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Abstract—With the ever increasing number of large scale
Internet applications, inter data center (inter-DC) data transfers
are becoming more and more common. Traditional inter-DC
transfers suffers from both low-utilization and congestion, and
traffic prediction is an important method to optimize these
transfers.

Inter-DC traffic is harder to predict than many other types
of network traffic, because it is dominated by a few large
applications. We propose a model that significantly reduces the
prediction errors. In our model, we combine wavelet transform
with artificial neural network (ANN) to improve prediction
accuracy. Specifically, we explicitly add information of elephant
flows, the least predictable yet dominating traffic in inter-DC
network, into our prediction model. To reduce the amount of
monitoring overhead for the elephant flow information, we added
interpolation to fill in the unknown values in the elephant flows.

We demonstrate that we can reduce prediction errors over
existing methods by 5%~10%. Our prediction is already in
production at Baidu, one of the largest Internet companies in
China, helping reducing the peak network bandwidth.

I. INTRODUCTION

The large scale and geographically distributed applications
are on the rise. These applications, such as web search, video
streaming and file sharing are commonly distributed to sev-
eral data centers. Partitioning applications into multiple data
centers can help reduce cost and improve service reliability.

All these applications can lead to heavy network traffic
among the data centers. We call this type of traffic inter-
data center (inter-DC) traffic to differentiate it from the traffic
from end-users accessing these applications from the Internet
(which we call Internet traffic). Many large service providers
use dedicated fibers to handle inter-DC traffic [4]. Given the
cost of inter-DC bandwidth, it is essential to keep the inter-DC
links highly utilized.

Many Internet service providers (ISPs) charge for bandwidth
by the peak bandwidth that a customer uses. Pure traffic
shaping might be useful to reduce the peak bandwidth but
it may hurt the performance of some critical applications
(esp. when the priority is not configured correctly). Thus
scheduling traffic with traffic engineering methods to reduce
peak bandwidth of each link is important here to reduce
costs. Existing work such as Google’s B4 and Microsoft’s
SWAN uses software defined network (SDN) to accurately
monitor and schedule the inter-DC data transfers. However,
most conventional data centers do not have the infrastructure to
support flow-level monitoring and scheduling, and thus relies
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on an accurate prediction of the future traffic to perform short-
term / long-term traffic scheduling.

With the high utilization of inter-DC links, spikes and fluctu-
ations in the traffic can cause congestions, which are especially
harmful to interactive applications. Accurate network traffic
prediction is an important component for tasks like network
resource provisioning, scheduling and traffic engineering [1],
and thus traffic prediction has been a hot research topic.
However, to our knowledge, there is no work taking the special
inter-DC traffic patterns into account.

In this paper, we present our new model for predicting the
network traffic on a inter-DC link at Baidu, one of largest
Internet company in China. This link serves as Baidu’s inter-
DC backbone, connecting multiple data centers with tens of
thousands of servers. These data centers host hundreds of large
scale applications, both interactive and batch. We reduced the
prediction errors by 5%~10%. Using our prediction method,
Baidu is able to reduce the peak bandwidth for about 9% on
average.

While researchers have proposed many network prediction
models under different network environment, these models do
not work well for inter-DC traffic prediction. There are several
reasons why it is hard to predict inter-DC traffic:

First, inter-DC traffic neither represents linear processes nor
has stable statistical properties, thus widely used linear models
for time-series prediction, such as Autoregressive models
(AR) [17], Autoregressive moving average models (ARMA)
[18] and Autoregressive Integrated Moving Average models
(ARIMA) [20] do not work well.

Second, inter-DC traffic exhibits different patterns compared
to Internet backbone traffic. Studies have shown that data
center traffic is bursty and unpredictable at such long time-
scales (especially at 100 seconds or longer timescales) [2]. In
fact, with the data we collected at Baidu, we can predict the
Internet traffic 10 minutes ahead with only about 2% error
from the real value. However, the inter-DC traffic prediction
error is as high as 8% to 9%.

Third, the recurring patterns in inter-DC traffic are not
obvious because this traffic is often generated by a small
number of large applications. For example, in our case, the top
5 applications account for about 80% of the inter-DC traffic.
The elephant flows generated by these applications usually
occupy large portion of traffic [24] and impact more on the
total traffic than mice flows. Usually, the number of elephant
flows is far smaller than the number of mice flows, which is



referred to as “the elephants and mice phenomenon” [§].

There are four key ideas in our prediction method.

First, we apply wavelet transform [22] to decompose the raw
time domain traffic to capture both the time and frequency
features. We apply Daubechie’s 4 (Db4) wavelets with ten
levels of decomposition [23] and show that it works well in
reducing prediction errors.

Second, we put incoming and outgoing traffic together for
training. Thus we can predict incoming and outgoing traffic
using the same model.

Third, we recognize the contribution of elephant flows to the
inter-DC traffic. We explicitly add information about elephant
flows as separate feature dimensions in the prediction. A
practical difficulty is that it is quite expensive to capture all
elephant flow information frequently enough to help with the
short term prediction. We use different interpolation methods
to fill in the missing values of elephant flow traffic, which
allow us to incorporate elephant flow information without
introducing much data collection overhead.

Last but not least, as the patterns are highly non-linear, we
use artificial neural network (ANN) to build the prediction
model. ANN not only handles non-linearity well, but it also
allows us to combine different features into the same model.

Note that both the features from wavelet transform and
elephant flows can be regarded as decompositions. The wavelet
transformation is an internal decomposition as we are decom-
posing the traffic time series using the series itself, while
separating out the elephant traffic is an example of external
decomposition using additional information. Combining the
internal and external decomposition is the key for our predic-
tion accuracy improvements.

We make the following three contributions:

1) We propose a network traffic prediction model for inter-
DC traffic, a traffic type that is hard to predict using previous
models, by treating the elephant flows explicitly. We show that
by combining wavelet transform and artificial neural networks,
we can significantly reduce prediction errors.

2) We introduce effective interpolation method to reduce the
amount of expensive flow-level observations for the elephant
flows.

3) We evaluate our model on a real world, massive scale
inter-DC link with tens of thousands of servers and reduce
prediction errors by 5%~10% over existing work.

The rest of this paper is organized as follows. Section II
presents the researches on network traffic prediction in recent
years. Section III describes our model. Section IV shows the
experiment results, including comparisons between different
strategies. We conclude in Section V.

II. RELATED WORK

Many studies have been done on network traffic prediction
with traditional linear models. Hu et al. [26] used Seasonal
Trend Decomposition using Loess (STL) [21] to decompose
original series into three components: season component,
trend component and irregular component and then used
X11-ARIMA for network traffic prediction. Yoo et al. [10]

developed a model to support prediction on high-bandwidth
network. FARIMA, known as autoregressive fractionally inte-
grated moving average, which captures the characters of long-
memory time series, is also widely used in traffic prediction
[28]. Zhou et al. [27] combined ARIMA and GARCH, which
is a non-linear model, to create a conditional mean and condi-
tional variance model called ARIMA/GARCH, and compared
the differences of the performance between ARIMA/GARCH
and FARIMA. Periyanayagi et al. [29] proposed a time series
model called S-ARMA, using Swarm intelligence and ARMA,
for the network traffic prediction in wireless sensor networks.
Wavelet transform have been used to preprocess series before
the prediction with linear models [7], [32]. However, as inter-
DC traffic is bursty and unpredictable at long-time scales,
linear models are not suitable for inter-DC traffic prediction,
especially for long-time-ahead prediction.

Learning methods are useful in network traffic prediction.
Researchers have applied Support Vector Machine (SVM)
based classification and regression for time series prediction.
For example, Feng et al. [33] applied SVM for one-step-
ahead prediction on WLAN and compared the performance
for various prediction methods. Qian et al. [34] used Empirical
Mode Decomposition (EMD) to reduce the noise in the data
before applying SVM for prediction.

Another important and useful learning model for time-series
prediction is artificial neural networks (ANNs) [15]. ANNs
have the capability to do non-linear modeling and approximate
any continuous function to any desired accuracy theoretically
[19], thus ANNs can be used to predict complex time series.
Some variants of ANNs have been proposed. For example,
algorithms such as PSO [6] can be used to optimize the
training process. We can also embed new tools such as wavelet
transformation into a neural network, like [12] did. G. Peter
Zhang [14] proposed a hybrid approach to time series forecast
using both linear ARIMA model and the nonlinear ANN to
predict complex series data with both linear and nonlinear cor-
relation structures. Wavelet Neural Network (WNN) employs
nonlinear wavelet basis functions to solve nonlinear fitting
problems and have been used for traffic prediction [37]. Xiao
et al. [36] studied fuzzy-neural network prediction models
with wavelet decomposition. Alarcon-Aquino et al. combined
maximal overlap discrete wavelet transform (MODWT) with
ANNs and proposed a multi-resolution finite-impulse-response
(FIR) neural-network-based learning algorithm, which would
be suitable for capturing low- and high-frequency information
as well as the dynamics of time-varying signals [13].

On our inter-DC traffic dataset, we experimented different
prediction models, and did not find significant improvements
on prediction accuracy. It is not coincidental: the inter-DC
traffic is dominated by a combination of elephant flows,
which demonstrates less patterns. In this work, instead of keep
improving the prediction models, we focus on designing better
features to capture the elephant flow information.
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Fig. 1. The process flow of our model. After training, when we get a new
data item, which contains the total incoming and outgoing traffic, the sampled
or interpolated traffic data of elephant flows, we perform decomposition to
it. Then we take the features of previous k steps, including this step, as the
input of the predict function, and get the predicted future total traffic.

III. MODEL OVERVIEW

In our model, we collect the total incoming/outgoing traffic
data and traffic data of elephant flows. As the traffic data of
elephant flows is sampled less frequently than the total traffic,
we use interpolation methods to construct the missing values
so that we can align total traffic data samples with that of the
elephant flows. Then we decompose the collected data with
wavelet transform to reveal additional frequency information
for training. After decomposition, we normalize the data and
train it with ANN to get a prediction function. With the
prediction function and new inputs, we can predict the total
traffic data in near future. Figure 1 shows the process flow of
our model.

A. Data Collection

We collect two types of data from each inter-DC link: the
total traffic for both incoming and outgoing directions and a
sample of elephant flows. Given a time series (¢1,t2,...,tn),
We denote the total incoming/outgoing traffic at time ¢; as
in® and out’. To reduce useless information and improve
the efficiency of computation, we only use information from
the top M applications which account a great proportion of
total traffic. We use a 2M-dimentional vector to represent
the raw elephant flow information at each sample time:
(einy, eouty, eing, eouts, . . ., einys, eout pr ), where einy, and

eouty(where k = 1,2,..., M) denotes the number of incom-
ing/outgoing traffic of the k-th largest application.

As the traffic data of elephant flows is sampled less fre-
quently, we use interpolation methods to construct the missing
values to roughly align the data sample of the total traffic
and the elephant flow samples. Thus for each timestamp
t;, we get a (2 + 2M)-dimentional vector as our raw data:
(in?, out®, ein’, eout}, ein, eouth, ... ein’,, eout,).

The goal of the prediction is that given all the history, we
want to predict the traffic at different time points in the near
future. Formally, we want to predict the next k-step total traffic
tuple (in** out™*), where k =1,2,....

Note that we have an alternative approach to model the
incoming and outgoing traffic separately, using two (M + 1)-
dimentional vectors for each. Intuitively, the incoming and
outgoing traffic of a data center are highly correlated. Using
a combined model can help us saving model training cost by
about 40% while not affecting the prediction accuracy much.
We compare these two models in Section IV.

B. Interpolation

The elephant flow data are sampled less frequently due to
resource cost concerns. We construct the missing values using
interpolation, a common method in numerical analysis. There
are many interpolation methods. In this paper, we compare the
following four methods.

One of the simplest methods is zero interpolation, which
fills zeros for all unknown points. Surprisingly, even with
this simple method, we can still significantly reduce the
prediction errors compared to methods without using elephant
flow information.

We call the second method scale interpolation. As the
elephant flows occupy large part of the total traffic, we
construct the missing values by filling in a number that is
proportional to the total traffic. Given the total incoming traffic
in® and in'** at time ¢; and t;,, respectively, assume that
the traffic data of elephant flows is sampled at that two time
points but not sampled at ¢;4;, ¢t;49, ..., t;4s—1. Then the
unsampled incoming traffic einfjs,(() < s’ < s) of application
k, the interpolation value, namely the incoming traffic of the
elephant flow, is
intts’
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Intuitively, this method may reduce the effectiveness of adding
elephant flow information, as we “pollute” the elephant flow
data with numbers that is highly correlated with the total
traffic, and our experiments confirm the intuition.

The third method is linear interpolation. Using the same
notations as above, the interpolation value is
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which means (t;1s,ein,®) is a point in a line segment
1+s

linking (¢;, ein}) and (t;41,ein}"®).



The last interpolation method we use is spline interpolation.
With spline interpolation, we can get a smooth curve linking
points. To make the interpolation error small and make the
computation simple, we decide to use third order polynomials
as interpolation functions (also known as cubic spline inter-
polation) [25].

Using interpolations allows us to use the elephant flow
information while keeping the monitoring cost low. We eval-
uated all four kinds of interpolations and show the results in
Section IV.

C. Decomposition

As we use learning algorithms to predict the traffic, we
need “features” (in machine learning terminology) to capture
the predictable information at each time point. We use decom-
position to provide better features.

We decompose the raw data into new series using wavelet
transform, which extract deeper information from the raw data.
Wavelet transform is a powerful technique to analysis time
series. Comparing to Fourier transform, wavelet transform has
advantages in processing time-domain series data as it can
reserve both time and frequency information while Fourier
transform can only reserve frequency information. Wavelet
transform uses wavelet functions to decompose time series.
A wavelet is a function W that is used to decompose the time
series to a low-frequency part and a high-frequency part:

1 [t t—a
X(a,b):%/_oo el

where a is the scaling parameter and b is the translation
parameter. In practice, we use discrete wavelet (DWT) instead
of continuous wavelet transform (CWT) as CWT computation
is much more expensive than DWT. We recursively decompose
the low-frequency part, adding one new series per recursive
run.

Assuming we use wavelet transform with w levels of
decomposition, we decompose each series in the raw data
into w + 1 new series. Assume the raw time series data of
total incoming traffic is (in',in?,...,in™). Given a time point
t and length /(I < n), we decompose the time series data

)di

s = (int=H1 int=1*2  in') using Db4 into w + 1 series
(b=l 42 ot
s1 = (in] ,ing yernsing)
NS N e ) ot
S = (ing " ing TS, ..., ing)
O N ot
Sw = (ing, Thying T, L ing,)

Then we choose (in},inb,...,in!)) as new features of time
point ¢. Note that the relationship between in! and the new

features is
w
in' = E int.
i=1

The new features can be regarded as decomposition of the
raw value and contain the relationship information between the

value and the old values. As we can see, each raw dimension
is decomposed into w dimensions. Now we have 24 2M time
series data, where M is the number of applications generating
elephant flows. With decomposition, we get (24+2M) x (w+1)
- dimentional features for each time point. We denote the new
features by f;. We can choose the parameter [ heuristically. In
our experiment, we find that [ = 60, or using 30 minutes of
data for decomposition, provides good results.

We then normalize the data before training. The goal of
normalization is to scale the data to a given bound. Data
normalization can help the learning algorithms avoid com-
putational problems and facilitate network learning [19]. We
use z-score [40] to standardize the series data. The z-score is
defined as

T —H
g

z =

where x is the raw data to be scaled, w is the mean of dataset
and o is the standard deviation of the dataset.

D. Prediction

We train the normalized data with Artificial Neural Net-
works (ANNs). ANNs are inspired by biological neural net-
works. Generally, an ANN consists of multiple layers, in-
cluding an input layer, a number of hidden layers and an
output layer. ANNs can capture non-linear characters and find
complex relationships between inputs and outputs. ANNs are
widely used in function approximation, classification, data
processing and robotics [38]. The architecture (e.g. the number
of layers, the number of nodes in each layer and so on) of an
ANN and optimization algorithms used can affect the final
training results.

As usual, we need to specify features and labels for training.
Without loss of generality, a data item can be represented as
d; = (fi,1;), where f; stands for the feature vector while ;
stands for the label vector. Usually, we first train a dataset
to get a predict function. Then we can predict the labels (I;)
with the function and the features (f;). As mentioned above,
by decomposing the total traffic data and the traffic data of
elephant flows, we get (2 + 2M) x w new features, denoted
by f;, for each time point. Obviously, we should use previous
data to predict in’ and out’. Assume we use the data of k
previous steps for one-step-ahead, then we have

fi = [fimk+1s fimkso, - - fi

l; = [in", out™™]

As to multiple-step-ahead prediction, we just need to re-
place each element of [; with the corresponding one
(e.g. [in"T2 out'*?] for two-step-ahead prediction and
[in®*s, out'™®] for s-step-ahead prediction). Thus f; is a
vector of length (2 + 2M) x w x k. This means that when
we get a predict function F', we pass the (2 +2M) x w X k
features derived from the k previous steps as input to F' and
get the predicted in’ and out’.



E. Measure Prediction Errors

We use Relative Root-Mean-Squared Error (RRMSE) to
measure prediction errors. It is calculated as follows:

where éi is the predicted value and 6; is the raw value. We
can see that it is unitless and can reflect variance and bias at
the same time [39].

IV. EXPERIMENTAL RESULTS

We first describe the dataset we use in the evaluation.
Then we show that we can achieve significant prediction error
reduction over existing methods. Finally we provide details
on the effects of different methods and parameters in our
prediction model.

A. Experiment Setup

We collect the inter-DC network traffic data from a produc-
tion data center with tens of thousands of servers from Baidu
for six weeks. The total incoming/outgoing traffic data is direct
snapshots of the counters on the data center edge routers using
SNMP, and we collect a number for both directions every 30
seconds. We use the data of the last day for testing and the rest
for training. Figure 2 shows the total incoming and outgoing
traffic of the data center. Due to confidentiality concerns, we
normalize the Y-axis of all figures so we do not reveal the
actual amount of data transfers. The normalization does not
affect the results of this paper.

We use tags, such as source and destination IPs, port,
protocol ids, type of service and input/output interface, to
identify a flow. We collect the number of packets each flow
contributes during a certain period of time and then calculate
the average traffic. We sample the flow statistics every five
minutes (comparing to the 30 seconds sampling rate for the
total traffic) due to the limit of computation and storage
resource. We observe the distribution of the traffic and see
that the elephant flows from the top-5 applications dominate
the traffic, which account for about 80% of the total traffic,
as Figure 3 shows. From Figure 3, we can see that the traffic
of the chosen elephant flows displays a substantial, but not
perfect correlation with the traffic of the total flows.

In our experiment, we use one day data as test data. As
we take a sample every 30 seconds, there are 2880 values
we are predicting for the day. We then perform 30-second-
ahead, 1-minute-ahead, 5-minute-ahead, 10-minute-ahead, 15-
minute-ahead and 20-minute-ahead prediction and compare
the differences between different strategies in each case.

B. Overall Prediction Measurement

We compare our model with two well-known models: one
is a representative traditional linear model ARIMA [20], the
other is ANN without wavelet transform and interpolation.

In the following evaluation, we use one input layer, one
hidden layer and one output layer for the artificial neural
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Fig. 3. Correlations between total traffic and the total traffic of the elephant
flows. The elephant flows occupy a large portion of the total traffic.

network. We have also evaluated the prediction accuracy
using more than one hidden layers and did not find much
difference. We use Stochastic Gradient Descent (SGD) [11]
as the optimization algorithm for model training. To include
elephant flow data, we use zero interpolation method. We will
evaluate other interpolation methods in the next section.

Table I, II and Figure 4 show the comparison results. We
can see that the linear model ARIMA performs the best for
very short prediction, such as 30-second-ahead and 1-minute.
That is because during very short time period, the long term
patterns play a less important role than the short-term patterns,
which are best captured by the linear models.

However, for 5-minute-ahead or longer time predictions,
the non-linear and longer-term patterns prevail. We show that
our model reduces the prediction errors by about 8.5% for



TABLE I
PREDICTION ERRORS (RRMSE) FOR INCOMING TRAFFIC

30s 1min Smin 10min 15min | 20min

ANN 0.0439 | 0.0525 0.080 0.096 0.105 0.113
ARIMA | 0.0398 | 0.0496 | 0.0793 | 0.0971 0.111 0.119
Ours 0.0415 | 0.0496 | 0.0749 | 0.0900 | 0.0993 | 0.106

TABLE 11
PREDICTION ERRORS (RRMSE) FOR OUTGOING TRAFFIC

30s 1min Smin 10min 15min | 20min

ANN 0.0439 | 0.0522 | 0.0808 | 0.0967 | 0.1089 | 0.117
ARIMA | 0.0396 | 0.0492 | 0.0795 | 0.0980 0.112 0.122
Ours 0.0434 | 0.0517 | 0.0765 | 0.0913 0.102 0.110

incoming traffic and 6.9% for outgoing traffic, compared to
linear models. Also, comparing to the conventional ANN, our
model reduces prediction errors by 5.8% and 4% in average
for incoming and outgoing traffic, respectively.

The accuracy improvement is essential for production: using
the improved prediction results as guidance for traffic schedul-
ing, Baidu is able to reduce the peak inter-DC link utilization
(the ISP’s billed utilization) by about 9%. The actual imple-
mentation of the prediction-based traffic scheduling system is
out of the scope of the paper and thus omitted here.

C. Effect of Different Factors in Our Model

The prediction error reduction is the result of a combination
of different methods and parameters. We evaluate the effects
of the key components in our model.

1) Length of Training Set: Intuitively, using longer history
as training set can help reduce the data noise and thus reduce
prediction errors, to a certain point. A large training set may be
of little use while bringing in extra and unnecessary training
cost. Our evaluation confirms this intuition.
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Incoming Inter-DC Network Traffic Prediction
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Fig. 4. Prediction error reduction over ARIMA and ANN. Positive numbers
mean that we reduce the prediction errors actually while negative numbers
mean the opposite. We can see that our model reduces prediction errors
significantly for long-time-ahead prediction.
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Fig. 6. The reduction in prediction errors using wavelet transform.

Thus we need to balance the advantages with the disad-
vantages of increasing the training set size. We compare the
performance of different training set sizes. Figure 5 shows that
using a training histroy of longer than 4 weeks, we can obtain
a good enough model. We are still evaluating if it is related to
a regular monthly pattern, collecting data for a much longer
term, which is an important future work for us.

2) Effectiveness of Wavelet Transform: We use Daubechie’s
4 (Db4) wavelets with ten levels of decomposition, as [23] did.
For each time point, we decompose the subseries consisting of
60 values (including the current one) to get 11 new feature as
Section III-C describes. We use a 4-week history for training.
Figure 6 compares the prediction errors with and without
wavelet transform.

Wavelet transform is an essential preprocessing step: for
different steps prediction, the wavelet transform reduces the
average prediction errors by 5.4% and 2.9% for incoming and
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outgoing traffic. Intuitively, learning methods like ANNs work
because they capture the (non-linear) correlations among mul-
tiple dimensions of data. Wavelet transform adds dimensions
representing the reoccurring patterns of the data and reveals
another level of important correlations. Thus the combination
of wavelet transform and ANN brings a significant prediction
error reduction.

3) Combing Incoming/Outgoing Traffic in The Same Model:
As we discussed in Section III-A, we can either train separate
models for incoming and outgoing traffic, or we can combine
both traffic numbers into the same model. This is a key benefit
of using learning methods like ANN — we have the flexibility
to combine prediction models without changing to the model
itself. Here we compare the result of these two alternatives.

Figure 7 shows the comparison results. There is no signif-
icant difference in prediction accuracy. This is as expected
because the incoming and outgoing traffic are highly corre-
lated.

It is beneficial to use the combined model. The single model
is not only easier to implement and maintain, but also it needs
less time to train comparing to the two separate models. In
our experiments, using the combined model approach reduces
the training time by about 40% comparing with the separate
models.

4) Elephant Flows: The elephant flows play an important
role in our model. Figure 8 shows the results of adding ele-
phant flow information using different interpolation methods.
We have the following observations from the figure.

First, elephant flow information reduces the prediction er-
rors. For both incoming and outgoing traffic, adding elephant
flows information reduces prediction errors, especially for the
5-minute or longer time ahead prediction.

Second, different interpolation methods have similar effects,
except for the scale interpolation. As we have discussed in
Section III-B, as ANN works on the correlations among
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Fig. 8. Prediction errors of the models using different kinds of interpolations.

different dimensions, the assumed correlation between the
traffic of elephant flows and total traffic actually negatively
affects the power of ANN. Interpolation methods that consider
the neighbor values (e.g. the linear or cubic interpolation)
perform slightly better than zero interpolation, which is as
expected.

Given the good balance between simplicity and performance
of zero interpolation, we choose it as our interpolation method
in production.

Third, we observe that the more accurate number of elephant
flow is, whether the measurement comes from interpolation or
actual measurements from flow sampling, the better the overall
prediction accuracy is.

Intuitively, the wavelet transform and ANN capture all the
reoccurring patterns of the total traffic, but the elephant flows
contribute to the overall traffic in a much more random way.
We use the traffic data of elephant flows to “calibrate” the
total traffic prediction, and thus the accuracy of elephant flows
plays an important role. As an on-going future work, we are
improving our elephant flow monitoring system to provide
more frequent measurements.

V. CONCLUSION AND FUTURE WORK

We propose a new model for inter-DC network traffic
prediction. Different from normal network traffic, inter-DC
traffic are dominated by a few large applications producing
elephant flows. We can view the traffic as a combination of
reoccurring patterns and some large noise.

The key for the traffic prediction is decomposing the various
components from the combined traffic pattern. We decompose
the traffic in two ways: first we use Db4 wavelet transform
to decompose the time domain traffic data. Then we also add
explicit elephant flow information. The elephant flow infor-
mation provides multiple calibration points that significantly
reduce the prediction errors, especially for 5-minute or longer
time ahead prediction.



We emphasize on practical issues in the prediction model
design, especially the cost of measurements. We show that
we can significantly reduce the flow sampling overhead using
interpolation methods. We also evaluate the possibility of
reducing the training overhead by combining both incoming
and outgoing traffic into the same model, reducing the training
overhead by 40%. Our prediction method can help Baidu
reduce the peak bandwidth for about 9% on average. The
monetary cost reduction is significant for large scale inter-
DC network. Thus the accuracy improvement is necessary and
worthwhile.

As future work, we will extend the prediction to a longer
time periods (weeks to months) to support tasks like resource
provisioning. We will also explore models to predict traffic on
multiple inter-DC links, as well as the traffic on core switches
within a data center. On the engineering side, we are improving
the technique to elephant flows traffic at a higher frequency.
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