
Research Article

cOSPREY:

A Cloud-Based Distributed Algorithm

for Large-Scale Computational Protein Design

YUCHAO PAN,1 YUXI DONG,1 JINGTIAN ZHOU,2 MARK HALLEN,3,4 BRUCE R. DONALD,3,4

JIANYANG ZENG,1 and WEI XU1

ABSTRACT

Finding the global minimum energy conformation (GMEC) of a huge combinatorial search
space is the key challenge in computational protein design (CPD) problems. Traditional
algorithms lack a scalable and efficient distributed design scheme, preventing researchers
from taking full advantage of current cloud infrastructures. We design cloud OSPREY
(cOSPREY), an extension to a widely used protein design software OSPREY, to allow the
original design framework to scale to the commercial cloud infrastructures. We propose
several novel designs to integrate both algorithm and system optimizations, such as
GMEC-specific pruning, state search partitioning, asynchronous algorithm state sharing,
and fault tolerance. We evaluate cOSPREY on three different cloud platforms using dif-
ferent technologies and show that it can solve a number of large-scale protein design
problems that have not been possible with previous approaches.

Key words: branch and bound, distributed systems, cloud, global minimum energy conformation,

MapReduce, protein design.

1. INTRODUCTION

Recently computational protein design (CPD) has become an important tool for protein engi-

neering (Alvizo et al., 2007). The effectiveness of CPD has been successfully demonstrated in a wide

range of applications, such as peptide synthesis (Ottl et al., 1996), drug design (Gorczynski et al., 2007),

enzyme synthesis (Chen et al., 2009; Stevens et al., 2006), drug resistance prediction (Frey et al., 2010; Reeve

et al., 2015), and protein–protein interaction design (Roberts et al., 2012; Gorczynski et al., 2007). Speci-

fically, in the structure-based computational protein design (SCPD) problem, the goal is to predict a list of

amino acid sequences that fold to specific target protein structures with novel biological functions. More

1Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China.
2Department of Pharmacology and Pharmaceutical Sciences, Tsinghua University, Beijing, China.
3Department of Computer Science, Duke University, Durham, North Carolina.
4Department of Biochemistry, Duke University Medical Center, Durham, North Carolina.

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 23, Number 00, 2016

Mary Ann Liebert, Inc.

Pp. 1–13

DOI: 10.1089/cmb.2015.0234

1

precisely, under the assumption of a rigid backbone and given the predefined energy function, the input

backbone structural template and a set of all possible discrete side-chain conformations (aka rotamers), the

goal of SCPD is to find the globally optimal solution, also called the global minimum energy conformation

(GMEC), that minimizes the energy function. A comprehensive introduction to the protein design topic can

be found in Donald, (2011).

The SCPD problem is NP-hard (Pierce and Winfree, 2002; Chazelle et al., 2004). There exist many

heuristic approaches to compute approximate solutions, such as Monte Carlo, simulated annealing and

genetic algorithms (Street and Mayo, 1999; Kuhlman and Baker, 2000; Marvin and Hellinga, 2001), which

unfortunately provide no guarantees on finding the globally optimal solution.

On the other hand, researchers have developed numerous combinatorial search-based methods to find the

optimal GMEC solution. A popular optimization strategy is to first prune the exponential conformational

space as much as possible, and then search over the remaining conformational space to find the optimal

solution. Typical examples include integer linear programming (Kingsford et al., 2005), branch-and-bound

search (Hong and Lozano-Pérez, 2006; Hong et al., 2009), tree decomposition (Xu and Berger, 2006), and/

or branch-and-bound (Marinescu and Dechter, 2009; Zhou et al., 2015), the cost function network (Traoré

et al., 2013), and dead-end elimination (DEE) followed by A* search (Gainza et al., 2013; Zhou et al.,

2014). Despite the optimality guarantee, most of these algorithms only run on a single machine, limiting

their scalability to solve large-scale problems.

Among these approaches, OSPREY (open source protein redesign for you) (Gainza et al., 2013) is a

software package that has been widely used to solve numerous biomedically important protein engineering

cases (Georgiev et al., 2012; Donald, 2011) and is well recognized by the protein design community

(Rudicell et al., 2014; Zhao et al., 2015; Georgiev et al., 2014). In this work, we focus on scaling OSPREY

to a large cloud computing infrastructure, so that it can solve larger SCPD problems. Cloud computing

infrastructure, compared to traditional high-performance clusters, offers lower per-machine performance

and reliability, but comes with larger volume and lower price (hence with much better scalability). With the

reduction of computational cost, it becomes attractive to improve OSPREY to fully exploit the massive

parallelism of the cloud-based distributed systems.

Compared to molecular dynamics (MD) simulations or other heuristic methods, it is generally more

difficult to distribute combinatorial search algorithms to multiple machines, because these algorithms often

require the synchronization of global states to guide the search process, for example, the global bounds in the

branch-and-bound (BnB) algorithm and the priority queue in the A* algorithm. The synchronous commu-

nication design like the message-passing interface (MPI) used in OSPREY makes the state distribution

inefficient on a cloud platform. Distributed computational frameworks such as MapReduce (Dean and

Ghemawat, 2008) introduce a promising programming model for data-intensive applications by providing

automatic task partitioning, scheduling, asynchronous communication, and fault tolerance. Researchers have

built distributed combinatorial search systems, such as DryadOpt (Budiu et al., 2011) and BranchReduce

(Brachreduce) but these framworks exclude important optimizations, especially GMEC-specific heuristics

such as DEE, and thus are not efficient enough for solving the large-scale protein design problem.

We present cOSPREY, a new distributed extension to OSPREY under the branch-and-bound (BnB)

search framework, to scale up the size of the protein design problems that can be solved by the provable

search algorithms on the cloud platforms. With a combination of algorithm and system optimizations,

cOSPREY not only guarantees to find the optimal GMEC solution but also takes full advantage of the

massive parallism available in the current cloud systems.

On the algorithm side, we propose several new combinatorial optimization strategies to accelerate the

traditional BnB search for protein design. We embed a dead-end elimination (DEE)-based pruning scheme

(see section 2.2) into each branch step to remove a large fraction of infeasible conformational space without

losing the global optimality guarantee. We also apply several optimization techniques to improve the

tightness of both lower and upper bounds in BnB search. On the system side, we design a low overhead

synchronization scheme to keep track of the global states of the algorithm.

We conduct experiments on a private 64-server cloud infrastructure, as well as two virtualized cloud

computing systems including Amazon’s Elastic Computing Cloud (EC2) and an OpenStack-based cloud. We

show that by coupling elegant algorithm optimizations with novel system design strategies, we can achieve

significant improvement of protein design performance over traditional search algorithms. Our new design

approach can solve protein design cases that have never been possible with previously reported exact

algorithms. Also, cOSPREY is data-compatible with OSPREY, and thus researchers can easily migrate to

2 PAN ET AL.

cOSPREY and take advantage of the massive scalability of the cloud. We demonstrate such a migration using

a real design case from recent literature.

We have made the following contributions in this article:

1. A new extension to the widely used OSPREY software, cOSPREY, that fully exploits the massive

parallelism in cloud computing while being data-compatible with the existing software.

2. A number of algorithm and system optimizations targeting the protein design problem, including

DEE-based pruning, linear programming-based lower bound estimation, local search-based upper

bound computation, and low-overhead global state synchronization.

3. A comprehensive and practical evaluation of cOSPREY on three different cloud technologies and

demonstration of its applications in solving large-scale protein design problems.

2. METHODS

2.1. Background

To find the optimal solution to the structure-based computational protein design (SCPD) problem, we

often need to search over a huge conformational space. As in most popular provable methods, we first apply

dead-end elimination (DEE) as a prefiltering algorithm to prune the rotamers that are provably not part of

the GMEC, significantly reducing the conformational space. Then we exploit the distributed computation

over a large-scale cloud platform to search over the remaining rotamer combinatorial space to find the

GMEC solution.

Problem formulation. Let us consider an SCPD problem with n mutable residues, in which the total

energy Etotal of a rotamer sequence r = (r1‚ r2‚ . . . ‚ rn) is defined as follows:

Etotal(r) = Ec +
Xn

i = 1

Ei(ri) +
Xn

i = 1

Xn

j = i + 1

Eij(ri‚ rj)‚

where Ec is the constant energy of the backbone, Ei(ri) is the self-energy of rotamer ri at residue position i,

and Eij(ri‚ rj) is the pairwise interaction energy between rotamers ri and rj.

The goal of the SCPD problem is to find the optimal rotamer sequence r� that minimizes the total energy

function, which is

Etotal(r
�) = min

r2R
Etotal(r)‚

where R = R1 · R2 · . . . · Rn is the whole rotamer combinatorial space, and Ri is the set of all possible

rotamers at residue position i. The optimal solution r� is also called the global minimum energy confor-

mation (GMEC).

Branch-and-bound. The branch-and-bound (BnB) algorithm is a widely used search algorithm for

solving various combinatorial optimization problems. This algorithm constantly divides the conformational

space into several smaller subspaces (branching step) and then computes the bounds (including upper and

lower bound) for each subspace (bounding step). After that, those subspaces that are impossible to contain

the optimal solution (in which the lower bound is larger than the known best upper bound) are safely

pruned. To be more specific, let us consider the SCPD problem on conformational space S. The BnB

algorithm includes the following two main steps:

The branching step: The conformational space S is split into two or more subspaces S1‚ S2‚ . . . ‚ Sm such

that S1[S2[. . . [Sm = S and Si\Sj = ; for all i 6¼ j.

The bounding step: The lower bound and the upper bound of each subspace Si are computed, which are

denoted by LB(Si) and UB(Si), respectively. Let GUB = min1£i£m UB(Si) be the minimum upper bound.

Then we can safely prune the subspace Si if LB(Si) > GUB, since there will be always an element in other

subspaces that has a lower energy value than all elements in Si.

We recursively perform the aforementioned combination of the branching and bounding steps until the

conformational subspace only contains a single element.

cOSPREY 3

2.2. Algorithm optimization

2.2.1. A dead-end elimination (DEE)-based branch pruning scheme. The dead-end elimination

(DEE) algorithm (Desmet et al., 1992) is an efficient method that has been popularly used in protein design

to eliminate infeasible rotamers. For two different rotamers ri and ri
0 at residue position i, if Equation (1) is

satisfied, rotamer ri is provably not part of the optimal solution, and thus can be safely eliminated. DEE can

significantly reduce the solution space (i.e., the rotamer combinatorial space).

Ei(ri) +
X
j 6¼i

min
rj

Eij(ri‚ rj) > Ei(ri
0) +

X
j 6¼i

max
rj

Eij(ri
0‚ rj): (1)

A more powerful DEE criterion proposed by Goldstein (1994) is

Ei(ri) - Ei(ri
0) +

X
j 6¼i

min
rj

[Eij(ri‚ rj) - Eij(ri
0‚ rj)] > 0: (2)

We extend the Goldstein DEE criterion in Equation (2), and use the extended version to further reduce

the solution space by pruning infeasible conformational space. The following theorem states the criterion of

our dead-end elimination-based branch pruning scheme, and its proof can be found in appendix Section 5.1.

Theorem 1 (dead-end elimination-based branch pruning). Let s = (r1,r2,.,rk) represent a confor-

mational space in which the first k residue positions have been determined. If Equation (3) is satisfied for

some pair (i,ri
0), where 1 £ i £ k and ri

0˛ Ri, then the conformational space s can be safely pruned.

Ei(ri) - Ei(r
0
i) +

Xk

j = 1& j 6¼ i

Eij(ri‚ rj) - Eij(ri
0‚ rj)

� �

+
Xn

j = k + 1

min
rj

Eij(ri‚ rj) - Eij(r
0
i‚ rj)

� �
> 0:

(3)

Through the above pruning criterion, we can prune a large fraction of infeasible conformational space

and thus greatly improve the efficiency of our branch-and-bound search process. Our dead-end elimination-

based branch pruning (DEE-based pruning) differs from other DEE algorithms: the traditional DEE or split-

DEE pruning algorithm (Desmet et al., 1992; Georgiev et al., 2006; Gainza et al., 2013; Hallen et al., 2013),

eliminates the infeasible rotamers, whereas our DEE-based pruning algorithm prunes those conformational

spaces that do not contain the optimal solution.

2.2.2. Lower bound. Suppose that the rotamers of the first k residue positions have been determined.

We can easily compute a simple admissible lower bound of the energy function by considering the best

possible rotamer assignment in each of the undetermined residues (Gainza et al., 2013), which is

D(r) +
Xn

i = k + 1

min
ri

E0i(ri) +
Xn

j = i + 1

min
rj

Eij(ri‚ rj)

 !
‚ (4)

where D(r) =
Pk

i = 1 Ei(ri) +
Pk

i = 1

Pk
j = i + 1 Eij(ri‚ rj) is the assigned energy term for the rotamer sequence r

after fixing the rotamers of the first k positions, and E0i(ri) = Ei(ri) +
Pk

j = 1 Eij(ri‚ rj) This lower bound is not

tight enough though, and we provide a much tighter one using linear programming techniques here.

Observing the admissible lower bound in Equation (4), if we split Eij into two terms bij and bji, such that

bij(ri‚ rj) + bji(rj‚ ri) = Eij(ri‚ rj) for all ri‚ rj, the lower bound becomes

Xn

i = k + 1

min
ri

E0i (ri) +
Xn

j = k + 1& j 6¼ i

min
rj

bij(ri‚ rj)

0
B@

1
CA‚ (5)

where we leave out the constant term D(r) of the determined rotamer sequence r. We can easily find that

Equation (5) has different values for different splitting terms b, thus we can improve the lower bound using

the following linear programming:

4 PAN ET AL.

max
Xn

i = k + 1

min
ri

Ei
0(ri) +

Xn

j = k+1& j 6¼ i

min
rj

bij(ri‚ rj)

0
B@

1
CA‚

s:t: bij(ri‚ rj) + bji(rj‚ ri) = Eij(ri‚ rj)‚

8k < i < j�n‚ ri 2 Ri‚ rj 2 Rj:

(6)

The above optimization problem is a convex dual of MAPLPR (maximum a posteriori linear pro-

gramming relaxation). We can obtain optimal value of b using the convergent message passing algorithm

(Globerson and Jaakkola, 2008). This type of message-passing solution to the dual of the linear pro-

gramming lower bound has been used for protein design in Roberts et al. (2015).

2.2.3. Upper bound. For each conformational space in our BnB search, we apply a local search

strategy to compute a relatively good solution in current conformational space and then use it to derive the

upper bound. Researchers have proposed several meta-heuristic methods, such as Monte-Carlo, with

simulated annealing (Kuhlman and Baker, 2000; Voigt et al., 2000) and genetic algorithms (Raha et al.,

2000), to compute the local minimum of the protein design problem. We apply these local search methods

(e.g., simulated annealing) to compute the best possible upper bound in the current conformational space.

Note that these meta-heuristic methods do not provide any theoretical guarantee of finding the globally

optimal solution, while our BnB algorithm can find the GMEC solution. The upper bound derived from the

local minimum solution computed by these heuristic approaches may provide a tighter upper bound at the

early stage of the algorithm, which can increase the fraction of pruned conformational space in our BnB

search, and thus improve the efficiency of computing the globally optimal solution.

2.3. Optimizations for the cloud infrastructure

2.3.1. Branching as a Map function. We implement cOSPREY on top of the Hadoop MapReduce

framework (White, 2009). MapReduce takes a divide-and-conquer approach. During the Map step, the

programmers can exploit the intrinsic independence of the input, partition the entire input into multiple

shards (or partitions), and then have each shard processed on a different mapper machine by running the

user-defined Map function. In the Reduce step, the system processes all data with the same key using a

user-defined Reduce function.

Algorithm 1: Branching step as a Map Function

1: function Map(null,ConformationalSpace)

2: S) ConformationalSpace

3: (S1,S2,.,Sm)) Branch(S)

4: for i) 1 to m do

5: GUB) min(GUB,UpperBound(Si))

6: end for

7: result) ;
8: for i) 1 to m do

9: if LowerBound(Si) < GUB then

10: result) result W{Si}

11: end if

12: end for

13: return result

14: end function

We implement the branching step as a Map function, as described in Algorithm 1. The input to the Map
function, ConformationalSpace, represents the current conformational space, which contains two parts: the

global state GUB that stores the best upper bound found so far by the algorithm, and a vector of size n to

keep track of whether a mutable residue position has been searched or not.

Algorithm 1 first selects an undetermined residue position and expands it to a set of new subspaces. As

mentioned in section 2.2, the algorithm first applies the DEE-based pruning and then updates the lower and

cOSPREY 5

upper bounds of the expanded subspaces to further prune the infeasible branches. Also, it computes a new

GUB based on the current best upper bound. The Map function outputs a set of expanded subspaces

S1,S2,.,Sm for the next iteration until there is nothing to expand.

2.3.2. Synchronizing GUB globally. Despite its name, the GUB variable in Algorithm 1 is local to a

specific Map instance only. We still need to inform all Map instances about the current best GUB. It is

nontrivial as communication between a large number of machines is slow and expensive, especially when

servers can fail. We design an efficient approach to synchronize the global state of GUB. We add a global

state server (GSS) onto the Hadoop framework to help distribute the GUB value. The GSS is simply a

server holding the best GUB. Each Map task synchronizes the GUB with the GSS during its execution. As

the globally best GUB is only an extra optimization to the algorithm, which does not affect the correctness,

we can allow each Map task to synchronize with GSS in a best-effort fashion: the query may fail or receive

a timeout or error, but the execution continues. The best-effort approach makes GSS both efficient and

fault-tolerant. Appendix Section 5.2 provides a detailed description of the implementation.

3. EXPERIMENTS AND RESULTS

We evaluated cOSPREY on three clusters representing three typical commodity cloud computing in-

frastructures: a 64-server physical cluster with 768 CPU cores, Amazon’s Elastic Computing Cloud (EC2)

servers, as well as a cloud based on Openstack (openstack), a popular open-source cloud software.

Appendix Section 5.3.1 provides more details on the experiment setup.

3.1. Benchmark tests

In this section, we showed cOSPREY performance using the same set of 30 protein design cases obtained

from OSPREY 2.1 beta that have been widely used in protein design as a benchmark (Rudicell et al., 2014;

Georgiev et al., 2014; Georgiev et al., 2012; Roberts et al., 2012; Frey et al., 2010; Zhou et al., 2015). In

these benchmark tests, cOSPREY solved all the cases, including eight that the state-of-the-art single-

machine algorithms failed on. In our largest test case, cOSPREY searched 114 million states, which is far

above the computing capacity of any single machine. We also provide the results of the detailed perfor-

mance evaluation results in appendix Sections 5.3.2 and 5.3.3.

We first ran our algorithm on the benchmark design cases on a 64-server physical cluster, and then

compared the performance of cOSPREY with the state-of-the-art GMEC algorithms that attempt to find the

optimal solutions. Specifically, we compared cOSPREY with the traditional DEE/A* algorithm (Gainza

et al., 2013) included in the OSPREY software package and the and/or branch-and-bound (AOBB) algo-

rithm (Zhou et al., 2015).

Table 1 shows the performance comparison of cOSPREY, DEE/A*, and AOBB. In all the design cases,

the underlying residue interaction graphs was considered complete, meaning there was an interaction

between every pair of rotamers at different residue positions. Note that the AOBB running time is different

from the results reported in the original article (Zhou et al., 2015). This is because the original AOBB

results did not include initialization time, which contained the computation of the minibucket heuristic

table and the initial bound in branch-and-bound search. To make a fair comparison, we also included the

loading time in all three cases.

cOSPREY solved all 30 design cases, while DEE/A* and AOBB only solved 5 and 22, respectively.

Existing single-machine algorithms are limited by memory space to hold the large conformational space. In

contrast, cOSPREY stores the intermediate expanded conformations to disks and compensates the slow

data transmission in disks with massive parallelism from the cloud system.

In many small design cases, cOSPREY was slower because the setup cost, including the distributed

executable program files and job scheduling. The data compatibility with OSPREY allows us to use the

traditional single-node implementation for small design cases and easily scale to cOSPREY for large-scale

problems without modifying the input data files.

Finally, we want to note that the AOBB article (Zhou et al., 2015) presented six cases (1I27, 1M1Q,
1T8K, 1XMK, 3G36, 3JTZ) with approximate results, as it failed to find the optimal solutions in a

reasonable amount of time. AOBB has a threshold parameter k (which was set to 0.04 in Zhou et al., 2015)

6 PAN ET AL.

to heuristically limit the residue interactions, providing a tradeoff between precision and running time.

Disabling such an approximation, AOBB failed to find the globally optimal solutions after 8 hours. On the

other hand, cOSPREY successfully found the GMEC solutions, and the results were indeed better than

AOBB’s approximation.

As in OSPREY, which can find the best k solutions, cOSPREY can also find all suboptimal solutions in

which the energies are larger than the minimum by at most d, where d is a threshold parameter that can be

set by the user.

3.2. Cloud-friendly features

Fault tolerance. We demonstrated the fault tolerance of cOSPREY using an extreme case in which we

killed 32 out of the 64 servers. Using the 1T8K case as an example, we found that although the execution

time increased from 26 min 57 sec to 41 min 35 sec, about 15 minutes longer, cOSPREY still got the correct

optimal result. The fault tolerance was an intrinsic product from both MapReduce framework and the

asynchronous communication designs. The fault tolerance is the key feature that allows cOSPREY to run

on low-cost but unreliable cloud infrastructures.

Running on virtualized cloud infrastructures. We evaluated cOSPREY on both Amazon EC2 and a

private Openstack-based cloud (open stack). In particular, we used Amazon’s Elastic MapReduce (Amazon

Table 1. Performance Comparison of DEE/A*, AOBB, and cOSPREY

PDB n d Space size

Running Time

DEE/A* AOBB cOSPREY

2COV 13 24 1.15 · 1010 <1s 16s 1m 48s

3DNZ 12 54 5.11 · 1012 8s 1m 20s 2m 25s

3FGV 10 134 6.45 · 1012 <1s 1m 21s 2m 7s

1LNI 15 233 2.98 · 1013 M 1m 34s 2m 30s

1MWQ 14 301 9.28 · 1013 M 50s 2m 57s

1ZZK 12 102 3.45 · 1015 M 29s 2m 25s

2HS1 14 135 6.36 · 1016 M 1m 22s 3m 39s

2O9S 14 187 3.53 · 1017 M 1m 38s 2m 48s

1IQZ 15 145 7.12 · 1017 30m 25s 1m 31s 2m 57s

2FHZ 15 163 1.83 · 1018 57m 56s 1m 48s 3m 12s

1L9L 15 130 5.23 · 1018 M 1m 37s 3m 53s

1TUK 14 107 1.73 · 1019 M 1m 38s 3m 41s

1M1Q 71 18 2.33 · 1019 M T 5m 52s

1UCR 11 348 6.69 · 1019 M 1m 42s 3m 22s

1UCS 14 166 1.10 · 1020 M 1m 41s 2m 45s

2WJ5 15 81 1.48 · 1020 M 13m 52s 3m 4s

3G36 47 11 4.28 · 1020 M T 5m 27s

3I2Z 14 212 4.62 · 1020 M T 3m 43s

2R2Z 12 272 7.48 · 1020 M 1m 43s 3m 40s

3FIL 14 311 2.62 · 1021 M 1m 58s 4m 28s

1OAI 14 232 3.28 · 1021 M 1m 46s 4m 13s

3G21 15 170 4.59 · 1021 M 1m 30s 3m 31s

2RH2 10 418 1.18 · 1022 M T 5m 45s

1PSR 14 157 1.94 · 1022 M 1m 32s 3m 57s

2BWF 12 147 5.54 · 1022 M 26m 5s 4m 3s

1R6J 13 167 3.42 · 1025 M 2m 25s 4m 32s

1T8K 75 21 2.83 · 1043 M T 26m 57s

3JTZ 71 24 1.95 · 1045 M T 34m 44s

1I27 69 29 6.69 · 1045 M T 14m 36s

1XMK 74 24 2.66 · 1048 M T 119m 25s

Here, n and d represent the number of mutable residues and the maximum number of rotamers respectively, and space size is the size

of the conformational space after DEE pruning. We show the running time of the three algorithms, including DEE/A*, AOBB and

cOSPREY. ‘‘M’’ indicates that the run has exceeded the memory size of 8 GB, and ‘‘T’’ indicates that the program has exceeded the

running time of 8 hours.

cOSPREY 7

EMR) as the cloud framework (Amazon Elastic MapReduce). In addition, we set up our own virtualized

Hadoop cluster on the Openstack environment. Table 2 summarizes the performance results on both EC2

and our Openstack platforms. Comparing to the physical cluster (section 3.1), the EC2 and Openstack

frameworks showed relatively lower and less predictable performance. However, as we have pointed out,

we can use a large number of commercial cloud servers on demand with relatively low cost. For example,

the 11 nodes we used on EC2 (flavor m3.xlarge) costed $4.402 per hour to run in total, translating to

only a couple of dollars per design case. If we take advantage of the less reliable spot instances, the cost can

further go down to $1.639 per hour, making the cloud-based design approach economically attractive.

3.3. A case study of empirical protein design

As a case study, we looked into the empirical redesign of the complex of HIV surface protein gp120 with

the antibody protein NIH45-46 [PDB ID: 3U7Y (Ron et al., 2011)]. A similar study on a related antibody

with experimental results can be found in Rudicell et al. (2014). Redesigning the gp120 surface to bind to a

specific type of antibody with high binding affinity is important for constructing effective molecular probes

for extracting such antibodies from sera, which is thus useful in vaccine immunogen design (Hallen et al.,

2015; Georgiev et al., 2012). As in Hallen et al. (2015), we considered 16 mutable residues on the gp120

surface in our design, which include five key residues that directly interact with NIH45-46, and 11 other

residues around the binding pocket (Fig. 1).

We used 69 machines on our Openstack cloud to perform this redesign task, in which we only considered

a rigid backbone and discrete rotamers. Our program cOSPREY only took 10 minutes to compute the

globally optimal solution. For the final results, we outputted the top 12 conformations whose energies were

Table 2. cOSPREY Performance on Virtualized Cloud Infrastructures

PDB Space size

Running time

Amazon EC2 Openstack

1T8K 2.83 · 1043 291m 45s 124m 42s

2RH2 1.18 · 1022 11m 40s 20m 35s

1M1Q 2.33 · 1019 22m 12s 20m 08s

3I2Z 4.62 · 1020 8m 40s 16m 17s

1R6J 3.42 · 1025 11m 26s 10m 52s

3G36 4.28 · 1020 21m 37s 20m 45s

FIG. 1. Mutable residues on the gp120 surface in com-

plex with the antibody NIH45-46 [PDB ID: 3U7Y (Ron

et al., 2011)]. The protein gp120 is visualized as gray

surface, while the heavy and light chains of the antibody

NIH45-46 are shown with magenta lines. The mutable

residues on the gp120 surface are shown in green.

8 PAN ET AL.

within 0.06 kcal/mol from the minimum. Among these top 12 conformations, 7 (including the top solution)

have the same amino acid sequence, while the remaining 5 solutions had only one single mutation relative

to the top sequence. These high clusterings of conformations in the top design solutions agreed with a

previous redesign study of the gp120 surface against the antibody NIH45-46 (Hallen et al., 2015), in which

a compact representation of the continuous energy landscape was used in the design. As stated in Hallen

et al. (2015), the above result was consistent with the fact that the complex between NIH45-46 and gp120

was produced through the extensive affinity maturation of the antibody.

4. CONCLUSION AND FUTURE WORK

cOSPREY combines the wide applicability of OSPREY with the massive scalability of commodity

cloud-computing infrastructures. The tight coupling of specific optimizations in the branch-and-bound

algorithm and system-level design choices is the key feature of cOSPREY. The algorithm applied several

advance techniques, such as embedding a DEE-based pruning scheme into each branch step and tightening

the lower bound using linear programming to significantly reduce the search space. Also, our asynchronous

and algorithm-specific sharing of the global state also brings compelling performance gain. Based on tests

on one physical and two virtualized cloud infrastructures, we have demonstrated that cOSPREY runs

efficiently on most commercial cloud platforms and solves protein design cases that cannot be addressed

using the current single-machine techniques.

We consider the following future work. First, we are planning to extend cOSPREY to support the SCPD

problems with continuous side-chain and backbone flexibility (Hallen et al., 2013). Second, we will improve

our algorithm to solve the problem with sparse energy functions (Jou et al., 2015) more effectively. Third, we

will implement a multitenant service where researchers can transparently ‘‘overflow’’ the CPD computation

from the single-node version of OSPREY on demand.

5. APPENDIX

5.1. Proof of theorem 1

Proof. Let (i‚ r0i) be a pair satisfying Equation (3) in section 2.2.1. To prove the theorem, we show that

for every rotamer sequence r = (r1‚ . . . ‚ ri‚ . . . ‚ rk‚ . . . ‚ rn) in conformational space s, if we replace ri with

r0i, the new rotamer sequence r0 = (r1‚ . . . ‚ r0i‚ . . . ‚ rk‚ . . . ‚ rn) will have lower energy value than r. This is

because

Etotal(r) - Etotal(r
0)

= Ei(ri) - Ei(r
0
i) +

Xk

j = 1
j 6¼i

�
Eij(ri‚ rj) - Eij(r

0
i‚ rj)

�
+
Xn

j = k + 1

�
Eij(ri‚ rj) - Eij(r

0
i‚ rj)

�

� Ei(ri) - Ei(r
0
i) +

Xk

j = 1
j 6¼i

�
Eij(ri‚ rj) - Eij(r

0
i‚ rj)

�
+
Xn

j = k + 1

min
r0

j

Eij(ri‚ rj0) - Eij(r
0
i‚ r0j)

� �
> 0:

Thus, the rotamer sequence r0 has a lower energy value, which means that for any rotamer sequence in

the conformational space s, there always exists another rotamer sequence that has a lower energy.

Therefore, we can safely prune the conformational space s.

5.2. Global state synchronization

We propose an innovative approach that uses a global state server (GSS) to distribute the GUB. The GSS

is simply a web server holding the best GUB. Figure 2 illustrates the system architecture after adding the

GSS. Each Map task communicates with the GSS to synchronize its own local GUB with the global best

GUB periodically during the Map execution. To scale the GSS and handle server failures efficiently, we

relax the consistency requirement. In other words, each Map task queries the GSS in a best-effort fashion,

as described in section 2.3. We use a separate and completely independent thread to perform the query, so

that the Map computation continues even if the GUB update fails. The CPU and networking cost of the

cOSPREY 9

GUB-synchronizing thread is negligible, compared to that of the computation thread. Figure 3 shows details

of an independent GUB-syncing thread added to the Map tasks.

The GSS approach allows a thread to receive the up-to-date GUB from the current iteration. We can also

completely eliminate the Reduce step to save resources. Of course, the GSS requires some changes to the

MapReduce architecture, breaking the independent Map assumption. Moreover, the GUB may never be

shared if the GSS remains dead for an extended period of time. Despite these problems, the GSS approach

still works, as using an out-of-date global best GUB does not affect the correctness of our algorithm. We

believe such a best-effort approach is a viable system-level optimization.

5.3. Computational experiments

5.3.1. Details on experiment setup. In our first cloud with physical machines, the cluster had 64

compute servers and one extra manage server. Each server node had two Intel Xeon E5-2620 (6-core with

hyper-threading, 2GHz) processors and 128 GB RAM. The cOSPREY algorithm did not use the entire 128

GB RAM. With 12 Map tasks running on each node, cOSPREY used less than 10% of the memory. Each

node had three 3TB disks running the Hadoop file system. These nodes were interconnected with 1 Gbps

ethernet. All nodes ran commodity CentOS 6.5. Our system was implemented in Java 7 on top of Apache

Hadoop 1.2.1. The state server was implemented using the Ruby on Rails framework and ran on the same

server configuration. If not specifically mentioned, experiments were performed on this cluster.

We also used two commercial cloud infrastructures that were based on virtualization technology.

Visualization improves the sharing of physical computation resources and manageability, and thus lowers

the overall computation cost. First, we used the Amazon EC2 platform, probably the most widely used

public cloud computing infrastructure. We had a cluster of 11 virtual machines running hadoop 1.0.3. Each

virtual machine had four virtual CPUs and 15 GB RAM. Also, we used an OpenStack-based platform.

Openstack is a popular open source cloud management system. We also ran 11 virtual machines with 4

vCPUs and 8 GB RAM on each machine.

5.3.2. Effectiveness of the DEE-based pruning. The DEE-based pruning, as discussed in section

2.2, plays an important role in performance optimization. In this section we show more details of the

effectiveness of DEE-based pruning using five cases from Table 1. We tested these five cases with DEE-

based pruning disabled during the branching step, using DEE only at the beginning of the algorithm, as in

other algorithms (such as AOBB or DEE/A*).

FIG. 2. System architecture of the global state server

approach. In the Hadoop Framework, compute nodes

start map tasks, perform computations, and communi-

cate with a distributed file system to store conforma-

tional spaces. Outside this framework runs the global

state server. Compute nodes communicate with the state

server to maintain the global minimum upper bound and

update the bound asychronously.

FIG. 3. A map task runs two threads. One thread runs

the Map function, while the other synchronizes with

GSS periodically.

10 PAN ET AL.

Table 3 shows the results. The DEE-based pruning can eliminate a significant fraction of conformational

space in our algorithm. Without the DEE-based pruning, in the 1I27 case, the algorithm needed to search

5x more conformations, and in the other three cases (1T8K, 3JTZ, 1XMK), the algorithm failed to find the

GMEC solution within 8 hours. Of course, in a very small case (2BWF), DEE-based pruning seemed to be

overkill, as there were only 493 conformations to search.

Intuitively, the benefit of having DEE-based pruning is a chance to prune a huge fraction of conformational

space, which may become the key to finding the global optimal solution. The cost of running DEE-based

pruning adds a constant factor to the running time of the entire algorithm. We compensate the constant factor

by using more machines. Thus, we believe the DEE-based pruning is a good design choice in cOSPREY.

5.3.3. Speed-up with the number of CPUs. We evaluated the speedup of cOSPREY with the

increasing number of compute nodes using two large design cases (1T8K and 3JTZ). Figure 4 shows the

average number of conformational spaces expanded and searched per second, with the increasing number

of servers.

In the 1T8K case, we found that the speedup was almost linear up to 16 servers (192 cores). Then we started

to observe diminishing returns by adding more servers. The reduction of speedup was probably due to the

setup overhead as discussed in section 3.1. Also the scalability was limited by the size of search space. If we

partition a small search space into too many pieces, we will have very small shards. As the fixed overhead

(e.g., reading the directories and locating the files) dominates in small file operations, thus the level of

parallism is limited in small cases. Of course, in a small case, we do not really need that many machines.

Larger cases like 3JTZ showed better speedup. Figure 4 only shows the results with 32 to 64 servers, as

it took too long to complete using fewer servers. Doubling the number of the servers from 32 to 64, we got

approximately a 50% improvement on throughput, while 1T8K only improved about 30% at the same

range. We believe that the larger design cases will benefit from cOSPREY’s scalability even more.

Table 3. cOSPREY vs. cOSPREY
D

(cOSPREY Without DEE-based Pruning)

PDB

cOSPREY cOSPREYD

of states time # of states time

2BWF 493 4m 3s 493 3m 56s

1T8K 4,476,674 26m 57s – T

3JTZ 12,373,809 34m 44s – T

1I27 246,693 14m 36s 1,426,297 20m 56s

1XMK 113,935,129 119m 25s – T

FIG. 4. cOSPREY speedup with the increasing number of nodes. Each ‘‘+’’ represents a single measurement.

cOSPREY 11

ACKNOWLEDGMENTS

Funding: This work is supported in part by the National Basic Research Program of China Grant

2011CBA00300, 2011CBA00301; the National Natural Science Foundation of China Grant 61033001,

61361136003, and 61472205; Google Faculty Award; and China’s Youth 1000-Talent Program. This work

is supported by a grant to B.R.D from the National Institutes of Health (R01 GM-78031).

AUTHOR DISCLOSURE STATEMENT

The authors declare that no competing financial interests exist.

REFERENCES

The authors release the cOSPREY source code on github (https://github.com/iiisthu/cOSPREY).

Alvizo, O., Allen, B.D., and Mayo, S.L. 2007. Computational protein design promises to revolutionize protein engi-

neering. Biotechniques 42, 31–35.

Amazon Elastic MapReduce. Amazon EMR. https://aws.amazon.com/elasticmapreduce

Branchreduce. Distributed branch-and-bound on Hadoop YARN. https://github.com/cloudera/branchreduce

Budiu, M., Delling, D., and Werneck, R.F. 2011. DryadOpt: Branch-and-bound on distributed data-parallel execution

engines, 1278–1289. In Proceedings of the 2011 IEEE International Parallel & Distributed Processing Symposium,

IPDPS ’11, Washington, DC. IEEE Computer Society, New York.

Chazelle, B., Kingsford, C., and Singh, M. 2004. A semidefinite programming approach to side chain positioning with

new rounding strategies. Informs J. Comput. 16, 380–392.

Chen, C.-Y., Georgiev, I., Anderson, A.C., et al. 2009. Computational structure-based redesign of enzyme activity.

Proc. Natl. Acad. Sci. U. S. A. 106, 3764–3769.

Dean, J., and Ghemawat, S. 2008. MapReduce: Simplified data processing on large clusters. Commun. ACM 51,

107–113.

Desmet, J., Maeyer, M.D., Hazes, B., et al. 1992. The dead-end elimination theorem and its use in protein side-chain

positioning. Nature 356, 539–542.

Donald, B.R. 2011. Algorithms in Structural Molecular Biology. The MIT Press, New York.

Frey, K.M., Georgiev, I., Donald, B.R., et al. 2010. Predicting resistance mutations using protein design algorithms.

Proc. Natl. Acad. Sci. U. S. A. 107, 13707–13712.

Gainza, P., Roberts, K.E., Georgiev, I., et al. 2013. OSPREY: Protein design with ensembles, exibility, and provable

algorithms. Methods Enzymol. 523, 87.

Georgiev, I., Acharya, P., Schmidt, S., et al. 2012. Design of epitope-specific probes for sera analysis and antibody

isolation. Retrovirology 9, P50.

Georgiev, I., Lilien, R.H., and Donald, B.R. 2006. Improved pruning algorithms and divide-and-conquer strategies for

dead-end elimination, with application to protein design. Bioinformatics 22, e174–e183.

Georgiev, I.S., Rudicell, R.S., Saunders, K.O., et al. 2014. Antibodies VRC01 and 10E8 neutralize HIV-1 with

high breadth and potency even with Ig-framework regions substantially reverted to germline. J. Immunol. 192,

1100–1106.

Globerson, A., and Jaakkola, T.S. 2008. Fixing max-product: Convergent message passing algorithms for MAP LP-

relaxations, 553–560. In Advances in Neural Information Processing Systems.

Goldstein, R.F. 1994. Efficient rotamer elimination applied to protein side-chains and related spin glasses. Biophys.

J. 66, 1335–1340.

Gorczynski, M.J., Grembecka, J., Zhou, Y., et al. 2007. Allosteric inhibition of the protein-protein interaction between

the leukemia-associated proteins Runx1 and CBFb. Chem. Biol. 14, 1186–1197.

Hallen, M.A., Gainza, P., and Donald, B.R. 2015. Compact representation of continuous energy surfaces for more

efficient protein design. J. Chem. Theory Comput. 11, 2292–2306.

Hallen, M.A., Keedy, D.A., and Donald, B.R. 2013. Dead-end elimination with perturbations (DEEPer): A provable

protein design algorithm with continuous sidechain and backbone exibility. Proteins Struct. Funct. Bioinform. 81,

18–39.

Hong, E.-J., and Lozano-Pérez, T. 2006. Protein side-chain placement through MAP estimation and problem-size

reduction, 219–230. In Algorithms in Bioinformatics. Springer, New York.

Hong, E.-J., Lippow, S.M., Tidor, B., et al. 2009. Rotamer optimization for protein design through MAP estimation and

problem-size reduction. J. Comput. Chem. 30, 1923–1945.

12 PAN ET AL.

Jou, J.D., Jain, S., Georgiev, I., et al. 2015. BWM*: A novel, provable, ensemble-based dynamic programming

algorithm for sparse approximations of computational protein design. J. Comput. Biol. 2016 Jan 8. [Epub ahead of

print]

Kingsford, C.L., Chazelle, B., and Singh, M. 2005. Solving and analyzing side-chain positioning problems using linear

and integer programming. Bioinformatics 21, 1028–1039.

Kuhlman, B., and Baker, D. 2000. Native protein sequences are close to optimal for their structures. Proc. Natl. Acad.

Sci. U. S. A. 97, 10383–10388.

Marinescu, R., and Dechter, R. 2009. AND/OR branch-and-bound search for combinatorial optimization in graphical

models. Artif. Intell. 173, 1457–1491.

Marvin, J.S., and Hellinga, H.W. 2001. Conversion of a maltose receptor into a zinc biosensor by computational design.

Proc. Natl. Acad. Sci. U. S. A. 98, 4955–4960.

OpenStack. www.openstack.org

Ottl, J., Battistuta, R., Pieper, M., et al. 1996. Design and synthesis of heterotrimeric collagen peptides with a built-in

cystine-knot models for collagen catabolism by matrix-metalloproteases. FEBS Lett. 398, 31–36.

Pierce, N.A., and Winfree, E. 2002. Protein design is NP-hard. Protein Eng. 15, 779–782.

Raha, K., Wollacott, A.M., Italia, M.J., et al. 2000. Prediction of amino acid sequence from structure. Protein Sci. 9,

1106–1119.

Reeve, S.M., Pablo, G., Frey, K.M., et al. 2015. Protein design algorithms predict viable resistance to an experimental

antifolate. Proc. Natl. Acad. Sci. U. S. A. 112, 749–754.

Roberts, K.E., Cushing, P.R., Boisguerin, P., et al. 2012. Computational design of a PDZ domain peptide inhibitor that

rescues CFTR activity. PLoS Comput. Biol. 8, e1002477.

Roberts, K.E., Gainza, P., Hallen, M.A., et al. 2015. Fast gap-free enumeration of conformations and sequences for

protein design. Proteins Struct. Funct. Bioinform. 83, 1859–1877.

Ron, D., Scheid, J.F., Marcovecchio, P.M., et al. 2011. Increasing the potency and breadth of an HIV antibody by using

structure-based rational design. Science 334, 1289.

Rudicell, R.S., Kwon, Y.D., Ko, S.Y., et al. 2014. Enhanced potency of a broadly neutralizing HIV-1 antibody in vitro

improves protection against lentiviral infection in vivo. J. Virol. 88, 12669–12682.

Stevens, B.W., Lilien, R.H., Georgiev, I., et al. 2006. Redesigning the PheA domain of gramicidin synthetase leads to a

new understanding of the enzyme’s mechanism and selectivity. Biochemistry 45, 15495–15504.

Street, A.G., and Mayo, S.L. 1999. Computational protein design. Structure 7, R105–R109.

Traoré, S., Allouche, D., André, I., et al. 2013. A new framework for computational protein design through cost

function network optimization. Bioinformatics 29, 2129–2136.

Voigt, C.A., Gordon, D.B., and Mayo, S.L. 2000. Trading accuracy for speed: A quantitative comparison of search

algorithms in protein sequence design. J. Mol. Biol. 299, 789–803.

White, T. 2009. Hadoop: The Definitive Guide, 1st edition. O’Reilly Media, Inc., New York.

Xu, J., and Berger, B. 2006. Fast and accurate algorithms for protein side-chain packing. J. ACM 53, 533–557.

Zhao, H., Verma, D., Li, W., et al. 2015. Depletion of T cell epitopes in lysostaphin mitigates anti-drug antibody

response and enhances antibacterial efficacy in vivo. Chem. Biol. 22, 629–639.

Zhou, Y., Wu, Y., and Zeng, J. 2015. Computational protein design using AND/OR branch-and-bound search, 354–366.

In Research in Computational Molecular Biology. Springer, New York.

Zhou, Y., Xu, W., Donald, B.R., et al. 2014. An efficient parallel algorithm for accelerating computational protein

design. Bioinformatics 30, i255–i263.

Address correspondence to:

Dr. Jianyang Zeng

Institute for Interdisciplinary Information Sciences

Tsinghua University

FIT Building 1-208

Beijing 100084

China

E-mail: zengjy@gmail.com

cOSPREY 13

