

Optimizing Hash-based Distributed Storage Using Client Choices

Peilun Li and Wei Xu

Institute for Interdisciplinary Information Sciences, Tsinghua University

Data Placement Design #1

• Centralized management: GFS, HDFS, ···

Data Placement Design #2

• Hash-based distributed management: Ceph, Dynamo, FDS, ...

Pros and Cons of Different Designs

	Pros	Cons
Centralized Management	Global performance optimization.	Centralized name server can become bottleneck.
Hash-based Distributed Management	Avoid centralized server bottleneck.	Fixed placement makes it hard to do optimization. Some optimization is vulnerable to change of lower-level storage architectures.

Motivation

- We want to use server information to improve system performance in hash-based distributed management.
 - Static information: network structure, failure domain, ...
 - Dynamic information: latency, memory utilization, ...
- We want a flexible system so that new optimizations for specific applications can be added easily.
 - Do not want to redesign the whole placement algorithm or hash function.

Solution: Multiple Hash Functions

Solution: Multiple Hash Functions

- We can use multiple hash functions to provide multiple choices, and choose the best one with a fixed policy.
 - Different servers provide different performance.
- A performance requirement or even a specific application can have their own optimization policy.
 - Easy to be implemented as an independent module.

How does Write Work Now?

How does Read Work Now?

Simple Server

- Gather server performance metrics.
 - CPU/memory/disk utilization, average read/write latency, unflushed journal size, ...
- Answer client probing.
 - Check whether the requested data exist on this server or not.
 - Piggyback server metrics with probing results.

Clever Client

Provide multiple choices.

- Probe server choices before the first access.
 - Make a choice if need to write new data.
- Cache the choice after the first access.

Making the Best Choice

- A **policy** gets server information as input and output the best choice.
- Example policies:

Choice Type	Choose the server with	
local	closest distance to the client	
memory	lowest memory utilization	
cpu	lowest cpu utilization	
space	lowest disk utilization	
latency	lowest recent latency	
journal	least unflushed data in journal	

Implementation

• We implement it based on Ceph.

- About 140 lines of C++ codes for server module.
 - Easy to be implemented on other systems.
- Only support block device interface now.
 - It ensures that only one client is accessing the block device data.

Evaluation Setup

- Testbed cluster.
 - 3 machines.
 - 15*4TB hard drives
 - 2*12 cores 2.1GHz Xeon CPU
 - 128 GB memory
 - 10Gb NIC.
 - Workloads are generated with librbd engine of FIO. 8 images are read/written with 4MB block size concurrently on the same machine.
- Production cluster.
 - 44 machines.
 - 4*4TB hard drives and 256GB SSD.
 - 2 10Gb NICs.
 - Workloads are generated with webserver module of FileBench.
- The number of choice is fixed to 2.

Policy space Saves Disk Space

- space chooses the server with most free space to store data.
 - A hash-based storage system is full when there is one full disk.

Policy local Reduces Network Bottleneck

- local chooses the closest server to store data.
 - Can save cross-rack network bandwidth.

Policy memory Improves Read Throughput

- memory chooses the server with the most free memory.
 - Coexist with other running programs
 - More free memory => more file systems buffer => better read perf.

Inefficient Policies

• Policies cpu, latency, and journal do not work well.

Why are They Inefficient?

- The Ceph server is not CPU intensive under this hardware configuration.
- Queue-based transient metrics, e.g. unflushed journal size, changes too fast, so we can not have a consistent measurement.

 However, applying ineffective policies still provide similar performance of the baseline!

Summary of Different Policies

General improvement:

Policy	Performance Change	Improvement
local	1545 MB/s → 1900 MB/s	23.0%
memory	778 MB/s \rightarrow 1403 MB/s	80.3%
space	73% → 96%	31.5%
cpu	1545 MB/s → 1513MB/s	-1.9%
latency	402 MB/s → 396MB/s	-1.5%
journal	$402MB/s \rightarrow 396MB/s$	-1.5%

Probing Overhead

• The most significant overhead is server probing.

Discussion about Probing Overhead

• It has 2.7ms average latency overhead for probing because of an extra round trip time.

• Latency is increased by 2.7% for large sequential write and 6.9% for small random write.

- The probing is only done in the first access at a client.
 - The overhead is distributed to all subsequent accesses of an object.

Future Work

Develop more advanced choice policies based on multiple metrics.

 Provide an application-level API, so the application itself can make the choices.

• Exploring different ways to collaboratively cache the choice information, in order to reduce the number of probing.

Conclusion

• Hash-based design in distributed systems can be flexible as well.

 Statistic optimization with best efforts can be both simple and efficient.

• Without significant queueing effects, the power of two may not work well in a real computer system.

Thank You

We are hiring: faculty members, postdocs in any CS field contact: weixu@tsinghua.edu.cn