
Computational Complexity of the Negative Decision Number of

Graphs∗

Hongyu Liang†

April 3, 2012

Abstract

Let G = (V,E) be a graph. A function f : V → {−1, 1} is called a bad function of G if∑
u∈NG(v) f(u) ≤ 1 for each v ∈ V , where NG(v) is the set of neighbors of v in G. The negative

decision number of G, introduced by Wang, is the maximum value of
∑

v∈V f(v) taken over all
bad functions of G. In this paper, we comprehensively study the negative decision number from
algorithmic, complexity, and graph-theoretic points of view. Our main results are as follows.

1. We prove that it is NP-hard to compute the negative decision number of a given graph,
even if the graph is bipartite. Moreover, it is NP-complete to decide whether the negative
decision number of a given bipartite graph is at least k, where k is any fixed integer (not
necessarily positive). On the other hand, we show that the negative decision number can
be computed in polynomial time for several special classes of graphs including trees.

2. For a below-upper-bound formulation of the problem of computing the negative deci-
sion number, we show an asymptotically tight approximation threshold of Θ(log |V |).
Specifically, it can be approximated within a factor of O(log |V |) in polynomial time,
but cannot be approximated better than c log |V | for some constant c > 0 unless NP⊆
DTIME(nO(log log n)).

3. The exact values of the negative decision number are determined for complete multipartite
graphs, wheels, and fans.

1 Introduction

We generally follow the notation and terminologies of Diestel [6] in this paper. Let G = (V,E) be a
(simple and undirected) graph. For each v ∈ V , NG(v) = {u | {u, v} ∈ E} is the open neighborhood
of v, NG[v] = NG(v) ∪ {v} is the closed neighborhood of v, and dG(v) = |NG(v)| is the degree of v.
If the graph G is clear in the context, we also write N(v), N [v], d(v) instead of NG(v), NG[v], dG(v),
respectively. Given a function f : V → R and a subset of vertices S ⊆ V , let f(S) =

∑
v∈S f(v).

The weight of f is f(V) =
∑

v∈V f(v).
A function f : V → {−1, 1} is called a bad function of G if f(N(v)) ≤ 1 for each v ∈ V .

The negative decision number of G, denoted by βD(G), is the maximum weight of a bad function
of G. The concepts of bad function and negative decision number are introduced by Wang [18],

∗This work was supported in part by the National Basic Research Program of China Grant 2011CBA00300,
2011CBA00301, and the National Natural Science Foundation of China Grant 61033001, 61061130540, 61073174.

†Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China, 100084.
E-mail: sjqxzlhy@gmail.com

1

where some sharp bounds are proved and the exact values of this parameter for some special graph
classes, including cliques, paths, and cycles, are determined. Some variants of the negative decision
number have also been studied subsequently, including the negative k-subdecision number [10] and
the lower negative decision number [19].

The negative decision number can be used to model the minimum number of “negative votes” in
a social network that can force every individual in the network to have a “negative opinion” under
certain rules [18]. It can also be regarded as the “dual” of another well-studied graph parameter
called the signed total domination number, which is defined as the minimum weight of a function
f : V → {−1, 1} that satisfies f(N(v)) ≥ 1 for all v ∈ V [20]. The signed domination number is
similarly defined, with the condition f(N(v)) ≥ 1 replaced by f(N [v]) ≥ 1 [7]. Both the signed
domination number and signed total domination number have been extensively studied in the
literature (see e.g. [3, 7, 8, 14, 20, 21] and the references therein). The reader is also referred to
the two excellent books by Hayes, Hedetniemi, and Slater [12, 13] for a comprehensive treatment
on the theory of domination in graphs.

In this paper, we comprehensively investigate the negative decision number from the algorithmic,
complexity, and graph-theoretic points of view. Our main results include the following:

1. We prove that it is NP-hard to compute the negative decision number of a given graph, even
if the graph is bipartite. Moreover, it is even NP-complete to decide whether the negative
decision number of a given bipartite graph is at least k, where k is any fixed integer (not
necessarily positive). On the other hand, we show that the negative decision number can be
computed in polynomial time for several special classes of graphs including trees.

2. We study approximation algorithms for computing the negative decision number of a given
graph. Since this number can be negative, the normal concept of approximation cannot be
directly applied here. We consider the below-upper-bound approximation of this problem, i.e.,
let the objective to be optimized be the difference between the weight of a bad function of
G and the number of vertices in G, which is an obvious upper bound of βD(G). We obtain
a tight approximation threshold of Θ(log |V |) under the (standard) complexity assumption
that NP̸⊆ DTIME(nO(log log n)).

3. The exact values of the negative decision number are determined for complete multipartite
graphs, fans, and wheels. Our result for complete multipartite graphs substantially generalizes
those of complete graphs and bicliques given by Wang [18].

2 Complexity Issues of the Negative Decision Number

We first formally define the decision problem corresponding to the computation of the negative
decision number of a graph as follows.

Negative Decision Number (NDN)
Instance: A graph G = (V,E) and an integer k.
Question: Is βD(G) ≥ k?

2

2.1 NP-completeness Result

In this subsection we show the NP-completeness of the Negative Decision Number problem.
The hardness of the following problem is needed in our proof.

Vertex Packing Problem (VPP)
Instance: A graph G = (V,E) and an integer k.
Question: Does there exist a subset of vertices S ⊆ V such that |S| ≥ k and |S ∩ NG(v)| ≤ 1

for each v ∈ V ? Equivalently, can we choose at least k vertices such that for every vertex in V , at
most one of its neighbors is chosen?

Proposition 1. VPP is NP-complete even on bipartite graphs.

Proof. Clearly VPP is in NP. We present a polynomial time reduction from the Independent
Set Problem (IS), a classical NP-complete problem [15]. Let {G = (V,E), k} be an instance of
IS. Construct a graph G′ = (V ′, E′) as follows. Let V ′ = X ∪ Y ∪ Z, where X = {xv | v ∈ V },
Y = {yv | v ∈ V }, and Z = {ze | e ∈ E}. Let E′ = {xvyv | v ∈ V } ∪ {xvze | v ∈ e ∈ E}. It is easy
to see that G′ is bipartite. Let k′ = |V |+ k. We next show that the following two statements are
equivalent, which will complete the reduction:

1. G has an independent set of size at least k.

2. There exists S ⊆ V ′ such that |S| ≥ k′ and |S ∩NG′(w)| ≤ 1 for each w ∈ V ′.

(1) ⇒ (2): Assume T ⊆ V is an independent set in G with |T | ≥ k. Define S ⊆ V ′ as
S := Y ∪ {xv | v ∈ T}. We have |S| = |Y |+ |T | ≥ |V |+ k = k′. It is clear that for each v ∈ X ∪ Y ,
at most one neighbor of v is in S. Let ze ∈ Z be an arbitrary vertex in Z, where e = {u, v}. Since
T is an independent set in G, at most one of u and v is in T . Thus, at most one of xu and xv
belongs to S, which proves that |S ∩NG′(w)| ≤ 1 for every w ∈ V ′.

(2) ⇒ (1): Suppose S ⊆ V ′ satisfies that |S| ≥ k′ and |S ∩ NG′(w)| ≤ 1 for every w ∈ V ′.
We have Y ∪ Z ⊆

∪
xv∈X NG′(xv), i.e., each vertex in Y ∪ Z is the neighbor of some vertex in X.

Therefore, |S ∩ (Y ∪ Z)| ≤ |S ∩
∪

xv∈X NG′(xv)| ≤
∑

xv∈X |S ∩ NG′(xv)| ≤ |X| = |Y |. Now let
S′ = (S \Z)∪Y . We have |S′| = |S \ (Y ∪Z)|+ |Y | ≥ |S \ (Y ∪Z)|+ |S ∩ (Y ∪Z)| = |S| ≥ k′ (note
that |S ∩ (Y ∪ Z)| ≤ |Y |). It is also clear that S′ still satisfies |S′ ∩NG′(w)| ≤ 1 for each w ∈ V ′.
Now take T = {v ∈ V | xv ∈ S′ ∩X}. If there exists some e = {u, v} ∈ E with both endpoints in
T , then both xu and xv are in S′, indicating that |S′ ∩NG′(ze)| ≥ 2, a contradiction. Hence, T is
an independent set of G, which has size at least k′−|Y | = k′−|V | = k. This finishes the reduction
from IS to VPP, and concludes the NP-completeness of the latter.

Theorem 1. Negative Decision Number is NP-complete, even on bipartite graphs.

Proof. The problem is obviously in NP. We will present a polynomial time reduction from VPP
on bipartite graphs to it. Let {G = (V,E), k} be an instance of VPP, where G is bipartite.
Without loss of generality we may assume that G has no isolated vertex. We construct another
graph G′ = (V ′, E′) as follows. Let V ′ = X ∪ Y , where X = {xv | v ∈ V } and Y = {yv,i | v ∈
V ; 1 ≤ i ≤ dG(v) − 1}. Let E′ = {xuxv | uv ∈ E} ∪ {xvyv,i | v ∈ V ; 1 ≤ i ≤ dG(v) − 1}. It is
easy to verify that G′ is also bipartite. Let k′ = 2k + 2|E| − 2|V |. We show that the following two
statements are equivalent, which will complete our reduction:

1. There exists S ⊆ V such that |S| ≥ k and |S ∩NG(w)| ≤ 1 for each w ∈ V .

3

2. There exists a bad function of G′ of weight at least k′; that is, βD(G) ≥ k′.

(1) ⇒ (2): Let S ⊆ V be such that |S| ≥ k and |S ∩ NG(w)| ≤ 1 for each w ∈ V . Define a
function f : V ′ → {−1, 1} as follows: Let f(v) = 1 if v ∈ Y ∪ {xw | w ∈ S}, and f(v) = −1 if
v ∈ {xw | w ∈ V \ S}. The weight of f is

|Y |+ |{xw | w ∈ S}| − |{xw | w ∈ V \ S}|
=

∑
w∈V

(dG(w)− 1) + |S| − (|V | − |S|)

= 2|S|+ 2|E| − 2|V |
≥ 2k + 2|E| − 2|V |
= k′.

We next show that f is a bad function. Since each vertex in Y has only one neighbor in G′, it
is obvious that f(NG′(y)) ≤ 1 for every y ∈ Y . Now let xw be an arbitrary vertex in X. By the
definition of f and the property of S, we have

f(NG′(xw)) = (dG(w)− 1) + |S ∩NG(w)| − |NG(w) \ S|
= (dG(w)− 1) + |S ∩NG(w)| − (dG(w)− |S ∩NG(w)|)
= 2|S ∩NG(w)| − 1

≤ 1.

Therefore, f is a bad function of G of weight at least k′.
(2)⇒ (1): Let f be a bad function of G of weight at least k′. We first show that we can assume

f(y) = 1 for every y ∈ Y . If this is not the case, there is some yv,i ∈ Y with f(yv,i) = −1. We
investigate the following two cases respectively:

• There exists u ∈ NG(v) such that f(xu) = 1. In this case we swap the values of f(yv,i) and
f(xu); that is, we let f(yv,i) = 1 and f(xu) = −1. It is easy to see that this changing preserves
the badness of f .

• f(xu) = −1 for all u ∈ NG(v). In this case we change f(yv,i) to 1. Since xv already has dG(v)
neighbors with function value −1 (the xu’s with u ∈ NG(v)), it holds that f(NG(xv)) ≤ 1
even if all yv,i vertices have value 1 under f (there are only dG(v) − 1 such vertices due to
our construction).

Therefore, we can assume without loss of generality that f(y) = 1 for all y ∈ Y . Define
S = {v ∈ V | f(xv) = 1}. We will prove that S satisfies the requirement in (1). The weight of f is∑

y∈Y
f(y) +

∑
v∈S

f(xv) +
∑

v∈V \S

f(xv)

=
∑
w∈V

(dG(w)− 1) + |S| − (|V | − |S|)

= 2|E| − 2|V |+ 2|S|.

Since f is of weight at least k′, we have |S| ≥ (k′ + 2|V | − 2|E|)/2 = k. It only remains to show
that |S ∩NG(w)| ≤ 1 for each w ∈ V . Let w be an arbitrary vertex in V . As f is a bad function

4

on G′, we have

1 ≥ f(NG′(xw))

=
∑

1≤i≤dG(w)−1

f(yw,i) +
∑

v∈NG(w)

f(xv)

= (dG(w)− 1) + |{v ∈ NG(w) | f(xv) = 1}| − |{v ∈ NG(w) | f(xv) = −1}|
= (dG(w)− 1) + |S ∩NG(w)| − (dG(w)− |S ∩NG(w)|)
= 2|S ∩NG(w)| − 1.

Hence, |S ∩NG(w)| ≤ 1.
We have proved the equivalence of (1) and (2), which completes the reduction and concludes

the NP-completeness of NDN on bipartite graphs.

Corollary 1. For any fixed integer k, it is NP-complete to decide whether the negative decision
number of a given bipartite graph is at least k.

Proof. Let k be any fixed integer. By Theorem 1, deciding whether βD(G) ≥ m is NP-complete,
where G = (V,E) is an input bipartite graph, and m is an integer also given as input satisfying
that −|V | ≤ m ≤ |V |. If m ≤ k, we construct H by adding k −m isolated vertices to G. It is easy
to see that H is also bipartite, and βD(G) ≥ m if and only if βD(H) ≥ k. If m > k, we construct
H by adding m copies of C6 on disjoint sets of vertices, together with m+k isolated vertices, to G.
Since C6 is bipartite, the new graph H is also bipartite. Moreover, βD(C6) = −2 due to Theorem
5 in [18]. Thus, βD(G) ≥ m if and only if βD(H) ≥ m − 2m+ (m+ k) = k. Hence Corollary 1 is
proved.

2.2 Approximation Behaviors

Since computing the negative decision number is NP-hard in general, a natural approach is to
design efficient approximation algorithms for it. The negative decision number of a graph, however,
can be negative, so the normal concept of approximation ratio cannot be applied directly to this
parameter. Also, any β-approximation for an instance with optimal value 0 needs to return a
solution with value exactly 0, but this is NP-hard owing to Corollary 1.

In the literature, when dealing with optimization problems with possibly negative objective
values, a common approach is to standardize the objective to a nonnegative one, by considering the
“distance” of the objective value from an obvious lower or upper bound instead. A famous example
is the maximization version of the facility location problem [1]. Such “below-upper-bound” or
“above-lower-bound” approximation, in some situation coincided with the concept of differential
approximation, is also widely studied for other classical problems including set cover [11], bin
packing [5], graph coloring [2], and the traveling salesman problem [17].

In this paper we consider the below-upper-bound formulation of the Negative Decision Num-
ber problem. Given a graph G = (V,E), an obvious upper bound for βD(G) is |V |. Thus, we
can define the following standardized optimization problem associated with the negative decision
number:

Below-Upper-Bound Approximation for Negative Decision Number (UpperNDN)
Instance: A graph G = (V,E).

5

Goal: Find a bad function f of G that minimizes |V | − f(V).

Theorem 2. UpperNDN can be approximated within a factor of O(log |V |) in polynomial time.

Proof. Assume G = (V,E) is an input graph of the UpperNDN problem. For any function
f : V → {−1, 1}, let S+(f) = {v ∈ V | f(v) = 1} and S−(f) = {v ∈ V | f(v) = −1}. Note that
the objective value of the problem is |V | − f(V) = |V | − (|S+(f)| − |S−(f)|) = 2|S−(f)|. By the
definition, f is a bad function of G if and only if for every v ∈ V , |S+(f)∩N(v)|−|S−(f)∩N(v)| ≤ 1,

or equivalently, by the fact that |S+(f)∩N(v)|+ |S−(f)∩N(v)| = dG(v), |S−(f)∩N(v)| ≥ dG(v)−1
2 .

Therefore, the UpperNDN problem is reducible to finding a smallest subset of vertices (S−(f),
in our notation) such that each vertex in the graph has at least a prescribed number of neighbors

(dG(v)−1
2 , in our case) in this subset. This is a special case of the total vector domination problem

which allows a polynomial time O(log |V |) approximation [4].

The performance guarantee of O(log |V |) is asymptotically tight as suggested by the following
theorem. Note that the UpperNDN problem is similar to the total q-domination studied by
Cicalese et al. [4] with q = 1/2, where they prove similar hardness results. However, the slight
difference between the two problems makes their argument inapplicable to our case. An important
observation is that the (unique) neighbor of any degree-1 vertex must be included in a total 1

2 -
dominating set, while this is not the case for our problem.

Theorem 3. There is a constant c > 0 such that, unless NP ⊆ DTIME(nO(log log n)), no polyno-
mial time c log |V |-approximation algorithm exists for UpperNDN.

Proof. By the analysis in the proof of Theorem 2, UpperNDN is equivalent to the following
problem: Given a graph G = (V,E), find a negative set of G of smallest cardinality, where a set

S ⊆ V is called a negative set if and only if |S ∩NG(v)| ≥ dG(v)−1
2 for each vertex v ∈ V . In what

follows, when referring to UpperNDN, we will always mean this formulation.
Fix ϵ with 0 < ϵ < 1, and let c = (1−ϵ)/8. Suppose that there exists a polynomial time c ln |V |-

approximation algorithm for UpperNDN. We will use it to design a (1 − ϵ) lnn-approximation
algorithm for the problem of computing the minimum total dominating set of a given graph G of
order n, which implies NP⊆ DTIME(nO(log log n)) by the result of Feige [9], and thus concludes
the proof. (A total dominating set of a graph G = (V,E) is a subset of V such that each vertex
in V has at least one neighbor in this subset. The minimum size of a total dominating set of G is
denoted by γt(G).)

Let G = (V,E) be a graph for which we wish to compute the minimum total dominating set,
where |V | = n. Without loss of generality we assume that n ≥ 10 and γt(G) ≥ 1. Construct a new

graph G′ = (V ′, E′) as follows. Let V ′ =
(∪n2

i=1 V
(i)
)
∪
(∪n2

i=1 V
(i)∗

)
∪A ∪B ∪ C, where:

• V (i) = {v(i) | v ∈ V } for each 1 ≤ i ≤ n2;

• V (i)∗ = {v(i)∗ | v ∈ V } for each 1 ≤ i ≤ n2;

• A = {ai | 1 ≤ i ≤ 2n2};

• B = {bi | 1 ≤ i ≤ 2n2};

• C = {ci | 1 ≤ i ≤ 2n2}.

6

Let E′ = {u(i)v(i) | uv ∈ E; 1 ≤ i ≤ n2}
∪ {v(i)v(i)∗ | v ∈ V ; 1 ≤ i ≤ n2}
∪ {aiaj | 1 ≤ i < j ≤ 2n2}
∪ {aibi | 1 ≤ i ≤ 2n2}
∪ {bici | 1 ≤ i ≤ 2n2}

∪ {v(i)aj | v ∈ V ; 1 ≤ i ≤ n2; (⌈ i
n
⌉ − 1)n+ 1 ≤ j ≤ (⌈ i

n
⌉ − 1)n+ dG(v)− 1}.

(The conditions in defining the last set of edges may seem awkward. In fact, any construction
that satisfies the following two conditions can be used instead: (1) every vertex v(i) is adjacent to
exactly dG(v) − 1 vertices in A, and (2) every vertex in A is adjacent to at most n2 vertices in
∪n2

i=1V
(i).)

Note that |V ′| = 2n2 · |V |+ 6n2 = 2n3 + 6n2 ≤ n4 when n ≥ 10. In addition, it is not difficult
to verify the following:

• For every 1 ≤ i ≤ 2n2, NG′(ci) = {bi} and dG′(ci) = 1;

• For every 1 ≤ i ≤ 2n2, NG′(bi) = {ai, ci} and dG′(bi) = 2;

• For every 1 ≤ i ≤ 2n2, NG′(ai) = {bi}∪ (A\{ai})∪{v(j) | v ∈ V ; 1 ≤ j ≤ n2; (⌈ jn⌉−1)n+1 ≤
i ≤ (⌈ jn⌉ − 1)n+ dG(v)− 1}, and dG′(ai) ≤ 1 + (2n2 − 1) + n2 = 3n2.

• For every 1 ≤ i ≤ n2, NG′(v(i)) = {u(i) | u ∈ NG(v)} ∪ {v(i)
∗} ∪ {aj | (⌈ in⌉ − 1)n + 1 ≤ j ≤

(⌈ in⌉ − 1)n+ dG(v)− 1}, and dG′(v(i)) = 2dG(v);

• For every 1 ≤ i ≤ n2, NG′(v(i)
∗
) = {v(i)} and dG′(v(i)

∗
) = 1.

Let neg(G′) denote the smallest size of a negative set of G′. We next show that neg(G′) =
n2γt(G) + 2n2.

On one hand, let S ⊆ V be a total dominating set of G of size γt(G). Let S′ = A ∪ {v(i) | v ∈
S, 1 ≤ i ≤ n2}. We have |S′| = n2 · |S|+ |A| = n2γt(G) + 2n2. Next we prove that S′ is a negative

set of G′. It is clear that the condition |S′ ∩ NG′(v)| ≥ dG′ (v)−1
2 (which we will call the generic

condition hereafter) holds for all v ∈ C ∪B. For any ai ∈ A, |S′ ∩NG′(ai)| ≥ |A| − 1 = 2n2 − 1 ≥
3n2−1

2 ≥ dG′ (ai)−1
2 , and thus the generic condition holds for ai. For any v ∈ V , since S is a total

dominating set of G, it contains at least one neighbor of v in G. Thus, for each i, at least one
u(i) with u ∈ NG(v) is contained in S′. By our construction, v(i) is adjacent to u(i) and another
dG(v)− 1 vertices in A. Therefore,

|S′ ∩NG′(v(i))| ≥ dG(v) >
2dG(v)− 1

2
=

dG′(v(i))− 1

2
,

and hence the generic condition holds for all v(i) with v ∈ V and 1 ≤ i ≤ n2. Finally, each vertex
v(i)

∗
has degree 1 and surely satisfies the generic condition. This shows that S′ is indeed a negative

set of G′. Hence, neg(G′) ≤ |S′| = n2γt(G) + 2n2.
On the other hand, assume S′ is a negative set of G′ of size k = neg(G′). We show that we can

modify S′ to obtain a new negative set S′′ satisfying that:

7

1. A ⊆ S′′;

2. S′′ ∩
(
B ∪ C ∪

(∪n2

i=1 V
(i)∗

))
= ∅;

3. |S′′| ≤ k.

For the first condition, since NG′(bi) = {ai, ci} for each 1 ≤ i ≤ 2n2, at least one of ai and ci
must be in S′. Hence, we have |S′ ∩ (A ∪ C)| ≥ 2n2 = |A|. Now we remove all vertices in B ∪ C
from S′ and add all vertices of A to S′, i.e., let S′ ← (S′ \ (B ∪ C)) ∪A = (S′ \ (A ∪B ∪ C)) ∪A.
It is clear that the new set is still a negative set of G′, and has size no more than that of S′. Call
the new set S′

0. If there is some v(i)
∗ ∈ S′

0, we try to eliminate it from S′
0 without violating the

property of a negative set. Since the only neighbor of v(i)
∗
is v(i), we check the set of neighbors of

v(i) other than v(i)
∗
, i.e., {u(i) | u ∈ NG(v)}. If all vertices in this set are contained in S′

0, then the
generic condition for v(i) is still satisfied even if v(i)

∗
is removed from S′

0 (since dG′(v(i)) = 2dG(v)
and |{u(i) | u ∈ NG(v)}| = dG(v)), so in this case we simply delete it. If some vertex, say u(i), is
not in S′

0, then we delete v(i)
∗
from S′

0 and add u(i) to S′
0. It is easy to see that the newly obtained

set is still a negative set of G′. Keep doing this until all vertices in
∪n2

i=1 V
(i)∗ are no longer in S′

0;
call the final set S′′. Then S′′ is a negative set of G′ satisfying all the three conditions listed above.

For each 1 ≤ i ≤ n2, let S(i) = {v ∈ V | v(i) ∈ S′′}. We will prove that S(i) is a total
dominating set of G. To see this, assume to the contrary that there exists some v ∈ V such that
no neighbor of v is in S(i), which means that no u(i) vertices with u ∈ NG(v) is in S′′. Then we

have |S′′ ∩NG′(v(i))| = |A ∩NG′(v(i))| = dG(v)− 1 < 2dG(v)−1
2 =

dG′ (v(i))−1
2 , contradicting with the

generic condition. Thus, every S(i) is a total dominating set of G. Pick the smallest one of them
and call it S. Then we have:

neg(G′) = k ≥ |S′′| = |A|+
n2∑
i=1

|S(i)| ≥ |A|+ n2 · |S| ≥ 2n2 + n2γt(G).

Combining the two directions, we obtain that neg(G′) = 2n2+n2γt(G). In fact, from the above
analysis we also see that, given a negative set of G′ of size k, we can find in polynomial time a total
dominating set of G of size at most (k− |A|)/n2 < k/n2 by taking the smallest S(i) defined before.

Now we apply the polynomial time c ln |V ′|-approximation algorithm for UpperNDN on the
graph G′, which will produce a negative set of G′ of size at most c ln |V ′| · neg(G′). According to
our previous analysis, this in turn gives us a total dominating set of G of size at most

1

n2
· c ln |V ′| · neg(G′) ≤ 1

n2
· c ln(n4)(n2γt(G) + n2)

= 4c lnn(γt(G) + 1)

≤ 8c lnn · γt(G)

= (1− ϵ) lnn · γt(G).

Thus we obtain a polynomial time (1 − ϵ) lnn-approximation algorithm for the Total Domi-
nating Set problem, implying that NP⊆ DTIME(nO(log log n)) [9]. This completes the proof of
Theorem 3.

8

2.3 Polynomial Time Algorithms for Special Instances

In this short subsection we remark that the negative decision number can be computed in poly-
nomial time for some special classes of graphs. When we want to compute the exact value of the
negative decision number of a graph, we can equivalently solve the UpperNDN problem on this
graph (and then use n minus twice the returned value to get the negative decision number). As
noted before, UpperNDN is a special case of the total vector domination problem [4]. Thus,
all the polynomial time algorithms for total vector domination on special graphs can be directly
applied to the negative decision number. Cicalese et al. [4] pointed out that the total vector
domination problem on strongly chordal graphs is polynomial time solvable using the algorithm
of Liao and Chang [16]. (In fact the M -domination problem considered by Liao and Chang [16]
is slightly different from the total vector domination problem, in that the former considers the
closed neighborhood of v as the set of vertices that dominate v, whereas the latter uses the open
neighborhood instead. Nevertheless, an easy modification will make the algorithm work also for
total vector domination.) Since directed path graphs, interval graphs, block graphs and trees are
all subclasses of strongly chordal graphs, we obtain the following:

Corollary 2. The negative decision number can be computed in polynomial time for the following
classes of graphs: strongly chordal graphs, directed path graphs, interval graphs, block graphs, and
trees.

3 Negative Decision Number in Particular Graph Classes

In this section, we determine the negative decision number of complete multipartite graphs, wheels
and fans. Our result for complete multipartite graphs substantially generalizes those of complete
graphs (since a complete graph of order n can be regarded as a complete n-partite graph) and
bicliques (complete bipartite graphs) given by Wang [18].

Let Kn1,n2,...,nk
denote the complete k-partite graph with vertex set V = V1 ∪ V2 ∪ . . .∪ Vk and

edge set E, where Vi = {vi,j | 1 ≤ j ≤ ni} and E = {vi,jvi,j′ | i ̸= i′}. We always assume that k ≥ 2
and ni ≥ 1 for each i ∈ {1, 2, . . . , k}.
Theorem 4. Suppose G = Kn1,n2,...,nk

. Let t be the number of i’s such that ni is odd; that is,
t = |{i | 1 ≤ i ≤ k;ni is odd}|. Then,

βD(G) =

−1 if t is odd and t ≥ 3;
1 if t = 1;
2 if t = k = 2;
0 otherwise.

Proof. Let f be any bad function of G. Observe that f(N(vi,1)) =
∑

i′ ̸=i f(Vi′) for each i ∈
{1, 2, . . . , k}. We investigate the following cases.

1. t is odd. Without loss of generality we assume that n1, n2, . . . , nt are odd, while nt+1, . . . , nk

are even. For every i ∈ {1, 2, . . . , t}, we have
∑

i′ ̸=i f(Vi′) = f(N(vi,1)) ≤ 0, since f
is a bad function and the degree of vi,1 is even. For every i ∈ {t + 1, . . . , k}, we have∑

i′ ̸=i f(Vi′) = f(N(vi,1)) ≤ 1. Summing up the k inequalities for all i ∈ {1, 2, . . . , k}, we get
(k − 1)

∑
1≤i≤k f(Vi) ≤ k − t. Noting that

∑
1≤i≤k f(Vi) = f(V), we have

f(V) ≤ k − t

k − 1
. (1)

9

We further consider two subcases.

(a) t = 1. Equation (1) gives f(V) ≤ 1, and so βD(G) ≤ 1. On the other hand, we can
obtain a bad function f∗ of weight 1 by defining f∗(vi,j) = (−1)j−1 for all 1 ≤ i ≤ t and
1 ≤ j ≤ ni. (It is easy to verify that f∗(V1) = 1 and f∗(Vi) = 0 for i > 1.) Therefore,
βD(G) = 1.

(b) t ≥ 3. Equation (1) then gives f(V) < 1. Since in this case the number of vertices in
V is odd, we have f(V) ≤ −1. On the other hand, we can obtain a bad function f∗ of
weight −1 by defining f∗(vi,j) = (−1)i+j−1 for all 1 ≤ i ≤ t and 1 ≤ j ≤ ni. (It is easy
to verify that f∗(Vi) = (−1)i for 1 ≤ i ≤ t, and f∗(Vi) = 0 for t+1 ≤ i ≤ k.) Therefore,
βD(G) = −1.

2. t is even. Without loss of generality we assume that n1, n2, . . . , nt are odd, while nt+1, . . . , nk

are even. For every i ∈ {1, 2, . . . , t}, we have
∑

i′ ̸=i f(Vi′) = f(N(vi,1)) ≤ 1. For every
i ∈ {t+ 1, . . . , k}, we have

∑
i′ ̸=i f(Vi′) = f(N(vi,1)) ≤ 0, since the degree of vi,1 is even.

Summing up the k inequalities for all i ∈ {1, 2, . . . , k}, we get (k − 1)f(V) ≤ t. Hence,

f(V) ≤ t

k − 1
. (2)

We further consider two subcases.

(a) t = k = 2. Equation (2) shows f(V) ≤ 2, and so βD(G) ≤ 2. On the other hand, we
can obtain a bad function f∗ of weight 2 by defining f∗(vi,j) = (−1)j−1 for all 1 ≤ i ≤ t
and 1 ≤ j ≤ ni. (It is easy to verify that f∗(V1) = f∗(V2) = 1 and f∗(Vi) = 0 for i > 2.)
Therefore, βD(G) = 2.

(b) t < k or t = k ≥ 4. If t < k, Equation (2) gives f(V) ≤ 1. If t = k ≥ 4, Equation (2)
indicates f(V) ≤ t

t−1 < 2. Since in this case the number of vertices in V is even, we
have f(V) ≤ 0. On the other hand, we can obtain a bad function f∗ of weight 0 by
defining f∗(vi,j) = (−1)i+j−1 for all 1 ≤ i ≤ t and 1 ≤ j ≤ ni. (It is easy to verify that
f∗(Vi) = (−1)i for 1 ≤ i ≤ t, and f∗(Vi) = 0 for t+ 1 ≤ i ≤ k.) Therefore, βD(G) = 0.

This completes the proof of Theorem 4.

For every integer n ≥ 3, let Wn denote the wheel graph with vertex set V = {v0, v1, v2, . . . , vn}
and edge set E = {vivi+1 | 1 ≤ i ≤ n− 1} ∪ {vnv1} ∪ {v0vi | 1 ≤ i ≤ n}. Thus, Wn is obtained by
adding a vertex v0 to the cycle Cn with vertex set {v1, . . . , vn} and joining v0 with all the original
cycle vertices.

Theorem 5. For any integer n ≥ 3,

βD(Wn) =

1 if n ≡ 0 (mod 4);
−1 if n ≡ 2 (mod 4);
0 otherwise.

Proof. Let V = {v0, v1, . . . , vn} be the vertex set of Wn. Consider the following function f : V →
{−1, 1}:

f(vi) =

{
1 if i ≡ 0 or 3 (mod 4);
−1 if i ≡ 1 or 2 (mod 4).

10

It is easy to verify that f has weight 1 when n ≡ 0 (mod 4), has weight −1 when n ≡ 2 (mod 4),
and has weight 0 when n is odd. Furthermore, we have f(N(v0)) = f({v1, . . . , vn}) ≤ 0, and for
each vi, 1 ≤ i ≤ n, at least one of its three neighbors has value −1, indicating that f(N(vi)) ≤ 1.
Hence, f is a bad function of Wn that achieves the bounds in the theorem.

We next show that these bounds are best possible. Let f be an arbitrary bad function of Wn.
We consider two cases.

1. f(v0) = −1.
We have f(N(v0)) ≤ 0 if n is even, and f(N(v0)) ≤ 1 if n is odd. Thus, f(V) ≤ −1 if n is
even, and f(V) ≤ 0 if n is odd. This case is completed.

2. f(v0) = 1.

Similar to the previous case, we have f(V) ≤ 1 if n is even, and f(V) ≤ 2 if n is odd. We
need to show that f(V) ≤ −1 if n ≡ 2 (mod 4), and f(V) ≤ 0 if n is odd.

• n ≡ 2 (mod 4).

Assume f(V) = 1. Then

f(v1) + f(v2) + . . .+ f(vn) = 0. (3)

For each i ∈ {1, . . . , n}, let i+ = i + 1 if i < n, and i+ = 1 if i = n. Similarly,
let i− = i − 1 if i > 1, and i− = n if i = 1. Clearly N(vi) = {vi+ , vi− , v0}. Since
f(N(vi)) ≤ 1 and f(v0) = 1, we have f(vi−) + f(vi+) ≤ 0. Summing up the inequalities
for all i ∈ {1, . . . , n} gives f(v1) + f(v2) + . . . + f(vn) ≤ 0. Combined with Equa. (3),
we obtain

f(vi−) + f(vi+) = 0, for each i ∈ {1, . . . , n}. (4)

Furthermore, there exists i ∈ {1, 2, . . . , n} such that f(vi) = 1. By the symmetry of the
structure of Wn, we may assume w.l.o.g. that f(v1) = 1. By Equa. (4), we have f(v3) =
−1, f(v5) = 1, . . . , f(vn−1) = 1 (since n ≡ 2 (mod 4)). But then f(vn+) = f(vn−) = 1, a
contradiction. Therefore, f(V) < 1. As Wn has odd number of vertices, we must have
f(V) ≤ −1. This case is complete.

• n is odd.

We use notation i+ and i− as in the previous case. Since f(N(vi)) ≤ 1 and f(v0) = 1,
we have f(vi−) + f(vi+) ≤ 0 for each i ∈ {1, . . . , n}. Summing up the inequalities for all
i ∈ {1, . . . , n} gives f(v1)+ f(v2)+ . . .+ f(vn) ≤ 0, implying that f(V) ≤ 1. As Wn has
even number of vertices, we have f(V) ≤ 0. The second case is complete.

The proof of Theorem 5 is thus finished.

For every integer n ≥ 2, let Fn denote the fan graph with vertex set V = {v0, v1, v2, . . . , vn}
and edge set E = {vivi+1 | 1 ≤ i ≤ n− 1} ∪ {v0vi | 1 ≤ i ≤ n}. That is, Fn is obtained by adding
a vertex to the path Pn and connecting this vertex with all the original path vertices.

Theorem 6. For any integer n ≥ 2, we have

βD(Fn) =

1 if n ≡ 0 (mod 4);
−1 if n ≡ 2 (mod 4);
0 otherwise.

11

Proof. βD(F2) = −1 is obvious. (Note that F2 = K3.) In the following we assume n ≥ 3. We first
construct bad functions that achieve these bounds, and then prove that they are the best possible.

If n ≡ 0 (mod 4), we define f as:

f(vi) =

{
1 if i ≡ 0 or 1 (mod 4);
−1 if i ≡ 2 or 3 (mod 4).

It is easy to verify that f is a bad function of G of weight 1.
If n ≡ 2 (mod 4), we define f as:

f(vi) =

{
1 if i ≡ 0 or 3 (mod 4);
−1 if i ≡ 1 or 2 (mod 4).

It is easy to verify that f is a bad function of G of weight −1.
If n is odd, we define f as:

f(vi) =

{
1 if i ≡ 1 or 2 (mod 4);
−1 if i ≡ 0 or 3 (mod 4).

It is easy to verify that f is a bad function of G of weight 0.
It remains to prove that these bounds cannot be improved. By Theorem 5, it suffices to show

that βD(Fn) ≤ βD(Wn) for every n ≥ 3. Let f be a bad function of Fn that has weight βD(Fn).
We prove that f is also a bad function of Wn (we identify the vertex set of Fn with that of Wn).
For i ∈ {2, 3, . . . , n− 1} ∪ {0}, it holds that f(NWn(vi)) = f(NFn(vi)) ≤ 1. If i = 1 or n, we have
f(NFn(vi)) ≤ 0, since vi has even number of neighbors in Fn. Thus, f(NWn(vi)) ≤ 1 for i = 1 or
n (in Wn, v1 and vn become neighbors of each other). Therefore, f is also a bad function of Wn,
which implies that βD(Wn) ≥ βD(Fn). This completes the proof of Theorem 6.

References

[1] A. Ageev and M. Sviridenko. An 0.828 approximation algorithm for the uncapacitated facility
location problem. Discrete Appl. Math., 93:149–156, 1999.

[2] S. Athanassopoulos, I. Caragiannis, C. Kaklamanis, and M. Kuropoulou. An improved ap-
proximation bound for spanning star forest and color saving. In Proceedings of the 34th In-
ternational Symposium on Mathematical Foundations of Computer Science (MFCS), volume
5734 of LNCS, pages 90–101, 2009.

[3] W. Chen and E. Song. Lower bounds on several versions of signed domination number. Discrete
Math., 308:1837–1846, 2008.

[4] F. Cicalese, M. Milanic, and U. Vaccaro. Hardness, approximability, and exact algorithms
for vector domination and total vector domination in graphs. In Proceedings of the 18th
International Symposium on Fundamentals of Computation Theory (FCT 2011), pages 288–
297, 2011.

[5] M. Demange, J. Monnot, and V. Th. Paschos. Bridging gap between standard and differential
polynomial approximation: the case of bin-packing. Appl. Math. Lett., 12:127–133, 1999.

12

[6] R. Diestel. Graph Theory. Springer-Verlag, fourth edition, 2010.

[7] J.E. Dunbar, S.T. Hedetniemi, M.A. Henning, and P.J. Slater. Signed domination in graphs.
Graph Theory, Combinatorics, and Applications, 1:311–322, 1995.

[8] O. Favaron. Signed domination in regular graphs. Discrete Math., 158:287–293, 1996.

[9] U. Feige. A threshold of lnn for aproximating set cover. J. ACM, 45(4):634–652, 1998.

[10] A.N. Ghameshlou, A. Khodkar, R. Saei, and S.M. Sheikholeslami. Negative k-subdecision
number of a graph. AKCE Int. J. Graphs Comb., 6:361–371, 2009.

[11] M. M. Halldórsson. Approximating k-set cover and complementary graph coloring. In Pro-
ceedings of the 5th International Conference on Integer Programming and Combinatorial Op-
timization (IPCO), pages 118–131, 1996.

[12] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater. Domination in Graphs: Advanced Topics.
Marcel Dekker, 1998.

[13] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater. Fundamentals of Domination in Graphs.
Marcel Dekker, 1998.

[14] M.A. Henning. Signed total domination in graphs. Discrete Math., 278:109–125, 2004.

[15] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W. Thatcher,
editors, Complexity of Computer Computations, pages 85–103, 1972.

[16] C.S. Liao and G.J. Chang. k-tuple domination in graphs. Inf. Process. Lett., 87:45–50, 2003.

[17] J. Monnot. Differential approximation results for the traveling salesman and related problems.
Inf. Process. Lett., 82:229–235, 2002.

[18] C. Wang. The negative decision number in graphs. Australas. J. Combin., 41:263–272, 2008.

[19] C. Wang. Lower negative decision number in a graph. J. Appl. Math. Comput., 34:373–384,
2010.

[20] B. Zelinka. Signed total domination number of a graph. Czech. Math. J., 51:225–229, 2001.

[21] Z. Zhang, B. Xu, Y. Li, and L. Liu. A note on the lower bounds of signed domination number
of a graph. Discrete Math., 195:295–298, 1999.

13

