
Noname manuscript No.
(will be inserted by the editor)

Improved Approximation for Spanning Star Forest in
Dense Graphs

Jing He · Hongyu Liang

the date of receipt and acceptance should be inserted later

Abstract A spanning subgraph of a graph G is called a spanning star forest
of G if it is a collection of node-disjoint trees of depth at most 1. The size of
a spanning star forest is the number of leaves in all its components. The goal
of the spanning star forest problem is to find the maximum-size spanning star
forest of a given graph.

In this paper, we study the spanning star forest problem on c-dense graphs,
where for any fixed c ∈ (0, 1), a graph of n vertices is called c-dense if it
contains at least cn2/2 edges. We design a (α + (1−α)

√
c− ε)-approximation

algorithm for spanning star forest in c-dense graphs for any ε > 0, where
α = 193

240 is the best known approximation ratio of the spanning star forest
problem in general graphs. Thus, our approximation ratio outperforms the best
known bound for this problem when dealing with c-dense graphs. We also prove
that, for any constant c ∈ (0, 1), approximating spanning star forest in c-dense
graphs is APX-hard. We then demonstrate that for weighted versions (both
node- and edge- weighted) of this problem, we cannot get any approximation
algorithm with strictly better performance guarantee on c-dense graphs than
on general graphs. Finally, we give strong inapproximability results for a closely

This work was supported in part by the National Basic Research Program of China Grant
2011CBA00300, 2011CBA00301, and the National Natural Science Foundation of China
Grant 61033001, 61061130540, 61073174. Part of this work was done while the authors were
visiting Cornell University.

Jing He
Institute for Interdisciplinary Information Sciences, FIT 4-609, Tsinghua University, Beijing,
China
E-mail: he-j08@mails.tsinghua.edu.cn

Hongyu Liang
Corresponding author
Institute for Interdisciplinary Information Sciences, FIT 4-609, Tsinghua University, Beijing,
China
Tel.: +86-13552139521
E-mail: lianghy08@mails.tsinghua.edu.cn

2 Jing He, Hongyu Liang

related problem, namely the minimum dominating set problem, restricted on
c-dense graphs.

Keywords spanning star forest · dense graph · approximation algorithm ·
hardness of approximation

1 Introduction

We consider the spanning star forest problem. A graph is called a star if it
can be regarded as a tree of depth at most 1, or equivalently, there is one
vertex (called the center) adjacent to all other vertices (called leaves) in the
graph. A single node is by definition also a star. A star forest is a forest whose
connected components are all stars. The size of a star forest is the number of
its leaves. A spanning star forest of a graph G is a spanning subgraph of G
that is also a star forest. The spanning star forest problem (SSF for short),
introduced in [13], is the problem of finding a spanning star forest of maximum
size in a given graph. This problem has found applications in various areas.
Nguyen et al. [13] use it as a subroutine to design an algorithm for aligning
multiple genomic sequences, which is an important bioinformatics problem in
comparative genomics. This model has also been applied to the comparison
of phylogenetic trees [4] and the diversity problem in the automobile industry
[1].

It is easy to see that there is a one-one correspondence between spanning
star forests and dominating sets of a given graph. A dominating set of a graph
G is a subset of vertices D such that every vertex not in D is adjacent to
at least one vertex in D. The minimum dominating set problem is to find a
smallest dominating set of a given graph. Given a spanning star forest of G,
it is easy to argue that the collection of its all centers is a dominating set of
G, and the size of the spanning star forest is equal to the number of vertices
in G minus the size of the corresponding dominating set. On the other hand,
given a dominating set of G, we can construct a spanning star forest of G
whose centers are exactly those vertices in the dominating set. Thus, the two
problems are equivalent in finding the optimum solution. We also call one
problem the complement of another, following the notion used before [3,8].

However, the two problems appear totally different when the approxima-
bility is considered. By Feige’s famous result [10], the dominating set problem
cannot be approximated within factor (1− ε) ln n in polynomial time for any
fixed ε > 0 unless NP ⊆ DTIME(nO(log log n)). In contrast, a fairly simple
algorithm with the idea of dividing a spanning tree into alternating levels gives
a 0.5-approximation to the spanning star forest problem. Nguyen et al. [13]
proposed a 0.6-approximation algorithm using the fact that every graph of n
vertices of minimum degree 2 has a dominating set of size at most 2

5n except
for very few special cases which can be enumerated. In addition, they proved
that it is NP -hard to approximate the problem to any factor larger than 259

260 .
They also introduced the edge-weighted version of this problem, whose ob-
jective is to find a spanning star forest in which the total weight of edges is

Improved Approximation for Spanning Star Forest in Dense Graphs 3

maximized, and showed a 0.5-approximation algorithm for this variant. Later
on, the approximation ratio for unweighted SSF was improved to 0.71 by Chen
et al. [8] based on solving a natural linear programming relaxation combined
with a randomized rounding stage. They also considered another generaliza-
tion of SSF where each node has a non-negative weight and the objective is
to find a spanning star forest in which the total weight of all leaves is maxi-
mized. Note that node-weighted SSF is just the complement of the weighted
dominating set problem where each vertex has a weight and the goal is to
find a minimum-weight dominating set of the given graph. For this version,
they showed that a similar algorithm achieves an approximation factor of 0.64.
Athanassopoulos et al. [3] realized that the unweighted spanning star forest
problem is actually a special case of the complementary set cover problem,
and designed a 0.804-approximation for it (also for complementary set cover)
using the idea of semi-local search for k-set cover [9]. Regarding the hard-
ness results, it was proved by Chakrabarty and Goelin [7] that edge-weighted
SSF and node-weighted SSF cannot be approximated to 10

11 + ε and 13
14 + ε

respectively, unless P = NP .

1.1 Our contributions

We study variants of the spanning star forest problem in c-dense graphs. A
graph of n vertices is called c-dense, for some constant c ∈ (0, 1), if it contains
at least cn2/2 edges [2]. One can show by a simple probabilistic argument that
almost all graphs are dense. Thus, it captures many real-world models. In fact,
this setting has received extensive studies for various combinatorial problems
like vertex cover, max-cut, Steiner tree, minimum maximal matching, etc. (see
[2,6,11,12,15]). To our knowledge, ours is the first study on the spanning star
forest problem in the class of c-dense graphs.

We first design an approximation algorithm for (unweighted) spanning star
forest in c-dense graphs with an approximation ratio better than the previously
best known ratio of this problem in general graphs, for any c ∈ (0, 1). More
precisely, denoting by α = 193

240 (≈ 0.804) the best known approximation ratio
for spanning star forest [3], our algorithm achieves an approximation factor
of α + (1 − α)

√
c − ε, for any ε > 0. Note that this factor is larger than 0.9

whenever c ≥ 0.25, and is larger than 0.96 when c ≥ 0.64. Thus, it is a quite
strong performance guarantee. Our algorithm consists of two stages. The first
stage is actually a greedy procedure that chooses the vertex covering the largest
number of uncovered vertices, and adds it to a maintained dominating set of
the input graph. It stops when the number of uncovered vertices is smaller
than some prespecified threshold, and goes to the second stage. In this stage,
we find a set of vertices dominating the uncovered ones by reducing it to a
problem called complementary partial dominating set, which will be formally
defined in Section 2.2. We will show in Section 2.2 that this problem can
be approximated as well as the complementary set cover problem considered
in [3]. Combining the two stages, we find a dominating set of the graph of

4 Jing He, Hongyu Liang

relatively small size, and then construct a spanning star forest in the standard
way, which can be proved to be a good approximation to the problem.

We then prove that the spanning star forest problem in c-dense graphs is
APX-hard. Specifically, we prove that for any c ∈ (0, 1), there exists ε = ε(c) >
0 such that approximating SSF in c-dense graphs to within a factor of 1 − ε
is NP -hard. Thus, the technique developed by Arora et al. [2] for designing
PTAS for combinatorial problems in dense instances cannot be applied to our
problem.

Next we consider the weighted versions (both node- and edge-weighted) of
this problem. A little surprisingly, we show that any approximation algorithm
for weighted spanning star forest in c-dense graphs does not guarantee an
approximation ratio strictly larger than that in general graphs. This is proved
by an (almost) approximation-preserving reduction from general instances of
this problem to c-dense instances.

Finally, we show that the dominating set problem in c-dense graphs shares
the same inapproximability result with that in general graphs. Thus, the
(1 + lnn)-approximation achieved by a greedy approach is nearly the best
we can hope for. This again shows that the spanning star forest problem and
the dominating set problem are very different regarding the approximability,
although they are equivalent in exact optimization.

1.2 Notation used for approximation algorithms

For β ∈ (0, 1) (resp. β > 1) and a maximization (resp. minimization) prob-
lem Π, an algorithm is called a β-approximation algorithm for Π if given an
instance I of Π, it runs in polynomial time and produces a solution with ob-
jective value at least (resp. at most) β ·OPT (Π, I), where OPT (Π, I) denotes
the objective value of the optimum solution to the instance I of the problem
Π. The value β is also called the approximation ratio, approximation factor, or
performance guarantee of the algorithm for the problem Π. Moreover, β can
be a function of the input size or some parameters in the input. We say the
problem Π has a polynomial time approximation scheme (PTAS) if for every
constant ε > 0, there is a (1−ε) (resp. (1+ε))-approximation algorithm for Π.
We say Π is APX-hard if it does not have a PTAS. For standard definitions
and notations not given here, we refer the readers to [16].

2 Complementary Partial Dominating Set

In this section, we introduce the complementary partial dominating set prob-
lem, which is useful for designing our algorithm for spanning star forest in
dense graphs. Before presenting its formal definition, we need to mention an-
other related problem called the complementary set cover problem.

Improved Approximation for Spanning Star Forest in Dense Graphs 5

2.1 Complementary set cover

We briefly review the complementary set cover problem (CSC for short) [3],
since some results of it will be used later. The input of CSC is a pair (S, U),
which consists of a ground set U of elements and a set S containing some
subsets of U . The set S is guaranteed to be close under subsets, that is, for
any S ∈ S and S′ ⊆ S, we have S′ ∈ S. The representation of S can be
implicit, e.g., only inclusion-wise maximal sets in it are specified. The goal
is to find a collection of pairwise-disjoint subsets S1, S2, . . . , Sk ∈ S whose
union is U , such that |U | − k is maximized. It is shown in [3] that CSC has a
193
240 -approximation algorithm, which only selects subsets of size at most 6.

2.2 Complementary partial dominating set

Let G = (V, E) be a simple undirected graph. For any vertex v ∈ V , let
N [v] = {u ∈ V : (u, v) ∈ E} ∪ {v} be the neighborhood of v when regarding
v as a neighbor of itself. Let N [U] =

⋃
v∈U N [v] for U ⊆ V . For two subsets

U1, U2 ⊆ V , we say U1 dominates U2, or U1 is a dominating set of U2, if
U2 ⊆ N [U1]. The complementary partial dominating set problem (CPDS for
short) is defined as follows.

Input: A graph G = (V, E) and a subset of vertices V ′ ⊆ V .
Output: A set U ⊆ V that dominates V ′ such that |V ′|−|U | is maximized.
Although the objective we use seems to be equivalent to finding the minimum-

size dominating set of V ′, they are totally different when considering the ap-
proximability. It is easy to see that the minimization version of CPDS gener-
alizes the dominating set problem and thus cannot be approximated to within
γ log n for some constant γ unless P = NP [10,14], while as is shown below,
CPDS allows a constant factor approximation algorithm.

Theorem 1 There is a 193
240 -approximation algorithm for CPDS.

Proof Given an instance I = (G,V ′) of CPDS, we regard it as an instance
I ′ = (S, U) of CSC in the following way. The ground set U is just V ′, and
S contains all subsets of V ′ each of which is dominated by some vertex in V ,
i.e. S = {W ⊆ V ′ : ∃v ∈ V s.t. W ⊆ N [v]}. It is easy to see that S is close
under subsets. (Note that S may have exponential size; we will come back
to this point later.) Now, given a solution to the instance I of CPDS with
objective value s, we can easily construct a solution to the instance I ′ of CSC
with no smaller objective value, and vice versa. Therefore, the two instances
have a same optimal objective value, and we can apply the 193

240 -approximation
algorithm for CSC on I ′ to obtain a solution to I with the same approximation
ratio. However, the instance I ′ may have exponential size since it may contain
all subsets of V ′. To overcome this, we just note that the 193

240 -approximation
algorithm for CSC only deals with sets in S of size at most 6, and all subsets
of V ′ of size at most 6 can surely be enumerated in polynomial time. ut

6 Jing He, Hongyu Liang

3 Algorithm Description and Analysis

In this section, we give an approximation algorithm for the spanning star
forest problem in dense graphs. Fix c ∈ (0, 1). Let α = 193

240 be the best known
approximation ratio for CPDS. Let ε be any constant such that 0 < ε <

√
c.

Let δ = 1−√c + ε,M = 2/(c− (
√

c− ε)2), and N0 = M/(ε(1− δ)). Note that
δ,M and N0 are all positive constants only depending on c and ε.

Algorithm 1 Approximate SSF in c-dense graphs
Input: A c-dense graph G = (V, E).
Output: A spanning star forest of G.

If n ≤ N0 we perform the exhaustive search to get the optimal solution. In the following
we assume n > N0.
A ← ∅, B ← ∅, C ← V .
Stage 1:
while |C| ≥ δn do

Find the vertex v ∈ B ∪ C that dominates the largest number of vertices in C.
Set A ← A ∪ {v}, B ← N [A] \A, and C ← V \N [A].

end while
Stage 2:
Construct an instance I = (G′, V ′) of CPDS, where G′ is the subgraph of G induced on
the vertex set B ∪ C, and V ′ = C. Run the α-approximation algorithm for CPDS on I
to get a dominating set of C, denoted by S.
return a spanning star forest rooted on A ∪ S.

We present our algorithm for SSF in c-dense graphs as Algorithm 1. Note
that at the beginning (and the end) of every execution of the WHILE loop, A,
B and C form a partition of V . To show that the obtained star forest is large,
we bound the cardinality of A and S respectively.

Lemma 1 At the end of Stage 1, it holds that |A| ≤ M .

Proof Consider the moment right before some vertex v is added to A. Due
to the loop condition, we have |C| ≥ δn, and |A ∪ B| = n − |C| ≤ (1 − δ)n.
Thus, the number of edges in E with both endpoints in A ∪ B is at most
((1− δ)n)2/2. Since |E| ≥ cn2/2, the number of edges in E with at least one
endpoint in C is at least cn2/2− ((1− δ)n)2/2 = n2/M . Let E1 be the set of
edges with one endpoint in B and another in C, and E2 be the set of edges
with both endpoints in C. Note that the previous statement is equivalent to
|E1|+ |E2| ≥ n2/M , since by definition there are no edges between A and C.

For any vertex v ∈ B ∪ C, let D(v) = N [v] ∩ C be the set of vertices in
C dominated by v. Consider D =

∑
v∈B∪C |D(v)|. It is easy to see that every

edge in E1 contributes 1 to this sum, while each edge in E2 contributes 2.
Hence, D = |E1| + 2|E2| ≥ n2/M , from which we know that there exists a
vertex v∗ ∈ B ∪ C such that |D(v∗)| ≥ n/M . Note that the greedy step in
the algorithm is just to pick the vertex v with the largest |D(v)|. Therefore,
after adding v to A and updating B and C correspondingly, the size of A∪B

Improved Approximation for Spanning Star Forest in Dense Graphs 7

increases by at least n/M . Since there are only n vertices, we can add at most
M of them to A, completing the proof of Lemma 1. ut
Lemma 2 |S| ≤ δ(1 − α)n + αk, where k is the size of the smallest subset
U ⊆ B ∪ C that dominates C.

Proof By the definition of CPDS, we know that the value of the optimum
solution to its instance I defined in Algorithm 1 is precisely |C| − k. As the
solution S is obtained by applying the α-approximation algorithm for CPDS,
we have |C|−|S| ≥ α(|C|−k). Rearranging terms gives |S| ≤ (1−α)|C|+αk ≤
δ(1−α)n+αk, where the second inequality follows from the fact that |C| ≤ δn
at the end of Stage 1. ut

We are ready to prove our main theorem.

Theorem 2 Algorithm 1 is a (α + (1− α)
√

c− 2ε)-approximation algorithm
for the spanning star forest problem in c-dense graphs.

Proof Clearly Algorithm 1 runs in polynomial time. Furthermore, it finds the
optimal spanning star forest of G when n ≤ N0, and produces a solution of
size n − |A| − |S| ≥ (1 − δ(1 − α))n − αk −M when n > N0, by Lemmas 1
and 2. The size of the optimal solution is n − k∗, where k∗ is the size of the
smallest dominating set of G. It is easy to see that k∗ is not smaller than
the size of the smallest subset of V that dominates C. Since no edges exist
between A and C, the latter quantity is equal to k, the size of the smallest
subset of B∪C that dominates C. Therefore, we have n−k∗ ≤ n−k. We also
note that k ≤ |C| ≤ δn since C dominates itself. The approximation ratio of
Algorithm 1 can thus be bounded from below by

(1− δ(1− α))n− αk −M

n− k∗

≥ (1− δ(1− α))n− αk −M

n− k

= α +
(1− α)(1− δ)n

n− k
− M

n− k

≥ α + (1− α)(1− δ)− M

n− δn

≥ α + (1− α)(
√

c− ε)− M

(1− δ)N0

≥ α + (1− α)
√

c− 2ε,

which concludes the proof of Theorem 2. ut

4 Hardness Results

We now show that for every 0 < c < 1, SSF in c-dense graphs does not admit a
polynomial-time approximation scheme, unless P = NP . Thus, the technique

8 Jing He, Hongyu Liang

developed by Arora et al. [2] for designing PTAS for combinatorial problems
in dense instances cannot be applied to this problem.

Theorem 3 For any constant c ∈ (0, 1), there exists a constant ε = ε(c) > 0,
such that it is NP -hard to approximate the spanning star forest problem in
c-dense graphs to a factor of 1− ε.

Proof We reduce the general SSF problem to SSF in c-dense graphs. Let G =
(V, E) be an input to general SSF. Let n = |V |, k = d2√c/(1 − √

c)e, and
let OPT denote the size of the largest spanning star forest of G. It is easy to
verify that k >

√
c(k +1). We assume w.l.o.g. that n ≥ k/(k2− c(k +1)2) > 0,

since otherwise we can just do a brute-force search for the constant-size (note
that k and c are both constants) input graph. We also assume that G is
connected, since connected and disconnected versions of general SSF share
the same hardness-of-approximation result. We thus have OPT ≥ n/2, since
any connected graph on n vertices has a dominating set of size at most n/2.
Let H be a complete graph on a vertex set of size kn which is disjoint from
V , and let G′ = G ∪H.

We verify that G′ is c-dense. As G′ has n′ = (k + 1)n vertices and at least
kn(kn − 1)/2 edges, it suffices to show that kn(kn − 1)/2 ≥ c(k + 1)2n2/2,
or n ≥ k/(k2 − c(k + 1)2), which is exactly our assumption on n. Since G′

consists of two disjoint components, it is clear that OPT ′ = OPT + kn − 1,
OPT ′ denoting the size of the largest spanning star forest of G′. Moreover,
given a spanning star forest of G′ of size s′, we can easily construct a spanning
star forest of G of size at least s′− (kn− 1). Thus, given any β-approximation
algorithm for SSF in c-dense graphs, we can obtain a spanning star forest of
G of size β(OPT + kn− 1)− (kn− 1). On the other hand, we know that there
is a constant γ > 0 such that approximating general SSF within 1− γ is NP -
hard [13]. Therefore, there exists G such that β(OPT + kn− 1)− (kn− 1) ≤
(1− γ)OPT , from which we derive that

β ≤ (1− γ)OPT + kn− 1
OPT + kn− 1

= 1− γ +
γ(kn− 1)

OPT + kn− 1

≤ 1− γ +
γ(kn− 1)

n/2 + kn− 1

< 1− γ +
γk

k + 1/2
.

The proof is completed by choosing ε = γ/(2k + 1). ut
We have designed an algorithm for SSF in c-dense graphs whose approx-

imation ratio outperforms the best known bound for general SSF, for every
0 < c < 1. A natural question is whether we can generalize our technique to
weighted versions of SSF. A little surprisingly, we show in the following that
this is not the case: We cannot design any approximation algorithm for node-

Improved Approximation for Spanning Star Forest in Dense Graphs 9

(resp. edge-)weighted SSF in c-dense graphs with a strictly larger performance
guarantee than that of general node- (resp. edge-)weighted SSF.

Theorem 4 For any constants c ∈ (0, 1) and β, ε > 0, the existence of a β-
approximation algorithm for node- (resp. edge-)weighted SSF in c-dense graphs
implies that of a (β − ε)- (resp. β-)approximation algorithm for node- (resp.
edge-)weighted SSF in general graphs.

Proof The edge-weighted case is easy since we can regard every edge-weighted
graph as a complete graph (which is c-dense for any c < 1 and large enough
n) with some edges having weight 0. Thus, in the following we consider the
node-weighted version of SSF. Fix c, ε and β. Let G = (V, E) be an input
graph to node-weighted SSF, and w : V → Q+∪{0} be the weight function on
its nodes. Let n = |V | and OPT denote the maximum weight of a spanning
star forest of G. We assume that OPT > 0 since the case of OPT = 0 is easily
detectable. Let w∗ = min{w(v) : v ∈ V and w(v) > 0}. Clearly OPT ≥ w∗.
We apply a reduction similar to that used in the proof of Theorem 3 to get a
c-dense graph G′ = G∪H, with the only difference that we set the weights of
all vertices in H to 1, and multiply the weights of all vertices in G by a factor
of ∆ = (1−β)(kn−1)/(εw∗) (recall that k is the constant defined in the proof
of Theorem 3). Now we have OPT ′ = ∆ ·OPT + kn− 1 where OPT ′ denotes
the maximum weight of a spanning star forest of G′, and a spanning star forest
of G′ of weight s′ can be easily transformed to a spanning star forest of G of
weight at least (s′ − (kn − 1))/∆. Thus, given a β-approximation to node-
weighted SSF in c-dense graphs, we can design an approximation algorithm
for node-weighted SSF in general graphs with an approximation ratio of

β′ ≥ (β(∆ ·OPT + kn− 1)− (kn− 1))/∆
OPT

= β − (1− β)(kn− 1)
∆ ·OPT

≥ β − (1− β)(kn− 1)
∆ · w∗ = β − ε,

concluding the proof of Theorem 4. ut

Finally, we show that the dominating set problem, as the complement of
SSF, remains hard to approximate even in dense graphs.

Theorem 5 For any constants c ∈ (0, 1) and ε > 0, there is no (1 − ε) lnn-
approximation algorithm for dominating set in c-dense graphs, where n is the
number of vertices in the input graph, unless NP ⊆ DTIME(nO(log log n)).

Proof We show how to use a (1 − ε) ln n-approximation for dominating set
in c-dense graphs to design a (1 − ε′) lnn-approximation for dominating set
in general graphs, thus proving the theorem since by [10] this implies NP ⊆
DTIME(nO(log log n)). Given a graph G = (V, E), we first exhaustively check
if the optimal dominating set has size at most d1/εe. If so, we can find it

10 Jing He, Hongyu Liang

in polynomial time. Otherwise, we apply a reduction similar to that used in
the proof of Theorem 3 to obtain a c-dense graph G′. Denoting by OPT and
OPT ′ the size of the minimum dominating set of G and G′ respectively, it
is clear that OPT ′ = OPT + 1, and a dominating set of G′ of size s can be
easily converted to one of G of size at most s − 1. Therefore, given a (1 −
ε) lnn-approximation for dominating set on c-dense graphs, we can obtain an
approximation algorithm for it on general graphs with approximation ratio at
most ((1−ε) ln n(OPT +1)−1)/OPT < (1−ε) ln n(1+1/OPT) ≤ (1−ε2) lnn,
since OPT ≥ d1/εe. This finishes the proof of Theorem 5.

5 Conclusion

In this paper, we explored the spanning star forest problem in c-dense graphs,
and devised an algorithm with approximation ratio better than the previously
best known ratio for this problem in general graphs. We also showed that
this problem does not admit a PTAS unless P = NP , thus ruling out the
possibility of applying the general technique developed by Arora et al. to this
problem. We then showed hardness results for its weighted versions as well as
its complementary problem, the dominating set problem in dense graphs.

An interesting open question is whether we can generalize the notion of
c-dense graphs to allow c = o(1) and still get better approximation than in
general graphs. Such graphs have recently been considered by Cardinal et al.
[5], on which they obtain tight approximation bounds for several combinato-
rial problems, including vertex cover, connected vertex cover and the Steiner
tree problem. It is also of interests to bridge the gap between algorithmic and
hardness results for spanning star forest in c-dense graphs, since the inapprox-
imability factor derived by our reduction is very close to 1.

References

1. A. Agra, D. Cardoso, O. Cerfeira, and E. Rocha. A spanning star forest model for
the diversity problem in automobile industry. In Proceedings of the 17th European
Conference on Combinatorial Optimization (ECCO XVII), 2005.

2. S. Arora, D. Karger, and M. Karpinski. Polynomial time approximation schemes for
dense instances of NP-hard problems. J. Comput. Syst. Sci., 58(1):193–210, 1999.

3. S. Athanassopoulos, I. Caragiannis, C. Kaklamanis, and M. Kuropoulou. An improved
approximation bound for spanning star forest and color saving. In 34th International
Symposium on Mathematical Foundations of Computer Science (MFCS), volume 5734
of LNCS, pages 90–101, 2009.

4. V. Berry, S. Guillemot, F. Nicholas, and C. Paul. On the approximation of computing
evolutionary trees. In the 11th International Computing and Combinatorics Conference
(COCOON), volume 3595 of LNCS, pages 115–125, 2005.

5. J. Cardinal, M. Karpinski, R. Schmied, and C. Viehmann. Approximating subdense
instances of covering problems. arXiv:1011.0078v2, 2010.

6. J. Cardinal, S. Langerman, and E. Levy. Improved approximation bounds for edge
dominating set in dense graphs. Theor. Comput. Sci., 410:949–957, 2009.

7. D. Chakrabarty and G. Goel. On the approximability of budgeted allocations and
improved lower bounds for submodular welfare maximization and gap. In Proceedings

Improved Approximation for Spanning Star Forest in Dense Graphs 11

of 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
687–696, 2008.

8. N. Chen, R. Engelberg, C. T. Nguyen, P. Raghavendra, A. Rudra, and G. Singh. Im-
proved approximation algorithms for the spanning star forest problem. In 10th Intl.
Workshop on Approximation Algorithms for Combinatorial Optimization Problems
(APPROX), volume 4627 of LNCS, pages 44–58, 2007.

9. R. Duh and M. Furer. Approximation of k-set cover by semi local optimization. In
Proceedings of the 29th Annual ACM Symposium on the Theory of Computing (STOC),
pages 256–264, 1997.

10. U. Feige. A threshold of ln n for aproximating set cover. J. ACM, 45(4):634–652, 1998.
11. S. Gaspers, D. Kratsch, M. Liedloff, and I. Todinca. Exponential time algorithms for

the minimum dominating set problem on some graph classes. ACM Trans. Algorithms,
6(1), 2009.

12. T. Imamura and K. Iwama. Approximating vertex cover on dense graphs. In Proceedings
of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
582–589, 2005.

13. C. T. Nguyen, J. Shen, M. Hou, L. Sheng, W. Miller, and L. Zhang. Approximating
the spanning star forest problem and its applications to genomic sequence alignment.
SIAM J. Comput., 38(3):946–962, 2008.

14. R. Raz and S. Safra. A sub-constant error-probability low-degree test, and sub-constant
error-probability PCP characterization of NP. In Proceedings of the 29th Annual ACM
Symposium on the Theory of Computing (STOC), pages 475–484, 1997.

15. I. Schiermeyer. Problems remaining NP-complete for sparse or dense graphs. Discuss.
Math. Graph Theory, 15:33–41, 1995.

16. V. Vazirani. Approximation Algorithms. Springer, 2001.

