Op’um'zmg Hash-based
Distributed Storage Using
Client Choices

Peillun LI and Weil Xu

Institute for Interdisciplinary Information Sciences, Tsinghua
University

Data Placement Design #1

* Centralized management: GFS, HDFS, -

data name — Adqg ne
server name ~~ W datg Serve,

~ o~

-~
-~
-~
-~
-~
-~
-~
—~ o~
-~

server name — Data Server

server P

Name Server
Data Server

Client

Data Placement Design #2

* Hash-based distributed management: Ceph, Dynamo, FDS, -

a
/ N <2 new, ata
Y server narr|1§ \\\\\\\ Serve,
serverIP || TT==I__
, - Data Server
// <
S -
SR Monitor Server
/
server name — b’ Data Server
server |IP

D Hash function S
ata , Server Data Data Server
Name Name

Client

Pros and Cons of Different Designs

Centralized Global performance Centralized name server can become
Management optimization. bottleneck.

Fixed placement makes it hard to do

optimization.
Hash-based . . P
. Avold centralized server
Distributed L
bottleneck. Some optimization Is vulnerable to
Management

change of lower-level storage
architectures.

Motivation

* We want to use server information to improve system
performance in hash-based distributed management.

 Static Information: network structure, failure domain, -
* Dynamic information: latency, memory utilization, -

* We want a flexible system so that new optimizations for specific
applications can be added easlly.
* Do not want to redesign the whole placement algorithm or hash function.

Solution: Multiple Hash Functions

server name —
server |P

Hash
Function 1

— Server 1

Hash
Function 2

— Server 2

Hash
Function 3

— Server 3

—_—

——

—”

Client

Policy

Server 2

Solution: Multiple Hash Functions

* We can use multiple hash functions to provide multiple choices,
and choose the best one with a fixed policy.

* Different servers provide different performance.

* A performance requirement or even a specific application can
have their own optimization policy.
* Easy to be implemented as an independent module.

How does Write Work Now?

Choice Cache WO

Write-Query
Client Server2>
‘No data & Performance
~Q

How does Read Work Now?

Choice Cache

Client

Read-Query

Read Data Server 2

Has data

SImple Server

* Gather server performance metrics.

* CPU/memory/disk utilization, average read/write latency, unflushed
journal size, -

* Answer client probing.
* Check whether the requested data exist on this server or not.
* Piggyback server metrics with probing results.

Clever Client

* Provide multiple choices.

* Probe server choices before the first access.
* Make a choice If need to write new data.

* Cache the choice after the first access.

Making the Best Choice

* A policy gets server information as input and output the best

choice.
* Example

policies:
Choice Type Choose the server with ...
local closest distance to the client
memory lowest memory utilization
cpu lowest cpu utilization
space lowest disk utilization
latency lowest recent latency

journal

least unflushed data in journal

12

Implementation

* We implement i1t based on Ceph.

* About 140 lines of C++ codes for server module.
* Easy to be implemented on other systems.

* Only support block device interface now.
* |t ensures that only one client is accessing the block device data.

Fvaluation Setup

* Testbed cluster.

* 3 machines.
° 15*4TB hard drives—

e 2x12 cores 2.1GHz Xeon CPU
* 128 GB memory
 10Gb NIC. &

* Workloads are generated with librbd engine of FIO. 8 images are read/written
with 4MB block size concurrently on the same machine.

* Production cluster.

* 44 machines.
 4*x4ATB hard drives and 256GB SSD.
e 2 10Gb NICs.

* Workloads are generated with webserver module of FileBench.
* The number of choice Is fixed to 2.

14

Policy space Saves Disk Space

* space chooses the server with most free space to store data.
* A hash-based storage system is full when there i1s one full disk.

Evaluation of space
96%

100%

80%

60%

40%

20%

Disk capacity utilization

0%
baseline space

Policy local Reduces Network Bottleneck

* local chooses the closest server to store data.
 Can save cross-rack network bandwidth.

Evaluation of local on testbed Evaluation of local on production cluster
2500 14000 12947.2
12000
& 2000 .M_W Q
\gz W—‘—‘—W 023 HO0
5 1500 = 8000
Q Q
S 1000 £, 6000
o S
= < 4000
= 500 =
2000
0 0

123456 7 8 9101112131415161718192021222324 '
baseline local

—*=paseline —*local

16

Policy memory Improves Read Throughput

* memory chooses the server with the most free memory.
* Coexist with other running programs
* More free memory => more file systems buffer => better read perf.

Q
m 1200

Throughput (M
3
o

Evaluation of memory

123456 7 8 9101112131415161/7181920212223242526272829303132333435

baseline memory

17

Inefficient Policles

* Policies cpu, latency, and journal do not work well.

[[[
ol o1 o
o o1 o
o o o

1450

Throughput (MS/s)

1400

1350

1 357 911131517192123

—*=baseline

el

cpu

Throughput (MB/s)

1000
900
800
700
600
500
400
300
200
100

0

A MONO A ML N ‘O_|7

i
o N

—*—baseline —*latency

MLUONO®
NN NN

Throughput (MB/s)

1000
900
800
700
600
500
400
300
200
100

—*=baseline

journal

Why are They Inefficient?

* The Ceph server is not CPU intensive under this hardware
configuration.

* Queue-based transient metrics, e.g. unflushed journal size,
changes too fast, so we can not have a consistent measurement.

* However, applying ineffective policies still provide similar
performance of the baseline!

summary of Different Policies

* General iImprovement:

local 1545 MB/s — 1900 MB/s 23.0%
memory 778 MB/s — 1403 MB/s 80.3%
space /3% — 96% 31.5%
cpu 1545 MB/s — 1513MB/s -1.9%
latency 402 MB/s — 396MB/s -1.5%

journal 402MB/s — 396MB/s -1.5%

Probing Overhead

* The most significant overhead Is server probing.

Percentile

100

90
80
70
60
50
40
30
20
10

4MB sequential write

IRy o choices —=—
I no probing = -
s“s“/
i ;F 1
S |
50 150 200 250

Latency (ms)

300

Percentile

100
90
80
70
60
50
40
30
20
10

AKB random write

T =
— 2 choices —&—
i no probing —<— |
</E? | | | | | |
20 40 60 80 100 120 140

Latency (ms)

160

Discussion about Probing Overhead

* |t has 2.7ms average latency overhead for probing because of an
extra round trip time.

* Latency Is Increased by 2.7% for large sequential write and 6.9% for
small random write.

* The probing i1s only done In the first access at a client.
* The overhead is distributed to all subsequent accesses of an object.

Future Work

* Develop more advanced choice policies based on multiple metrics.

* Provide an application-level API, so the application itself can make
the choices.

* Exploring different ways to collaboratively cache the choice
iInformation, in order to reduce the number of probing.

Conclusion

* Hash-based design in distributed systems can be flexible as well.

* Statistic optimization with best efforts can be both simple and
efficient.

* Without significant queueing effects, the power of two may not
work well In a real computer system.

Thank You

.."\\““‘.
- — : o
(A% /% xXELHRR
! v g Institute for Interdisciplinary
[singhua University Information Sciences

We are hiring: faculty members, postdocs in any CS field
contact: weixu@tsinghua.edu.cn

25

