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Data Placement Design #1

• Centralized management: GFS, HDFS, …
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Data Placement Design #2

• Hash-based distributed management: Ceph, Dynamo, FDS, …
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Pros and Cons of Different Designs
Pros Cons

Centralized
Management

Global performance 
optimization.

Centralized name server can become 
bottleneck.

Hash-based 
Distributed 

Management

Avoid centralized server 
bottleneck.

Fixed placement makes it hard to do 
optimization.

Some optimization is vulnerable to 
change of lower-level storage 
architectures.

4



Motivation

• We want to use server information to improve system 
performance in hash-based distributed management.
• Static information: network structure, failure domain, …
• Dynamic information: latency, memory utilization, …

• We want a flexible system so that new optimizations for specific 
applications can be added easily.
• Do not want to redesign the whole placement algorithm or hash function.
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Solution: Multiple Hash Functions
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Solution: Multiple Hash Functions

• We can use multiple hash functions to provide multiple choices, 
and choose the best one with a fixed policy.
• Different servers provide different performance.

• A performance requirement or even a specific application can 
have their own optimization policy.
• Easy to be implemented as an independent module.
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How does Write Work Now?
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How does Read Work Now?

Client

Server 1

Server 2

Server 3

Read-Query

Has data

Choice Cache

Multi-hash

Read Data

9



Simple Server

• Gather server performance metrics.
• CPU/memory/disk utilization, average read/write latency, unflushed 

journal size, …

• Answer client probing.
• Check whether the requested data exist on this server or not.
• Piggyback server metrics with probing results.
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Clever Client

• Provide multiple choices.

• Probe server choices before the first access.
• Make a choice if need to write new data.

• Cache the choice after the first access.
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Making the Best Choice

• A policy gets server information as input and output the best 
choice.
• Example policies:
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Implementation

• We implement it based on Ceph.

• About 140 lines of C++ codes for server module.
• Easy to be implemented on other systems.

• Only support block device interface now.
• It ensures that only one client is accessing the block device data.
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Evaluation Setup

• Testbed cluster.
• 3 machines.

• 15*4TB hard drives
• 2*12 cores 2.1GHz Xeon CPU
• 128 GB memory
• 10Gb NIC. 

• Workloads are generated with librbd engine of FIO. 8 images are read/written
with 4MB block size concurrently on the same machine.

• Production cluster.
• 44 machines.

• 4*4TB hard drives and 256GB SSD.
• 2 10Gb NICs.

• Workloads are generated with webserver module of FileBench.
• The number of choice is fixed to 2.
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Policy space Saves Disk Space

• space chooses the server with most free space to store data.
• A hash-based storage system is full when there is one full disk.
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Policy local Reduces Network Bottleneck

• local chooses the closest server to store data.
• Can save cross-rack network bandwidth.
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Policy memory Improves Read Throughput

• memory chooses the server with the most free memory.
• Coexist with other running programs
• More free memory => more file systems buffer => better read perf.
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Inefficient Policies

• Policies cpu, latency, and journal do not work well.
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Why are They Inefficient?

• The Ceph server is not CPU intensive under this hardware
configuration.
• Queue-based transient metrics, e.g. unflushed journal size,

changes too fast, so we can not have a consistent measurement.

• However, applying ineffective policies still provide similar 
performance of the baseline!
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Summary of Different Policies

• General improvement:

Policy Performance Change Improvement

local 1545 MB/s → 1900 MB/s 23.0%

memory 778 MB/s → 1403 MB/s 80.3%

space 73% → 96% 31.5%

cpu 1545 MB/s → 1513MB/s -1.9%

latency 402 MB/s → 396MB/s -1.5%

journal 402MB/s → 396MB/s -1.5%
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Probing Overhead

• The most significant overhead is server probing.
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Discussion about Probing Overhead

• It has 2.7ms average latency overhead for probing because of an 
extra round trip time.

• Latency is increased by 2.7% for large sequential write and 6.9% for 
small random write.

• The probing is only done in the first access at a client.
• The overhead is distributed to all subsequent accesses of an object.
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Future Work

• Develop more advanced choice policies based on multiple metrics. 

• Provide an application-level API, so the application itself can make 
the choices. 

• Exploring different ways to collaboratively cache the choice 
information, in order to reduce the number of probing.
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Conclusion

• Hash-based design in distributed systems can be flexible as well. 

• Statistic optimization with best efforts can be both simple and 
efficient.

• Without significant queueing effects, the power of two may not 
work well in a real computer system. 
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Thank You

We are hiring: faculty members, postdocs in any CS field
contact: weixu@tsinghua.edu.cn
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