
MED:	The	Monitor-Emulator-Debugger	for	
Software-Defined	Networks

Quanquan Zhi andWei	Xu
Institute for Interdisciplinary Information Sciences

Tsinghua University

Software-Defined Networks (SDN):
promises and challenges

• SDN will simplify future network design and operation

• Bugs are common
─ Controller
─ Switch software
─ Race conditions

• Network Ops -> SystemsDevOps
─ Command line -> programs
─ Lacking of tools
─ Fast, repeatable

Monitor-Emulator-Debugger:
A debug / testing tool for	SDN	DevOps

• A software Debugger
─ fast, repeatable, automated tools

─ addresses concurrency bugs

• Tightly coupled with physical network

- Automatic physical network sync

MED architecture overview

Monitor Emulator Debugger

App

Control
messages

App App

Controller

Real
SDN

MED Agent (Monitor) MED(Emulator)

Virtual
SDN

OVS

OVS

OVS

Data
packets

Packet
Tracer

Loop and Reachability
Checker

Table
Checker

Race Conditions
Detector

Debugger Controller

Debugger

• Snapshot (initialization)
─ Physical network topology (LLDP)
─ Initial forwarding table states

• Capture SDN state changes over time
─ Openflowmessages to/from the SDN controller
─ E.g. packets-in,	packets-out,	rule	installation/removal,	and	
ports	up/down	events

• Sample data packets
─ Essential for replay/testing

The monitor

The emulator: key ideas
• The	key	challenge

─ Emulating a blackbox controller from physical SDN

• Solution
─ Replay all Openflowmessages captured	=>	set	to	a	time

• Question:	In what order?
App

Control
messages

App App

Controller

State
messages

Real
SDN

Emulator Controller

Virtual
SDN

OVS

OVS

OVS

Replayed
messages

Debugger	
Controller

App App

Inject
messages

The emulator: operation
• Online Operation
- Trackingmode

• Offline Operation
─ “Time Travel”

Initial
setup

Set_to_current Tracking
state

Set_to_stable Specified
state

Set_to_nondeterministic(t)
State1 State2 StateN

Replay

Online

…

Offline

The emulator: offline operations
• Set to a stable state at any time

• Emulate	all	possible	ordering	for	concurrent	events

Initial
setup

Set_to_current Tracking
state

Set_to_stable Specified
state

Set_to_nondeterministic(t)
State1 State2 StateN

Replay

Online

…

Offline

The debugger

• A controller that injects messages into the replayed
message stream

• “Apps” built on top of the emulator
─ Set	to	a	specific	time
─ An	external	controller	interface

• Example debugger apps
─ Packet	tracer	

─ Loop	and	reachability	checker	

─ Forwarding table	checker	

─ Race	conditions	detector	

Emulator Controller

Replayed
messages

Virtual
SDN

OVS

OVS

OVS

Example	debugger	app 1:	
Packet	Tracer	(PT)

Debugger	
Controller

PT

TO_CONTROLLERReplay:	Packet_Out

Packet_InFlow_Status_Request

Flow_status_reply

Packet	matches
Normal	Entry
Packet	matches
TO_CONTROLLER

Outputs:
1. A packet’s entire path through the network
2. Which	forwarding	rule	is	used	on	each hop

Example	debugger	app 2:	
Loop	and	Reachability	Checker	(LRC)

Debugger	
Controller

PT

LRC

Asserts:

• The packet forwarding has no loop

-- AND --

• The packet reaches the destination

• Works	online	or	offline

Example	debugger	app 3:	
Race	Condition	Detector	(RCD)

Asserts:

• In ANY possible concurrent state, there is no loop
or blackhole

Initial
setup

Set_to_nondeterministic(t)
State1 State2 StateN…

Offline

• Expensive?		Can	trivially	run	in	parallel	with	multiple	
emulators

Debugger	
Controller

PT

LRC

RCD

Example	debugger	app 4:	
Table	Checker	(TC)

Asserts:
• The forwarding tables on physical switches are the
same as those in the emulator

Forwarding
rules

Flow table

OpenFlow
Switch

SDN

Forwarding
rules

Flow table

OVS

Emulator
Table

Checker

Install
rules

Debugger	
Controller

PT

LRC

RCD

TC

Evaluation

• Performance
- Emulator	initialization

- Packet	Tracing (PT)	performance

• Case studies
- Bugs	on	physical	switch	software

- Race	condition analysis

Experiment	setup

• 20	switches	network,	typical	DCN	topology
─ Pica8	P-3298	

─ 30,000	OpenFlow total	(~1,500	rules	per	switch)

Initial setup performance

Discover	
physical	topo	+	
setup	emulator

topo

Dump	all	flow	
tables	from	
switches

Install	all	flow	tables	
entries	to	Emulator	

(30K	rules)

4.9	sec 0.54	sec 12.2	sec

State changed during the setup? Redo until done.

Packet	Tracing	(PT) performance

• Random routing

• Performance	of	tracing	paths	with	different	lengths

#	hops 2	 4	 6	 8	 10	

% of	test	data 10.6% 13.2% 57.9% 16.2% 2.1%

Time	taken	(ms) 0.626 1.536 2.828 3.532 5.001

Real	world	bug	in	switch software

Pica8	switch	flow	table:

MED	OVS	flow	table:

Bug	in	PicOS-OVS	2.3

“A	GRE	port	is	injecting	ARP	request	packets	back	to	the	same	port.	The	
expected	results	is	to	forward	all	packets	except	the	GRE	port.”

http://www.pica8.com/document/v2.3/html/release-notes-for-picos-2.3

Non-deterministic	states	in	the	
network	due	to	concurrent	messages

Controller

• Which	switch	processed	the	message	first?
─ Sometimes	we	do	not	know	

─ Can	be	ok,	but	can	mean	problems

Race	condition	example

r:in_port=1->Port2

r:in_port=1->Port3
r:in_port=3->Port1

Should we enforce the ordering?

Are we enforcing them correctly?

[1] Xin	Jin,	Hongqiang Harry	Liu,	Rohan	Gandhi,	Srikanth Kandula,	Ratul Mahajan,	
Ming	Zhang,	 Jennifer	Rexford,	Roger	Wattenhofer, Dynamic	Scheduling	of	Network	
Updates, SIGCOMM, 2014

A
B

C

Race	condition detector	example
(cont’d)

Conclusion

• A step bring in the software testing / debugging tools to
SDN
• Fast, reproducible

• Single step tracingwith packets

• Debugging concurrencyproblems

• Emulates physical network

• Evaluation on an SDN with 20-switches

Wei Xu <weixu@tsinghua.edu.cn>

Backup slides

MED	functions

MED: a	useful	tool	to	debug	problems	in	SDN

• Create	an	emulator	that	can	be	set	to	the	network	state	at	
any	given	point	of	time

• Trace	the	forwarding	paths	and	the	flow	table	entries	used	
along	the	path, for	each	individual	data	packets

• Capture	and	find	the	cause	of	common	SDN	problems:
Loop,	Reachability failure and Race	Conditions

Performance:	inserting	rules

