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Abstract
Many distributed storage systems use hash-based methods
for block placement. While hashing improves scalability, it
lacks the flexibility that modern applications need for per-
formance optimization. We propose CHOICE, a design al-
lowing clients to have multiple choices for block placement.
It also provides the client with relevant server performance
metrics so the clients can implement their own choice policy
for performance optimization such as choosing better local-
ity or less busy servers. CHOICE requires minimal changes
to the storage server and thus easy to deploy. We have imple-
mented it in Ceph, a popular open-source distributed storage
system. On two real Ceph clusters with 45 and 176 disks
respectively, we show that we can greatly improve perfor-
mance using the right placement policy.

1. Introduction
In a distributed storage system, in addition to storing all the
data blocks, it is essential to manage the metadata, such as
the block placement. There are two typical ways to handle
metadata management. The first way is to use a logically
centralized server. For example, GFS [10] and HDFS [4]
all use a single master to manage block placement. The
central server provides better opportunity to optimize the
block placement, but it can be a scalability bottleneck. GFS
uses large block sizes to reduce the amount of metadata.
However, the later Colossus [7] has to change the master to
a distributed object storage to scale further.

To handle lots of small data objects in a storage system,
consistent hashing [11] is another commonly used method
for block placements. Systems like Dynamo [8] or FDS (Flat
Datacenter Storage) [16] all use consistent hashing. As the
locations of the data blocks are computed using a hash func-
tion, there are fewer states to be maintained on the master,
leading to better scalability. There are many optimized ver-
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sions of consistent hashing, for example, CRUSH [24] opti-
mizes the disaster recovery efficiency in consistent hashing.

One problem with consistent hashing is that the hash
function determines each block placement, and thus there is
almost no flexibility in where to place a data block. Unfor-
tunately, this flexibility is becoming more important nowa-
days, mainly for two reasons:

1) With the development of virtualization and cloud tech-
nology, many applications run on top of the distributed stor-
age. These applications may have quite different storage ac-
cess patterns. For example, if a block is used as a part of
a volume attached to a virtual machine, it will be desirable
to place the block closer to the virtual machine to exploit
better locality, while keeping the blocks of the same volume
on separate disks to increase aggregated bandwidth. This is
because the virtual machine is likely to be the only one ac-
cessing the block.

2) Many data centers now put storage services and user-
facing applications on the same rack, or even on the same
set of servers. They also share the same network fabric for
both application communication and storage accesses. Thus,
there might be a resource contention, e.g., for CPU, memory
or network bandwidth, between the storage and the applica-
tions, leading to variable performance at each storage node.
The applications with higher service level objectives may
want to choose the nodes with lower workload to achieve
better performance, while other applications may want to
choose any node with low cost.

In this paper, we propose CHOICE, a design that provides
certain flexibility in storage systems, while retaining all the
scalability benefits with consistent hashing. Our solution
also allows each application to use customized placement
policies to meet its own requirements, making the storage
system “software defined”.

Our key idea is using multiple hashing [12] to provide
an application with several choices for block placement.
These possible choices are annotated by various metrics de-
scribing the server’s status, such as current average latency,
CPU/disk/memory utilization, location in the network and so
on, therefore the application can make an informed choice.
We can either let the storage system client make the choice
for the application to avoid modifying the application, or we



can provide an interface at the client, letting the user appli-
cation code to make the choice itself.

Of course, we do not provide the application with arbi-
trary choices, but just a limited set. Note that the problem is
different from the power-of-two-choices design usually used
in network traffic engineering [27] and also in storage [2].
This is because the choices are not based on queue lengths,
which is a transient state and quite predictable for a short
term. The block placement decision is a longer-term deci-
sion, considering many potential factors.

We have implemented CHOICE on Ceph [23], a popu-
lar open source distributed storage system. We choose Ceph
not only because it is widely used, but also because it uses
a complex and highly optimized two-level consistent hash-
ing that represents an advanced case for CHOICE. We per-
formed our evaluation on both a 172-disk production Ceph
cluster and a 45-disk testing cluster. The preliminary result
shows that even with a small number of choices (2-3), we
can achieve improvements in different types of applications.
For example, by optimizing the block locality, we can im-
prove the average throughput of the virtual machine vol-
ume storage by 62.6%; by optimizing the load balancing
in block placement, we can increase overall storage capac-
ity by 31.5%; and by choosing less busy nodes for block
placement, we can improve the average read throughput
by 80.4%. Interestingly, many seemed-plausible placement
policies do not work well, we report these negative results
and their reasons in this paper too.

In summary, our contributions in this paper include:
1) We propose a multi-hashing algorithm that adds signif-

icant flexibility in block placement with only small changes
to existing storage servers.

2) We propose and evaluate several potential block place-
ment policies, including three that work well and the other
three that do not.

3) We provide a CHOICE implementation on Ceph, and
performed real evaluations on a 44-node, 172-disk cluster.

The rest of the paper is organized as following: Section 2
reviews the related work. We represent our system design in
Section 3 and detailed implementation on Ceph in Section
4. Then we evaluate our policies with different workloads in
Section 5 and conclude in Section 6.

2. Related Work

Consistent Hashing and Multiple Hashing. Hashing is
commonly used for data or metadata placement in dis-
tributed storage systems like FDS [16], ShardFS [28], Calv-
inFS [21], IndexFS [18], Giga+ [17], Dynamo [8], and Glus-
terFS [9]. It is also used to place data in single-machine
key-value storage systems [13, 26].

The 2-choice hashing has been used to reduce collision
rate in hash tables for a long time, and the power of two
choices is also known to be able to provide good perfor-
mance improvement in queueing theory [14]. At the same
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Figure 1. Overview of CHOICE

time multiple hashing is used in load balancing [27] and
IP lookup [5]. The power of choices is also adopted in
distributed computing framework to dynamically schedule
computing tasks [22]. To our knowledge, using multiple
hashing to improve data placement has not been well stud-
ied.

Data placement optimization. Many storage systems op-
timize data placement to improve performance, but most
of them require centralized control. HDFS [4] moves the
computation closer to the data to improve locality, but this
method is not usually an option in general storage systems.
F4 [15] optimizes data placement using metrics like space
utilization. Pileus [20] allows the client to choose the server
for latency or consistency. Based on Pileus, Tuba [1] uses
automatic reconfiguration to provide more choices. CFS [6]
provides choices of data placement. All these systems re-
quire a centralized master, while our design allows clients to
make optimization decisions in a fully distributed system.

FDS [16] and other similar systems focus on distributing
data more evenly to provide high throughput and fast recov-
ery. It gets good improvement in parallelizing data access
by modifying the placement algorithm, but it is not flexi-
ble enough to handle other application requirements. We use
multiple hashing to provide a limited set of choices to im-
prove the probability of having a good placement, which is
an effective trade-off between performance and complexity.
The choice strategies work as hints instead of strict require-
ments, so the applications can tolerate occasional mismatch
between requirements from strategy and the underlying re-
sources.

3. System Design
In order not to add too much complexity to the already
heavy-duty servers, we decide to implement most of the
CHOICE functionalities on the client side only. This choice
also makes it easier to add CHOICE to production software
as the modification to the server code is simple and easy to
verify by the operators.

Figure 1 shows the main components of CHOICE. There
is almost no change to the servers, as they handle the client



queries as before. The client is responsible for generating
multiple choices and choosing the best one using a place-
ment policy engine. The client also has to ensure that the
choices are consistent, both among different clients and over
time. We discuss about the design details in this section.

3.1 Server Module
Our key idea is to keep the changes to the servers as small as
possible so that we can implement CHOICE on different con-
sistent hash-based storage systems. At minimal, the server
module only needs to provide performance monitoring.

In order to implement meaningful choice policies on the
client side, the server needs to provide performance status to
the client. For example, we let the servers to provide CPU
utilization, memory utilization, location of the server in the
network, read/write latency and so on.

3.2 Client Module
In CHOICE, we put most of the program logic in the client
code, in order to avoid changing the already-too-complex
servers. There are three main considerations in the client de-
sign: 1) providing multiple hash functions, 2) making good
choices using a policy engine; 3) avoiding inconsistencies
with previous and other clients’ choices.

1) Providing the choices
We use multiple hash functions to map the data block to
multiple servers. By applying multiple hash functions in the
client module, we can provide the application with multiple
server choices. Note that different clients must use the same
set of hash functions, so they see the same set of choices
throughout the life of the system for a given object ID. This
remains true even if we are adding or removing servers from
the system (similar to consistent hashing).

2) Making the choice
After providing the choices, the clients should make the
choice when it accesses the block for the first time. If it is
a read operation, the client needs to probe all choices to find
which one actually contains the data.

For writes, it depends on a policy engine (Section 3.3) to
choose a good one. In order to make informed decisions,
it needs to query the servers for their performance. The
client can query in-band within the storage system or out-
of-band using a dedicated monitoring system. It is also im-
portant to choose an appropriate data collection frequency
as a trade-off between server load and data accuracy. Our
current implementation performs these queries together with
other client-server communication to improve performance
(details in Section 4.4).

The client caches the query results to avoid repeated
probing during a read. Note that the cache here is only for
block locations, and we do not change any data caching
mechanism in the existing client.

Choice Type Choose the server with ... Effective
local closest distance to the client yes
memory lowest memory utilization yes
cpu lowest cpu utilization no

space lowest disk utilization yes
latency lowest recent latency no
journal least unflushed data in journal no

Table 1. Choice Strategies.

3) Making consistent choices
One important consistency requirement in the system is that
we have to make the same choice for the same block at
different time and across different clients. That is, if some
client has made a choice on block A, all subsequent choices
for block A must be the same - otherwise there will be
multiple inconsistent copies of block A. This is hard as only
the client itself knows about the choice.

We design a probing mechanism on client writes to avoid
inconsistency. Before the client writes to an object, it probes
every server in all choices to see whether this object has
already existed. If so, the client will skip the policy choice
and use the existing one.

Similarly, we need to make sure that different clients
make consistent choices about a single data block. The same
probing mechanism helps except for two cases: concurrent
writes to the same block from different clients, and client
failure in the middle of a write. Fortunately, many storage
clients, including the Ceph client we use, already have mech-
anisms to prevent writes to a single block concurrently. If a
client recovers from failure, it may not remember its previ-
ous choice that has not been done yet. Thus we force it to
re-probe all blocks in doubt upon recovery.

3.3 Policy Engine
Using the mechanism discussed above, a client may have
different choices, and each choice comes with a number of
server metrics. We provide an extensible interface allowing
the client to implement different policy engines.

In this paper, we implement some simple policies de-
scribed in Table 1. We choose these policies based on in-
tuition about both transient and persistent system properties
that we thought may affect performance. However, while
some policies work very well, others do not work as we ex-
pect, and we discuss the facts in Section 5.1. None of our
policies use historical workload data, and we leave the his-
tory data based policies for future work.
How many choices shall we offer? Although more choices
mean a higher probability of finding a “good” placement,
it comes with performance cost of more probing and book
keeping on the clients.

We emphasis that the problem here is different from the
power-of-two-choices in queuing theory, where the queue is
the biggest factor impacting performance. In our case, as the
writes and subsequent reads are separated in time, there is



no significant queuing effect in many cases. Instead, we are
optimizing for specific goals such as more balanced block
placement for a better overall system load balancing.

In some cases, we can calculate the number of choices.
For example, with the local policy, we can write the num-
ber of choices p as a function of the number of local / re-
mote disks, available bandwidth for remote access etc. We
omit the calculation in this paper due to space constraints. In
other more dynamic cases that depend on workload metrics,
we need to obtain the number with empirical experiments.

4. Implementing CHOICE on Ceph
In this section, we discuss the implementation of CHOICE in
Ceph [23], a popular open source distributed storage system
that runs on commodity servers. We first introduce basic
concepts in Ceph, and then we focus on how we modify the
Ceph server and client to support CHOICE features. We show
that even with a complicated storage system like Ceph, our
change is not only effective, but also simple to implement.
In fact, we only change 142 lines of Ceph server codes for 6
different types of choice strategies, and many of the changes
are for server status monitoring.

4.1 Background: Ceph Block Placement
Ceph offers three interfaces, filesystem, block device and
object storage, using a common object store backend called
RADOS. Every file or image stored in Ceph is striped into
many small objects (default is 4MB), and every object be-
longs to a placement group (PG). Every disk in Ceph corre-
sponds to an object storage device (OSD), and a PG is repli-
cated to multiple (default is 3) OSDs.

Each client computes the location of each block by itself.
Specifically, each object has a unique ID [25] and the object
ID is hashed to a placement group ID (PG-ID). Then, a
CRUSH [24] function computes the primary OSD number
from the PG-ID. This mechanism prevents overloading the
Monitors, the metadata managers in Ceph.

4.2 Providing Multiple Choices
Ceph has two levels of block placement mapping. One is
from object ID to PG-ID with normal hash function, and
the other is from PG-ID to OSD with CRUSH. We choose
to provide multiple hashes in the former step, leaving the
latter step unchanged, so we can reuse the delicate disaster
recovery or data integrity check mechanisms provided by
Ceph placement groups.

The only drawback is that we are no longer able to pro-
vide choices on a single OSD granularity. We have to choose
3 OSDs as a single unit instead of choosing individual OSDs
directly, which limits our flexibility to some degree, but still
enough in most cases.

4.3 Server Module
The queries from clients are sent as read messages with
some QUERY flags set, and they will be processed by the

server like normal messages. The server always keeps object
metadata in memory, so it is fast to check the object exis-
tence. After the checking, the server will see if the request
carries QUERY bits, and reply with corresponding metrics di-
rectly. The reply from server will have the same flags set, so
the client can check all QUERY bits of read request replies to
see if they are answering queries.

4.4 Client Module

Providing the choice. The number of choices pg choice num

is a configurable parameter, and we need a hash function for
every choice. Thus we need a way to automatically generate
a number of hash functions.

Algorithm 1 shows the client procedure to provide place-
ment group choices. For the first choice, the function gets
the original object ID as the input. For the next i-th choice,
it appends the number i to the object ID. If we have a colli-
sion on the output ID (the collision rate is low), we discard
it, increase i by 1 and continue. The end result is a set of
different PG-IDs with size pg choice num. No matter how
the cluster state changes, the choices will remain the same.

Algorithm 1 Generating PG choices
1: procedure GENERATINGPGID(oid)
2: pgid[0]← hash(oid)
3: j ← 0
4: for i = 1 to pg choice num− 1 do
5: while True do
6: j ← j + 1
7: pg ← hash(oid+ string(j))
8: if pg not in pgid then
9: pgid[i]← pg

10: break
11: return pgid

Choosing PG metrics based on strategy. The client reads
metrics from each server, but it makes decisions based on
PG. We need to combine metrics from different servers, and
we take a strategy-dependent approach. For cpu, journal

and latency strategies, we use the average metrics for the
entire PG. For memory strategy, we only use the memory
utilization of the primary OSD. This is because we aim to
improve read performance, and read operations only involve
the primary OSD. For space strategy, we take the highest
disk space utilization of all OSDs in this PG. For local

strategy, we only consider the location of the primary OSD,
for the same reason as the memory strategy.
Making consistent choices. We combine the query for per-
formance metrics and probing for consistency, as Section 3.1
describes, into a single message. Once we know the PG
choice, the rest is no difference from stock Ceph.

The data placement cache is stored as a hash table within
every client context. For block device interfaces, every
opened image has its own context. The hash table maps



Choice Type Read Throughput Average Read Latency
baseline 1545.9MB/s 44.23ms
local 1900.2MB/s 33.06ms

Table 2. The average throughput and latency of the reading
experiments using baseline, local policy and cpu policy.
We use 1 ∗ 8 client threads to access 8 images.

an object ID to a corresponding placement group. A map-
ping entry is less than 50 bytes. On a 4TB image with 4MB
blocks, the choice cache uses less than 50MB of memory.

RADOS block device interface prevents concurrent ac-
cess. Clients access the entire image instead of individual
objects through the interface, and it ensures that each image
is accessed exclusively.

Currently we write the placement policy configuration in
the clients’ Ceph configuration file, so all images a client
opens use the same set of configuration. It will be more
flexible if we provide these choices to the application, but
it requires modifying the user-level applications. We plan to
support this API as future work.

5. Evaluation
In this section, we first describe the microbenchmarks of all
the choice policies we have implemented on a test cluster,
and analyze their performance. We deploy the policies that
perform well and show their performance in a production
cluster.

We evaluate CHOICE on a Ceph cluster with 44 machines
on 3 racks. Each machine has four 3TB hard disks to store
data and one 256GB SSD to store journal files. It uses two
10Gb NICs, one for cluster network and the other for public
network, respectively.

As many load-related evaluations use too much resource
for a production cluster, we also build a small-scale testbed
with 3 hosts, each containing fifteen 4TB hard drives. Each
server has 2∗12 cores 2.1GHz Xeon CPU, 128 GB memory,
and one 10Gb NIC. The librbd engine of FIO [3] is used
to generate workloads, with different number of threads and
other parameters. We use a single 10Gb NIC for both public
and cluster networks. For simplicity, we deploy the journals
on the same disks as the OSD data, so the write operation can
only achieve half of the disk throughput, but it is enough to
show the performance differences with or without choices.

5.1 Microbenchmarks
We first conduct a series of microbenchmarks on our testing
cluster to evaluate the performance of each policy in Table 1.
We compare the performance of the policy with the stock
Ceph (the baseline), on exactly the same set of hardware.
Between each test, we re-create the local file system to
ensure a fresh start. We find that local, memory and space

work well, while cpu, latency and journal do not.

Choice Type Read Throughput Average Read Latency
baseline 778.0MB/s 41.46ms
memory 1403.2MB/s 23.26ms

Table 3. The average throughput and latency of the reading
experiments using baseline and memory policy. We use 2 ∗ 8
client threads to access 8 images.

The local policy. The intuition behind the local policy
is to reduce cross-rack network bandwidth. It is especially
useful when there are many disks per server and the network
bandwidth is limited.

During the experiment, we first write 8 images with 6GB
each. Then we read back these blocks using the same set
of clients. Each client sequentially reads an image with 2
threads and 4MB block size. The result is shown in Fig-
ure 2(a) and Table 2, we see that the local policy improves
the throughput by 23.1%, and reduces the latency by 25%.

We believe one reason for the big improvement is that
with a total of 48GB data size, most data are cached in the
sever memory when read back, and thus the network latency
plays the most important role. We believe with the adoption
of flash and non-volatile memory, the network is more likely
to become the bottleneck and thus locality can be important,
even within the same cluster . Note that there are no other
processes using the network during the evaluation, and the
improvement maybe even better on a shared network.

The memory policy. The previous local policy only uses
static topology information, but does not consider the server
workload. During the experiment, there is no other workload
running on these nodes.

Now we want to evaluate the effect of coexisting applica-
tions on the same server. To emulate coexisting applications,
we run a program that occupies 48GB of memory on two
servers (the testing client runs on one of them), and repeat
the same experiment as the local case.

Figure 2(b) and Table 3 shows the results. We see that
memory policy almost doubles throughput and reduces the
latency by half. On the contrary, the baseline does not per-
form well, due to memory contention. This is because the
local machine has limited memory space for cache, causing
many disk accesses. memory policy chooses the one with the
highest amount of free memory for cache, and the benefit
outweigh the performance loss of using a remote server.

Of course, memory utilization changes in real system. We
observe that the memory utilization changes slowly in cloud
systems as many tasks (such as a virtual machine) stay for a
long time period. Also, a data block is likely to get accessed
again in a short period of time. Thus, the memory policy
would help if the memory utilization can last long enough.

Load balance. In Ceph, the cluster is considered full if any
of the OSD becomes full. In our cluster, we found that we are
not able to put in more data after the average disk utilization
reaches about 70%, as some data start to be assigned to full
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Choice Type Write Throughput Average Write Latency
baseline 401.7MB/s 723.49ms
latency 396.1MB/s 765.22ms
journal 396.2MB/s 727.46ms

Table 4. The average throughputs and latencies of the writ-
ing experiments with 10 threads for each of 8 images of
baseline, latency policy and journal policy.

OSDs and cause errors. Thus, we would like to keep the disk
utilization balanced in order to increase the overall capacity,
using the space policy to choose the lowest utilized disks.

Due to the time taken to fill all disks, we use simulation
for the experiment. We simulated 100 disks with capacity of
1 million data blocks each. We simulated the baseline policy
and the space policy with 2 choices.

In the baseline, the average utilization is only 73%, con-
sistent with the result in our production. With space policy,
the average utilization increases to 96%. The result shows
that we can store 31.5% more data by just having 2 choices.

The reason is clear, with a single uniform random choice,
the most utilized disk has the same probability be used as
others, and thus more likely to get full. Even with a single
extra choice, the client has a chance to avoid the worst case,
and thus we can achieve better balance in disk utilization.

Policies that do not work well. We originally expect other
three policies, cpu, latency and journal to work as well,
following the network power-of-two analysis, but in our
experiments we find that it is not the case.

To evaluate the cpu policy, we make the CPU utilization
99% at two of the storage servers, and repeat the experiment
as the local policy. We do not find significant improvement
over the baseline as indicated in Figure 2(c). The reason is
that Ceph server is not a CPU intensive task, and insensitive
to the CPU disturbances. We confirm the fact with a single
node Ceph server experiment with lots of CPU disturbances,
and see no change on its performance.

More interestingly, although journal (choose the small-
est uncommitted journal) and latency (choose the server
with lowest average latency) policies look similar to the
well-studied queuing case, as the metric reflects the tran-

Choice Type Read Throughput
baseline 7963.1MB/s
local 12947.2MB/s

Table 5. FileBench webserver reading throughput in pro-
duction environment.

sient workload, they do not work well. We run a similar set
of experiments as before, but we increase the workload by
using 10 threads per client, hoping to create more transient
queuing effects. Results in Figure 2(d) and Table 4 show no
improvement from the baseline.

We believe it is because the queue-based transient metrics
changes too fast, and it is impossible for us to take a consis-
tent measurement over all the replicas. Plus, as the blocks are
large (4MB comparing to the network packets of KBs), when
the next block is written to the server, the transient workload
might have already changed. Thus, we do not have a better
chance of choosing a better one.

Note that even with cases that do not improve perfor-
mance, CHOICE does no worse than the baseline, showing
that it is only adding a negligible overhead to the system.

5.2 Overhead of Server Probing
The most obvious performance overhead is the need of prob-
ing multiple servers, and we provide a quantitative evalua-
tion in this section. The most significant performance metric
influenced by probing is latency. Thus we performed the fol-
lowing two experiments. First, we run a 4KB-random-write
test to see the latency overhead introduced by probing. We
randomly choose a 4MB block, and write the first 4KB bytes
of the block. We do this repeatedly and we explicitly avoid
choosing the same block, causing a probe for every single
access. Second, we run a 4MB-sequential-write evaluation
to see its overhead on sequential accesses. For each case,
we compare our system with probing and the off-the-shelf
Ceph without probing. Figure 3(a) and Figure 3(b) show the
cumulative distribution of latency, with or without probing.
Table 6 shows the average latency numbers in both cases.

We can see that the probing will increase the latency by
2.7 ms, or 6.9% for 4KB random write and 2.7% for 4MB
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Figure 3. Cumulative latency distribution with 2 choices or without probing.

4K Random Write 4M Sequential Write
no probing 39.19ms 99.69ms
2 choices 41.90ms 102.39ms

Table 6. Average latency for 4KB random write and 4MB
sequential write.

sequential write. The increase of latency comes from the ex-
tra round trip of probing packets. It is acceptable for small
random accesses, and can be ignored for large sequential ac-
cesses. Note that our evaluation represents the worst case
of requiring a probe at every single access. Normally, the
probing is only done in the first access at a client, as it can
use cached results for subsequent accesses, and thus amor-
tizing the probing cost to multiple accesses. However, if an
application keeps writing new small piece of data or reading
non-existent data, whose places are not determined so can’t
be cached, it will suffer such latency overhead constantly.

5.3 Overall Performance in the Production
Environment

We migrate the three policies local, memory, space to the
production cluster. This Ceph cluster is used primarily as the
volume storage backend of Openstack, an open-source plat-
form for cloud computing. We launch two virtual machines
on each host of the first rack, and mount two images as vol-
umes on each VM. Then we run FileBench [19] with module
webserver for each volume, with 10MB average file size,
5000 files, 4MB reading block size. The experiment lasts
1000 seconds. We run one baseline and one configured with
local policy, and the result is shown in Table 5.

The disks in a rack can provide about 15 ∗ 4 ∗ 100MB/s
= 6GB/s total read throughput. With stock Ceph, when the
clients in a rack are running, 1/3 data are written to the
local rack. When the network bandwidth limits our reading
throughput from other racks to about 5GB/s, we can only
utilize half of that on the local disks, which is 2.5GB/s, so
the local disks are relatively free when the load is high.

Our choice of local exploits these free disk throughputs to
achieve better performance. And when clients are distributed
on all racks to make the speed limited only by disks, our
choice does not make things worse because it just prevents
the network from becoming the bottleneck, but does not put
more pressure on the disks from a global view.

6. Conclusion and Future Work
Consistent hashing greatly reduces the amount of metadata,
especially the data block placement information to manage,
and thus greatly improves storage system scalability. We
enable application-specific data placement flexibility in the
hashing framework, using multiple hashing, by increasing
the probability of finding a good choice. Different applica-
tions can customize their choice strategies that fit their per-
formance goals. Although we only provide a small number
of choices, and current implementation only allows simple
policies, we show the right policy choice can greatly im-
prove the average latency and throughput. Providing just a
higher probability rather than a guarantee of finding a good
choice greatly simplifies the implementation.

As future work, we will explore more advanced choice
policies based on multiple metrics, and we will provide an
application-level API, so the application itself, instead of
the storage client embedded in the application, can make the
choices. We are also exploring different ways to collabora-
tively cache the choice information, in order to reduce the
number of probes to the servers, further improving perfor-
mance.
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