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Abstract

Across the globe, people are voicing their opinion in social
media and various other online fora. Given such data, modern
deep learning-based sentiment analysis methods excel at de-
termining the sentiment polarity of what is being said about
companies, products, etc. Unfortunately, such deep methods
require significant training data, while for many languages,
resources and training data are scarce. In this work, we present
a cross-lingual propagation algorithm that yields sentiment
embedding vectors for numerous languages. We then rely on a
dual-channel convolutional neural architecture to incorporate
them into the network. This allows us to achieve gains in deep
sentiment analysis across a range of languages and domains.

1 Introduction

Motivation. As more and more users come online across the
globe, increasing numbers of people are voicing their opinion
in social media, blogs, review sites, and other online fora.
Given such valuable data, modern deep learning-based sen-
timent analysis methods excel at determining the sentiment
polarity of what is being said about companies, products, etc.
(Wang et al. 2015). Unfortunately, such deep methods require
substantial amounts of training data, because multiple levels
of computation, each with additional weights and parameters,
need to be learned, typically via end-to-end training.

This is a significant problem for many of the world’s lan-
guages, for which resources may be too costly to obtain and
training data is scarce, especially when one considers that
new training data is needed for each domain and genre. A
model trained on movie reviews, for instance, will fare very
poorly on the task of assessing digital camera reviews, let
alone social media postings such as tweets.
Contributions. In this work, we present a cross-lingual prop-
agation algorithm to overcome these challenges and enable
improved deep sentiment analysis across a range of languages
and domains. Our approach relies on word vectors that are
cross-lingually projected from a source language such as
English to any number of target languages. Our key contribu-
tions are as follows:

1. We present an approach to project sentiment information
across languages.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2. We propose encoding this information in embedding vec-
tors that capture sentiment properties along multiple dimen-
sions and allow the model to adapt to different domains
and circumstances. This is different from previous work on
cross-lingual projection, which has considered generic sen-
timent polarity lexicons. Different words, however, may
have strikingly different connotations in different contexts.
For instance, hot is generally positive when referring to
music, but tends to be negative when referring to the tem-
perature in a hotel room.

3. We incorporate the induced embeddings into a custom
convolutional neural network architecture and show that
our approach can lead to consistent gains across different
languages on diverse datasets from different domains.

2 Approach

2.1 Sentiment Embedding Induction

For many languages and domains, there is a paucity of avail-
able data and resources. In some cases, it may be challenging
to obtain sufficient in-domain training data, both because
there may be less data available online and because it may be
somewhat harder to find annotators. Hence, a question that
arises is whether one can assist deep networks by incorporat-
ing external cues that enable the model to generalize better.
We conjecture that vector representations are a suitable means
of injecting sentiment-related signals into neural models, as
a sort of external prior. Generic word vectors as produced
by word2vec (Mikolov et al. 2013a) are widely used to feed
generic semantic information into a model. Preinitialization
with such vectors often leads to noticeable gains compared
to randomly initialized embedding matrices (Kim 2014).

In our study, we consider the question of whether further
gains can be achieved by relying on cross-lingual induction to
obtain more targeted signals pertaining to a word’s sentiment
rather than to its general semantics. For this, we first derive
embeddings for English words and then use a graph-based
propagation algorithm to project these to further languages.
To obtain sentiment embeddings for English words, we con-
sider the following strategies.
Sentiment Lexicons. Despite their inherent limita-
tions, lexicon-driven sentiment analysis methods remain
widespread. One of their advantages is that they may be
better-suited at performing robustly across different domains
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compared to supervised approaches, which may pick up
dataset-specific correlations. The latter, for instance, may
learn that mentions of the word novel in movie reviews often
correlate with lower review scores due to movies not living
up to the expectations of fans of the novel. We thus consider
English sentiment lexicons as a simple baseline form of
English vector representations. Specifically, we rely on a
recent sentiment lexicon called VADER (Hutto and Gilbert
2014), and view the polarity scores that it assigns to words
as components of simple 1-dimensional word vectors.
Domain-Specific Lexicon Induction. Generic sentiment
lexicons do not account for the domain-specific nature of
word polarity scores. A word that has positive connotations
in one domain may have negative connotations in another do-
main. We hence consider the SocialSent Reddit community-
specific data mined by the Stanford NLP group (Hamilton
et al. 2016). Their study produced separate domain-specific
scores for each of 250 different subcommunities of the Reddit
social media forum site. Although this data is biased by its
source and by their semi-automatic induction process, we
consider it a valuable resource. Taken together, the 250 dif-
ferent lexicons can be used to induce 250-dimensional vector
embeddings that reflect the distribution of a word’s sentiment
polarity across a large range of domains.
Transfer Learning. Finally, for a genuinely data-driven way
of obtaining word-specific scores, we rely on a supervised
approach based on annotated training data. Given a training
collection consisting of n binary sentiment polarity classifi-
cation tasks (e.g., with documents from n different domains),
we learn n corresponding models. From these, we then extract
word-level feature weights that are tied to specific prediction
outcomes. Specifically, we train n linear models

fi(x) = wᵀ
i x+ bi (1)

for tasks i = 1, . . . , n using bag-of-words features. Then,
each vocabulary word index j is assigned a new word vector
(w1,j , . . . , wn,j) that incorporates the linear coefficients for
that word across the n different linear models.
Cross-Lingual Induction. Given the initial seed embed-
dings obtained using one of the aforementioned approaches,
we next seek to produce vectors for other languages via cross-
lingual projection. This is achieved by propagating weights
across words in different languages. We start off with an ini-
tial vocabulary V0 ⊂ V as a subset, typically with English
words, of a general multilingual vocabulary V . Vocabulary
items are defined as tuples of languages and normalized sur-
face forms, such that the Spanish word con (with) is treated
as distinct from the French word con (idiot). For each x ∈ V0,
we assume as input a corresponding input vector ṽx ∈ R

n,
obtained using one of the methods introduced earlier, i.e.
from a sentiment lexicon, multi-dimensional lexicon induc-
tion, or using our transfer learning procedure.

Our goal is to induce embeddings v for all
x ∈ V . We assume a translation lexicon TL =
{(x1, x

′
1, w1), . . . , (xm, x′

m, wm)} that provides evi-
dence of semantic relationships between words in V with
weights wi. Although many entries in TL are expected to
be pairings of translational equivalents, TL is not a simple

set of one-to-one mappings. Rather, due to polysemy and
synonymy, each word may have multiple translations, and
we consider such links between arbitrary language pairs.
Additionally, TL may also include monolingual links, which
we shall use to incorporate connections between synonyms,
orthographic variants, and semantically, morphologically,
derivationally, or etymologically related words (e.g.,
“ensalzar” and “ensalzan” in Spanish).

Given this data, our training objective is to minimize:

−
∑
x∈V

vᵀ
x

⎡
⎢⎣ 1∑

(x,x′,w)∈TL

w

∑
(x,x′,w)∈TL

wvx′

⎤
⎥⎦

+C
∑
x∈V0

‖vx − ṽx‖2 (2)

The first part seeks to ensure that sentiment embeddings of
words accord with those of their connected words, in terms
of the dot product, while the second part ensures that the de-
viation from the initial word vectors ṽx is minimal (for some
very high constant C). Hence, words in the initial vocabulary
will receive vectors v that do not diverge significantly from
the original ṽx. New words, in contrast, are constrained to
have vectors close to those of their neighbors in the graph.
For optimization, we preinitialize vx = ṽx for all x ∈ V0,
and then rely on stochastic gradient descent steps. As a result,
the sentiment vector signal gradually propagates from words
in the original vocabulary to other words in the lexicon. As a
side effect, this procedure also increases the coverage of our
vectors in the original source language (English).

2.2 Network Architecture

To feed our cross-lingual embeddings into our training, we
rely on a custom network architecture, illustrated in Fig. 1.
This architecture incorporates an extra channel for the sen-
timent embeddings. The channel with regular word embed-
dings enables the model to learn salient patterns and exploit
the nearest neighbour and linear substructure properties of
standard word embeddings. Our hypothesis is that a separate
sentiment channel, with dedicated convolutional filters and
pooling, allows for better exploiting the information brought
to the table by the sentiment embeddings.
Dual-Channel Inputs and Convolutional Filters. The in-
put of the DC-CNN consists of two sentence matrices S ∈
R

s×d and S′ ∈ R
s×d′

, the rows of which represent the words
of the input sentence after tokenization. In the case of S, i.e.,
the regular channel, each word is represented by its conven-
tional word vector representation. In the case of S′, i.e., the
sentiment channel, each word is represented by a sentiment
vector embedding. Here, s refers to the length of a sentence,
and d and d′ represent the dimensionality of the regular and
sentiment word vectors, respectively.

As the two sentence matrices are similar to a two chan-
nel image, we can perform convolutional operations on both
of them via linear filters. Given rows representing discrete
words, we rely on several weight matrices W ∈ R

h×d

and W′ ∈ R
h×d′

, respectively, for different region sizes
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Figure 1: Dual-Channel Convolutional Neural Network ar-
chitecture.

h. We use the notation Si:j, S′
i:j to denote the respective

sub-matrices of S, S′ from row i to row j.
Supposing that these two weights matrices have a filter

size of h, for the normal weight matrix, a wide convolution
(Kalchbrenner, Grefenstette, and Blunsom 2014) is induced
such that out-of-range submatrix values Si where i < 1 or
i > s are taken to be zero. Thus, applying the filter on sub-
matrices of S yields the output sequence o ∈ R

s+h−1 of the
convolution operator:

oi = W � Si:i+h−1 (3)

where � is taken to denote the sum of element-wise mul-
tiplication. In contrast, narrow convolutions (Kalchbrenner,
Grefenstette, and Blunsom 2014) are used for the sentiment
weight matrix, so S′ yields the following output sequence
o′ ∈ R

s−h+1 computed as:

o′j = W′ � S′
j:j+h−1 (4)

Wide convolutions ensure that filters can cover words at the
margins of the normal weight matrix, whereas the number of
sentiment word vectors present in the sentiment embedding
is relatively small, so narrow convolutions are sufficiently
effective on the sentiment weight matrix.

Next, the ci and c′j in feature maps c ∈ R
s+h−1 and

c′ ∈ R
s−h+1 are computed as:

ci =f(oi + b) (5)

c′j =f(o′j + b) (6)

where i = 1, . . . , s+ h− 1, j = 1, . . . , s− h+ 1, b ∈ R is
a bias term, and f is an activation function.

Pooling and Prediction. Subsequently, 1d-max pooling is
applied to the c, while 1d-mean pooling is applied to the c′
to extract a scalar from each feature map. The rationale for
invoking 1d-mean pooling on the sentiment feature map is
to capture the average sentiment polarity instead of the most
prominent sentiment features obtained by 1d-max pooling,
because the overall polarity of a sentence is not only depen-
dent on individual sentiment values of words. In general, the
model shown in Fig. 1 is able to use multiple filters to obtain
multiple features in the normal channel, while only using one
filter in the sentiment channel to avoid disrupting the normal
channel overly.

Finally, the outputs of the pooling functions can be con-
catenated into a fixed-length vector, which is passed to a
fully connected softmax layer to generate the final output
probabilities.
Loss Function and Training. Our loss function is the cross-
entropy function

L = − 1

n

n∑
i=1

∑
c∈C

yi,c ln ŷi,c, (7)

where n is the number of training examples, C is the set of
(two) classes, yi,c are ground truth labels for a given training
example and class c, and ŷi,c are corresponding label prob-
abilities predicted by the model, as emitted by the softmax
layer. We train our model using Adam optimization (Kingma
and Ba 2014) for better robustness across different datasets.
More details about our training regime are provided in the
Experiments section, which follows next.

3 Experiments

We now turn to our extensive empirical evaluation, which
assesses the effectiveness of using cross-lingual projections
of three different sources of sentiment word vectors.

3.1 Experimental Setup

Table 1: Dataset Descriptions with abbreviations as follows.
MR: movie reviews, FR: Amazon food reviews, HR: hotel re-
views, RR: restaurant reviews, TR: Television series reviews.

Language Source Domain train test

en
SST MR 6,920 1,821
AFF FR 5,945 1,189

es SE16-T5 RR 2,070 881
nl SE16-T5 RR 1,317 575
de TA RR 1,687 481
ru TA HR 2,387 682
it TA HR 3,437 982
ja TA RR 1,435 411
cs TA RR 1722 491
fr AC TR 2,737 782

Datasets. For evaluation, we use real-world datasets for sev-
eral different languages, taken from 5 different sources that
cover a range of different domains. These are summarized in
Table 1. In our experimental setup, these are all cast as binary
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polarity classification tasks, for which we use accuracy as
our evaluation metric.

• The Stanford Sentiment Treebank (SST) dataset (Socher et
al. 2013) consists of movie reviews taken from the Rotten
Tomatoes website, including binary labels.

• TripAdvisor (TA) is a well-known travel website. To obtain
non-English evaluation data, we crawled German, Russian,
Italian, Czech, and Japanese reviews of restaurants and
hotels from the respective local versions of TripAdvisor.
We removed three-star reviews, as these can be regarded
as neutral, so reviews with a rating < 3 are considered neg-
ative, while those with a rating > 3 were deemed positive.

• The Allocine (AC) dataset1 consists of reviews of French
TV series. The data comes annotated with binary labels.

• The SemEval-2016 Task 5 (SE16-T5) dataset (Pontiki et al.
2016) provides Spanish and Dutch reviews of restaurants.
The task targeted aspect-based sentiment analysis, so we
converted the entity-level annotations to sentence-level
polarity labels via voting. Since the number of entities per
sentence is often one or very low, this process is reasonably
precise. In any case, it enables us to compare the ability of
different models to learn to recognize pertinent words.

• The Amazon Fine Food Reviews AFF (McAuley and
Leskovec 2013) dataset consists of 568,454 food reviews
left by Amazon users up to October 2012. We extracted a
part of it and preprocessed it as for TripAdvisor.

Given the lack of provided test splits for TA, AFF, and AC, we
randomly partitioned each into training/validation/test splits
with a 80%/10%/20% ratio. Additionally, 10% of the training
sets from SE16-T5 were randomly extracted and reserved for
validation, while SST provides its own validation set.

For transfer learning, our experiments rely on a multi-
domain Amazon product review dataset (Blitzer et al. 2007).
This dataset includes reviews for 25 different categories of
products and is used to generate our sentiment embeddings
using a series of linear models, as explained further below.
Neural Network Details. For CNNs, we make use of the
CNN-non-static architecture and hyperparameters proposed
in previous work (Kim 2014). The learning rate used to train
all languages for it is 0.0006. For our DC-CNN models, the
configuration of the regular channel is the same as for CNNs
and the remaining hyperparameter values were tuned on the
validation sets. An overview of further network parameters
resulting from this tuning is given in Table 2.

For greater efficiency and better convergence properties,
the training relies on mini-batches of 50 instances. Our im-
plementation considers the maximal sentence length in each
mini-batch and zero-pads all other sentences to this length,
thus enabling uniform and fast processing of each mini-batch.

3.2 Embeddings

The standard pre-trained word vectors used for English
are the GloVe (Pennington, Socher, and Manning 2014)
ones trained on 840 billion tokens of Common Crawl data2,

1https://www.irit.fr/ Tim.Van-De-Cruys/tal/tp/tp3/tp3.pdf
2https://nlp.stanford.edu/projects/glove/

Table 2: DC-CNN Model Parameters Setting

(a) General configuration.

Description Values

Normal
Channel

filter region size (3,4,5)
feature maps 100

pooling 1d-max pooling
Sentiment
Channel

feature maps 100
pooling 1d-mean pooling

dropout rate 0.5
optimizer Adam

activation function ReLU

(b) Learning rate α and filter region size h used in Sentiment
Channel under 9 languages

en es nl ru de
α 0.0004 0.001 0.001 0.0004 0.0004
h 5 5 5 5 20

cs it fr ja
α 0.001 0.0004 0.0004 0.0004
h 5 5 5 20

while for other languages, we rely on Facebook’s fastText
Wikipedia embeddings (Bojanowski et al. 2016) as input rep-
resentations. All of these are 300-dimensional. The vectors
are either fed to the CNN, or to the regular channel of the
DC-CNN during model initialization, while unknown words
are initialized with zeros. All words, including the unknown
ones, are fine-tuned during the training process.

In terms of sentiment embeddings, we draw on several
forms of external data. For sentiment lexicon embeddings,
we rely on VADER (Hutto and Gilbert 2014) to induce
one-dimensional vectors. We also rely on the SocialSent
(Hamilton et al. 2016) sentiment lexicons to construct 250-
dimensional embeddings, as detailed in Section 2.1.

For the transfer learning approach, we train 25 linear SVM
models to extract word coefficients for each domain of the
multi-domain Amazon review dataset, as well as another
model for all domains together, yielding a 26-dimensional
sentiment embedding. However, just naı̈vely using bag-of-
word features can lead to counter-intuitive weights. If a word
like “pleased” in one domain mainly occurs after the word
“not”, while the reviews in another domain primarily used
“pleased” in its unnegated form, then this word would be as-
sessed as possessing opposite polarities in different domains.
To avoid this, we generally treat occurrences of “not 〈word〉”
as a single feature “not 〈word〉”.

For cross-lingual projection, we extract links between
words from a 2017 dump of the English edition of Wik-
tionary, which covers not just English but a broad range of
languages. We restrict the vocabulary table TL to include the
languages in Table 1, mining corresponding translation, syn-
onymy, morphology, derivation, and etymological links from
Wiktionary (de Melo 2014). Since the same pair of words
may occur multiple times in this data (for different semantic
relationships), we define the weights wi for a given pair in
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TL to be a count of the number of links we have for that pair.
V0 is defined as the set of all English words in TL, using the
vectors from the aforementioned English embeddings where
available, and assigning all other English words a zero-valued
vector, based on the assumption that they are neutral.

Table 3 compares the coverage of different embeddings
with respect to our evaluation datasets. Unsurprisingly,
generic word embeddings from GloVe (for English) and fast-
Text (for other languages), denoted as G/F, have the largest
relative coverage, due to being trained on massive amounts of
text. However, our multilingual sentiment embeddings also
fare quite well on a number of languages, approaching the
coverage of generic word embeddings. The coverage is lower
for languages with complex morphology or long compounds
as tokens, as is the case for Czech and German. For com-
parison, we as well list the coverage of the Polyglot lexicon
induction method (PG) from (Chen and Skiena 2014).

We have also applied our algorithm using the entirety
of Wiktionary as TL, which includes numerous further lan-
guages in the long tail. This provides us with sentiment em-
beddings for over 50 languages (even more if one counts em-
beddings with smaller vocabulary sizes). For many of these,
to the best of our knowledge, no existing sentiment analysis
resources exist other than the work by (Chen and Skiena
2014). For this data, please refer to http://gerard.demelo.org/
sentiment/.

3.3 Results and Discussion

Comparing Embeddings for CNNs. Our main results are
summarized in Table 4. The simplest baseline is to use a CNN
model with randomly initialized word vectors. In compari-
son, CNNs with standard GloVe/fastText embeddings (G/F),
where GloVe is used for English, and fastText is used for
all other languages, obtain substantial gains across all lan-
guages. Thus, word vectors do tend to convey pertinent word
semantics signals that enable models to generalize better.

We next consider the benefits of our multilingual senti-
ment embeddings when applying regular CNNs. For this, we
simply concatenate the regular word embeddings with the
different forms of sentiment embeddings that we have pro-
duced, including those from the sentiment lexicon VADER
(V), from SocialSent (SS), and from transfer learning from
Amazon reviews (A). As a baseline, we consider the Polyglot
sentiment lexicons (PG) from (Chen and Skiena 2014).

The results of using our embeddings as opposed to regular
embeddings are somewhat mixed. Using cross-lingual induc-
tions based on VADER (V) and Amazon-based transfer learn-
ing (A) leads to small improvements on several languages.
However, the results are far from consistent. In several cases,
appending sentiment information to the word embeddings
results in slightly degraded scores, e.g. for Spanish, although
all input information that was previously there continues to
be provided to the model. This suggests that a simple con-
catenation may harm the model’s ability to benefit from the
semantic relatedness information between words that are pro-
vided by regular word vectors. This risk seems to be more
pronounced for larger-dimensional sentiment embeddings.
However, we also see that our approach of inducing multi-

dimensional sentiment embeddings generally outperforms
the Polyglot baseline (“PG”).

Sentiment Embeddings with Dual-Channel Approach.
Next, we consider our DC-CNN architecture with its dual-
channel mechanism. In this approach, the sentiment embed-
dings are provided to the model in a separate channel, with
designated convolutional filters and pooling layers. Thus,
the model can exploit the two kinds of information indepen-
dently, and learn a suitable way to aggregate them to produce
an overall output classification.

In this case, we observe that incorporating additional
sentiment embeddings leads to fairly consistent and occa-
sionally quite pronounced gains over CNNs with just the
GloVe/fastText vectors. This demonstrates not only that the
sentiment embeddings tend to provide important complemen-
tary signals but also that a dual-channel approach is best-
suited to incorporate such signals into deep neural models.

We again also find that our approach of inducing multi-
dimensional sentiment embeddings outperforms the “PG”
baseline of inducing sentiment lexicons (Chen and Skiena
2014). Overall, our data-driven transfer learning approach
of learning sentiment polarities on Amazon reviews using a
series of linear models (A) tends to be the best choice, with
notable gains across a large number of languages.

Analysis. For further analysis, we consider the special setting
of relying on transfer learning via the Amazon embeddings,
but without allowing the model to adjust them during train-
ing (denoted as SA in Table 4). While on a few languages,
the results remain similar, on several languages, we notice
a significant degradation. Hence, we can conclude that al-
though our sentiment embeddings provide useful sentiment
information, it is important to allow the model to adjust them
to cater to the domain-specific meanings and corpus-specific
correlations for a given evaluation dataset. Our DC-CNN
architecture facilitates this domain adaptation process.

Finally, in Table 5, we provide some examples of sentences
that were misclassified by the CNN with regular embeddings
but correctly classified by our DC-CNN model using G ‖ A
embeddings. We encounter words such as “ribald”, “com-
pelling”, but also “contrived and “clink”. It appears that the
sentiment embeddings enable the model to recognize the
polarity of words that may not have had sufficiently strong
polarity associations in the training set.

Influence of Training Set Size. To look into the effect of
sentiment embeddings on training sets of different sizes, we
use the English and Czech datasets as instructive examples.
We split each of their training portions into 5 parts and plot the
results for growing training set sizes, evaluated on the full test
set. The results of the CNN model (for regular word vectors
only as well as for concatenations) and of the DC-CNN
model (for a separate channel with sentiment embeddings)
are plotted in Fig. 2. We observe that the achieved gains
tend to be even more pronounced on smaller training sets.
This shows that the sentiment embeddings are particularly
useful when domain-specific training data is scarce, although
a modest amount of training data is still needed for the model
to be able to adapt the sentiment vectors to the target domain.
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Table 3: Coverage of different resources. PG: Polyglot; G: GloVe; F: fastText; All: the number of words appearing in the dataset.

Embedding en es nl ru de cs it fr ja
MR FR RR RR HR RR RR HR TR RR

PG 2,523 1,252 686 584 851 746 533 1,121 1,470 110
Our method 14,793 8,835 4,342 2,445 12,618 3,674 4,421 6,945 6,945 3,732
G/F 16,510 10,225 5,304 3,913 17,267 10,425 11,115 9,007 9,895 5,729
All 17,516 11,362 5,974 4,794 19,881 12,453 14,952 11,109 12,498 11,305

Table 4: Accuracy on 9 language datasets using 12 embedding alternatives, where d denotes the embedding dimensionality,
and the embedding types are abbreviated as follows. R: Randomly initialized embedding; +: Embeddings are concatenated;
‖: dual-channel; SS: SocialSent Embedding; V: VADER Embedding; A: Transfer learning using embeddings resulting from
supervised training on Amazon reviews; SA: static Amazon Embedding

Embedding d
en es nl ru de cs it fr ja

MR FR RR RR HR RR RR HR TR RR
Baselines R 300 80.78 86.54 81.50 75.30 90.18 88.09 90.00 93.18 87.21 78.59

G/F 300 85.99 88.73 85.13 77.57 93.84 92.10 92.46 95.92 91.82 76.89
G/F + PG 301 86.11 88.90 85.02 77.91 93.84 92.10 93.28 95.36 91.43 75.18

Concatenation G/F + V 301 86.33 88.81 84.45 78.26 94.28 92.93 92.87 96.91 91.56 75.18
(Our Embeddings) G/F + SS 550 85.45 88.14 83.31 76.87 91.50 91.48 91.85 94.80 90.41 75.67

G/F + A 326 86.55 89.23 84.56 78.96 93.40 93.56 93.28 96.34 92.33 75.91
Dual Channel G/F ‖ R 300/26 85.78 89.07 84.79 78.09 93.40 92.31 93.08 95.78 91.82 76.64
Baselines G/F ‖ PG 300/1 85.72 88.73 85.13 77.39 93.11 91.68 93.08 95.78 91.30 76.64
Our Full G/F ‖ V 300/1 85.78 88.98 84.45 77.39 93.11 92.31 93.28 95.64 91.82 77.13
Approach G/F ‖ SS 300/250 86.11 88.73 84.56 77.91 94.28 92.10 93.69 96.77 91.94 85.40

G/F ‖ A 300/26 86.60 89.49 85.93 79.30 93.26 92.31 93.69 96.48 92.97 88.08

Analysis G/F ‖ SA 300/26 86.82 88.81 84.45 78.43 93.84 91.89 93.08 95.92 92.07 77.62

Cross-Domain Generalization. Finally, we evaluated the
cross-domain generalization abilities of our sentiment embed-
ding approach. For English, we have two different datasets,
MR and FR, and hence can evaluate how well a model trained
on one dataset performs on another. For the sentiment em-
beddings, we use the Amazon ones, as these performed best
in our previous experiments on in-domain data. Training on
MR and evaluating on the test set for FR, we achieve 69.24%
when training using GloVe embeddings only, and 74.85%
when training using our dual-channel approach with addi-
tional Amazon sentiment embeddings. This result provides
further corroboration of our hypothesis that a sentiment em-
bedding approach leads to substantially better generalization.

4 Related Work

Cross-Lingual Sentiment Analysis. The majority of re-
search on sentiment analysis has focused on the English
language. One way of supporting further languages is to use
machine translation, as has been investigated for subjectivity
(Banea et al. 2008) and sentiment polarity (Demirtas and
Pechenizkiy 2013). However, this may be overly computa-
tionally intensive when analyzing the vast quantities of data
posted online. Moreover, Duh et al. argued that even perfect
machine translation incurs a degradation in the result quality
for sentiment analysis (Duh, Fujino, and Nagata 2011), while
showing that regular adaptation methods do not work well in
this setting. Haas & Versley provided empirical support in
line with these claims (Haas and Versley 2015). Another op-
tion, proposed by Vilares et al., is to forgo supervision from

training data, instead relying on rules applied to syntactic
dependencies (Vilares, Gómez-Rodrı́guez, and Alonso 2017).
Wan presented a bilingual co-training approach that jointly
trains a system on two languages, considering each language
an independent view (Wan 2009).

An alternative strategy is to use cross-lingual projec-
tion, which involves transferring annotations from a source
language resource to some target language by exploit-
ing translational equivalence (de Melo and Weikum 2010;
Gutiérrez et al. 2016) or parallel corpora (de Melo and
Weikum 2009). There are several English-language senti-
ment lexicons, many of which have been compiled manually
(Hu and Liu 2004) or via crowdsourcing (Mohammad and
Turney 2013). While these are costly to produce, one can
subsequently use cross-lingual projection techniques to ef-
fectively translate such lexicons to new languages. Mihalcea
et al. proposed an approach to achieve this for subjectivity
lexicons (Mihalcea, Banea, and Wiebe 2007). Boyd-Graber
& Resnik proposed a cross-lingual probabilistic generative
model for sentiment analysis (Boyd-Graber and Resnik 2010).
Balamurali et al. use cross-lingual projection by means of
word sense disambiguation (Balamurali, Joshi, and Bhat-
tacharyya 2012), but the approach hinges on the existence of
multilingual wordnets that map words in different languages
to a shared interlingual representation. In terms of broad mul-
tilingual support, the most relevant previous work is that of
Chen & Skiena, which used joint cross-lingual propagation to
create sentiment lexicons for dozens of languages (Chen and
Skiena 2014). We compare against these in our experiments.
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Table 5: Examples of English SST sentences misclassified by CNNs with regular embeddings but correctly classified by
DC-CNNs using G ‖ A embeddings. Words covered by our Transfer Learning embeddings after cross-lingual expansion with a
non-zero vector are given in italics.

Classification Sentence

positive Though Mama takes a bit too long to find its rhythm and a third-act plot development is somewhat
melodramatic, its ribald humor and touching nostalgia are sure to please anyone in search of a
Jules and Jim for the new millennium .

positive An utterly compelling ‘who wrote it’ in which the reputation of the most famous author who ever
lived comes into question.

negative Feels like one of those contrived, only-in - Hollywood productions where name actors deliver
big performances created for the sole purpose of generating Oscar talk.

negative This pep-talk for faith, hope and charity does little to offend, but if saccharine earnestness were
a crime, the film’s producers would be in the clink for life.

Figure 2: Effectiveness of three embedding alternatives on two languages for varying training set sizes.

An important shortcoming of sentiment lexicons is that
they neglect the domain-specific nature of word sentiment
polarities. For instance, a word such as scary tends to be
negative, but may also correlate with positive movie review
scores. Our work, in contrast, focuses on multi-dimensional
word representations for deep neural networks.

Word Embeddings. Word embedding methods such as
word2vec (Mikolov et al. 2013a) are now ubiquitously used
across a wide range of tasks in the broad area of text min-
ing and natural language processing, including in mod-
els for sentiment analysis (Socher et al. 2013; Kim 2014;
dos Santos and Gatti 2014). Cross-lingual distributed rep-
resentations have been studied as well. These are typi-
cally produced either by aligning multiple monolingual
word embedding models using techniques such as linear
projections (Mikolov et al. 2013b) or CCA (Faruqui and
Dyer 2014), by jointly training in multiple languages via
parallel corpora (Klementiev, Titov, and Bhattarai 2012;
Luong, Pham, and Manning 2015), or by exploiting multilin-
gual semantic resources (de Melo 2015; de Melo 2017). How-
ever, the co-occurrence-based training objectives of methods
such as word2vec do not consider sentiment specifically. Our
work, in contrast, focuses on representations that capture

sentiment-specific cues rather than generic word semantics.
Mining Sentiment Information. There are various mono-
lingual methods to mine sentiment information. For instance,
one can collect reviews that come with associated ratings, and
use supervised learning to learn feature weights (Thelwall et
al. 2010). One can also apply distant supervision exploiting
the presence of emoticons or hashtags in online social media
(Tang et al. 2014). In our work, we as well start off with such
approaches to obtain initial English data, and then rely on
a cross-lingual induction procedure to transfer the acquired
representations to new language.

5 Conclusions

We have investigated the use of cross-lingually induced senti-
ment representations to boost the effectiveness of deep neural
models for sentiment analysis, incorporated into the network
via a separate channel. Extensive experiments on 9 different
languages confirm the effectiveness of this approach, leading
to substantial gains across a series of datasets from hetero-
geneous domains. Our approach has allowed us to generate
sentiment embeddings for over 50 languages. Please refer to
http://gerard.demelo.org/sentiment/ to obtain a copy of our
data.
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