
Controlling Infection by Blocking Nodes and Links Simultaneously

Jing He∗ Hongyu Liang† Hao Yuan‡

Abstract

In this paper we study the problem of controlling the spread of undesirable things (viruses,
epidemics, rumors, etc.) in a network. We present a model called the mixed generalized network
security model, denoted by MGNS(d), which unifies and generalizes several well-studied infection
control model in the literature. Intuitively speaking, our goal under this model is to secure a
subset of nodes and links in a network so as to minimize the expected total loss caused by
a possible infection (with a spreading limit of d-hops) plus the cost spent on the preventive
actions. Our model has wide applications since it incorporates both node-deletion and edge-
removal operations. Our main results are as follows:

1. For all 1 ≤ d < ∞, we present a polynomial time (d + 1)-approximation algorithm for
computing the optimal solution of MGNS(d). This improves the approximation factor of
2d obtained in [20] for a special case of our model. We derive an O(log n)-approximation
for the case d =∞. Moreover, we give a polynomial time 3

2 -approximation for MGNS(1)
on bipartite graphs.

2. We prove that for all d ∈ N ∪ {∞}, it is APX -hard to compute the optimum cost of
MGNS(d) even on 3-regular graphs. We also show that, assuming the Unique Games
Conjecture [14], we cannot obtain a (3

2 − ε)-approximation for MGNS(d) in polynomial
time. Our hardness results hold for the special case GNS(d) in [20] as well.

3. We show that an optimal solution of MGNS(d) can be found in polynomial time for
every fixed d ∈ N ∪ {∞} if the underlying graph is a tree, and the infection cost and
attack probability are both uniform. Our algorithm also works for the case where there
are budget constraints on the number of secured nodes and edges in a solution. This in
particular settles an open question from [22] that asks whether there exists an efficient
algorithm for the minimum average contamination problem on trees.

∗Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China. Email:
lianghy08@mails.tsinghua.edu.cn.
†Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China. Email:

he-j08@mails.tsinghua.edu.cn.
‡Department of Computer Science, City University of Hong Kong, Hong Kong, China. Email:

haoyuan@cityu.edu.hk.

1

1 Introduction

During the recent years, much effort has been devoted to the study on the structure of various types
of networks such as social networks, wireless sensor networks, computer networks, transportation
networks, and the World Wide Web. An important and active subject is to study the information
diffusion process in the situations where we want some news, topics, thoughts or products to spread
quickly in the network, such as viral marketing [9]. This idea is formalized by Kempe, Kleinberg
and Tardos [13] as a combinatorial problem called the influence maximization problem, which has
since then been extensively studied under various settings (see, e.g., [6, 11, 16, 21]).

In contrast, another important line of research is to study how to prevent or limit the spread of
undesirable things through the network, such as the propagation of computer viruses and worms
over computer networks, the fast spreading of malicious rumors through social networks, and the
spread of infections or epidemics (such as Swine Flu and H1N1) among groups of people. In
all these circumstances we need to eliminate or at least control the evolution of the bad things
over the whole network, which is usually achieved by taking some preventive measures before the
emergence of these undesirable things, and isolating or restricting the behaviors of some individuals
if the infection has already been spread through the network. An important issue in real-world
applications is the balance between the cost spent on prevention and the expected loss caused by
infection. For example, installing anti-virus softwares on the computers is a natural response to
the possible virus attack, but it may cost a lot of money and bring inefficiency to the protected
computers due to high maintenance cost or memory requirement.

An elegant model that integrates both the security and infection costs has been formalized by
Aspnes, Chang and Yampolskiy [3]. In their model, we seek for a subset of nodes on which we shall
install the anti-virus softwares (call such nodes secure). A virus-attack is initiated by choosing one
node from the network uniformly at random, and this node, if not secure, will infect all other nodes
that are reachable from it in the network with all secure nodes removed. The goal is to minimize
the cost for installing softwares (security cost) plus the expected total loss caused by the virus
(infection cost). They consider both centralized (optimization) and game-theoretic settings. The
model is substantially generalized by Kumar et al. [20] by allowing individual security and infection
costs and arbitrary distribution of the virus-attack probability, and by introducing a parameter d
into the model that represents the distance within the network that an infection can spread. This
new model is called the generalized network security model, denoted GNS(d). Thus, GNS(d) is able
to capture networks with less infection power or limited local information, such as ad hoc wireless
networks. An issue with GNS(d) is that it lacks the power of modeling the action of restricting
the interconnections between individuals in the network (instead of simply removing them from
the network), which, in the graph language, corresponds to blocking edges in the graph instead of
deleting nodes. In spirit of such consideration, the contamination minimization model where edges
are supposed to be blocked is raised by [17] and has been further studied in, e.g., [18, 19, 22].

In this paper, we present a model for minimizing the spread of infection that unifies and further
generalizes the two aforementioned approaches, which we call the mixed generalized network security
model, denoted by MGNS(d). In our model, each node has its own security cost and infection cost
as in GNS(d), and each edge has its own link-blocking cost that represents the lost caused by the
removal of the edge. The attack probability distribution can be arbitrary as in GNS(d). The
insecure node that is attacked initially will infect exactly those nodes that are within distance at
most d from it in the attack graph obtained by removing all secure nodes and blocked edges from
the original network. The cost of a solution is equal to the total expected infection cost of the

2

nodes plus the cost for securing nodes and blocking edges in this solution. The goal is then to
find a solution with minimum cost. Our main results in this paper, some of which improve on the
previously best known results achieved for special cases of our model, are given in the following.

1. For all 1 ≤ d <∞, we present a polynomial time (d+1)-approximation algorithm for comput-
ing the optimal solution of MGNS(d) based on the primal-dual method. This improves the
approximation factor of 2d obtained in [20] for GNS(d), which is a special case of MGNS(d).
(We note that it is possible to design a reduction from MGNS(d) to GNS(2d), which will give
us a 4d-approximation for MGNS(d) using the algorithm in [20]. However, the reduction loses
a lot of information about the topology of the underlying network.) For the case d =∞, we
derive an O(log n)-approximation for MGNS(∞) that matches the result of [20] for GNS(∞).
Moreover, we give a polynomial time 3

2 -approximation for MGNS(1) on bipartite graphs.

2. We prove that for all d ∈ N∪ {∞}, it is APX -hard to compute the optimum cost of GNS(d)
even if the graph is 3-regular and all costs and probability are uniform, thus ruling out the
possibility of designing PTAS for the problem. We also show that, assuming the Unique
Games Conjecture [14], we cannot obtain a (32 − ε)-approximation for GNS(d) in polynomial
time. To our knowledge these are the first inapproximability results for GNS(d). Since
GNS(d) is a special case of MGNS(d), all the hardness results trivially apply to MGNS(d).

3. We show that an optimal solution of MGNS(d) can be found in polynomial time for every
fixed d ≥ 1 or d = ∞ if the underlying graph is a tree, and the infection cost and attack
probability are both uniform. Our algorithm can handle all d ≤ O(

√
log n) in polynomial time

on bounded-degree trees. Our algorithm also works for the case where budget constraints are
put on the number of nodes and edges that can be secured and blocked respectively in a
wanted solution. In particular, this settles an open question of [22] that asks whether there
exists an efficient algorithm for the minimum average contamination problem on trees (which
will be mentioned later in more detail). We remark that the tree structure, despite being
special, has applications in hierarchically-organized networks such as company relationships.

Paper Organization. In the rest part of this section, we rigorously define our model and compare
it with some previous work. In Section 2 we present approximation algorithms for MGNS(d).
Hardness of approximation results for MGNS(d) are given in Section 3. Section 4 copes with tree
instances of MGNS(d). Finally, in Section 5 we conclude the whole paper and propose some open
problems and future research directions.

1.1 Our Model for Infection Control

In this subsection we explain the mixed generalized network security model MGNS(d) in more
detail, where d ∈ N+ ∪ {∞} is a parameter that, intuitively, reflects the “degree of infectivity”
within the network. Although we will describe our model in terms of preventing virus-spreading in
computer networks, one should keep in mind that the model is capable of many other situations
where we wish to minimize the propagation of undesirable things. Specifically, our model MGNS(d)
comprises the following ingredients:

Contact Graph, Costs and Strategy. The contact graph is an undirected graph G = (V,E),
where V = {1, 2, . . . , n} denotes the set of computers in a connected network, and E ⊆ V 2 specifies

3

the underlying topology of the network. Thus, an edge {u, v} ∈ E indicates that nodes (computers)
u and v are directly connected, so that u can potentially affect v if it is infected by a computer
virus or worm, and vice versa. For each v ∈ V , let Cv denote the security cost of v (for installing
an anti-virus software on v), and Lv the infection cost of v (for recovering it from a virus attack).
For each e ∈ E, let C ′e denote the link-blocking cost of e (for the lost caused by the removal of e).
All the costs are non-negative. In a strategy (solution), we need to decide on which nodes to install
anti-virus softwares and which edges to block. A node with anti-virus software installed on it is
called secure, and otherwise is called insecure. Similarly we have blocked and unblocked edges. A
solution S is also identified with VS ∪ES , where VS ⊆ V is the set of secure nodes in S and ES ∈ E
is the set of blocked edges in S. The attack graph of a solution is the graph obtained from G by
removing all secure nodes and blocked edges.

Infection Model and Social Cost. We assume that the virus is initiated at exactly one node
chosen from V according to the attack probability distribution {wv | v ∈ V }, where

∑
v∈V wv = 1.

Write w(S) :=
∑

v∈S wv for S ⊆ V . A secure node will neither suffer from the virus nor transmit
the virus to other nodes (although it can be chosen as the attacked node), whereas an insecure
node, if chosen as the attacked node, will infect exactly those nodes at distance at most d from
it in the attack graph (including itself). For a strategy S, let V ≤dS (v) denote the set of nodes at
distance at most d from v in the attack graph of S. Then the social cost of S (denoted by cost(S))
is defined as:

cost(S) =
∑
v∈VS

Cv︸ ︷︷ ︸
cost for

installing softwares

+
∑
e∈ES

C ′e︸ ︷︷ ︸
cost for

blocking links

+
∑

v∈V \VS

Lv · w(V ≤dS (v))︸ ︷︷ ︸
expected cost for

recovering v from infection

.

Goal. In the centralized setting of MGNS(d), the goal is to find a strategy with minimum social
cost, or social optimum. We can also define the decentralized (game-theoretic) model, in which the
user needs to decide whether to install the anti-virus software on his/her computer and whether
to disconnect some of the links with other users in the network. In this paper we concentrate on
the centralized setting of MGNS(d), while leaving explorations of the decentralized model to future
work.

1.2 Related Work

As stated before, our model MGNS(d) incorporates and generalizes several infection prevention
models that have been studied recently. We list some problems considered in the literature that
are either special cases of or related to the problem of computing the social optimum of MGNS(d).

• Consider the instances of MGNS(d) where d = ∞, C ′e = ∞ for all e ∈ E, all nodes have the
same security cost C and infection cost L, and the attack probability distribution is uniform
over nodes. When restricted on such instances, MGNS(d) coincides with the model proposed
by Aspnes, Chang and Yampolskiy [3], who gave an O(log1.5 n)-approximation for computing
the social optimum, based on the sparsest cut algorithm of Arora, Rao and Vazirani [1].
The approximation ratio is subsequently improved to O(log n) independently by [5] and [20],
which is also the currently best known result for this problem.

4

• Restricted on the instances where C ′e = ∞ for all e ∈ E (i.e., all the edges should remain
unblocked in any reasonable solution), our model is equivalent to the generalized network
security model GNS(d) introduced by Kumar et al. [20]. They present a 2d-approximation
for computing the social optimum of GNS(d) for all d < ∞ by rounding a natural linear
program for the problem. This result is subsumed by our (d+1)-approximation for MGNS(d).
They also give an O(log n)-approximation for GNS(∞) based on a reduction to the minimum
weighted vertex multicut problem [10], improving the O(log1.5 n) factor of [3] and matching
the result independently obtained in [5].

• Under the case where d = ∞, Cv = ∞ for all v ∈ V , wv = 1/n for all v ∈ V , and both
the infection costs and link-blocking costs are uniform, the problem of computing the social
optimum of MGNS(d) is similar to the minimum average contamination problem studied
by Li and Tang [22], which originates from a (stochastic) link-blocking model initiated by
Kimura, Saito and Motoda [17]. The difference between our setting and theirs is that they
put a budget constraint K on the number of edges that can be removed from the network.
In [22], a (1 + ε, O(lognε))-bicriteria approximation algorithm and a (53 − ε)-inapproximability
result are given for the minimum average contamination problem. Note that their problem
is harder than ours (with an additional budge constraint) and thus their hardness factor is
stronger than ours. However, they only consider the case d = ∞, while our hardness result
applies to all d. Also, our polynomial-time algorithm for tree instances of MGNS(d) holds for
the budgeted case as well.

• Another related problem that has mainly been studied in the operations research forum is the
critical node problem [2, 4, 8] defined as follows: given a node-weighted graph G = (V,E), a
connection cost c(u, v) for each pair of nodes {u, v} ∈ V 2, and a parameter K, the goal is to
find a subset of nodes whose total weight does not exceed K such that the total connection cost
(counted for all connected pairs of nodes) is minimized. This problem is similar to MGNS(∞)
with C ′e =∞ for all e ∈ E and wv = 1/n for all v ∈ V , but with additional budget constraints
and more general cost functions. The problem is NP-complete on general graphs with unit
costs and unit weights [2], and on trees with unit weights [8]. For the unit-cost case (which
makes the problem fit in our model with d =∞) in a tree of size n, Di Summa et al. [8] show
that the problem is solvable in O(n7) time. Our polynomial-time algorithm for (budgeted)
MGNS(d) on trees substantially generalizes their result to all fixed d.

2 Approximation Algorithm for MGNS(d)

In this section we concern with the computation of the social optimum of MGNS(d). As the problem
is NP-hard, we focus on the perspective of approximation, and obtain the following results.

Theorem 1. For any d ≥ 1, there is a polynomial time (d + 1)-approximation algorithm for
computing the social optimum of MGNS(d). (Here d need not be a constant.)

Theorem 2. There is a polynomial time O(log n)-approximation for the social optimum of MGNS(∞).

Theorem 3. There is a polynomial time 3
2 -approximation algorithm for computing the social op-

timum of MGNS(1) with bipartite contact graphs.

5

2.1 The case d <∞

We first consider the case 1 ≤ d < ∞, and prove Theorem 1. Let I be an instance of MGNS(d)
with contact graph G = (V,E) where V = {1, 2, . . . , n}. If Ci < wiLi for some i ∈ V , then clearly
i should be secured in any optimum solution. Thus, we assume in what follows that Ci ≥ wiLi for
all i ∈ V .

We write an integer program to formulate the social optimum of I. For each k ∈ V ∪E, let xk
be a binary variable that is 1 if and only if k is secure (or blocked, depending on whether k is a
node or an edge). For a path p, let Vp and Ep denote the sets of nodes and edges on p, respectively.
For all 1 ≤ i < j ≤ n, let P di,j denote the collection of all simple paths from i to j of length at most

d (note that P di,j can be empty and can also be of exponential size), and yi,j be a binary variable

that is 1 if and only if there exists at least one path p ∈ P di,j on which all nodes are insecure and
all edges are unblocked. Thus, yi,j = 1 iff i and j can infect each other in the attack graph. Then
the following integer program IP1 characterizes precisely the social optimum of I:

IP1: Min
∑
i∈V

Cixi +
∑
{i,j}∈E

C ′{i,j}x{i,j} +
∑
i∈V

Li

wi(1− xi) +
∑

j∈V \{i}

wjyi,j

subject to: yi,j +

∑
k∈Vp∪Ep

xk ≥ 1 ∀1 ≤ i < j ≤ n and p ∈ P di,j

yi,j = yj,i ∀1 ≤ i < j ≤ n
xk ∈ {0, 1} ∀k ∈ V ∪ E
yi,j ∈ {0, 1} ∀1 ≤ i, j ≤ n, i 6= j .

We write C ′i = Ci − wiLi for each i ∈ V (with a little abuse of notation since C ′ is originally
defined for edge costs), Li,j = wiLj + wjLi for all 1 ≤ i < j ≤ n, and C =

∑
1≤i≤nwiLi. Note

that C ′i ≥ 0 for all i ∈ V by our assumption before. Rearranging terms, unifying the first two
summations, and combining the occurrences of yi,j and yj,i in the objective function of IP1, we get
a simpler yet equivalent formulation IP2 as follows:

IP2: Min
∑

k∈V ∪E
C ′kxk +

∑
1≤i<j≤n

Li,jyi,j + C subject to:

yi,j +
∑

k∈Vp∪Ep

xk ≥ 1 ∀1 ≤ i < j ≤ n and p ∈ P di,j

xk ∈ {0, 1} ∀k ∈ V ∪ E
yi,j ∈ {0, 1} ∀1 ≤ i < j ≤ n.

Observe that IP2, with the constant part C discarded, can be regarded as an instance of the
weighted set cover problem when treating the length-at-most-d paths as the elements to be covered.
When d is fixed, the instance of set cover is constructible in polynomial time. Also, in this set cover
instance, every element appears in at most 2d + 2 sets, because each constraint in IP2 involves
at most 2d + 2 variables (note that each p ∈ P di,j consists of at most d + 1 vertices and d edges).
Therefore, a polynomial time (2d+2)-approximation exists for IP2 (see, e.g., [12]) and thus also for
MGNS(d). Notice that, by reducing the problem to set cover, we can only handle constant d, and

6

cannot hope for a poly-time (2d + 2 − ε)-approximation due to the (k − ε)-hardness of k-uniform
hypergraph vertex cover [15], assuming the Unique Games Conjecture [14].

We next show that we can obtain an approximation factor of d+1 for all d (not necessarily fixed)
by utilizing the special structure of IP2, thus saving a factor of 2 from the set cover approach. To
achieve this, we relax the last two constraints of IP2 to xk ≥ 0 and yi,j ≥ 0 respectively, and ignore
the constant part C in the objective function. This gives us a linear programming relaxation (which
might still have super-polynomial size) of the original instance, which we call LP. (We do not state
LP explicitly since it is very similar to IP2.) Obviously, OPT (LP)+C ≤ OPT (IP2) = OPT (IP1),
where OPT (P) is the optimum objective value of the mathematical program P .

We now write the dual formulation of LP. Let P d = ∪1≤i<j≤nP di,j . For each p ∈ P d, introduce
a dual variable zp, which corresponds to the constraint yi,j +

∑
k∈Vp∪Ep

xk ≥ 1 in LP (where i and

j are the endpoints of p). The dual program DU can be written as follows:

DU: Max
∑
p∈P d

zp subject to:

∑
p∈P d

i,j

zp ≤ Li,j ∀1 ≤ i < j ≤ n

∑
p∈P d

k∈Vp∪Ep

zp ≤ C ′k ∀k ∈ V ∪ E

zp ≥ 0 ∀p ∈ P d.

By the strong duality theorem, OPT (DU) = OPT (LP). We now find a solution to IP2 by
Algorithm 1, which basically consists of a primal-dual procedure and a “pruning” phase. Since the
number of variables in DU can be super-polynomial in n for non-constant d, the näıve implemen-
tation of Algorithm 1 may not run in polynomial time. Nevertheless, we will show later that the
running time can be reduced to nO(1) regardless of d; stating the algorithm in its current form is
just to simplify the analysis of its performance guarantee. Let S denote the solution to IP2 returned
by Algorithm 1, and Z = {zp | p ∈ P d} be the solution to DU obtained in Algorithm 1 (which is
not explicitly returned). Let value(S) denote the objective value of the solution S.

Lemma 1. Z is a feasible solution to DU, and S is a feasible solution to IP2.

Proof. Since all variables in a constraint of DU are frozen (and hence whose values cannot change
thereafter) when the constraint goes tight, Z is clearly a feasible solution to DU. Now consider the
solution S to IP2. Fix any p ∈ P d. Since zp is frozen when the algorithm terminates, at least one
constraint in DU involving zp is tight, and thus yi,j (where i and j are endpoints of p) or at least
one xk with k ∈ Vp ∪ Ep is set to 1 at Line 6 or 8 inside the WHILE loop. During the FOR loop,
yi,j is changed back to 0 only if xi or xj is 1, and for each {i1, i2} ∈ Ep, x{i1,i2} is changed back to 0
only if xi1 or xi2 is 1. Thus, at least one of the variables in the constraint “yi,j +

∑
k∈Vp∪Ep

xk ≥ 1”
remains 1, which fulfills the constraint. By the arbitrariness of p, we know that S is a feasible
solution to IP2.

Lemma 2. value(S) ≤ (d+ 1)OPT (IP2).

7

Algorithm 1 Constructing a feasible solution for IP2

1: xk ← 0, ∀k ∈ V ∪ E; yi,j ← 0, ∀1 ≤ i < j ≤ n.
2: zp ← 0, ∀p ∈ P d; also, set all zp to be “unfrozen.”
3: while there are still unfrozen variables do
4: Choose any unfrozen variable, say zp, that appears in some constraint of DU. Raise the value

of zp until some constraint in DU, say c, becomes tight. (Pick an arbitrary one if there are
more than one tight constraints.)

5: if c is “
∑

p∈P d:k∈Vp∪Ep
zp ≤ C ′k” for some k ∈ V ∪ E then

6: xk ← 1
7: else if c is “

∑
p∈P d

i,j
zp ≤ Li,j” for some 1 ≤ i < j ≤ n then

8: yi,j ← 1
9: end if

10: Freeze all variables that occur in some (newly appeared) tight constraint.
11: end while
12: for all 1 ≤ i < j ≤ n do
13: if xi = 1 or xj = 1 then
14: yi,j ← 0; x{i,j} ← 0 if {i, j} ∈ E.
15: end if
16: end for
17: return {xk | k ∈ V ∪ E} ∪ {yi,j | 1 ≤ i < j ≤ n}.

Proof. For each variable v of IP2, let c(v) denote the constraint in DU that corresponds to v. Call
a constraint c(v) active if v = 1 in the solution S. By Line 4 of Algorithm 1, every active constraint
c(v) (say) is tight, and hence the contribution of this v to value(S) (which is the coefficient of v in
the objective function of IP2) equals to the sum of zp’s contained in c(v). Therefore, value(S) =∑

p∈P d tpzp, where tp is the number of active constraints containing zp.

Now fix an arbitrary p = (i0, i1, . . . , it) ∈ P d, t ≤ d. The set of constraints in which zp appears
is {c(yi0,it)} ∪ {c(xij) | 0 ≤ j ≤ t} ∪ {c(x{ij ,ij+1}) | 0 ≤ j ≤ t − 1}, which can be partitioned into
the following t+ 1 subsets:

{c(xi0), c(x{i0,i1})}, {c(xi1), c(x{i1,i2})}, . . . , {c(xit−1), c(x{it−1,it})}, {c(xit), c(yi0,it)}.

Due to the function of the FOR loop, at most one constraint from each subset is active. Thus
zp appears in at most t+ 1 ≤ d+ 1 active constraints. Recalling that the objective function of IP2
embraces an additional part C, we have

value(S) ≤ C + (d+ 1)
∑
p∈P d

zp ≤ C + (d+ 1)OPT (DU)

= C + (d+ 1)OPT (LP) ≤ C + (d+ 1)(OPT (IP2)− C)

≤ (d+ 1)OPT (IP2),

completing the proof of Lemma 2.

Lemmas 1 and 2 ensure that S is a (d+ 1)-approximate solution to IP2. We next explain how
to make Algorithm 1 run in poly-time for all d. Consider the following two operations:

8

(1) Find an unfrozen variable of DU if there exists at least one.

(2) Given a variable zp, find all the constraints in DU that contain zp.

Lemma 3. If operations (1) and (2) can be done in polynomial time, then Algorithm 1 can be
implemented to run in polynomial time.

Proof. Suppose (1) and (2) can be done in polynomial time. Since DU has at most
(
n
2

)
+ n ≤ n2

constraints and each time only one variable raises its value, we can keep the current LHS and RHS
values of each constraint, and are thus able to know which constraints are tight. Hence Line 10 can
be realized implicitly since a variable is frozen iff it appears in some tight constraint. To implement
Line 4, we first apply (1) to find an unfrozen variable (say zp) if there exists one, and then use (2)
to find a constraint containing zp that has the smallest difference between RHS and LHS values;
this difference is exactly the amount that zp can be raised. The other steps in Algorithm 1 can
clearly be implemented to run in poly-time. The lemma is thus proved.

Lemma 4. We can accomplish (1) and (2) in polynomial time.

Proof. We use c(v) to denote the constraint in DU that corresponds to the variable v of IP2. First
note that (2) is easy to implement: For each variable zp where p has endpoints i and j, zp appears
exactly in the constraints corresponding to yi,j or xk for some k ∈ Vp ∪ Ep. Thus we focus on (1).
As shown in the proof of Lemma 3, we know the set of tight constraints in DU, and a variable is
unfrozen if and only if it does not appear in any tight constraint. For p ∈ P d, the variable zp does
not appear in c(xk) (where k ∈ V ∪ E) iff k 6∈ Vp ∪ Ep, and zp does not appear in c(yi,j) (where
1 ≤ i < j ≤ n) iff p is not a path between i and j. We do the following: Construct a graph G′ from
G by deleting all k ∈ V ∪ E from G for which c(xk) is tight. Then, for every 1 ≤ i < j ≤ n such
that c(yi,j) is not tight, check whether there exists a path p from i to j in G′ of length at most d; if
so, then the corresponding variable zp must be unfrozen due to our previous analysis. Also, by this
procedure we will find an unfrozen variable if there exists at least one. Clearly this process can be
finished in polynomial time.

Now Theorem 1 follows directly from Lemmas 1, 2, 3 and 4.

2.2 The case d =∞

We next turn to the case d =∞ and prove Theorem 2. We reduce MGNS(∞) to GNS(∞) as follows:
Construct a graph G′ by subdividing each edge e ∈ E with a new vertex ve. Let w(ve) = 0, Cve = C ′e
and Lve = 0 for all e ∈ E. It is easy to argue that the problem of finding the social optimum of
GNS(∞) on this new instance is equivalent to that of MGNS(∞) on the original one. Now, applying
the poly-time approximation algorithm for GNS(∞) given in [20], we get a solution for MGNS(∞)
with approximation ratio O(log |V (G′)|) = O(log n). This finishes the proof of Theorem 2.

We remark that a similar reduction can reduce an instance of MGNS(d) to that of GNS(2d).
Using the approximation algorithm in [20], we obtain a solution for MGNS(d) with approximation
factor 4d, which is nearly four times larger than the ratio guaranteed by Theorem 1. This is in
part due to the fact that such a reduction loses some information of the graph topology, which is
important to our algorithm.

9

2.3 Improved Approximation Ratio for MGNS(1)

We consider in this part the local infection model MGNS(1), i.e., each vertex, if infected, can only
affect its neighbors. A 2-approximation follows directly from Theorem 1. We will prove Theorem 4,
which shows that the approximation guarantee can be improved when considering a special (but
natural) class of contact graphs, namely bipartite contact graphs.

Theorem 4. There is a polynomial time 3
2 -approximation algorithm for computing the social op-

timum of MGNS(1) with bipartite contact graphs.

Proof. Let I be an instance of MGNS(1) whose contact graph G = (V,E) is bipartite. Consider
the exact formulation IP2 of MGNS(d) given in Section 2.1. In our case, IP2 degenerates to the
following program IP3:

IP3: Min
∑
i∈V

C ′ixi +
∑
{i,j}∈E

C ′{i,j}x{i,j} +
∑

1≤i<j≤n
Li,jyi,j + C subject to:

xi + xj + x{i,j} + yi,j ≥ 1 ∀{i, j} ∈ E
xk ∈ {0, 1} ∀k ∈ V ∪ E
yi,j ∈ {0, 1} ∀1 ≤ i < j ≤ n,

where {C ′i}, {Li,j} and C are defined in the same way as before (in the paragraph between the
descriptions of IP1 and IP2).

Notice that in IP3, for each {i, j} ∈ E, x{i,j} and yi,j both appear only once and in the same
constraint. (Also, yi,j with {i, j} 6∈ E does not appear in any constraint, so we can ignore them.)
Thus, if C ′{i,j} > Li,j and x{i,j} = 1, we are better off letting yi,j = 1 and switching x{i,j} to 0

(which still gives a feasible solution). Similarly, if C ′{i,j} ≤ Li,j and yi,j = 1, setting x{i,j} = 1 and

yi,j = 0 does not increase the objective value. Thus, by comparing C ′{i,j} and Li,j , we can eliminate

one variable from each constraint. Specifically, for each {i, j} ∈ E, the corresponding constraint
can be simplified to xi + xj + x{i,j} ≥ 1 if C ′{i,j} ≤ Li,j , and to xi + xj + yi,j ≥ 1 if C ′{i,j} > Li,j .

We now construct from G a node-weighted hypergraph H = (V (H), E(H)) as follows: Let
V (H) = V ∪ {yi,j | {i, j} ∈ E} ∪ {x{i,j} | {i, j} ∈ E}, and

E(H) =
{
{i, j, yi,j} | {i, j} ∈ E;C ′{i,j} > Li,j

}
∪
{
{i, j, x{i,j}} | {i, j} ∈ E;C ′{i,j} ≤ Li,j

}
.

The node-weight function w : V (H) → R+ ∪ {0} is defined as: w(i) = C ′i for all i ∈ V ;
w(x{i,j}) = C ′{i,j} and w(yi,j) = Li,j for all {i, j} ∈ E. Then it is easy to see that IP3 (with the

constant part C discarded) is equivalent to the problem of finding a minimum-weight vertex cover
of H. Note that H is a 3-uniform tripartite hypergraph, because G is bipartite. Thus, we can apply
the k

2 -approximation algorithm for vertex cover on k-uniform k-partite hypergraphs [23] to obtain a
3
2 -approximation for IP3 (note that adding C back cannot deteriorate the factor since C ≥ 0), and
hence also for MGNS(1) on bipartite contact graphs. This completes the proof of Theorem 4.

3 Hardness of Approximation for GNS(d)

In this section we present inapproximability results for GNS(d), a special case of our model
MGNS(d). Thus, all the hardness results trivially apply to MGNS(d).

10

Theorem 5. For every d ∈ N∪{∞}, computing the social optimum of GNS(d) is APX -hard, even
if the contact graph is 3-regular and all types of costs as well as the attack probability distribution
are uniform.

Proof. We will present an L-reduction (see e.g. [24]) from the vertex cover problem on 3-regular
graphs, which is known to be APX -hard [7]. Let G = (V,E) be a 3-regular graph considered as
an instance of the vertex cover problem. Assume without loss of generality that G is connected.
We construct an instance I of GNS(d) as follows: Simply use G as the contact graph, and set
Lv = |V |, Cv = 3− ε (with 0 < ε < 2) and wv = 1/|V | for all v ∈ V .

Let OPTvc and OPTI denote the size of the minimum vertex cover of G and the social optimum
of I, respectively. Let S ⊆ V be a vertex cover of G of size OPTvc. In the instance I of GNS(d), if
we make exactly the vertices in S secure and leave others insecure, the social cost will be Cv|S|+
Lvwv(|V | − |S|) = (2 − ε)|S| + |V |, since every insecure node is isolated in the attack graph. As
G is 3-regular, each vertex can cover at most 3 edges, and thus |V | ≤ |E| + 1 ≤ 3|S| + 1 ≤ 4|S|.
Therefore, OPTI ≤ (2 − ε)|S| + |V | ≤ (6 − ε)|S| = (6 − ε)OPTvc, finishing one direction of the
L-reduction.

Now consider an arbitrary solution S ⊆ V of I. If there exist two insecure nodes (say u and v)
that are adjacent in the attack graph, we change the solution to a new one (called S′) by securing
u, i.e., S′ = S′∪{u}. In this transformation, the additional security cost incurred is Cu = 3−ε, and
the decreasing in the infection cost is at least Lvwu+Lu(wu+wv) = 3. Hence, the new solution has
a smaller total cost than S does. Whenever there exists an edge in the attack graph, we can repeat
the above process to get a new solution with lower cost. Thus, we will finally obtain a solution S′ (in
at most |E| steps) that is a vertex cover of G such that cost(S′) ≤ cost(S). We also regard S′ as a
solution to the vertex cover problem. Note that the above argument also indicates that any optimum
solution S∗ to I must be a vertex cover of G. Similarly as before, we have cost(S′) = (2−ε)|S′|+|V |
and OPTI = cost(S∗) = (2− ε)|S∗|+ |V |. As 2− ε > 0, S∗ must be a minimum vertex cover of G;
i.e., |S∗| = OPTvc. Now we have ||S′| − OPTvc| = 1

2−ε |cost(S
′) − OPTI | ≤ 1

2−ε |cost(S) − OPTI |,
which completes the other direction of the L-reduction. This concludes the proof of Theorem 5.

Theorem 6. Assuming Unique Games Conjecture, for any d ∈ N ∪ {∞} and any fixed ε > 0, we
cannot approximate the social optimum of GNS(d) to a factor of 3

2 − ε in polynomial time.

Proof. Assume ε ≤ 1
2 , otherwise the statement is trivial. Let G = (V,E) be a graph on which

we wish to find a small vertex cover, and denote by OPTvc the size of the minimum vertex cover
of G. Construct an instance I of GNS(d) in the same way as that in the proof of Theorem 5,
setting the security cost to be 3 − ε

3 . Let OPTI be the optimum social cost of I. Similar to the
proof of Theorem 5, we have OPTI = (2− ε

3)OPTvc + |V |. By [15], it is UGC-hard to distinguish
whether OPTvc ≥ (1 − ε

3)|V | or OPTvc ≤ (12 + ε
3)|V |. Thus, it is UGC-hard to tell whether

OPTI ≥ ((2− ε
3)(1− ε) + 1)|V | or OPTI ≤ ((2− ε

3)(12 + ε) + 1)|V |, and therefore it is UGC-hard
to approximate the social optimum of GNS(d) to a factor of

(2− ε
3)(1− ε

3) + 1

(2− ε
3)(12 + ε

3) + 1
≥ 3

2
− ε ,

which completes the proof of Theorem 6.

11

4 Polynomial Algorithm for MGNS(d) on Trees

In this section we consider a special class of instances of MGNS(d); namely, the underlying contact
graph of the instance is a tree, and the infection cost and attack probability are both uniform. We
will present a polynomial time algorithm that computes the social optimum of such instances, for
every fixed d ≥ 1 or d =∞. We define the minimum value of an empty set to be ∞. We have the
following result:

Theorem 7. For every fixed d ≥ 1 or d =∞, we can find in polynomial time an optimal solution
of a tree-instance of MGNS(d) with uniform infection cost and attack probability.

Proof. We first focus on the case where d <∞, and then show how the algorithm can be adapted
to handle the case d = ∞. Consider an instance I of MGNS(d) with contact graph T = (V,E)
being a tree, security cost {Cv | v ∈ V }, link-blocking cost {C ′e | e ∈ E}, uniform infection cost
L, and uniform attack probability 1/n. Root T at an arbitrary vertex. Assume without loss of
generality that V = {1, 2, . . . , n} such that i < j whenever i is a descendant of j (thus the root
is n). For 1 ≤ i ≤ n, let i1, i2, . . . , ic(i) denote the set of children of i (where c(i) = 0 iff i is a
leaf). For every 1 ≤ i ≤ n and 1 ≤ s ≤ c(i), let Ti,s be the subtree of T induced by the vertex set
Vi,s := {i, i1, i2, . . . , is} ∪ {j | j is a descendant of it for some 1 ≤ t ≤ s}. If i is a leaf, we let Ti,0
be the single-vertex tree containing only the vertex i. Clearly Ti,c(i) is the full subtree of T rooted
at i, and Tn,c(n) = T . We say (i, s) is an admissible pair if Ti,s is defined. We set a total order on
the set of admissible pairs, namely, define (i, s) < (i′, s′) iff i < i′ or (i = i′ and s < s′).

We will use a dynamic programming approach in a bottom-up manner, during which we need
to cope with the subproblems associated with the subtrees; that is, for each admissible pair (i, s),
we have an instance Ii,s whose contact graph is Ti,s and whose (all kinds of) costs and attack
probabilities are the same as in I. (Note that In,c(n) is exactly I itself.) For a solution Si,s of Ii,s,
we define the signature of Si,s to be a (d+ 1)-tuple (n0, n1, . . . , nd), in which nt (0 ≤ t ≤ d) denotes
the number of (insecure) nodes that are at distance exactly t from i in the attack graph of Si,s.
(Thus n0 = 0 if i is secure and n0 = 1 otherwise; we do not allow other values of n0. It is also
clear that n0 = 0 implies n1 = . . . = nd = 0.) For a signature sig and an integer r ∈ {0, 1, . . . , d},
sig[r] refers to the (r + 1)-th element (from left) of sig; i.e., if sig = (n0, . . . , nd), then sig[t] = nt
for 0 ≤ t ≤ d. Let SIG denote the set of all possible signatures. It follows that |SIG| ≤ 2nd. Let
fi,s(sig) denote the minimum cost of a solution to Ii,s with signature sig. Then the social optimum
of I is exactly minsig∈SIG{fn,c(n)(sig)}.

We illustrate in detail how to compute fi,s(sig) for all possible admissible pairs (i, s) and
sig ∈ SIG. We compute them in the increasing order of (i, s). If (i, s) = (1, 0) (in which case i is a
leaf), the computation is trivial: for every sig = (n0, . . . , nd) ∈ SIG, set f1,0(s) = Ci(1−n0)+Ln0/n
if n1 = . . . = nd = 0, and set f1,0(sig) =∞ otherwise.

Next suppose we want to compute fi,s(sig), given that the values of fi′,s′(sig
′) are known for all

(i′, s′) < (i, s) and sig′ ∈ SIG. Assume sig = (n0, . . . , nd). If i is a leaf, the computation is similar
to the base case, so we assume that i is not a leaf and thus c(i) ≥ 1.
Case 1: s = 1. In this case Ti,s = Ti,1 just consists of Ti1,c(i1), the vertex i, and the edge {i, i1}.
We consider two subcases.

• Case 1.1: n0 = 0; i.e., i is secure. Then the edge {i, i1} need not be blocked. Set fi,1(sig) =
∞ if nt > 0 for some 1 ≤ t ≤ d. When n1 = . . . = nd = 0, it is easy to see that

fi,1(sig) = Ci + min
sig1∈SIG

{fi1,c(i1)(sig1)}.

12

• Case 1.2: n0 = 1; i.e., i is insecure. We examine two more subcases guided by whether the
edge {i, i1} is blocked. Let fub (resp. f b) be the minimum cost of a solution to Ii,1 with
signature sig, in which {i, i1} is unblocked (resp. blocked). If {i, i1} is not blocked, then any
vertex at distance t from i1 in the attack graph will be at distance t+ 1 from i. Also, we need
to calculate the cost incurred from the mutual influence of i and nodes that are reachable
from i within distance d in the attack graph. Hence we get:

fub =
L

n

(
1 + 2

∑d
i=1 ni
n

)
+ min

sig1∈SIG
(∀0≤t≤d−1)sig1[t]=sig[t+1]

{fi1,c(i1)(sig1)}.

If {i, i1} is blocked, then i itself forms a connected component in the attack graph. Thus,
f b =∞ if nt > 0 for some 1 ≤ t ≤ d. When n1 = . . . = nd = 0, we have:

f b = C ′{i,i1} +
L

n
+ min
sig1∈SIG

{fi1,c(i1)(sig1)}.

Finally, we have fi,1(sig) = min{fub, f b}, and thus Case 1 is finished.

Case 2: 2 ≤ s ≤ c(i). In this case, Ti,s consists of Ti,s−1, Tis,c(is), and the edge {i, is}. Again we
divide it into two subcases.

• Case 2.1 n0 = 0; i.e., i is secure. Then all nodes reachable from i in the attack graph
are from Ti,s−1, and thus the signature of the solution restricted on Ti,s−1 must also be sig.
Therefore, we have:

fi,s(sig) = min
sig1∈SIG

{fi,s−1(sig) + fis,c(is)(sig1)}.

(Note that we do not add the security cost Ci since it is already counted in Ti,s−1.)

• Case 2.2: n0 = 1; i.e. i is insecure. Let gub (resp. gb) be the minimum cost of a solution
to Ii,s with signature sig in which the edge {i, is} is unblocked (resp. blocked). Similarly as
Case 2.1, we have:

gb = C ′{i,is} + min
sig1∈SIG

{fi,s−1(sig) + fis,c(is)(sig1)}.

When computing gub, we should take into account the cost caused by the influence between
nodes in Ti,s−1 and those in Tis,c(is). (Note that i itself is contained in Ti,s−1.) Let v1 be a
node at distance t1 from i in Ti,s−1, and v2 be a node at distance t2 from is in Tis,c(is). Then
clearly v1 and v2 can affect each other if and only if t1 + t2 + 1 ≤ d. Thus we have:

gub = min
sig1,sig2∈SIG
sig1[0]=1

(∀1≤t≤d)sig1[t]+sig2[t−1]=sig[t]

{2L

n
·

∑
0≤t1,t2≤d−1
t1+t2≤d−1

sig1[t1] · sig2[t2]

+fi,s−1(sig1) + fis,c(is)(sig2)}

Finally we have fi,s(sig) = min{gub, gb}, and Case 2 is completed.

13

After finishing the computation of all sub-instances, we can find the social optimum of I since
it equals to minsig∈SIG{fn,c(n)(sig)}.

Now we analyze the running time of the above algorithm. The time spent on computing each
term fi,s(sig) is at most O(d · |SIG|2). To see this, first observe that it is obviously true for all
computations except gub. When computing gub, an upper bound of O(d2 · |SIG|2) is simple by
enumerating sig1, sig2, t1 and t2. To reduce it by a factor of d, note that the summation term can
be rewritten as ∑

0≤t1,t2≤d−1
t1+t2≤d−1

sig1[t1] · sig2[t2] =
∑

0≤t1≤d−1
sig1[t1] ·

∑
0≤t2≤d−1−t1

sig2[t2],

and thus we only need the d cumulative sums

{Si | 0 ≤ i ≤ d− 1;Si =

i∑
t=0

sig2[t]}

to compute this summation. Clearly these sums can be obtained in O(d) time, resulting in a total
computation time of O(d · |SIG|2) for gub.

As there are at most n2|SIG| such terms, it costs O(dn2|SIG|3) time to compute all of them. In
the last step it takes O(|SIG|) time to find the minimum cost among |SIG| terms. Thus, the total
running time of our algorithm is O(dn2|SIG|3) ≤ nO(d), which is polynomial in n for every fixed d.
Notice also that it is very easy to modify the algorithm so that it can output an optimal solution;
one just need to store the best solutions to all the sub-instances, which incurs an additional nO(d)

time.
We now consider the case d = ∞, which is in fact simpler than the previous case. We still

use the dynamic programming approach on the subproblems {Ii,s} in a bottom-up matter. The
difference from the previous case is that we change the definition of the signature. For a solution
Si,s of the instance Ii,s, we define the signature of Si,s to be a pair (n0, n≥1), where n0 ∈ {0, 1}
denotes whether i is secure or not, and n≥1 represents the the number of nodes other than i that
are in the same component with i in the attack graph induced by Si,s. All the computations will
go through analogously (with considerable simplifications especially when dealing with gub). This
completes the proof of Theorem 7.

By taking the size of |SIG| into account, we can handle a larger range of d.

Corollary 1. For all d ≤ O(
√

log n), we can find in polynomial time an optimal solution to
MGNS(d) if the instance has uniform infection cost and attack probability, and its contact graph is
a tree of bounded degree.

Proof. Note that the algorithm presented in Theorem 7 actually runs in O(dn2|SIG|3) time for
the case d < ∞. Thus, it can also handle super-constant d when |SIG| is small. Suppose the
underlying tree of the instance has maximum degree ∆. Then, we have

|SIG| ≤
d∏
t=0

(∆t + 1) = ∆O(d2),

since at most ∆t nodes are at distance t from i in the subtree Ti,c(i). Hence, the running time

becomes O(∆O(d2)dn2), which leads to Corollary 1.

14

Finally, we note that the algorithm can be easily modified to also handle the following gener-
alization of our problem with additional budget constraints on the number of secured nodes and
links.

Budgeted MGNS(d). Given an instance of MGNS(d) with two additional integers K and K ′,
we want to find a minimum-cost solution in which at most K nodes are secured and at most K ′

edges are blocked.

We sketch the idea of how to apply the algorithm of Theorem 7 on Budgeted MGNS(d) as
well. We add two dimensions to the signature of a solution S that represent the number of secured
nodes and blocked edges in S, respectively. We then rewrite the state-transition functions to take
these two dimensions into account (in an obvious way). All the computations go through similarly.
Hence, we know that Theorem 7 and Corollary 1 both apply to the budgeted case as well. This in
particular settles an open problem from [22] that asks if there is a polynomial time algorithm for
the minimum average contamination problem, which corresponds to the special case of MGNS(d)
on trees where every node has security cost ∞ and all other costs as well as the attack probability
distribution are uniform.

5 Conclusions and Future Research

We propose in this paper the mixed generalized network security model MGNS(d), which gener-
alizes several other models for infection control. We present approximation and inapproximability
results for the problem of computing the optimum solution of MGNS(d), and exact polynomial-time
algorithms for tree instances with uniform infection cost and attack probability distribution. Some
of our results lead immediately to improvements upon the previously best known results achieved
for some special cases of our model.

There are many interesting questions left that deserve further explorations. Regarding the
optimization of social cost, a big open question is whether we can break the O(log n) factor for
MGNS(∞) or GNS(∞), or there is a matching hardness of approximation result. Also for MGNS(d)
where d < ∞, there remains a large gap between the upper bound of d + 1 and the lower bound
of 3

2 − ε on the approximation ratio. Another research issue is the formulation and investigation
of the decentralized or game-theoretic counterpart of our model, where a user can decide whether
to install an anti-virus software, and might also be able to block some of the links to other users.
Finally, incorporating other propagation models (e.g., the independent cascade model, or the linear
threshold model) into MGNS(d) may lead to more accurate modeling of some applications.

References

[1] S. Arora, S. Rao, and U. Vazirani. Expander flows, geomeric embeddings and graph partition-
ing. In Proceedings of the 35th ACM Symposium on Theory of Computing (STOC), 2004.

[2] A. Arulselvan, C.W. Commander, L. Elefteriadou, and P.M. Pardalos. Detecting critical nodes
in sparse graphs. Comput. Oper. Res., 36(7):2193–2200, 2009.

15

[3] J. Aspnes, K.L. Chang, and A. Yampolskiy. Inoculation strategies for victims of viruses and the
sum-of-squares partition problem. J. Comput. Syst. Sci., 72(6):1077–1093, 2006. Preliminary
version in SODA 2005.

[4] S. Borgatti. Identifying sets of key players in a social network. Comput. Math. Org. Theory,
12:21–34, 2006.

[5] P.-A. Chen, M. David, and D. Kempe. Better vaccination strategies for better people. In
Proceedings of the 11th ACM Conference on Electronic Commerce (ACM-EC), 2010.

[6] W. Chen, Y. Wang, and S. Yang. Efficient influence maximization in social networks. In
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2009.

[7] M. Chleb́ık and J. Chleb́ıková. Complexity of approximating bounded variants of optimization
problems. Theor. Comput. Sci., 354:320–338, 2006.

[8] M. Di Summa, A. Grosso, and M. Locatelli. Complexity of the critical node problem over
trees. Comput. Oper. Res., 38(12):1766–1774, 2011.

[9] P. Domingos and M. Richardson. Mining the network value of customers. In Proceedings of
the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
2001.

[10] N. Garg, V.V. Vazirani, and M. Yannakakis. Approximate max-flow min-(multi)cut theorems
and their applications. SIAM J. Comput., 25(2):235–251, 1996. Preliminary version in STOC
1993.

[11] A. Goyal, F. Bonchi, and L.V. S. Lakshmanan. Learning influence probabilities in social
networks. In Proceedings of the 3rd ACM International Conference on Web Search and Data
Mining (WSDM), 2010.

[12] E. Halperin. Improved approximation algorithms for the vertex cover problem in graphs and
hypergraph. SIAM J. Comput., 31(5):1608–1623, 2002.

[13] D. Kempe, J. Kleinberg, and É. Tardos. Maximizing the spread of influence through a social
network. In Proceedings of the 9th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2003.

[14] S. Khot. On the power of unique 2-prover 1-round games. In Proceedings of the 34th ACM
Symposium on Theory of Computing (STOC), 2002.

[15] S. Khot and O. Regev. Vertex cover might be hard to approximate to within 2− ε. J. Comput.
Syst. Sci., 74(3):335–349, 2008. Preliminary version in CCC 2003.

[16] M. Kimura and K. Saito. Tractable models for information diffusion in social networks. In Pro-
ceedings of the 10th European Conference on Principles and Practice of Knowledge Discovery
in Databases (PKDD), 2006.

16

[17] M. Kimura, K. Saito, and H. Motoda. Minimizing the spread of contamination by blocking
links in a network. In Proceedings of the 23rd AAAI Conference on Artificial Intelligence,
2008.

[18] M. Kimura, K. Saito, and H. Motoda. Solving the contamination minimization problem on
networks for the linear threshold model. In Proceedings of the 10th Pacific Rim International
Conference on Artificial Intelligence: Trends in Artificial Intelligence (PRICAI), 2008.

[19] M. Kimura, K. Saito, and H. Motoda. Blocking links to minimize contamination spread in a
social network. ACM Trans. Knowl. Discov. Data., 3(2), 2009.

[20] V.S. Anil Kumar, R. Rajaraman, Z. Sun, and R. Sundaram. Existence theorems and ap-
proximation algorithms for generalized network security games. In Proceedings of the 30th
International Conference on Distributed Computing Systems (ICDCS), 2010.

[21] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and N. S. Glance. Cost-
effective outbreak detection in networks. In Proceedings of the 13th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, 2007.

[22] A. Li and L. Tang. The complexity and approximability of minimum contamination problems.
In Proceedings of the 8th International Conference on Theory and Applications of Models of
Computation (TAMC), 2011.

[23] L. Lovász. On minimax theorems of combinatorics. Doctoral Thesis, Mathematiki Lapok,
26:209–264, 1975.

[24] V.V. Vazirani. Approximation Algorithms. Springer, 2004.

17

