
Optimizing Hash-based
Distributed Storage Using

Client Choices
Peilun Li and Wei Xu

Institute for Interdisciplinary Information Sciences, Tsinghua
University

Data Placement Design #1

• Centralized management: GFS, HDFS, …

Client

Name Server

Data Server

Data Server

Data Server

data name →
server name

server name →
server IP

Data

2

Data Placement Design #2

• Hash-based distributed management: Ceph, Dynamo, FDS, …

Client

Monitor Server

Data Server

Data Server

Data Server

server name →
server IP

server name →
server IP

Hash function Server
Name

DataData
Name

3

Pros and Cons of Different Designs
Pros Cons

Centralized
Management

Global performance
optimization.

Centralized name server can become
bottleneck.

Hash-based
Distributed

Management

Avoid centralized server
bottleneck.

Fixed placement makes it hard to do
optimization.

Some optimization is vulnerable to
change of lower-level storage
architectures.

4

Motivation

• We want to use server information to improve system
performance in hash-based distributed management.
• Static information: network structure, failure domain, …
• Dynamic information: latency, memory utilization, …

• We want a flexible system so that new optimizations for specific
applications can be added easily.
• Do not want to redesign the whole placement algorithm or hash function.

5

Solution: Multiple Hash Functions

Client

server name →
server IP

Hash
Function 1 Server 1

Hash
Function 2 Server 2

Hash
Function 3 Server 3

Server 1

Server 2

Server 3

Policy Server 2 Data

6

Solution: Multiple Hash Functions

• We can use multiple hash functions to provide multiple choices,
and choose the best one with a fixed policy.
• Different servers provide different performance.

• A performance requirement or even a specific application can
have their own optimization policy.
• Easy to be implemented as an independent module.

7

How does Write Work Now?

Client

Server 1

Server 2

Server 3

Write-Query

No data

Write Data

Choice Cache

Multi-hash & Performance

8

How does Read Work Now?

Client

Server 1

Server 2

Server 3

Read-Query

Has data

Choice Cache

Multi-hash

Read Data

9

Simple Server

• Gather server performance metrics.
• CPU/memory/disk utilization, average read/write latency, unflushed

journal size, …

• Answer client probing.
• Check whether the requested data exist on this server or not.
• Piggyback server metrics with probing results.

10

Clever Client

• Provide multiple choices.

• Probe server choices before the first access.
• Make a choice if need to write new data.

• Cache the choice after the first access.

11

Making the Best Choice

• A policy gets server information as input and output the best
choice.
• Example policies:

12

Implementation

• We implement it based on Ceph.

• About 140 lines of C++ codes for server module.
• Easy to be implemented on other systems.

• Only support block device interface now.
• It ensures that only one client is accessing the block device data.

13

Evaluation Setup

• Testbed cluster.
• 3 machines.

• 15*4TB hard drives
• 2*12 cores 2.1GHz Xeon CPU
• 128 GB memory
• 10Gb NIC.

• Workloads are generated with librbd engine of FIO. 8 images are read/written
with 4MB block size concurrently on the same machine.

• Production cluster.
• 44 machines.

• 4*4TB hard drives and 256GB SSD.
• 2 10Gb NICs.

• Workloads are generated with webserver module of FileBench.
• The number of choice is fixed to 2.

14

Policy space Saves Disk Space

• space chooses the server with most free space to store data.
• A hash-based storage system is full when there is one full disk.

73%

96%

0%

20%

40%

60%

80%

100%

D
is

k
ca

pa
ci

ty
ut

ili
za

tio
n

baseline space

Evaluation of space

15

Policy local Reduces Network Bottleneck

• local chooses the closest server to store data.
• Can save cross-rack network bandwidth.

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 101112131415161718192021222324

Th
ro

ug
hp

ut
(M

S/
s)

Evaluation of local on testbed

baseline local

7963.1

12947.2

0

2000

4000

6000

8000

10000

12000

14000

Th
ro

ug
hp

ut
(M

B/
s)

baseline local

Evaluation of local on production cluster

16

Policy memory Improves Read Throughput

• memory chooses the server with the most free memory.
• Coexist with other running programs
• More free memory => more file systems buffer => better read perf.

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Th
ro

ug
hp

ut
(M

B/
s)

Evaluation ofmemory

baseline memory

17

Inefficient Policies

• Policies cpu, latency, and journal do not work well.

1350

1400

1450

1500

1550

1600

1650

1700

1 3 5 7 9 11 13 15 17 19 21 23

Th
ro
ug
hp
ut
(M
S/
s)

baseline cpu

0

100

200

300

400

500

600

700

800

900

1000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Th
ro
ug
hp
ut
(M
B
/s
)

baseline latency

0

100

200

300

400

500

600

700

800

900

1000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Th
ro
ug
hp
ut
(M
B
/s
)

baseline journal

18

Why are They Inefficient?

• The Ceph server is not CPU intensive under this hardware
configuration.
• Queue-based transient metrics, e.g. unflushed journal size,

changes too fast, so we can not have a consistent measurement.

• However, applying ineffective policies still provide similar
performance of the baseline!

19

Summary of Different Policies

• General improvement:

Policy Performance Change Improvement

local 1545 MB/s → 1900 MB/s 23.0%

memory 778 MB/s → 1403 MB/s 80.3%

space 73% → 96% 31.5%

cpu 1545 MB/s → 1513MB/s -1.9%

latency 402 MB/s → 396MB/s -1.5%

journal 402MB/s → 396MB/s -1.5%

20

Probing Overhead

• The most significant overhead is server probing.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 50 100 150 200 250 300

P
er

ce
nt

ile

Latency (ms)

2 choices
no probing

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 20 40 60 80 100 120 140 160
P

er
ce

nt
ile

Latency (ms)

2 choices
no probing

4MB sequential write 4KB random write

21

Discussion about Probing Overhead

• It has 2.7ms average latency overhead for probing because of an
extra round trip time.

• Latency is increased by 2.7% for large sequential write and 6.9% for
small random write.

• The probing is only done in the first access at a client.
• The overhead is distributed to all subsequent accesses of an object.

22

Future Work

• Develop more advanced choice policies based on multiple metrics.

• Provide an application-level API, so the application itself can make
the choices.

• Exploring different ways to collaboratively cache the choice
information, in order to reduce the number of probing.

23

Conclusion

• Hash-based design in distributed systems can be flexible as well.

• Statistic optimization with best efforts can be both simple and
efficient.

• Without significant queueing effects, the power of two may not
work well in a real computer system.

24

Thank You

We are hiring: faculty members, postdocs in any CS field
contact: weixu@tsinghua.edu.cn

25

