ C · Inf [f] for a function f requires showing a protocol for communicating the value of X
which uses at most a constant number of bits on average for each element of X . As an example,
consider the following protocol for encoding the value of a set S ⊆ [n]:

P(S):

• For each i ∈ S, output the ⌈log n⌉-bit description of i.

• Output ⊥.

Here ⊥ is a termination character which prevents different codewords from being prefixes of each
other. (Without it, the codeword for {1} would be a prefix of the codeword for {1, 2}, for example.)

Given the output of this protocol, one can uniquely determine the value of S. Furthermore, the
protocol uses exactly ⌈log n⌉ · |S|+ 1 characters to code S. As a result, we have

E[|P(X)|] = ⌈log n⌉ ·E[|X |] + 1 = ⌈log n⌉ · Inf [f] + 1, (1)

giving an upper bound of H[X] ≤ log2 3 · (⌈log n⌉ · Inf [f] + 1). This is (ignoring the log2 3 factor)
the well-known “weak” upper bound [OWZ11, KMS12], which is essentially the best-known upper
bound for a general Boolean f (and is tight when f is real-valued).

With some extra work, we can remove the (+1) from Equation (1) while adding only a small
factor to the coefficient of Inf [f]. This is important for the case when f is heavily biased and Inf [f]
is small (for example, when f is the AND function). As a start, consider the modified protocol P ′

which has the same first line as P but the following second line instead:

• If S ̸= ∅, output ⊥.

This will only output ⊥ when S ̸= ∅. For X ∼ f̂2, the probability that X ̸= ∅ is
∑

S ̸=∅ f̂
2(S) =

Var[f] ≤ Inf [f]. As a result, E[|P ′(X)|] ≤ (⌈log n⌉ + 1) · Inf [f]. However, P ′ is no longer prefix-
free: P ′(∅) is the empty string, and is therefore a prefix of P ′(S) for every S. The following lemma,
which is implicit in [OWZ11], shows that such a protocol stills gives an entropy bound at a cost of
2 · Inf [f].

Lemma 1.5. Let X ∼ f̂2, and let P : 2[n] → Σ∗ be a prefix-free protocol, except it outputs an empty
string on the input ∅. Then H[X] ≤ log2 |Σ| ·E[|P(X)|] + 2 · Inf [f].

For completeness, we include a proof of this lemma in Appendix B. Applying this lemma to the
protocol P ′ in the previous example shows that H[X] ≤ (log2 3 · (⌈log n⌉+ 1) + 2) · Inf [f].

As the above example illustrates, it is natural for a protocol to output nothing when X = ∅.
For convenience, we will call such protocols almost prefix-free. 2

4

x1

x5 x3

x3
x2

x6

x2

x5 x7

-1 -1

-1

-1

1 1

1 1 1

1

Figure 1: A path for the set S = {1, 3}. The other possible path is x1 → x3.

1.2 Decision Tree Protocol

Let f : {−1, 1}n → {−1, 1} be computed by a decision tree T , and let X ∼ f̂2. To prove Theorem-
s 1.1 and 1.2, we give an efficient protocol for communicating the value of X . The protocol we use
is simple: for a set S ⊆ [n], f̂(S)2 can be nonzero only if there is a root-to-leaf path in T which
contains all the variables in S and, potentially, some extra variables. This means that any value
which X takes with nonzero probability must correspond to at least one such path in the tree T .
The protocol outputs the left/right description of such a path (stopping when the path has reached
all the variables in X), along with a sequence of bits indicating which indices along the path are
contained in X . Then, if X ̸= ∅, it terminates with a ⊥.

For example, consider the tree in Figure 1. If the protocol were given the set S = {1, 3}, then
there are two paths it could use: x1 → x5 → x3 and x1 → x3. Supposing it chose the first path, it
would output 0, 1 for the description of the path, then 1, 0, 1 to indicate that x1 and x3 are in S
but x5 is not, and finally it would output ⊥. So the total output string would be 0, 1, 1, 0, 1,⊥. If
it used the other path, the output string would be 1, 1, 1,⊥. We defer the complete description of
the protocol, including how it chooses between the possible paths, until Section 2.

Note that when X = ∅, the protocol simply outputs an empty path. We show the following
bound on the performance of this protocol which, when combined with Lemma 1.5 (and the fact
that k and d are at least 1), yields Theorems 1.1 and 1.2:

Theorem 1.6. Suppose f : {−1, 1}n → {−1, 1} is computable by a read-k decision tree whose
expected depth is d, and let X ∼ f̂2. Then there is an almost prefix-free protocol for X with length
at most min{(2k + 2) · Inf [f], 4 · Inf [f] + 2d} and alphabet size |Σ| = 3.

This protocol relies heavily on the intuition that the structure of a decision tree should indicate
which variables are significant. For example, the root variable should be very important, as should
variables in the upper levels of the tree. Thus, even though the path outputted by the protocol
always includes the root variable and and almost always includes the variables in the upper levels
of the tree, this should not be a problem given that these variables are highly influential.

It is possible, however, to construct trees which do not fit this intuition: for example, consider a
decision tree T which contains one set of variables on levels 0 through l−1, and has rooted at every
node on level l a copy of a decision tree T ′ over a different set of variables. An example of such a
tree is given in Figure 2 for l = 2. As all paths lead to T ′, the variables in the first l levels clearly
have influence zero. Unfortunately, the described protocol will always output a path containing a
variable from each of these l levels, as each path from the root to an influential variable must go

2An almost prefix-free protocol is implicit in the proof of the FEI conjecture for symmetric functions in [OWZ11],
and ignoring the case when X = ∅ is even explicitly built into the definition of the FEI+ conjecture in [OT13].

5

x1

x5 x3

T
′

T
′

T
′

T
′

Figure 2: A bad tree. The T ′s are identical and do not contain x1, x3, or x5.

through these levels. Thus, for any arbitrary l, one can make this protocol output 2l extraneous
characters for any nonempty input set, regardless of the influence of the function.

This is not so problematic for the case when T has small expected depth or is read-k, for k a
small constant. In the above example, every level of dummy variables adds one to the depth of T ,
and so this construction is limited by the expected depth of T . Furthermore, since a copy of T ′ is
rooted at every level-l node, T is itself at least a read-2l decision tree, in which case the fact that
the protocol outputs only 2l more bits than it should is perhaps not too concerning.

To analyze this example, we note that for each level i between 0 and l−1, every node at level i has
a pair of highly covariant children. In other words, for a node at level i, if g and h are the functions
computed by that node’s left and right subtrees, respectively, then as g = h, Cov[g, h] = Var[f].
Imagining that Var[f] is large, then it is exactly these nodes with highly covariant children which
are troublesome. To keep track of these troublesome nodes, we define the quantity of tree covariance
for T , written Cov[T]. If T ’s left and right subtrees T0 and T1 compute the functions g and h,
then Cov[T] can be defined recursively as Cov[T] = Cov[g, h] + 1

2 (Cov[T0] +Cov[T1]), with the
base case that Cov[T] = 0 if T computes a constant function. We show that the performance of
this protocol on a general tree T depends on Cov[T]:

Lemma 1.7. The length of the above protocol is 4 · Inf [f] + 2 ·Cov[T].

It is a simple fact (see Proposition 2.2) that Cov[T] ≤ d if T has expected depth d, and so
Lemma 1.7 implies that the length of the protocol is at most 4 · Inf [f] + 2d, which gives a part of
Theorem 1.6.

Upper bounding Cov[T] for read-k decision trees is more complicated. For intuition, consider
the case when k = 2. At the extreme, if Cov[g, h] were to equal one, then this would mean
that g = h, in which case every variable relevant to g is also relevant to h, and vice versa. In
particular, this means that every variable queried in T0 to compute g must also be queried in T1

to compute h, meaning that T0 cannot have any variables which appear twice (as T is read-twice).
And if T0 is read-once, then the functions computed by its left and right subtrees must be entirely
uncorrelated, as they depend on different variables. Thus, in this case Cov[T0] = Cov[T1] = 0, so
Cov[T] = Cov[g, h] = 1. The result, intuitively, is that T has a finite amount of tree covariance to
go around, and once it uses it up at a given level, the remaining levels must be uncorrelated. We
extend this intuition into a bound on the tree covariance for read-k decision trees.

Lemma 1.8. Let f : {−1, 1}n → {−1, 1} be computed by a read-k decision tree T . Then Cov[T] ≤
(k − 1) ·Var[f].

Combining this lemma with Lemma 1.7 and the fact that Var[f] ≤ Inf [f] shows that the length
of the protocol is at most (2k + 2) · Inf [f], giving the remaining part of Theorem 1.6.

6

1.3 Read-Once Composition Protocol

Theorem 1.3 from [OT13] shows that composing functions which satisfy the FEI+ conjecture will
result in a function which also satisfies FEI+. We give a new proof of this theorem by proving an
analogous result (Theorem 1.12 below) for protocols instead of entropy; our proof shows how to
construct an efficient protocol for the composed function using the efficient protocols of each of the
functions in the composition. To complete the proof of Theorem 1.3, which is a statement about
entropies, one might try to use the source coding theorem to translate our result about protocols
to a result about entropies. This can’t be done so simply, however, as Theorem 1.4 only gives an
approximate correspondence between protocols and entropy. We are able to get this step to work
by using a (mostly standard) parallelizing technique. We now describe each of these two steps in
more detail.

The FEI+ conjecture works with the spectral distribution conditioned on a sample being non-
empty. We write this distribution as Y ∼ f̂2 \ ∅, which is defined so that:

Pr[Y = ∅] = 0, and Pr[Y = S] =
f̂(S)2

1− f̂(∅)2
,

for any S ̸= ∅. We assume here that f̂(∅)2 < 1 (the FEI Conjecture is trivial when f̂(∅)2 = 1).
For our purposes, a prefix-free protocol P for Y is the same as an almost prefix-free protocol for
X ∼ f̂2: the equality E[|P(X)|] = Var[f] · E[|P(Y)|] holds, and Lemma 1.5 tells us that we may
obtain a bound on the entropy of X using a prefix-free protocol for Y.

The FEI+ conjecture in [OT13] stengthens the FEI conjecture and generalizes it to product
distributions, making it amenable to composition. We use f̃ to denote the Fourier transform of f
with respect to a product distribution µ (here each bit xi is set so that Eµ[xi] = µi). We now state
the main definition from [OT13]:

Definition 1.9. Let f : {−1, 1}nµ → {−1, 1} be a Boolean function. The function f satisfies FEI+

with constant C if ∑
S ̸=∅

f̃(S)2 log

(∏
i∈S(1− µ2

i)

f̃(S)2

)
≤ C ·

∑
S ̸=∅

f̃(S)2(|S| − 1).

In [OT13], it was conjectured that for some constant C, every Boolean function satisfies FEI+ with
constant C. They were able to show that every Boolean function f satisfies FEI+ with “constant”
2O(n). 3

Our first step is to reformulate what it means to “satisfy the FEI+ conjecture with constant C”
as a statement about the existence of an efficient protocol:

Definition 1.10. Let f : {−1, 1}nµ → {−1, 1} be a function over the µ-biased variables x1, . . . , xn,

and let Y ∼ f̃2 \ ∅. Let P be a prefix-free protocol for communicating the value of Y. Then P is a
C-good protocol for f under bias µ if

E[|P (Y)|] ≤ C · (E[|Y|]− 1) +
∑
i

Pr[i ∈ Y] · log 1

1− µ2
i

+ logVar
p

[f].

This definition can be derived by rearranging the inequality in Definition 1.9 to place∑
S ̸=∅ f̃(S)

2 log 1
f̃(S)2

on the left-hand side, and then replacing
∑

S ̸=∅ f̃(S)
2 log 1

f̃(S)2
= H[Y] with

E[|P (Y)|]. Furthermore, because H[Y] ≤ E[|P (Y)|], any function with a good protocol automati-
cally satisfies FEI+:

3It is known that one can improve this to O(log(n)) in the unbiased case when all the µi’s are zero.

7

Fact 1.11. Suppose there exists a C-good protocol for f under bias µ. Then f satisfies (the µ-
biased) FEI+ with constant C.

We then prove the following composition theorem for protocols in Section 3:

Theorem 1.12. Let h(x1, . . . , xk) = f(g1(x
1), . . . , gk(x

k)), where the domain of h is endowed with
a product distribution µ. Suppose there are C-good protocols for g1, . . . , gk under µ and a C-good
protocol for f under bias η = ⟨Eµ[g1], . . . ,Eµ[gk]⟩. Then there exists a C-good protocol for h under
bias µ.

Given a good protocol Pf for f and good protocols P1, . . . , Pk for g1, . . . , gk, we construct a

good protocol for h in the following way. Let Y = Y1 ◦ · · · ◦ Yk be drawn from h̃2 \ ∅, where
each Yi denotes the restriction of Y to the relevant coordinates of gi. Note that the Yi’s form a
partition of Y because the gi’s have disjoint inputs. The protocol will use Pf to specify which Yi

are non-empty, and, for each such i, it will use Pi(Yi) to specify which of the bits relevant to gi are
present in Y. While outputting all of P1(Y1), · · · , Pk(Yk) would be simpler and would suffice to
completely specify Y, this protocol will not be efficient when the gi’s have small variance (in this
case the number of non-empty Yi may be quite small).

In fact, the set S ⊆ [k] of non-empty Y will be distributed according to f̃2 \ ∅, where f̃ denotes
the η-biased Fourier transformation of f , and furthermore, the sets Yi are distributed according
to g̃i

2 \ ∅. This fact is somewhat implicit in the analysis of [OT13], though we find it it somewhat
clearer and simpler to prove in isolation, without reference to entropy. The analysis of this protocol
follows almost immediately from this fact, as the protocols Pf and P1, . . . , Pk are designed for these
distributions.

This yields a composition theorem for protocols. Our ultimate goal, however, is to prove the
following composition theorem for FEI+:

Theorem 1.13. Let h(x1, . . . , xk) = f(g1(x
1), . . . , gk(x

k)), where the domain of h is endowed with
a product distribution µ. Suppose g1, . . . , gk satisfy µ-biased FEI+ with constant C and f satisfies
η-biased FEI+ with constant C, where η = ⟨Eµ[g1], . . . ,Eµ[gk]⟩. Then h satisfies µ-biased FEI+

with constant C.

The naive strategy would be to apply Shannon’s source coding theorem to derive C-good proto-
cols for f, g1, . . . , gk, apply Theorem 1.12 to give a C-good protocol for h, and then apply Fact 1.11
to show that h satisfies FEI+. Unfortunately, this fails in the first step: the source coding theorem
loses an additive factor of (+1) when translating from entropy to protocols, and this (+1) means
that f, g1, . . . , gk don’t necessarily have C-good protocols.

To fix this problem, we use the well-known observation that the length of a protocol can be
made arbitrarily close to the entropy of a given random variable by encoding many independent
copies of that random variable. Thus, by switching to protocols which encode multiple copies of
Y instead of just one, we can ensure that the first step goes through properly, and the other steps
(such as Theorem 1.12 go through nearly identically in this setting as well. As this part of the
argument is essentially standard, we sketch it briefly in Appendix C.

1.4 Organization

The decision tree results can be found in Section 2 , and the FEI+ results can be found in Section 3.
The appendices mostly contain proofs of simple lemmas. Appendix E contains the argument for
why the restriction on the total influence of f in Theorem 1.2 is necessary.

8

Proofs of the main theorems. Theorem 1.1 and Theorem 1.2 follows from Lemma 1.5 and
Theorem 1.6.Theorem 1.3 follows from Theorem 1.12(proved in Section 3) and Theorem 1.13.

2 Entropy-Influence for read-k decision trees

In this section, we analyze our communication protocol for decision trees . We begin with some
preliminary definitions in Section 2.1. Then, as a simple first step, we consider the case of read-
once decision trees in Section 2.2. Finally, we prove Lemma 1.7 in Section 2.3 and Lemma 1.8 in
Section 2.4. Together, these prove Theorem 1.6.

2.1 Definitions and Notation

Fourier analysis. Any function f : {−1, 1}n → R can be written as

f(x) =
∑
S⊆[n]

f̂(S)χS(x).

The f̂(S)’s are the Fourier coefficients of f , and for each S ⊆ [n], the parity function χS is defined
as χS(x) =

∏
i∈S xi. Parseval’s equation will be important for us, which states that Ex[f(x)

2] =∑
S f̂(S)2. In particular, if f is ±1-valued, then this sum equals one, and so the squared coefficients

f̂(S)2 form a probability distribution. We will also need the formula Var[f] =
∑

S ̸=∅ f̂(S)
2. We

note that if X ∼ f̂2, then Pr[X ̸= ∅] = Var[f].
The influence of a variable xi on f is Inf i[f] := Prx[f(x) ̸= f(x⊕i)], where x⊕i is x with the

i-th bit flipped. The total influence of f is Inf [f] :=
∑

i Inf i[f], and it is simple to show that

Inf [f] can also be written as Inf [f] =
∑

S ̸=∅ |S|f̂(S)2. Comparing this to the formula for Var[f]
shows that Var[f] ≤ Inf [f]. This is all the Fourier analysis we will need; for a more comprehensive
introduction to the subject, see [O’D].

Decision trees. Decision trees are a standard model of computation, and we omit their definition
(see, for example, [OWZ11] for a definition). Given a tree T , we will call the subtree corresponding
to the +1 edge the left subtree and the subtree corresponding to the −1 edge the right subtree. We
will assume that if T is a decision tree, then no variable appears more than once in any root-to-leaf
path of T . If this is not the case, then T can be simplified. We say that T is a read-k decision tree
if no variable is queried in more than k locations of T .

Given a decision tree T , if v is a node of T , then l(v) is the label of v, i.e. the coordinate in x
which is queried at node v. Let r(T) be the root node of T . Next, set d(v) to be the depth of v in
T . We start counting the depth at 0, so that d(r(T)) = 0. The expected depth of T is the average
number of bits T queries on a uniformly random input x. Since a given node v is reached with
probability 2−d(v), the expected depth of T may be written as∑

v∈T
2−d(v). (2)

Now we may state our main definition:

Definition 2.1. Given a decision tree T and an internal node v, let g be the function computed
by v’s left subtree and h be the function computed by v’s right subtree. Then define

• Cov[v] := Cov[g, h],

9

• Covi[T] :=
∑

v:l(v)=iCov[v] · 2−d(v), and

• Cov[T] :=
∑

v∈T Cov[v] · 2−d(v).

Note that Cov[T] may also be written as Cov[T] =
∑

i∈[n]Covi[T]. Furthermore, if T0 is T ’s
left subtree and T1 is T ’s right subtree, then Cov[T] may also be written recursively as Cov[T] =
Cov[g, h] + 1

2 (Cov[T0] +Cov[T1]), with the base case that Cov[T] = 0 if T performs no queries.
Intuitively, Cov[T] is a measure of the total correlation present in the structure of T . For example,
Cov[T] = 0 if T is a read-once decision tree. We note that when T computes a Boolean function,
Cov[v] ≤ 1 for each v ∈ T . Thus, in this case, it is immediate from Equation (2) that the expected
depth of T is at least Cov[T]. This gives the following proposition.

Proposition 2.2. Let f : {−1, 1}n → {−1, 1} be computed by T , a decision tree with expected
depth d. Then Cov[T] ≤ d.

We will also need the following two propositions, which are proven in Appendix A.

Proposition 2.3. Let f be computed by a decision tree T whose left and right subfunctions are g
and h, respectively. If xi is at the root of T and S is any subset of [n] \ {i}, then

f̂(S)2 + f̂(S ∪ {i})2 = 1

2

(
ĝ(S)2 + ĥ(S)2

)
.

Proposition 2.4. Assume the setup from Proposition 2.3. Then for a coordinate j ̸= i,

Inf j [f] =
1

2
· (Inf j [g] + Inf j [h]).

2.2 Read-once decision trees

In this section, we will sketch the argument for read-once decision trees. Let f : {−1, 1}n → {−1, 1}
be computed by a read-once decision tree T . Given a decision tree T and a path P = v1 → · · · → vk
in the tree (starting at the root v1), the description of the path is the sequence of bits b1, . . . , bk−1 ∈
{0, 1} which, if read in that order, would result in traversing the given path (here we are using
the standard 1 ↔ 0 and −1 ↔ 1 correspondance). Given a set S, our protocol will output the
description of a path in which S is a subset of {l(v1), . . . , l(vk)}. In fact, our protocol will choose
a minimal such path containing S, in the sense that the path will stop once it has encountered all
of the variables in S. In a general decision tree, there could be many minimal paths containing S
and starting at the root, but because T is read-once, there can only be one such path. We may
therefore state the protocol as:

Given S ⊆ [n]:

1. If S = ∅, output nothing.

2. There is a minimal path P = p1 → · · · → pk containing the indices in S which
starts at T ’s root.

3. Output the description of that path.

4. Output a bit sequence b1, . . . , bk ∈ {0, 1}, where bi = 1 iff pi ∈ X .

5. Terminate with a ⊥.

10

Suppose that the path P the protocol finds is of length l. Then because the description of a path
of length l uses l − 1 bits, the protocol outputs 2l characters in total. Furthermore, the protocol
accurately communicates the value of S: given the output of the protocol, one could reconstruct
S by following the path indicated by the first l − 1 bits and including only those indices along the
path which are tagged with a 1 in the second sequence. So long as S ̸= ∅, the output is terminated
with a ⊥ character. Together, these mean that the protocol is an almost prefix-free protocol with
alphabet size |Σ| = 3.

We are interested in the length of the protocol on input X ∼ f̂2. As shown above, the number
of characters this protocol outputs is exactly twice the length of the path P . Thus, we need to
upper bound the average length of P .

Let us consider reasons why P might be on average too long. For example, because the protocol
only considers paths starting at the root, the path output always contains the root variable (unless
X = ∅), even though this variable might have very low influence on f . However, a simple argument
shows that this worry is unfounded. In particular, if xi is T ’s root variable, then Inf i[f] ≥ 1

2 Var[f]
(we will show this later in Lemma 2.6). This inequality uses crucially the fact that T is read-once.
The path P contains xi whenever X ̸= ∅, which happens with probability Var[f]. Thus, the
probability that P contains xi is at most 2 · Inf i[f].

An inductive argument allows us to bring this inequality down to the rest of the variables in
the tree, showing that the probability P contains a variable xj is at most 2 · Inf j [f] (we will show
this later in Lemma 2.5). Summing this inequality over all j shows that the expected length of P is
at most 2 · Inf [f]. Thus, the protocol outputs at most 4 · Inf [f] characters in expectation, proving
Theorem 1.7 in the k = 1 case.

2.3 General decision trees

Let f : {−1, 1}n → {−1, 1} be computed by a decision tree T . Generalizing the above argument
to work for T requires some modifications. The main change is that given S ⊆ [n], there is no
longer necessarily a unique minimal path starting from T ’s root which contains the indices in S.
As Figure 1 shows, there could be two paths to select from when, for example, S = {1, 3}. We
want our protocol to use the fewest characters possible, so the obvious choice is for it to simply
use the shortest path possible. This protocol is difficult to analyze, however, so we instead use a
suboptimal protocol which constructs a path vertex-by-vertex probabilistically. If g is the function
computed by T ’s left subtree and h is the function computed by T ’s right subtree, then the first
step of the path will be chosen based on the relative weight that g and h place on the set S, i.e.
ĝ(S)2 versus ĥ(S)2. As a result, the protocol is most easily stated recursively, as follows:

11

P(T, S):

1. If S = ∅, output nothing and terminate.

2. Let g be the function computed by T ’s left subtree T0, and likewise let h be the
function computed by T ’s right subtree T1.

3. Let xi be T ’s root variable. If i ∈ S, output a 1. Otherwise, output a 0.

4. Set S′ = S \ {i}. If S′ = ∅, output ⊥ and terminate.

5. With probability proportional to ĝ(S′)2, output 0 and run P(T0, S
′).

6. With probability proportional to ĥ(S′)2, output 1 and run P(T1, S
′).

This protocol outputs the same information that the protocol in Section 2.2 does, only now the
description of the path and the bit sequence are interleaved. If this protocol outputs 2k characters,
then characters 2, 4, . . . , 2k− 2 give a description of a path P , characters 1, 3, . . . , 2k− 1 indicate
which indices along the path P are included in S, and the 2k-th character is a ⊥. As a result, this
protocol is an almost prefix-free protocol with alphabet size |Σ| = 3. We will refer to the path P
as the path the protocol outputs, selects, etc.

Let us now consider the length of the protocol on input X ∼ f̂2. The number of characters
output is exactly twice the length of the path P the protocol outputs. Thus, we would like to upper
bound the expected length of P . Our main lemma will show that for a given variable xi, we can
upper-bound the probability that it appears in P as follows:

Lemma 2.5. Let f : {−1, 1}n → {−1, 1} be computed by a decision tree T , let X ∼ f̂2, and
let pi(T) be the probability that the path selected by P(T,X) contains index i. Then pi(T) ≤
2 · Inf i[f] +Covi[T].

By summing this lemma over i ∈ [n], the expected length of P is at most 2 · Inf [f] +Cov[T],
and so the expected number of characters output by the protocol is at most 4 · Inf [f] + 2 ·Cov[T],
which proves Lemma 1.7.

In the special case when T has expected depth d, Proposition 2.2 tells us that Cov[T] ≤ d, so
the protocol uses at most 4 ·Inf [f]+2 ·d characters in expectation, the bound given in Theorem 1.6.
If we further assume that Inf [f] ≥ 1, then this quantity is at most 6d · Inf [f]. Combining this
with Lemma 1.5 yields our FEI bound for decision trees of expected depth d, Theorem 1.2. In
Appendix E, we argue that proving this theorem without the restriction that Inf [f] ≥ 1 is unlikely
so long as the Fourier Entropy-Influence conjecture remains unproven. Next, as upper-bounding
Cov[T] is more involved if T is read-k, we will defer the proof of the FEI conjecture for read-k
decision trees to Section 2.4.

Now we prove Lemma 2.5. In Section 2.2, we stated that if xi is T ’s root variable, then
Inf i[f] ≥ 1

2 Var[f], supposing that T is read-once. Unfortunately, this is not true for general (or
even read-twice) decision trees. For example, the root variable could have two identical subtrees
as its children, in which case it has influence zero. For this to happen, though, it must be the case
that the two subfunctions have high covariance.

Lemma 2.6. Let f : {−1, 1}n → {−1, 1} be computed by a decision tree T . If xi is at the root of
T , then Inf i[f] ≥ 1

2 Var[f]− 1
2Cov[r(T)].

12

Proof. Let g be the function computed by T ’s left subtree and h be the function computed by T ’s

right subtree, so that f(x) = g(x) if xi = 1, and f(x) = h(x) if xi = −1. Then f̂(∅)2 =
(
ĝ(∅)+ĥ(∅)

2

)2
.

As a result,

Inf i[f] = Pr[f(x) ̸= f(x⊕i)]

= Pr[g(x) ̸= h(x)]

=
1

2
− 1

2
E[g(x)h(x)]

=
1

2
− 1

2
ĝ(∅)ĥ(∅)− 1

2
Cov[g, h]

≥ 1

2
− 1

2

(
ĝ(∅) + ĥ(∅)

2

)2

− 1

2
Cov[g, h] (using ab ≤

(
a+b
2

)2
)

=
1

2

(
1− f̂(∅)2

)
− 1

2
Cov[g, h]

=
1

2
Var[f]− 1

2
Cov[g, h].

Because Cov[r(T)] = Cov[g, h], this proves the lemma.

We now use this to prove Lemma 2.5:

Proof of Lemma 2.5. We prove this by structural induction on the tree T , based on whether xi is
at the root of T . The lemma is clearly true if i doesn’t appear in T , so we will assume that it does.

Base case: In this case, the root of T is xi. By the protocol above, xi will always be on the path P
unless X = ∅, i.e. the path is empty. Thus, the probability that xi is outputted is 1−f̂(∅)2 = Var[f].
By Lemma 2.6, we have that 2 ·Inf [f] ≥ Var[f]−Cov[r(T)] = pi(T)−Cov[r(T)]. Because xi is at
the root, it can appear nowhere else in T . This means that Covi[T] = Cov[r(T)], which concludes
the base case.

Inductive step: In this case, the root of T is not xi, meaning that xi is queried in one (or both)
of T ’s subtrees. Let T0 be the left subtree of T and T1 its right subtree, and assume without loss
of generality that the root of T is xn. We will show the following pair of simple equalities:

1. Inf i[f] =
1
2 · (Inf i[g] + Inf i[h]), and

2. pi(T) =
1
2 · (pi(T0) + pi(T1)).

Equality 1 follows directly from Proposition 2.4. Before proving Equality 2, let’s see how they
imply the lemma.

2 · Inf i[f] = Inf i[g] + Inf i[h]

≥ 1

2
(pi(T0) + pi(T1)−Covi[T0]−Covi[T1])

= pi(T)−
1

2
(Covi[T0] +Covi[T1]) , (3)

where the second line follows from applying the inductive hypothesis to g and h. Since each
vertex v in T0 (or T1) is one edge farther from the root in T than it is in T0 (or T1), we get that

13

Covi[T] =
1
2Covi[T0] +

1
2Covi[T1]. Note that Cov[r(T)] doesn’t contribute anything to Covi[T]

because xi is not at the root of T . Plugging this equality into Equation (3) yields the lemma.
Now, we prove Equality 2. It will be convenient for us to define the modified protocol P ′:

P ′(T, S):

1. If S ̸= ∅ and S ̸= {j}, where xj is T ’s root variable, then run P(T, S).

2. Otherwise:

(a) If S = {j}, output the characters 1,⊥.

(b) With probability proportional to ĝ(∅)2, run P(T0, ∅).
(c) With probability proportional to ĥ(∅)2, run P(T1, ∅).

Note that P ′ always calls P as a subroutine. When S ̸= ∅, {j}, then P ′(T, S) is identical to
P(T, S). On the other hand, when S equals ∅ or {j}, then P ′(T, S) outputs exactly what P(T, S)
would output, but then it calls either P(T0, ∅) or P(T1, ∅). These two will immediately terminate,
so P ′ has the same output behavior as P. Thus, to show that pi(T) ≤ 2 · Inf i[f] + Covi[T], it
suffices to show that the probability that the path selected by P ′(T, ·) contains index i is at most
2 · Inf i[f] +Covi[T].

We will show that the probability P ′(T, ·) makes a call to P(T0, ·) versus P(T1, ·) is exactly 1
2 .

Next, we will show that the sets it calls P(T0, ·) with are distributed as ĝ2, and similarly for P(T1, ·),
so that the recursion works.

Without loss of generality, assume that xn is the root variable of T . Let S ⊆ [n− 1] be any set.
The protocol P ′(T,X) can only call P(T0, S) when X is either S or S ∪ {n}, which happens with

probability f̂(S)2+ f̂(S ∪{n})2. By Proposition 2.3, f̂(S)2+ f̂(S ∪{n})2 = 1
2

(
ĝ(S)2 + ĥ(S)2

)
. In

either of these two cases, P(T0, S) is called with probability proportional to ĝ(S)2, and P(T1, S) is
called with probability proportional to ĥ(S)2. Thus, the probability that P(T0, S) is called is

1

2

(
ĝ(S)2 + ĥ(S)2

)
· ĝ(S)2

ĝ(S)2 + ĥ(S)2
=

ĝ(S)2

2
.

Summing over all sets S, the probability that P(T0, ·) is called is exactly 1/2, and conditioned on
this occurring, the probability that P(T0, S) is called is exactly ĝ(S)2. A similar argument holds
with T1 in place of T0 and h in place of g.

Thus, when P ′(T,X) calls P(T0, ·), the input to the recursive call is distributed as ĝ2, meaning
that the path constructed in the recursive call contains xi with probability pi(T0). Similarly, when
P ′(T,X) calls P(T1, ·), the path constructed in the recursive call contains xi with probability pi(T1).
Combining these, pi(T) =

1
2 (pi(T0) + pi(T1)) .

2.4 A covariance bound for read-k decision trees

In this section, we prove Lemma 1.8.

Lemma 2.7 (Lemma 1.8 restated.). Let f : {−1, 1}n → {−1, 1} be computed by a read-k decision
tree T . Then Cov[T] ≤ (k − 1) ·Var[f].

Combining this with Lemma 1.7 and Lemma 1.5 yields our FEI bound for read-k decision trees:

14

Theorem 2.8. If f : {−1, 1}n → {−1, 1} is computable by a read-k decision tree, then H[f̂2] ≤
(2 + (2k + 2) · log2 3) · Inf [f].

It is not at all clear whether our upper bound in Lemma 1.8 is tight. Potentially, this bound
could be replaced with Cov[T] ≤ log2 k ·Var[f]. The tight example of this was presented earlier:
let T be the tree given in Figure 2, only with l layers of dummy variables rather than just two.
Furthermore, suppose that T ′ is itself read-once. It is easy to see that T is read-2l and has tree-
covariance Cov[T] = l ·Var[f]. Thus, in this case, Cov[T] = log 2l ·Var[f].

We will prove Lemma 1.8 by structural induction on T . As is often the case, we will need to
strengthen the inductive hypothesis for the induction to go through. The reason for this is that
the read-k decision tree definition only keeps track of the maximum number of times any variable
appears in T , whereas we require a more fine-grained accounting of the number of times each
variable appears. For a nonempty subset S ⊆ [n], define mT (S) to be the maximum over i ∈ S of
the number of times xi appears in the tree T . For example, if T is read-k then mT ([n]) ≤ k. We
will prove the following lemma:

Lemma 2.9. Let T be a decision tree which computes f : {−1, 1}n → {−1, 1}. Then

Cov[T] ≤
∑
S ̸=∅

(mT (S)− 1) · f̂(S)2.

Note that if T is read-k, the right-hand side is at most (k− 1) ·
∑

S ̸=∅ f̂(S)
2 = (k− 1) ·Var[f],

the bound we are looking for.

Proof of Lemma 2.9. We prove this by structural induction on the tree T . The base case we
consider is when T queries a single variable.

Base case: In this case, the left and right subtrees are constant functions, so their covariance is
zero. For the sum on the right-hand side, any S for which f̂(S) is nonzero must consist of variables
queried by T , in which case (mT (S)− 1) ≥ 0. As a result, the right-hand side is always at least 0.

Inductive step: Suppose the root variable of T is xn. Let T0 and T1 be the left and right subtrees
of T , respectively. For convenience, we will upper-bound 2 ·Cov[T], which can be written as

2 ·Cov[T] = 2 ·Cov[g, h] +Cov[T0] +Cov[T1].

We will begin with the first term on the right-hand side. Let J be the set of coordinates which
appear in both T0 and T1. Because xn is the root variable, it cannot appear in either T0 or T1, so
J is a subset of [n− 1]. Then

2 ·Cov[g, h] =
∑
S ̸=∅

2 · ĝ(S)ĥ(S)

=
∑

∅≠S⊆J

2 · ĝ(S)ĥ(S)

≤
∑

∅≠S⊆J

ĝ(S)2 + ĥ(S)2,

where the last line holds because 2ab ≤ a2 + b2.

15

Now we focus on the second term. Applying the inductive hypothesis to g and h yields

Cov[T0] +Cov[T1] ≤
∑

∅̸=S⊆[n−1]

(mT0(S)− 1) · ĝ(S)2 + (mT1(S)− 1) · ĥ(S)2. (4)

For any S in the above sum, we have that mT0(S) ≤ mT (S). This is because T0 is a subtree of
T . However, when S ⊆ J we get the following improved bound: mT0(S) ≤ mT (S)− 1. This holds
because every variable in S is queried at least once in T1, and so it must be queried in T0 at least
one fewer time than in the whole of T . Similarly, all of these inequalities hold when T0 is replaced
with T1. Rewriting Equation 4,

Cov[T0] +Cov[T1] ≤
∑

∅̸=S⊆J

(mT (S)− 2) ·
(
ĝ(S)2 + ĥ(S)2

)
+
∑

∅̸=S*J

(mT (S)− 1) ·
(
ĝ(S)2 + ĥ(S)2

)
Now, if we add 2 ·Cov[g, h] to this, we see that it will add 1 to the coefficient of ĝ(S)2 and ĥ(S)2

exactly when ∅ ̸= S ⊆ J . As a result,

2 ·Cov[g, h] +Cov[T0] +Cov[T1] ≤
∑

∅̸=S⊆[n−1]

(mT (S)− 1) ·
(
ĝ(S)2 + ĥ(S)2

)
.

The left-hand side is 2 ·Cov[T]. As for the right-hand side, applying Proposition 2.3 shows that it
is equal to

2 ·
∑

∅≠S⊆[n−1]

(mT (S)− 1) ·
(
f̂(S)2 + f̂(S ∪ {n})2

)
.

We would be done, except f̂(S ∪ {n})2 should have mT (S ∪ {n}) as its coefficient, not mT (S).
However, mT (S) ≤ mT (S ∪ {n}) always, so we can perform this replacement. This yields the
lemma.

3 A composition theorem for protocols

In this section we prove Theorem 1.12. Theorem 1.12 concerns several different functions and
their spectral distributions defined with respect to different product distributions. We assume here
familiarity with Fourier analysis for product distributions over the Boolean cube (see [O’D] for an
introduction) and briefly review some basic facts and notation used in the proof.

For a Boolean function f : {−1, 1}nµ → {−1, 1}, where µ = ⟨µ1, · · · , µn⟩ is a sequence of biases,
we think of {−1, 1}nµ as endowed with the product distribution that sets each bit independently
in {−1, 1} with expectation Eµ[xi] = µi and Varµ[xi] = 1 − µ2

i . Then the µ-biased Fourier
decomposition of f is

f =
∑
S⊆[n]

f̃(S)ϕµ
S

where

ϕµ
S(x) =

∏
i∈S

xi − µi

Varµ[xi]
,

and f̃(S) = Eµ[f ·
∏

i i ∈ S]. Thus, a spectral sample from h̃2 is distributed so that each Y appears
with probability h̃(Y)2.

Now we proceed to prove Theorem 1.12. Let Pf be a C-good protocol for f under η and
P1, . . . , Pk be C-good protocols for g1, . . . , gk under µ. Recall that these protocols are prefix-free.
Now, consider a spectral sample Y ∼ h̃2 and the following protocol Ph(Y):

16

1. Let S ⊆ [k] be the set containing those i ∈ [k] such that Yi ̸= ∅.

2. Output Pf (S).

3. For each i ∈ S, output Pi(Yi).

Because the subprotocols are prefix-free, Ph(Y) is a prefix-free encoding of Y. This is because
if one scans the output of Ph(Y) from left-to-right, the first prefix which could be output by Pf (·)
must actually be the output of Pf (S). This gives a description of the set S, from which one can
recover Y1, . . . ,Yk by a similar process. We will show that if Pf and P1, . . . , Pk are efficient, then
Ph is efficient as well. To begin, we will need the following pair of claims:

Claim 3.1. Conditioned on Yi ̸= ∅, Yi is distributed as g̃i
2 \ ∅.

Claim 3.2. The set S is distributed as f̃2 \ ∅.

The proofs of these claims, as well as the basic Fourier analytic facts used to prove them, may
be found in the Appendix D. We now prove the composition theorem for C-good protocols.

Lemma 3.3. If Pi is a C-good protocol for each gi and Pf is a C-good protocol for f , then Ph is
a C-good protocol for h.

Proof. The expected output size of the protocol is

E[|Ph(Y)|] = E

[
|Pf (S)|+

∑
i∈S

|Pi(Yi)|

]

= E

[
|Pf (S)|+

k∑
i=1

1[Yi ̸= ∅] · |Pi(Yi)|

]
.

First, we upper bound the second term in the expectation. For a fixed i,

E
[
1[Yi ̸= ∅] · |Pi(Yi)|

]
= Pr[Yi ̸= ∅] ·E

[
|Pi(Yi)|

∣∣Yi ̸= ∅
]
. (5)

From Claim 3.1, Yi conditioned on Yi ̸= ∅ is distributed as g̃i
2 \ ∅. Thus, as Pi is a C-good

protocol for gi, we may upper bound E
[
|Pi(Yi)|

∣∣Yi ̸= ∅
]
with the expression in the definition of a

C-good protocol, except where that definition uses an Y, we have instead Yi

∣∣(Yi ̸= ∅). Note that
Pr[Yi ̸= ∅] · E

[
|Yi|
∣∣Yi ̸= ∅

]
= E[|Yi|] and that Pr[Yi ̸= ∅] · Pr[j ∈ Yi

∣∣Yi ̸= ∅] = Pr[j ∈ Yi]. As a
result, the upper bound we get on Equation 5 is

C · (E[|Yi|]−Pr[Yi ̸= ∅]) +
∑
j

Pr[j ∈ Yi] · log
1

Varµ[xj]
+Pr[Yi ̸= ∅] · logVar

µ
[gi].

Note that Yi ̸= ∅ exactly when i ∈ S. As a result, summing this over all i ∈ [k] yields

E

[∑
i∈S

|Pi(Yi)|

]
≤ C · (E[|Y|]−E[|S|])

+
∑
j∈[n]

Pr[j ∈ Y] · log 1

Varµ[xj]
+
∑
i∈[k]

Pr[i ∈ S] · logVar
µ

[gi]. (6)

17

For the first term in the expectation, we know by Claim 3.2 that the random variable S defined
in the protocol is distributed according to f̃2 \ ∅. Thus, because Pf is a C-good protocol,

E[Pf (S)] ≤ C · (E[|S|]− 1) +
∑
i∈[k]

Pr[i ∈ S] · log 1

Varη[yi]
+ logVar

η
[f].

Note that Varη[yi] = Varµ[gi] and Varη[f] = Varµ[h]. As a result, adding these together yields

E[|P (Y)|] ≤ C · (E[|Y|]− 1) +
∑
j∈[n]

Pr[j ∈ Y] · log 1

Varµ[xj]
+ logVar

µ
[h],

which yields the theorem.

References

[CKLS13] Sourav Chakraborty, Raghav Kulkarni, Satyanarayana Lokam, and Nitin Saurabh. Up-
per bounds on Fourier Entropy. Electronic Colloquium on Computational Complexity
TR13-052, 2013. 1, 1

[FK96] Ehud Friedgut and Gil Kalai. Every monotone graph property has a sharp thresh-
old. Proceedings of the American Mathematical Society, 124(10):2993–3002, 1996.
(document), 1

[GKK08] Parikshit Gopalan, Adam Kalai, and Adam Klivans. Agnostically learning decision
trees. In Proceedings of the 40th Annual ACM Symposium on Theory of Computing,
pages 527–536, 2008. 1

[Kal07] Gil Kalai. The entropy/influence conjecture. Posted on Terence Tao’s What’s
new blog, http://terrytao.wordpress.com/2007/08/16/gil-kalai-the-entropyinfluence-
conjecture/, 2007. 1

[KKL88] Jeff Kahn, Gil Kalai, and Nathan Linial. The influence of variables on Boolean func-
tions. In Proceedings of the 29th Annual IEEE Symposium on Foundations of Computer
Science, pages 68–80, 1988. 1

[KLW10] Adam Klivans, Homin Lee, and Andrew Wan. Mansour’s Conjecture is true for random
DNF formulas. In Proceedings of the 23rd Annual Conference on Learning Theory, pages
368–380, 2010. 1

[KMS12] Nathan Keller, Elchanan Mossel, and Tomer Schlank. A note on the Entropy/Influence
conjecture. Discrete Mathematics, 312(22):3364–3372, 2012. 1.1

[Man94] Yishay Mansour. Learning Boolean functions via the Fourier Transform. In Vwani Roy-
chowdhury, Kai-Yeung Siu, and Alon Orlitsky, editors, Theoretical Advances in Neural
Computation and Learning, chapter 11, pages 391–424. Kluwer Academic Publishers,
1994. 1

[O’D] Ryan O’Donnell. Analysis of Boolean Functions. 2.1, 3

[O’D03] Ryan O’Donnell. Computational applications of noise sensitivity. PhD thesis, Mas-
sachusetts Institute of Technology, 2003. 1

18

[OT13] Ryan O’Donnell and Li-Yang Tan. A composition theorem for the Fourier Entropy-
Influence conjecture. In Proceedings of the 40th Annual International Colloquium on
Automata, Languages and Programming, pages 780–791, 2013. (document), 1, 1, 2, 1.3,
1.3, 1.3, C

[OWZ11] Ryan O’Donnell, John Wright, and Yuan Zhou. The Fourier Entropy-Influence conjec-
ture for certain classes of Boolean functions. In Proceedings of the 38th Annual Inter-
national Colloquium on Automata, Languages and Programming, pages 330–341, 2011.
1, 1.1, 2, 2.1, B, B

[Sha48] Claude E. Shannon. A mathematical theory of communication. The Bell System Tech-
nical Journal, 27:379–423, 623–656, July, October 1948. 1.4

A Decision tree proofs

We will repeatedly use the following proposition, which relates the Fourier coefficients of f to the
Fourier coefficients of its subfunctions g and h.

Proposition A.1. Let f be computed by a decision tree T whose left and right subfunctions are g
and h, respectively. If xi is at the root of T and S is any subset of [n] \ {i}, then

f̂(S)2 + f̂(S ∪ {i})2 = 1

2

(
ĝ(S)2 + ĥ(S)2

)
.

Proof. Write f as

f =

(
1 + xi

2

)
g +

(
1− xi

2

)
h.

For any S ⊆ [n] \ {i}, f̂(S) = 1
2(ĝ(S) + ĥ(S)) and f̂(S ∪ {i}) = 1

2(ĝ(S)− ĥ(S)). As a result,

f̂(S)2 + f̂(S ∪ {i})2 = 1

2

(
ĝ(S)2 + ĥ(S)2

)
.

We will also use the following proposition, which relates the influences of f to the influences of
its subfunctions.

Proposition A.2. Assume the setup from Proposition 2.3. Then for a coordinate j ̸= i,

Inf j [f] =
1

2
· (Inf j [g] + Inf j [h]).

Proof.

Inf j [f] = Pr[f(x) ̸= f(x⊕j)]

=
1

2
Pr[g(x) ̸= g(x⊕j)] +

1

2
Pr[h(x) ̸= h(x⊕j)] =

1

2
(Inf j [g] + Inf j [h]) .

B Proof of Lemma 1.5

In this section, we give a proof of Lemma 1.5, which was implicit in [OWZ11]; the proof we give
here, included for completeness, is essentially the same. First, we have the following lemma:

Lemma B.1. Let f : {−1, 1}n → {−1, 1} and write f̂(∅)2 = 1 − ϵ. Then 2 · Inf [f] ≥ h(ϵ), where
h(·) is the binary entropy function.

19

Proof. First, we may assume ϵ ̸= 0, 1, otherwise the result is trivial. Now, (1−ϵ) log 1
1−ϵ ≤

1
ln 2ϵ ≤ 2ϵ,

so

h(ϵ) = ϵ log
1

ϵ
+ (1− ϵ) log

1

1− ϵ
≤ ϵ log

1

ϵ
+ 2ϵ.

By Proposition 2 of [OWZ11], the right-hand side is at most 2 · Inf [f], and the lemma follows.

Lemma B.2 (Restatement of Lemma 1.5). Suppose there is an almost prefix-free protocol for X
with length B and alphabet Σ. Then H[X] ≤ log2 |Σ| ·B + 2 · Inf [f].

Proof. Write f̂(∅)2 = 1 − ϵ. If ϵ = 0 then H[X] = 0, so the lemma follows. Otherwise, let Y be
the indicator that X = ∅. Then H[X|Y = 0] ≤ log2 |Σ| B/ϵ by the source coding theorem, as the
protocol outputs B/ϵ characters on average conditioned on X being nonempty.

H[X] = H[X ,Y]

= H[Y] +H[X|Y] (conditional entropy)

= H[Y] + (1− ϵ) ·H[X|Y = 1] + ϵ ·H[X|Y = 0]

≤ H[Y] + log2 |Σ| ·B (using H[X|Y = 1] = 0)

Because Y is a (1− ϵ)-biased random bit, H[Y] = h(ϵ), where h(·) is the binary entropy function.
Thus, we may apply Lemma B.1 and get that H[X] ≤ 2 · Inf [f] + log2 |Σ| ·B.

C Parallelizing the Protocol

The performance of Shannon’s code gives the following guarantee:

Fact C.1. Let X 1, . . . ,X t be t independent samples drawn from f̃2 \ ∅ . Then there is a prefix-free
protocol P t

f for which

E
[
|P t

f (X 1, . . . ,X t)|
]
≤ t ·H

[
f̃2 \ ∅

]
+ 1.

In other words, the average number of bits used per copy of X is 1/t more than the theoretical
best. In the limit as t tends to ∞, the excess number of bits tends to 0. Using this, we will show
that the protocol from Section 3 may be analyzed as if the subprotocols are optimally efficient.
We will do this by showing an efficient protocol to communicate sets Y1, . . . ,Yt ∼ h̃2 \ ∅ which are
chosen independently. As before, use Yj

i to denote the restriction of Yj to the coordinates relevant
to gi. We will assume that we have the efficient protocol P t

f guaranteed by Fact C.1. In addition,
for each i ∈ [k] and m ∈ [t] we will use the protocol Pm

i which Fact C.1 guarantees will efficiently
communicate m samples from g̃i

2 \ ∅. Now, consider the following protocol P t
h(Y1, . . . ,Yt):

1. For each j ∈ [t], let Sj ⊆ [k] be the set containing those i such that Yj
i ̸= ∅.

2. Output P t
f (S

1, . . . , St).

3. For each i ∈ [k]:

(a) Let j1, . . . , jm be the indices of the nonempty Yj
i (in order).

(b) If m ̸= 0, output Pm
i (Yj1

i , . . . ,Yjm
i). Otherwise, output nothing.

The following lemma, which may be compared to Proposition 3.2 in [OT13], gives the perfor-
mance of this protocol and suffices to recover their composition theorem for entropy.

20

Lemma C.2. Let S be distributed as in the protocol from Section 3. In the limit as t → ∞,

1

t
·E
[
|P t

h(Y1, . . . ,Yt)|
]
= H

[
f̃2 \ ∅

]
+
∑
i∈[k]

Pr[i ∈ S] ·H
[
g̃i

2 \ ∅
]
.

Proof sketch. Fix a coordinate i ∈ [k] and consider the numberm of nonempty Yj
i s. From Claim 3.1,

we know that if Yj
i is nonempty, then it is distributed as g̃i

2 \ ∅. As a result, for a fixed value of

m, Fact C.1 tells us that the expected number of bits that Pm
i outputs per Yj

i is at most 1/m in
excess of H

[
g̃i

2 \ ∅
]
. Now, m is distributed as Bin(t, r), where r is a probability independent of

t. Thus, by taking t → ∞ the expectation of 1/m (when m is nonzero) will tend towards 0. As a
result, we may assume that H

[
g̃i

2 \ ∅
]
bits are used in expectation to communicate each nonzero

Yj
i . A similar argument shows that we may assume that H[f̃2 \ ∅] bits are used in expectation to

communicate each Sj .
Aside from packaging the different sets together when calling the subprotocols, the protocol

acts as t independent copies of the protocol from Section 3. Let us focus on the case when j = 1.
Then the expected number of bits spent outputting the sets for which j = 1 is

H
[
f̃2 \ ∅

]
+
∑
i∈[k]

Pr[i ∈ S1] ·H
[
g̃i

2 \ ∅
]
.

As S1 is distributed identically to S in the protocol from Section 3, we may replace the event i ∈ S1

with i ∈ S. Averaging this over all j ∈ [t] yields the lemma.

D Proofs of Claims

First, we recall several basic facts regarding µ-biased Fourier analysis. For S ̸= T and S ̸= ∅, we
have Eµ[ϕ

µ
S] = 0 and Eµ[ϕ

µ
S · ϕµ

T] = 0. We also have Parseval’s inequality, which states that for

f : {−1, 1}n → R, the equality
∑

S⊆[n] f̃(S)
2 = Eµ[f

2] holds.
We now prove the following proposition, from which the claims follow immediately.

Proposition D.1. Given the setup of the first protocol,

h̃(Y) = f̃(S)
∏
i∈S

g̃(Yi)

σi
.

Proof. Let ηi = Eµ[gi] and σ2
i = Varµ[gi]. Let S be as defined in the protocol. Then

h̃(Y) = E
x∼µ

[h(x) · ϕµ
Y(x)]

= E
x

f(g1(x), . . . , gk(x)) ·∏
j∈S

ϕµ
Yj
(x)

=
∑
T⊆[k]

f̃(T)E
x

ϕη
T (g1(x), . . . , gk(x)) ·

∏
j∈S

ϕµ
Yj
(x)

=
∑
T⊆[k]

f̃(T)E
x

∏
i∈T

(
gi(x)− ηi

σi

)∏
j∈S

ϕµ
Yj
(x)

 .

21

A standard calculation shows that the expectation is nonzero only if S = T . In this case, the
expectation is equal to ∏

i∈S
E
x

[(
gi(x)− ηi

σi

)
· ϕµ

Yi
(x)

]
=
∏
i∈S

g̃(Yi)

σi
,

where the equality holds because Yi is nonempty, so the shift by ηi doesn’t affect the calculation.
The proposition now follows.

Now we prove the claims:

Proof of Claim 3.1. Condition Y on Yi ̸= ∅ and on any values for Y1, . . . ,Yi−1,Yi+1, . . . ,Yk. Then
by Proposition D.1, Yi is distributed as g̃i

2 \ ∅. As this holds conditioned on any values for the
Yj ’s, j ̸= i, this also holds conditioned only on Yi ̸= ∅.

Proof of Claim 3.2. First, because f and h have the same mean, they also have the same variance,
i.e. ∑

Y̸=∅

h̃2(Y) =
∑
S ̸=∅

f̃2(S).

Next, fix a particular value of S ⊆ [k], S ̸= ∅. The sets Y for which the protocol selects this
particular S are those for which Yi ̸= ∅ ⇐⇒ i ∈ S. Then the probability S is selected is just the
sum over these sets:∑

Y:Yi ̸=∅ ⇐⇒ i∈S

h̃(Y)2 =
∑

Y:Yi ̸=∅ ⇐⇒ i∈S

f̃(S)2
∏
i∈S

g̃(Yi)
2

σ2
i

(by Proposition D.1)

= f̃(S)2
∏
i∈S

∑
Yi ̸=∅

g̃(Yi)
2

σ2
i

= f̃(S)2.

Combining these two facts yields the claim.

E Small influence counterexample

Suppose we could prove Theorem 1.2 without the restriction on the function’s total influence, i.e.
the following statement:

Conjecture E.1. Suppose f : {−1, 1}n → {−1, 1} is computable by a decision tree with expected
depth d, and let X ∼ f̂2. Then H[X] ≤ C · d · Inf [f], for some absolute constant C.

This appears to be a weaker conjecture than the FEI conjecture. However, in this section we
will show that this statement implies the FEI conjecture, at least for functions with sufficiently
large influence.

Proposition E.2. Suppose Conjecture E.1 were true for some constant C. Let f : {−1, 1}n →
{−1, 1}, and let X ∼ f̂2. If Inf [f] ≥ log(n), then H[X] ≤ C ′ · Inf [f], where C ′ is some other
absolute constant.

Although this only shows that Conjecture E.1 implies a restricted form of the FEI conjecture,
this restricted form does not appear to be especially easier than the full FEI conjecture. Thus, the
restriction in Theorem 1.2 that f have large influence is a natural one.

22

y1

1 y2

1 . . .

yk

1 f(x)

Figure 3: A decision tree computing g(x, y).

Let f : {−1, 1}n → {−1, 1} have Inf [f] ≥ log n. We prove Proposition E.2 by “hiding” f
in a low expected-depth decision tree. The resulting decision tree still has low expected-depth,
and its spectral entropy and total influence terms are roughly proportional to f ’s. Thus, applying
Conjecture E.1 to the decision tree shows that f itself satisfies the FEI conjecture.

Proof. Let f : {−1, 1}n → {−1, 1} have Inf [f] ≥ log n, and let X ∼ f̂2. We begin with the
assumption that f is balanced, i.e. that E[f] = 0, and we will later reduce the general case to this
case. For simplicity, assume that n is a power of two. Consider the new function g(x, y) defined as

g(x, y) =

{
f(x) if AND(y1, . . . , yk) = −1,
1 otherwise.

Pictorially, refer to Figure 3, where f(x) is computed by some decision tree. Since f can
be trivially computed by a decision tree of depth n, the decision tree pictured computes f with
expected depth at most 2 + n/2k. By choosing k = log2 n, then this decision tree is depth 3.

Each variable yi is influential only when the rest of the yj ’s are −1 and f(x) = −1 (which
happens half of the time because f is balanced), so the influence of each yi is exactly 1/2k. Each
of the xi variables is influential only when all of the y′is are −1, so the influence of variable xi on g
is exactly Inf i[f]/2

k. As a result,

Inf [g] =
k + Inf [f]

2k
=

log n+ Inf [f]

n
.

To compute the entropy, we can first write g as

g(x, y) = 1− 1

2k

∑
S

χS(y)

(
1

2
+

f(x)

2

)
.

From this, we can easily read off some of the Fourier coefficients of g: if S ⊆ [k] and T ⊆ [n] are
both nonempty, then ĝ(S, T) = −f̂(T)/2k+1. As a result, if X ′ ∼ ĝ2, then we can lower bound
H[X ′] by summing over the terms in the entropy formula corresponding to these subsets:

H[X ′] ≥
∑

S,T ̸=∅

f̂(T)2

22k+2
log

(
22k+2

f̂(T)2

)

≥
∑
T

f̂(T)2

2k+3
log

(
22k+2

f̂(T)2

)

≥
∑
T

(2k + 2) · f̂(T)2

2k+3
+
∑
T

f̂(T)2

2k+3
log

(
1

f̂(T)2

)

=
2k + 2 +H[X]

2k+3
=

2 log n+ 2 +H[X]

8n
.

23

Here the second inequality follows because the sum is over 2k − 1 ≥ 2k−1 sets S and because
f̂(∅) = 0. The second-to-last equality follows because f is mean-zero, so

∑
T f̂(T)2 = 1.

Now, applying Conjecture E.1 to g, we have that

3 log n+H[X]

8n
≤ H[X ′] ≤ C · 3 · Inf [g] = C · 3 · log n+ Inf [f]

n
.

This can be rearranged as

H[X] ≤ (24C − 3) · log n+ 24C · Inf [f].

Thus, if Inf [f] ≥ log n, then H[X] ≤ C ′Inf [f], where C ′ = 48C − 3.
Now, if f is not balanced, consider the function g(x1, . . . , xn, xn+1) = xn+1 · f(x). Then g is

balanced, has the same Fourier entropy as f , and Inf [g] = Inf [f] + 1. As we have just shown,

H[X] = H[ĝ2]

≤ C ′ · Inf [g]
= C ′ · (Inf [f] + 1)

≤ C ′ · (Inf [f] + log n)

≤ (C ′ + 1) · Inf [f].

Here, the last inequality uses the fact that log n ≤ Inf [f]. Thus, f satisfies the FEI conjecture with
constant C ′ + 1.

24

