2015 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology

Neural Word Representations
from Large-Scale Commonsense Knowledge

Jiagiang Chen
IIIS, Tsinghua University
Beijing, China
Email: ¢jq0707 @ gmail.com

Abstract—There has recently been a surge of research on
neural network-inspired algorithms to produce numerical vector
representations of words, based on contextual information. In this
paper, we present an approach to improve such word embeddings
by first mining cognitively salient word relationships from text
and then using stochastic gradient descent to jointly optimize
the embeddings to reflect this information, in addition to the
regular contextual information captured by the word2vec CBOW
objective. Our findings show that this new training regime leads to
vectors that better reflect commonsense information about words.

I[. INTRODUCTION

Words are substantially discrete in nature, and hence, tradi-
tionally, the vast majority of natural language processing tools,
including statistical ones, have regarded words as distinct atomic
symbols. In recent years, however, the idea of embedding words
in a vector space using neural network-inspired algorithms has
gained enormous popularity. Mapping words to vectors in a
way that reflects word similarities provides machine learning
algorithms with much-needed generalization ability. If the words
car and automobile have similar vectors, a learning algorithm
is better equipped to generalize from one word to the other.
Word embeddings are typically trained using large amounts of
contextual data. While regular sentence contexts play a vital
role in meaning acquisition, words and concepts are often also
acquired by other means. Humans may pay special attention
to certain cognitively salient features of an object, or rely on
more explicit definitions (e.g., looking up a meaning online).

In this paper, we propose a model to jointly train word
representations not just on regular contexts, as in the word2vec
CBOW model [1], but also to reflect more salient information.
For the latter, we use information extraction techniques [2]
on large-scale text data to mine definitions and synonyms
as well as lists and enumerations. Rather than considering all
contexts as equal, our approach can be viewed as treating certain
specific contexts as more informative than others. Consider
the sentence The Roman Empire was remarkably multicultural,
with “a rather astonishing cohesive capacity” to create a sense
of shared identity.... While it contains several useful signals,
Roman does not seem to bear an overly close relationship with
capacity, astonishing, or sense. In contrast, upon encountering
Greek and Roman mythology, we may conclude that Roman and

This research was supported by China 973 Program Grants 2011CBA00300,
2011CBA00301, and NSFC Grants 61033001, 61361136003, 61450110088.

978-1-4673-9618-9/15 $31.00 © 2015 IEEE
DOI 10.1109/WI-IAT.2015.150

Niket Tandon
Max Planck Institute for Informatics
Saarbriicken, Germany
Email: ntandon @mpi-inf.mpg.de

225

Gerard de Melo
IIIS, Tsinghua University
Beijing, China
Email: gdm@demelo.org

Greek are likely related. Our training objective thus encourages
saliently related words to have similar representations.

II. RELATED WORK

Many of the current methods for obtaining distributed word
embeddings are neural network-inspired and aim at rather
dense real-valued vector spaces. While early work focused
on probabilistic language models [3], Collobert et al. [4] used
a convolutional neural network to maximize the difference
between scores from text windows in a large training corpus
and corresponding randomly generated negative examples.
Mikolov et al. [1] proposed simplified network architectures
to efficiently train such vectors at a much faster rate and thus
also at a much larger scale. Their word2vec' implementation
provides two architectures, the CBOW and the Skip-gram
models. CBOW also relies on a window approach, attempting
to use the surrounding words to predict the current target word.
However, it simplifies the hidden layer to be just the average
of surrounding words’ embeddings. The Skip-gram model tries
to do the opposite. It uses the current word to predict the
surrounding words. In our approach, we build on the CBOW
variant, as its optimization runs faster.

There have been other proposals to adapt the word2vec
models. Levy et al. [5] use dependency parse relations to
create word embeddings that are able to capture contextual
relationships between words that are further apart in the
sentence. Further analysis revealed that their word embeddings
capture more functional but less topical similarity. Faruqui et
al. [6] apply post-processing steps to existing word embeddings
in order to bring them more in accordance with semantic
lexicons. Rather than using rich structured knowledge sources,
our work focuses on improving word embeddings using textual
data, by relying on information extraction to expose particularly
valuable contexts and relationships in a text corpus. In particular,
we are not aware of any previous work that mines large-scale
common-sense knowledge to train embeddings of lexical units.

III. SALIENT PROXIMITY MODEL

Our approach is to simultaneously train the word embed-
dings on generic contexts from the corpus on the one hand and
on semantically significant contexts, obtained using extraction
techniques, on the other hand. For the regular general contexts,
we draw on the word2vec CBOW model [1] to predict a word
given its surrounding neighbors in the corpus.

Ihttps://code.google.com/p/word2vec/

IEEE
computer
psouety

At the same time, our model relies on our ability to extract
semantically salient contexts that are more indicative of word
meanings. These extractions will be described in detail later
in Section IV. Our algorithm assumes that they have been
transformed into a set of word pairs likely to be closely related,
which are used to modify the word embeddings. Due to this
more focused information, we expect the final word embeddings
to reflect more semantic information than embeddings trained
only on regular contexts. Given an extracted pair of related
words, the intuition is that the embeddings for the two words
should be pulled together. Given a word wy, our objective
function attempts to maximize the probability of finding its
related words w;,:

1 I
fZZlOgP(wr‘wt)

t=1 w;y

M

Here, T is the vocabulary size and the probabilities are modeled
using a softmax, defined as follows:
(|) o eXp(Vu,{: : Vwr)
P S eV, Vi)

v

2

Vw,» Vuw, refer to the word vectors for two related words w,
wy, while w, with corresponding vectors V, , refer to all
possible words. We use the inner product to score how well
two words match. When they are very similar or related, their
embeddings should be close to each other and hence the inner
product of their embeddings should be large. Using the softmax
function, we can take a maximum likelihood approach to train
the embeddings in a tractable manner. However, the gradient
is as follows:

. T
dlogp(welwy) _ OV Vu, 1083w, xP(Viy, Viur)
WV, - WV OV,
RV exp(Vaw , Vi,)
Wr Wyt 32, , PV, Vi) W0
= Vu, — Zwr/ p(wy|we) Vi,
= Vi, —EyVau,

3

To compute this gradient, the expectation of all the word
vectors with respect to their probabilities would be needed. The
time complexity for this is proportional to the vocabulary size,
which is typically very large. Here, we use negative sampling
as a speed-up technique [7]. This can be viewed as a simplified
version of Noise Contrastive Estimation (NCE) [8], which
reduces the problem of determining the softmax to that of
binary classification, discriminating between samples from the
data distribution and negative samples. In particular, we consider
a distribution of random noise and optimize for discriminating
between the positive examples and the noise. This can be further
simplified by removing certain weights before each term in the
objective function. With negative sampling, the objective for
each training pair is then as follows:

k
10g(0 (Vg - Vi) + Y Buop () 108(0 (= Vi - Vi) (4)
=1

Here, o(-) is the sigmoid function o(z) = =, and Vi,
V., refer to the vectors for the two words wy and w,, while

w; refers to randomly chosen words.

Thus, we generate negative samples w; from some known
noise distribution P,(w) and treat them, together with wy,

226

as negative sample pairs. We attempt to maximize the score
for the positive training data and minimize the score of the
negative samples. In the training procedure, this amounts to
simply generating k random negative samples for each extracted
word pair. That is, we replace w, with random words from
the vocabulary. For the negative samples, we assign the label
I = 0, whereas for the original word pairs, [= 1. Now, for
each word pair we try to minimize its loss L:

L=—llogf—(1-1)log(l—f)

f=o(vy, - vw,)

(&)
(6)

We use stochastic gradient descent to optimize this function.
The formulae for the gradient are easy to compute:

oL 1 1
aTwr:—l?f(l_f)vw:+(1_l)ﬁf(1_f)th
oL

aTu}t:_(l_f)VUJr ®

This objective is optimized alongside with the original
word2vec CBOW objective, i.e., our overall model combines
the two objectives. Implementation-wise, we train the model
in parallel with the CBOW model, which allows us to inject
the extracted knowledge into the word vectors such that they
are reflected during the CBOW training rather than just as a
post-processing step. Thus we obtain a joint learning process
in which the two components are able to mutually influence
each other. Both objectives contribute to the embeddings’
ability to capture semantic relationships. Training with the
extracted contexts enables us to adjust word embeddings based
on concrete evidence of semantic relationships, while the use of
general corpus contexts enables us to maintain the advantages
of the word2vec CBOW model, in particular its ability to benefit
from massive volumes of raw corpus data.

IV. INFORMATION EXTRACTION

Our model can flexibly incorporate semantic relationships
extracted using various kinds of information extraction methods.
Different kinds of sources and extraction methods can bring
different sorts of information to the vectors, suitable for different
applications. In our experiments, we investigate two main
sources: a dictionary corpus from which we extract definitions
and synonyms, and a general Web corpus, from which we
extract lists. Our model could similarly be used with other
extraction methods.

A. Definition and Synonym Extraction

Surely, any sizeable, broad-coverage Web corpus will con-
tain significant occurrences of word definitions, e.g. whenever
new terminology is introduced. These can be harvested using
broad-coverage Definition Extraction methods [9]. Instead
of adopting such generic methods intended to operate on
arbitrary text, another option, appropriate for Web corpora,
is to specifically identify the kinds of Web sources that provide
high-quality definitions (e.g. Wiktionary or Wikipedia). In fact,
when compiling a Web corpus with the specific purpose of
using it to train word representations, one may reasonably wish
to explicitly ensure that it includes dictionaries available on

the Web. In our experiments, we use the GNU Collaborative
International Dictionary of English (GCIDE) as our dictionary
corpus, which is derived from an out-of-copyright edition
of Webster’s Revised Unabridged Dictionary. From this data,
we extract the dictionary glosses as definitions, as well as
synonyms. We ignore embedded tags within the definitions and
synonym entries, as these are used to mark usage notes and
other attributes. In total, we obtain 208,881 definition entries.
Some words have multiple meanings and thus are part of several
entries. We also obtain 10,148 synonym entries, each of which
consists of one or more synonyms for a given word.

B. List Extraction

Lists and enumerations are another promising source of
information. Words co-occurring together within a list are
not just semantically connected but often even of the same
type. These sorts of contexts thus also have the potential to
improve the word embeddings. We extract them from the
UKWaC corpus [10], as it is pre-annotated with POS tags,
which simplifies our extraction process. To extract lists of
similar words, we use a simple rule-based method. We first
search for continuous appearances of commas, which indicate
a possible list of similar items. To filter out noise, we require
that the entries in the list be approximately of equal length
and that the length of each entry be in the range from 1 to
4 words, as longer entries are much more likely to be short
sentences or clauses. We also restrict list items to be nouns
or adjectives using the given POS tags. Additionally, we rely
on a few special search patterns such as: “(x) and (y)”, “(x)
or (y)”, “include (x1), ..., (and) (z,)”, “(noun) like (z1),
..., (and) (x,)”, “(noun) such as (1), ..., (and) (z,)”. In
total, 339,111 lists are extracted from the UKWaC, examples
of which are shown in Table I. Despite some noise, the words
in the lists tend to be of the same or similar type and represent
similar or related concepts.

TABLE L. LISTS OF RELATED WORDS EXTRACTED FROM UKWAC

player, captain, manager, director, vice-chairman

group, race, culture, religion, organisation, person

prehistoric, roman, early-medieval, late-medieval, post-medieval, modern

ballscrews, leadscrews, worm gear, screwjacks, linear, actuator

Cleveland, Essex, Lincolnshire, Northamptonshire, Nottinghamshire, Thames Valley,
South Wales

David, Roberto, Pano, Ian, Andy, Kevin, Alistair, Tomas, Stefan, Gary, Paul, Gary
banking, mortgage, loan, credit card, insurance, pension

French, German, Spanish, traditional Chinese, simplified Chinese, Dutch, Swedish,
Italian, English, Korean, Portuguese, Japanese, Arabic

Buddhism, Christianity, Hinduism, Islam, Judaism

ant.py, dimdriver.py, dimdriverdatafile.py, dimdriverdatasetdef.py, dimexception.py,
dimmaker.py, dimoperators.py, dimparser.py, dimrex.py, dimension.py

athletics, badminton, cycling, swimming, judo, gymnastics, tennis, football, handball,
volleyball

V. EXPERIMENTS

Data. For semantically salient contexts, we rely on the data
and extraction techniques described above in Sections IV-A
and IV-B to obtain pairs of related words from definitions,
synonyms, and lists. For the regular contexts used by the
CBOW model, we rely on a frequently used 2010 Wikipedia
data set’. We normalize the text to lower case and remove

Zhttp://nlp.stanford.edu/data/WestburyLab.wikicorp.201004.txt.bz2

227

special characters, obtaining 1,205,009,210 tokens after this
preprocessing. We select all words appearing at least 50 times,
yielding a vocabulary size of 220,521.

Training. The extracted contexts are used to train word
embeddings jointly with the original word2vec model. Our
implementation relies on a multi-threaded architecture in which
some threads optimize for the word2vec objective, training on
different parts of the corpus. At the same time, alongside with
these threads, further threads optimize based on the extracted
pairs of words using the objective given earlier. All threads
asynchronously update the word embeddings, using stochastic
gradient descent steps. Thus, the different kinds of components
can mutually influence each other. We use 20 threads for the
CBOW architecture, and set the window size of the CBOW
model to 8. We run it for 3 passes over the Wikipedia data
set, which is sufficient to achieve good results. We sample
10 random words as negative examples for each instance.
Additional threads are used for the extracted pairs of words.
We use 4 threads each for lists and definitions (by splitting
definitions) and one thread for synonyms. In each case, the
extractions lead to positive pairs of semantically related words.
For definitions and synonyms, the word pair consists of a
headword and one word from its definition, or of the headword
and one of its synonyms. For the list extraction setup, the
training word pairs consist of any two words from the same
list. For these word pairs, we also randomly sample 10 words
as the corresponding negative examples.

Different learning rates allow us to balance each source’s
contribution to the word embeddings. We set the initial learning
rate for the CBOW threads to be 0.05 and report results for
different rates for the other threads, ranging from 0.001 to 0.1.
To ensure convergence, we stop the training when all the CBOW
threads finish — The other threads are terminated only then.
This ensures that we are always training on both components
of the model jointly rather than allowing one component to
dominate towards the end. This also makes sense because the
extractions are only supplementary to the CBOW model.

Evaluation and Analysis. We use the standard wordsim-
353 [11] dataset, as well as the significantly larger MEN [12]
dataset to assess the semantic similarities reflected in the
final word embeddings. These contain English word pairs
with similarity judgements elicited from human assessors. We
calculate the cosine distance of word embeddings for the word
pairs in these datasets and compare them to the scores from
the human annotations using Spearman’s p.

First, we test the effect of the word embeddings’ dimen-
sionality on the performance of the model, using the definitions
and synonyms. The dimension of the word vectors ranges from
50 to 500. We fix the learning rate to be 0.01 and test on
the wordsim-353 data set. The results are plotted in Fig. 1.
We observe that as the vector dimensionality increases, we
achieve better correlations with the human assessors, with a
slight drop-off towards the end. In the following experiments,
we set the dimensionality to 200, which yields good results
while keeping the training time reasonable.

Fig. 2 plots results on the wordsim-353 dataset when varying
the learning rate « for the additional threads. Even for a rate
as low as 0.001, we can obtain some improvement over the
CBOW baseline (which corresponds to an « setting of 0.0).

L ——
- S
/ S
/ Te----"
0.69 ,
/
/
/
068 /
/
2 /
2 /
@ 0.67
: A
= /
/
066
/
/
/
0.65
0.64
50 100 150 200 250 300 350 400 450 500

vector dimensionality

Fig. 1. Effect of dimensionality on Spearman’s p of the wordsim-353 dataset
0.75
syn and def
list
baseline
€
2
3 N
% N
g ~—=
c R
£ TN
e 08 Tl
% 0.55 AN
g A
@ AN
N
05 N
.
045 , . . ,
0 0.02 0.04 0.06 0.08 0.1
«
Fig. 2. Spearman’s p on the wordsim-353 dataset

As « increases, the result gets better. The best result we get
for synonyms and definitions is 0.706 (for a = 0.02), whereas
for lists from UKWaC, it is 0.693 (for o« = 0.04). Both lead
to noticeably better results than the CBOW baseline’s p score
of 0.642. For large «, the augmentation performs worse than
the baseline. This is expected, as an overly high « causes
information from the extractions to overwhelm the original
CBOW model, leading to excessively biased final embeddings.

Fig. 3 plots the results on the MEN dataset. The best-
performing learning rate is different from that for wordsim-353.
In particular, well-performing learning rates are slightly smaller.
For the definitions and synonyms, the best is 0.002, while for
the lists, the best learning rate is 0.020. Again, joint training
outperforms the baseline.

o074 o,

o 0005 0ot 0015 002 0025 00 0035 004

Fig. 3. Spearman’s p on the MEN dataset

TABLE II. BEST RESULTS FOR THE WORD SIMILARITY TASKS

wordsim-353 MEN
CBOW (baseline) 0.642 0.736
Definitions and synonyms 0.706 0.748
Lists 0.693 0.749

Table II summarizes the best results that we obtain on the
two similarity tasks.> We obtain higher correlation coefficients
than the baseline, suggesting that the word vectors capture
more semantic properties of words and thus should be of value
in applications that benefit from semantic information.

VI. CONCLUSION

In this paper, we have proposed a novel method to obtain
better distributed representations of concepts, drawing on the
idea that certain contexts exhibit more cognitively salient
information than others. We rely on large-scale information
extraction to mine such information, focusing on word defi-
nitions and synonyms as well as lists and enumerations. Our
model extends the well-known CBOW model to capture not
just raw text but also salient semantic proximity information.
Overall, our results suggest that information extraction (and
knowledge-based methods [13]) can lead to improved word
vectors, making them useful for semantic applications and

calling for further research in this area.

[1]
[2]
[3]

[4]

[5]

[6]

[7]

[8]
[9]

[10]

[11]

[12]

[13]

REFERENCES

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” CoRR, vol. abs/1301.3781, 2013.
M. A. Hearst, “Automatic acquisition of hyponyms from large text
corpora,” in Proceedings of COLING, 1992, pp. 539-545.

Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, “A neural
probabilistic language model,” JMLR, vol. 3, pp. 1137-1155, 2003.

R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa, “Natural language processing (almost) from scratch,” JMLR,
vol. 12, pp. 2493-2537, 2011.

O. Levy and Y. Goldberg, “Dependency-based word embeddings,” in
Proceedings of ACL, 2014, pp. 302-308.

M. Faruqui, J. Dodge, S. K. Jauhar, C. Dyer, E. Hovy, and N. A.
Smith, “Retrofitting word vectors to semantic lexicons,” in Proceedings
of NAACL, 2015.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Dis-
tributed representations of words and phrases and their compositionality,”
in Advances in Neural Information Processing Systems 26, 2013.

A. Mnih and Y. W. Teh, “A fast and simple algorithm for training neural
probabilistic language models,” in Proceedings of ICML, 2012.

G. Sierra, M. Pozzi, and J.-M. Torres, Eds., Proceedings of the Ist
Workshop on Definition Extraction, 2009.

M. Baroni, S. Bernardini, A. Ferraresi, and E. Zanchetta, “The WaCky
wide web: a collection of very large linguistically processed web-crawled
corpora,” LangResources & Eval., vol. 43, no. 3, pp. 209-226, 2009.
L. Finkelstein, G. Evgenly, M. Yossi, R. Ehud, S. Zach, W. Gadi,
and R. Eytan, “Placing search in context: the concept revisited,” in
Proceedings of WWW, 2001.

E. Bruni, N. K. Tran, and M. Baroni, “Multimodal distributional
semantics,” J. Artif. Int. Res., vol. 49, no. 1, pp. 1-47, 2014.

G. de Melo, “Wiktionary-based word embeddings,” in Proceedings of
MT Summit XV, 2015.

3Unfortunately, there is no independent tuning set from the same distribution
and thus we follow previous work in reporting best results on the final set.

228

