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Data Placement Design #1

* Centralized management: GFS, HDFS, -
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Data Placement Design #2

* Hash-based distributed management: Ceph, Dynamo, FDS, -
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Pros and Cons of Different Designs

Centralized Global performance Centralized name server can become
Management optimization. bottleneck.

Fixed placement makes it hard to do

optimization.
Hash-based . . P
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Distributed L
bottleneck. Some optimization Is vulnerable to
Management

change of lower-level storage
architectures.



Motivation

* We want to use server information to improve system
performance in hash-based distributed management.

 Static Information: network structure, failure domain, -
* Dynamic information: latency, memory utilization, -

* We want a flexible system so that new optimizations for specific
applications can be added easlly.
* Do not want to redesign the whole placement algorithm or hash function.



Solution: Multiple Hash Functions
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Solution: Multiple Hash Functions

* We can use multiple hash functions to provide multiple choices,
and choose the best one with a fixed policy.

* Different servers provide different performance.

* A performance requirement or even a specific application can
have their own optimization policy.
* Easy to be implemented as an independent module.



How does Write Work Now?
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How does Read Work Now?
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SImple Server

* Gather server performance metrics.

* CPU/memory/disk utilization, average read/write latency, unflushed
journal size, -

* Answer client probing.
* Check whether the requested data exist on this server or not.
* Piggyback server metrics with probing results.



Clever Client

* Provide multiple choices.

* Probe server choices before the first access.
* Make a choice If need to write new data.

* Cache the choice after the first access.



Making the Best Choice

* A policy gets server information as input and output the best

choice.
* Example

policies:
Choice Type Choose the server with ...
local closest distance to the client
memory lowest memory utilization
cpu lowest cpu utilization
space lowest disk utilization
latency lowest recent latency

journal

least unflushed data in journal
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Implementation

* We implement i1t based on Ceph.

* About 140 lines of C++ codes for server module.
* Easy to be implemented on other systems.

* Only support block device interface now.
* |t ensures that only one client is accessing the block device data.



Fvaluation Setup

* Testbed cluster.

* 3 machines.
° 15*4TB hard drives—

e 2x12 cores 2.1GHz Xeon CPU
* 128 GB memory
 10Gb NIC. &

* Workloads are generated with librbd engine of FIO. 8 images are read/written
with 4MB block size concurrently on the same machine.

* Production cluster.

* 44 machines.
 4*x4ATB hard drives and 256GB SSD.
e 2 10Gb NICs.

* Workloads are generated with webserver module of FileBench.
* The number of choice Is fixed to 2.
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Policy space Saves Disk Space

* space chooses the server with most free space to store data.
* A hash-based storage system is full when there i1s one full disk.
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Policy local Reduces Network Bottleneck

* local chooses the closest server to store data.
 Can save cross-rack network bandwidth.

Evaluation of local on testbed Evaluation of local on production cluster
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Policy memory Improves Read Throughput

* memory chooses the server with the most free memory.
* Coexist with other running programs
* More free memory => more file systems buffer => better read perf.
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Inefficient Policles

* Policies cpu, latency, and journal do not work well.
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Why are They Inefficient?

* The Ceph server is not CPU intensive under this hardware
configuration.

* Queue-based transient metrics, e.g. unflushed journal size,
changes too fast, so we can not have a consistent measurement.

* However, applying ineffective policies still provide similar
performance of the baseline!



summary of Different Policies

* General iImprovement:

local 1545 MB/s — 1900 MB/s 23.0%
memory 778 MB/s — 1403 MB/s 80.3%
space /3% — 96% 31.5%
cpu 1545 MB/s — 1513MB/s -1.9%
latency 402 MB/s — 396MB/s -1.5%

journal 402MB/s — 396MB/s -1.5%



Probing Overhead

* The most significant overhead Is server probing.
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Discussion about Probing Overhead

* |t has 2.7ms average latency overhead for probing because of an
extra round trip time.

* Latency Is Increased by 2.7% for large sequential write and 6.9% for
small random write.

* The probing i1s only done In the first access at a client.
* The overhead is distributed to all subsequent accesses of an object.



Future Work

* Develop more advanced choice policies based on multiple metrics.

* Provide an application-level API, so the application itself can make
the choices.

* Exploring different ways to collaboratively cache the choice
iInformation, in order to reduce the number of probing.



Conclusion

* Hash-based design in distributed systems can be flexible as well.

* Statistic optimization with best efforts can be both simple and
efficient.

* Without significant queueing effects, the power of two may not
work well In a real computer system.
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