MED: The Monitor-Emulator-Debugger for
Software-Defined Networks

Quanquan Zhi
Institute for Interdisciplinary Information Sciences
Tsinghua University
Beijing, P.R.China
Email: zq_ax@163.com

Abstract—Software-Defined Networks (SDN) greatly improves
programmability but brings in extra challenges for debugging.
We propose an SDN debugging framework, Monitor-Emulator-
Debugger (MED). It closely monitors the physical network,
and automatically creates an emulator that can be set to the
network state at any given point of time. In the emulator, MED
synchronously constructs a virtual SDN that is identical to the
physical SDN and replays real packet samples. The emulator also
handles the non-determinism due to packet reordering. On top
of the emulator, we provide fast and efficient debugging tools
including loop and reachability detector, race condition detector
and forwarding table checker. All the tools run on the emulator
without adding any additional overhead to the physical SDN.

We implement MED for an OpenFlow-based SDN in a data
center network employing 20 switches. Using a combination of
micro-benchmarks and real debugging case studies, we show that
MED is both fast and useful in SDN debugging. During the
evaluation, we reveal two physical switch bugs that have been
confirmed by the vendor.

I. INTRODUCTION

Software-Defined Networks (SDNs) [1] introduce a new
architecture and offer flexible network functionality: custom
programmability and centralization of the control plane. Un-
fortunately, as with all new emerging technologies, bugs are
common in SDN. In particular, SDN systems are inherently
distributed and asynchronous, with events happening at dif-
ferent switches and the controller. Bugs can happen at any
level in the SDN stack (e.g. controller logic, switches, and
individual SDN applications). [2] and [3] report three types of
common bugs, which we also see in our production network:

1. Controller logic bugs. Buggy controllers can cause user-
visible failures such as reachability problems, forwarding
loops and broadcast storms. As [4] points out, most SDN bugs
are related to the controller logic.

2. Switches software bugs and performance disturbances.
Since most of the current SDN software is relatively new
with very limited production use, it is not surprising to find
more bugs in these implementations than in traditional switch
software. In addition, SDN switches may have high variance
in CPU load that may cause transcient failures [5]. We provide
two real case studies in Section VI-F.

3. Race conditions. Although the logical control plane
is centralized, the system contains multiple switches, form-
ing a distributed system with asynchronous events. These

Wei Xu
Institute for Interdisciplinary Information Sciences
Tsinghua University
Beijing, P.R.China
Email: weixu@tsinghua.edu.cn

events may not happen in deterministic order across multiple
switches. Race conditions may occur if switches process
events in different orders. Examples of race conditions are
discussed in references [6], [7], and [8]. Higher frequency of
network updates in SDN [9] makes the race condition problem
even worse.

With SDN, the network operation is turning into a
development-operation (DevOp) task. Operating an SDN is
similar to operating a distributed software system that involves
constant updates. Therefore, new tools in network debugging
is critical for the SDN DevOp efforts. Researchers have
proposed multiple approaches in this direction. Some have
developed modern domain-specific languages such as Frenetic
[10] and Nettle [11] to simplify SDN programming and reduce
the chances of bugs occurring. For debugging SDN, people
have developed both static checking tools like NICE [6],
Anteater [12], and Header Space Analysis [13], and runtime
monitoring-and-replay based tools like OFRewind [5]. We
compare our work to these projects in Section II.

Unfortunately, we are still missing the key features needed
for SDN debugging. In the Test-Driven Development (TDD),
a widely used software engineering practice [14], repeatable
test cases are emphasized in order to drive development as
well as bug fixes. Minimally, TDD requires tools to create a
test environment, as well as testing data input (aka fixtures).

This paper describes our experience in creating such a
tool, dubbed the Monitor-Emulator-Debugger (MED). MED
can create a software emulator to automatically emulate a
network’s state at any given time in the monitored history
repeatably. Specifically, it can emulate the non-determinism in
the networking caused by race conditions. MED also provides
a series of automatic debugger programs that detect network
anomalies, such as forwarding failures and loops, as well as
incorrect switch software implementations.

MED contains three major components: monitor, emulator,
and debuggers. To set up the testing environment, the monitor
captures every state change events in the control plane of the
physical SDN in real time. The captured information is then
used to construct a virtual SDN emulator that is identical to the
physical SDN at a given point in time. The developer can either
use this emulator interactively, or use automatic debuggers.
Figure 1 shows an overview of MED’s architecture.

MED

Debugger

Race Conditions
Detector

Emulator

Monitor

St of Emulator K:# Mininet Loop and
I saDeN0 Controller &OVS Reachability Checker
’ Packet Table
T SPdaT el:f:] Checker

OpenFlow
|7 messages

Debugger Controller

Fig. 1. MED overview. MED is a a debugging system for SDNs that captures
the configurations of the physical network fabric to construct an emulator,
which provides a testing and debugging environment

To gather proper test data, MED samples packets from the
physical SDN and automatically replays these samples in the
emulator. It traces the forwarding paths for each individual
packet in the emulator, and detects suspicious forwarding (e.g.
dropped along the way or trapped in a loop) automatically.

MED does not require modifications to the physical net-
work. Other than the optional sflow-based [15] packet sam-
pling, MED brings no extra performance overhead to produc-
tion networks.

We implement an MED prototype to support the OpenFlow-
based SDN [16], and deploy the prototype in our production
cloud environment with 20 switches and 200 physical servers.
The experimental results are promising: MED can quickly
and accurately capture packet forwarding paths with complex
forwarding logic, detecting the three types of bugs mentioned
above. MED also reveal two bugs in our physical switch
software that are confirmed by the switch vendor.

We offer the following three contributions:

1. We design MED, an SDN emulation framework. MED
can automatically and repeatably create a software emulator
to emulate network state at any point of time, making it a
practical testing and debugging tool.

2. We implement a series of debuggers in MED which
analyzes and automatically report abnormal behaviors such as
forwarding loops and race conditions. MED also helps detect
buggy switch software implementations.

3. We implement an MED prototype in a real, 20-switch
SDN environment and demonstrate its effectiveness using
several real bug case studies.

The remainder of this paper is organized as follows: We
introduce the related work in Sections II. Section III presents
the general architecture and design considerations of MED.
Section IV discusses about the detailed design and imple-
mentation of MED’s core component, the emulator. Section
V provides details in our four debugger programs. Section VI
presents an evaluation of the MED prototype. We conclude
and propose some future directions in Section VII.

II. RELATED WORK

As is typical in the software world, existing work on SDN
debugging falls in two categories: 1) Using static analysis to
discover network problems, and 2) Using runtime-monitoring
data to debug. Both of these approaches have pros and cons.
MED falls in the latter category.

A. Runtime monitoring based approaches

OFRewind [5] helps network operators to localize and
troubleshoot network events that could cause anomalies. It
records network events and replays these events in a physical
network, either using a separate set of equipment or the
production network during off-peak time. MED also moni-
tors these data, as well as additional topology information.
Different from OFRewind, MED also tries to do automatic
testing and diagnoses. Also, MED then takes advantage of
a software emulator to perform the replay. Eliminating the
dependency on the physical network is essential: it not only
makes the debugging faster and cheaper, but also allows us
to have much better control over the replay. For example,
we are able to revert the network state to any given point of
time, “slow down” time in the network, and collect detailed
runtime information from the network. Of course, MED does
not have the capability of OFRewind to debug data plane and
performance problems, but as [4] points out, 90% of the bugs
in a typical SDN are control plane bugs, which MED can help
debug. In addition, MED is able to help check switch software
implementations while OFRwind does not.

Packet tracing is an important topic in SDN monitoring. Ndb
[17] and NetSight [18] modify the existing rules in the network
and allows the physical switches to send “postcards,” which
can be used to reconstruct the path and sequence of forwarding
actions for a subset of traffic. Paper [19] installs special, high
priority rules on the switches that matches special markers
in packet headers. [20] leverages the network topology infor-
mation and uses calling context encoding to record the path
information into packet headers. Comparing to these projects,
MED takes advantage of the software emulator and simplifies
the packet tracing process (details in Section V). MED does
not modify the physical network, and thus introduce no extra
overhead or risks to the production network.

Monitoring is the foundation of debugging. There are also
projects aiming to improve SDN monitoring efficiency. SDN-
RADAR [21] uses distributed monitoring to collect traffic
information for debugging. [22] computes an optimal or near-
optimal number of static forwarding rules on switches to locate
link failures and verifies the topology connectivity.

B. Static analysis based approaches

Header Space Analysis (HSA) [13] uses a geometric model
to analyze SDN behavior. HSA constructs the transfer func-
tions for the switch and topology, which is based on the
ordered set of forwarding rules. It also analyzes switch con-
figurations to statically check connectivity and isolate errors
in control-plane. By viewing the packet headers as a flat
sequence of ones and zeros, HSA simulates the forwarding
behavior. However, these models are time-consuming to create
[13]. Also, in an SDN with frequent state changes, it is even
more time consuming to update the model. In comparison,
MED uses an emulator to actually “exercise” test packets and
detect problems, which is faster, although may not cover all
the possible cases. This is a common tradeoff between static
verification and runtime analysis.

Automatic Test Packet Generation (ATPG) [2] and Net-
Plumber [23] are extensions of HSA. ATPG automatically
generates a minimum set of test packets, which people can
use to actively test for potential errors. NetPlumber improves
HSA by constructing a “plumbing graph” that is updated in
real-time on network state changes. The tradeoff is between
better “test coverage” and computation cost. Instead, MED use
lots of sampled packets running in fast and scalable emulator
to improve the test coverage.

NICE [6] applies model checking and symbolic execution
by automating OpenFlow applications testing in the control
plane with simplified switch/host models. Anteater [12] mod-
els network devices’s (firewalls, routers and switches) behavior
in the data plane as instance of Boolean satisfiability problems
(SAT), and then uses an SAT solver to analyze and check
certain network invariants.

Static model-based debuggers analyzes tables on switches
to infer forwarding paths and detect problems. However, even
if the configuration is correct, the actual switch may not follow
the configuration due to switch software bugs or runtime
failures such as resource limitations. We believe at least during
the early years of SDN, it is still important to be able to debug
the actual implementation, including both controller and the
switch control plane code, which MED focuses on.

III. MED ARCHITECTURE

The SDN control logic is implemented as a centralized
controller program. The controller computes forwarding rules
for every switch. Using a standard protocol such as OpenFlow,
the controller directly manipulates the forwarding tables on
each switch. Thus, by observing all communications between
the network equipment and the controller, we can determine
most of the state changes in the network.

Based on this observation, we propose Monitor-Emulator-
Debug (MED), which collects messages from the controller-
network communications and the data plane traffic information
in the physical SDN, as well as the status information of
all the components. Using this information, MED emulates
an SDN network that is identical to the real network, using
Mininet [24]. MED then uses the emulator to detect and
analyze the issues of the real network by replaying traffic,
which is more convenient and flexible than using the actual
network. Specifically, we take snapshots of the SDN switch
state, including flow tables and physical links, but we only
observe the behavior of the SDN controller while treating the
controller logic as a black box. Thus, our approach works on
any OpenFlow-based SDN fabric.

Figure 1 illustrates the three major components of MED:
the monitor, the emulator, and the debugger.

A. Monitor

The OpenFlow protocol defines the standard interface for
interaction between the switches and the controller, and allows
the querying of switch and traffic states. The monitor leverages
these OpenFlow features to collect the following four types of
information.

1. Physical topology. Including MAC and IP addresses of
end hosts, ports configurations, connections, and link capaci-
ties from the switches.

2. Flow table dumps. The debugger uses the information
collected to construct a global snapshot of SDN states. We
detail this process in the next section.

3. Network events. The monitor observes the controller
port and monitors all OpenFlow messages between controllers
and switches, including packets-in, packets-out, rule instal-
lation/removal, and ports up/down events. In the following
discussion, we call these messages network events.

4. Data packet samples. While it is impossible to collect
and record all packets, the monitor uses sflow [15] to sample
some packets. It further reduces the amount of data required
by only collecting the packet header.

The monitor stores all information in its internal database.
It provides both pull and push APIs, allowing the emulator to
access the database.

B. Emulator

The emulator is the core component of MED. It uses the
monitor database to automatically create an emulator. The
key feature of the emulator is to emulate network states
at any given point in time in the monitored history. We
leverage Mininet to build the data plane, while focusing on
the emulation of the control plane. The emulation process
includes generating a snapshot of the physical network using
the monitor data, using the snapshot to initialize the emulator,
and replaying events to keep track of the state changes that
occur in the physical network.

The main challenge of building such an emulator is finding
a way to emulate non-determinstic behaviors in the network
such as race conditions. To make the emulator powerful yet
easy to use, we provide two different emulation functions:
set_to_stable and set_to_nondeterministic, al-
lowing users to see different levels of event reordering and
non-determinism. We provide details of the emulator design
in Section IV.

C. Debugger

The debugger is based on Mininet and thus supports all the
debugging tools built into Mininet. We implement an extensi-
ble debugger-emulator interface, making it easy to manipulate
the emulated network. The debugger API is extensible, and
as examples of the paper, we provide the following debug
functionalities:

1) The Packet Tracer (PT) automatically replays data pack-
ets from the real network, and records the forwarding paths
and the matching flow table entry on each switch.

2) The Loop and Reachability Checker (LRC) that is built
on top of the PT, detects loops and reachability problems.

3) The Table Checker (TC) automatically compares all of
the flow table entries in the physical and emulated switches,
and alerts the operator if there is any disagreement.

4) The Race Conditions Detector (RCD) takes advantage
of the non-deterministic state feature of the emulator, and
automatically discovers potentially harmful race conditions.

Initial Set to_current

setup

Set to_stable

Settonondeterministic(tl@
» State e

Fig. 2. The functionalities of the emulator. It works both in online or offline
mode. In the offline mode, the user can choose whether to observe the non-
determinism in the network. The text provides more detailed discussion.

We discuss the detailed implementation of these debuggers
in Section V. The debugger not only allows operators or
debugger algorithms to passively observe the SDN, but also, by
using an emulator, it helps to replay and debug race conditions,
which are very hard to reproduce in physical network.

IV. EMULATOR DESIGN AND IMPLEMENTATION

Our emulator is based on Mininet. Mininet uses Open
vSwitch (OVS) [25], the widely used OpenFlow implemen-
tation, to emulate the data plane. We choose Mininet and
OVS because of their popularity. We use Mininet and OVS
to perform all data plane emulation, which is not our focus in
this paper. We focus on control plane emulation in this section.
Figure 2 shows the major functionalities of the emulator, which
we discuss in detail in this section.

We define the network state at a given time t, S;, as the
physical topology (links, ports, switches, hosts etc.) of the
entire fabric and all flow table entries from all switches. .S;
determines the forwarding path of any packets arriving at .
Note that the controller might also have some internal states
that have not affected physical switches yet, and we do not
include those in Sy, as they are not affecting packets at time
t. The key functionality of the emulator is to take a user input
t, read the monitor’s history database, and create an emulated
network with S; that is identical to the physical network.

Note that solely using the information from the monitor,
sometimes we cannot uniquely determine .S;. This is usually
because of the possible reordering of event processing, or
potential race conditions. We discuss about the details of these
issues in Section IV-D.

A. Physical SDN snapshot and emulator initialization

We allow user to start the MED process at any time while
the physical network is running. Thus, we need to mirror all
physical network states in the emulator first.

At a high level, MED uses the topology from the monitor
to generate a Mininet configuration file. It then uses the flow
table dumps to initialize emulated flow tables. In order to set
the emulator to a specified state Sy, we first install the latest
snapshot before time ¢, and then replay messages between the
snapshot time and time ¢.

Theoretically, the initial setup requires a consistent snapshot
of the physical network, which is difficult to achieve, as
states may change during the snapshot. We use an optimistic
approach: during the snapshot process, we keep monitoring
the network events, and after the snapshot we replay these
messages to allow the switches to “catch up” the most recent
changes. After obtaining a snapshot, we check its accuracy
by comparing the emulated state with the physical state. We
retry the snapshot if they do not agree. Experiments in Section
VI-B show that we can obtain a consistent snapshot within a
short period of time.

B. Tracking state changes in physical network

The typical use of the emulator is allowing the emulator
to track all physical network state changes, so that we can
perform live testing in an online fashion.

We treat the physical SDN controller as a blackbox. The
controller may compute the forwarding logics in the SDN
fabric based on current network traffic. As with OFRewind [5],
since the controller logic is eventually turned into OpenFlow
messages to network devices, we only need to replay these
messages to emulate the network state changes. Specifically,
the emulator replays all OpenFlow messages (Flow-mod,
Packet_in, Packet_out, Port_mod) from the monitor database
to the Mininet.

Strictly speaking, we need to assume that the observed event
ordering is the same as the actual processing order. It is not
always true even on a single switch, if the controller does not
use barrier messages correctly. In realtime tracking, we
assume any processing order results the same state, which is
generally true. If the user needs to debug packet reordering,
she can use the non-deterministic function in Section IV-D.

We take advantage of the software nature of the Mininet
emulator. Instead of using OpenFlow protocol to install the
flow table entries, we chose to use standard OVS tools such as
ovs-vsctl and ovs-ofctl to manipulate the flow table entries. In
this way, we can still leave the OpenFlow controller interface
available for debugging controllers such as the Packet Tracer
discussed in Section V.

C. Offline emulation: stable states

Network operators often want to set the network into a
certain state to take a closer look at a bug. MED provides
a function set_to_stable to support this. We define a
stable network state to be a state in which there are no control
plane events in the network that have not been processed.
The system will return the closest stable state after ¢. For
a network that does not change too often, or if the user is not
debugging timing-related issues, examining the stable state is
often sufficient.

The set_to_stable algorithm is straight-forward: First,
we reuse the initialization and replay functionality to bring the
network state to time ¢. Then we check if there are any pending
events in the network at time t. We detect pending events
by looking for controller message without an ACK. Notice
that the ACK message is optional in OpenFlow specification,

and we require users to enable the feature, which is already
a common practice. Finally, we replay these pending events
until all of them are processed.

D. Offline emulation: non-deterministic states

Given the distributed nature of the physical SDN, we cannot
determine the actual order in which different switches process
network events. Previous work such as OFRewind uses a
logical clock to track the causal ordering, so that the system
can provide the “true” specific ordering. In this sense, MED
goes beyond just “replaying” events. MED can provide the
users with all possible states as the results of different order-
ing, using the set_to_nondeterministic (t) function.
This feature can be crucial for people debugging time-related
issues. We built a race condition detector based on this feature,
and we provide a concrete example in Section V-D.

The emulator implements this functionality by first detecting
concurrent events. It then forks multiple emulators and uses
each one to replay one possible event ordering. Of course, the
number of possible states can be factorial to the number of
pending messages.

V. DEBUGGER IMPLEMENTATIONS

In this section, we provide some details regarding the major
debugger plugins we provide in MED and further demonstrate
the power of the MED emulator.

A. Packet Tracer (PT)

The goal of Packet Tracer (PT) is to discover the exact
path in which a packet is forwarded in the network, at a given
network state .S;. PT also discovers matching flow table entries
on each switch, and enables many higher-level debuggers.

We implement PT as an SDN controller, which is an
example of the debugger controller in Figure 1. Note that the
debugger controller is different from the emulation controller,
although they both manipulate the flow tables in the Mininet.
The debugger controller interfaces with Mininet using the
standard OpenFlow protocol, and thus it will receive all
PACKET_INs from emulated switches.

Figure 3 illustrates the workflow of PT, after the emulator
is set to network state S;.

On initialization, PT modifies flow tables on each emulated
switch, adding an extra action TO_CONTROLLER to each
entry. In other words, when the packet matches any entry, in
addition to normal the forwarding, we ask the switch to mirror
the packet to the controller at the same time.

To start a packet tracing, we choose not to use the host
emulation feature in Mininet in order to lower the resource
utilization. Instead, we inject the packet directly into the
system by constructing a PACKET_OUT message and sending
it to the switch with the injection port. The data area in the
message is the layer 2 header of packets, in which in-port is set
to the injection port, and the action field is set to TABLE. In
this case, the emulated switch will treat the packet as though
it had been received from the host.

When the switch receives the injected message, it takes
actions based on the matching flow table entry. There are at

Packet Tracer

®| [®

Forward
e

Flow tables: add Action
TO_CONTROLLER

Fig. 3. The Packet Tracer (PT) workflow. The PACKET_OUT, PACKET_IN,
FLOW_STATS_REQUEST and FLOW_STATS_REPLY message track ex-
changes between OVS and PT to trace the path of data packets.

least two actions on the entry: the normal entry that decides
the packet forwarding, and the extra TO_ CONTROLLER action
added at the initialization step. This extra action causes the
switch to package the incoming packet into a PACKET_IN
message and forward it to the controller. Thus, PT receives
the packet and knows where it comes from.

The final step is to find the matching flow table entry,
which is often useful for finding the root cause of a bug.
For each PACKET_IN that PT receives, PT send out a
FLOW_STATS_REQUEST message, using information in the
PACKET_IN to construct the MATCH field. On receiving the
FLOW_STATS_REQUEST message from PT, the switch looks
up the table to find the matching forwarding rule and replies
to PT with a FLOW_STATS_REPLY message.

PT repeats the entire process on every switch on the
forwarding path of the packet. When the packet reaches its
destination (when no more forwarding rules can be found),
the process ends and PT reports the results.

We implement the PT as an application within the POX [26]
framework. PT works in two modes. We can automatically
sample and replay a message side by side with the live network
and detect problems automatically (the online mode), or we
can use it to replay messages from recorded traces or traces
manually created by the developer (the offline mode).

B. The Loop and Reachability Checker (LRC)

On top of Packet Tracker, we build a higher-level
debugger to detect loops and reachability problems in
the network. The Loop and Reachability Checker (LRC)
keeps monitoring the Packet Tracker output, and alerts the
user through two callback functions loop_alert () and
reachability_alert ().

In particular, the loop detector simply checks for replicates
in the {switch_id; inport; outport} from the path output in
Packet Tracker. The reachability detector checks if the packet
ends up at the intended destination (specified in the original
packet header) at the end of the path. If it does not, LRC
determines that there is a reachability issue for that packet.

C. Table Checker: detecting buggy physical switches

One important goal of MED is to detect control plane bugs
in the physical switch software. As the physical switches are
black boxes to us, we can only reason about their behaviors
from their public interface.

The switches may install forwarding rules incorrectly for
many reasons. There may be a transient failure, for example,
when the CPU utilization ratio is very high on the switch,
the rule installation may timeout and fail. There may also be
some bugs in the OpenFlow agent software implementation
causing persistent failures. Using MED, we can quickly detect
incorrect flow tables by comparing the physical flow tables to
those in the emulator. We raise alerts when behaviors of the
physical switch deviate from those of the OVS.

D. Race Conditions Detector (RCD)

As we mentioned in Section I, race conditions are common
in SDN, due to the distributed nature of the SDN fabric. As [7]
reports, the most common types of race conditions are results
of the controller program bugs, causing dependent actions
to run concurrently. In such cases, the outcomes depend
on the actual order in which these actions are performed,
causing hard-to-debug issues. Even worse, the bugs are often
visible only during a network state change, causing transient
packet drops or loops. These transient problems may have a
big impact on application performance, especially for latency
sensitive applications, as [9] points out.

We design Race Conditions Detector
help debug race conditions. RCD relies on the
set_to_nondeterministic(t) function to work.
It first generates all possible network states, using all possible
orderings of these concurrent events, and then applies LRC
detectors in each possible ordering to find any suspicious
situations. RCD finally generates a report for the operator,
showing possible anomalies (loops or packet drops, plus
which ordering caused them).

In order to debug transient problems caused by race condi-
tions, we are able to slow down or “single step through” the
transition period, allowing users to test partial updates during a
network transition. Section VI-F provides a concrete example.

(RCD) to

VI. EVALUATION

In this section, we demonstrate the effectiveness of MED
using both micro-benchmarks and real case studies. Our
experimental results show that MED not only captures and
provides all states of a physical SDN accurately, but also
provides insightful information and tools to help reproduce,
test and debug common issues, such as loops, reachability
failure, commodity switch software bugs and race conditions.

We perform all of our evaluations on a real data center
network with OpenFlow-based SDN, consisting of 20 Pica8
[27] P-3298 switches connecting about 200 servers, runing
OpenStack. We use 16 of these 200 servers to emulate the
hosts, each of which has 12 CPU cores, 128GB of DRAM
and 1Gbps Ethernet card. The switches are interconnected
using 10Gbps Ethernet. Figure 4 shows the topology of this
network, a typical fat-tree with redundant aggregate and core
switches. As we have redundant paths in the network, we
enable Spanning Tree Protocol (STP) in all the switches, in
addition to OpenFlow. Aside from STP, the switches run in
OpenFlow mode without any other L2/L.3 features.

Core

S
HI2 HI3 HI4 HI15

S N
HO8 H09 HI0O HII
Podl Pod2 Pod3 Pod4

Fig. 4. The topology of the 20-switch testbed.

A. Emulator initialization

We evaluate the time required to initialize MED, during
which MED collects the current state of the physical network,
such as the topology, link bandwidth, and the switch config-
uration including the forwarding rules. The MED configures
the Mininet. We perform two micro-benchmarks: a network
in stable state, and also a network with constant flow table
updates.

Initialization from stable state: We randomly insert over
30,000 OpenFlow rules to the 20 switches, averaging 1,500
rules per switch, and measure the time taken for MED to set
up the emulator. We insert these rules so that there is at least
one path between every pair of hosts. The initialization time
involves three components: 1) time to discover the topology,
generate the Mininet configuration file and initialize Mininet;
2) time to dump all flow tables from the physical network and
3) time to insert all the flow table entries into the emulator.

Table I shows the results with 30,000 rules. The topology
discovery and setup takes about 4.9 seconds to complete on
a 20 switch fabric, and about 0.54 seconds to dump all flow
tables from these switches. Then, it takes about 12.2 seconds
for MED to install all 30,000 flow table entries and set up
the emulator. That is, on average, it takes MED about 0.405
ms to set up a forwarding rule to the emulator and the total
time taken is linear to the number of rules. It takes less than
18 seconds to finish the entire initialization process and fully
configure the emulator.

We further evaluate the performance in dumping flow tables
with various sizes. Figure 5 shows the results of dumping
different number of entries from a single switch. The flow
table is small: a table with 1,500 entries is only 415KB in size.
As we use a multi-threaded program to dump flow tables from
all switches in parallel, it takes roughly the same time to dump
one table or to dump all 20 tables. We can see that the dumping
process is fast, as it is a batch operation. It is significantly
slower when we have over 1300 entries, and we believe it
is due to the specific implementation of our physical switch.

TABLE I
TIME BREAKDOWNS OF MED INITIALIZATION
Topology Dump flow tables | Install flow tables
4.9 seconds 0.54 seconds 12.2 second

o
n

O N
SRS

Time(seconds)

o
=

0 I I I
0 400 800 1200
Flow table size (# of entries)

1600

Fig. 5. Time to dump flow tables of various sizes from the physical switches.

It takes more time to install these tables into the emulator
though, as we add these entries one by one. We evaluate that
performance in Section VI-B.

The results shows that emulator initilialization is fast, even
with lots of random forwarding rules. We believe this perfor-
mance level is a key feature to allow users to try different
network states in a short period of time.

Initialization from a running network: As we have dis-
cussed in Section III-B, MED supports snapshotting the phys-
ical network while the network is still updating. We evaluate
the correctness and performance of this function using hosts
AO01, A02 and switches EO1, EO2 in Figure 4.

In order to test logics that handle network updates while
taking the snapshot, we generate a Flow-mod event for each
switch every 35 ms, close to the physical limit of how fast our
physical switch can handle such events.

In our experiments, it takes about 910 ms for MED to
snapshot and copy all of the flow tables from the physical
switch into the emulator. During those 910 ms, there are 78
flow-mod events in the physical network, making the snapshot
stale at some switches. By identifying and replaying these 78
events, we verify that we get the same network state as the
physical network, by comparing the flow tables directly.

To simulate unexpected delays in the network during the
snapshot (e.g. some slow-responding switches), we add ran-
dom delays to the snapshot process, and roughly extend the
snapshot time to 9.1 seconds, or 10x the original delay. As
expected, this initial snapshot is even less consistent. We end
up replaying about 780 events to bring the emulator to the
correct state. This extreme case demonstrates the robustness
of our emulator initialization process.

B. Emulator performance

In order to emulate and automatically test a large number of
states and packets, the performance of the emulator is crucial.
We evaluate the event replay performance and time required
to change to a specified state S;.

Replaying network event: The time required to set the
emulator into the desired state depends on how many flow
table entries we need to insert into the Mininet emulator.
Figure 6 shows the time required versus the number of events
we need to replay.

We can see that similar to the previous experiments, the
state switching cost is linear to the number of table entries

O

Time (seconds)

0 5,000 10,000
Flow table size (# of entries)

15,000

Fig. 6. Time to set up different number of flow table entries into the emulator.

processed. It takes MED 230 ms to install the 500 new rules
to the emulator. As a comparison, it takes 360 ms to install
the same set of rules to the physical switches. The emulator
is faster because OVS has a much faster CPU. We compare
the flow table entries on both MED and the physical network
and confirm the correctness of the emulator.

The linear processing time may slow down replaying net-
work events over a long period of time. In order to accelerate
the switching, we can choose to take periodic snapshots from
the physical network, and choose the closest snapshot and start
replaying events from there. In that way, we can reduce the
number of events we need to replay. Also as a future work,
we are extending Mininet’s interface so we can improve the
parallelism when insertting independent entries.

C. Packet tracing

In this section, we evaluate the performance and correctness
of the Packet Tracer, using the same topology and network
state as in Section VI-A.

We enable sflow to collect a sample of packets. For testing
purposes, we feed all the sampled packets into the MED
emulator with the Packet Tracer enabled. We query PT for
both the traces and the flow table entries used in each hop.
We use random rules because we want to have a variety of
path lengths for evaluation. We have paths with lengths of 2 to
10 hops. The number of hops in the sample data is Gaussian
distributed, with both mod and mean 6 hops.

As we use random forwarding rules, the packets do not
necessarily use one of the shortest paths. For example, with
one of the random topologies in our experiments, we have
a long path between host H09 and H16, which is H09 —
E05 — A06 — C03 — A02 — E01 — A0l — C01 —
A07 — EO08 — H16.

Table II shows the performance results on the path detection
latency. If the path contains only two hops (passing through
a single switch), it takes PT an average of 0.6 ms to output
the path and matching rules. For paths with 10 hops, it takes
about 5 ms to discover.

We also measure packet tracing throughput. Using our
single node MED, we are able to analyze at a packet sample
rate of 50 Mbps in real time. Note that throughput is not a
major blocker for scalability, as we can trivially scale it out to
more nodes, each of which running an independent emulator.

To verify the correctness of the packet tracer results, we add
an extra step on the physical switches to obtain the “ground

TABLE II
PATH LENGTH V.S. PACKET TRACER PERFORMANCE

hops 2 4 6 8 10
% of test data 10.6% | 132% | 579% | 162% | 2.1%
time taken (ms) | 0.626 1.536 | 2.828 3.532 | 5.001

truth”. We enable port mirroring on all the physical switches,
and analyze the packet dump for the exact packet’s path.
We also dump all flow table entries and associated counters
from each physical switch in order to check which rule is
used for those packets. Of course, this extra work is only for
the evaluation; we do not require any change to the physical
network in production. All of the comparisons show that MED
can correctly detect all forwarding paths.

D. Checking loop and reachability

Paper [28] presented a POX L2_learning switch bug that
causes reachability failures during a host migration. We re-
produce the bug on our testbed to demonstrate the Loop and
Reachability Checker functionality.

We use the Podl in Figure 4 to reproduce the problem. We
first connect HO1 to port P1 of switch EQ1. Then we physically
move the HOI to port P3 of switch E02. After the migration,
we find that HO2 could no longer communicate with HO1.

LRC provides two pieces of information to help diagnose
the problem: First, LRC automatically reports the following
unreachable path from HO2 to HOl: H02 — EO01(Portl).
Second, LRC shows the rule on switch EO1 that causes the
packets to go out of port P1 (the original port, instead of the
new port connecting E02). This information points the operator
to the root cause of the bug: the controller forgot to remove
the original flow table entry after the migration. To understand
the root cause, one needs to examine multiple switches along
the potential path, which is time consuming. MED checks all
flow tables along the path automatically, greatly reducing the
human labor.

E. Detecting bugs on physical switch software

Table Checker checks whether the physical switch processes
a set of events in the same way as OVS. Using TC, we reveal
two bugs in our physical switch.

Switch Bug 1: An important goal of MED is to detect buggy
or incompatible switch software. Again, we run the POX
module 12_learning.py [26]. To simplify the discussion, we
will only focus on a single switch with two connected hosts.
On the switch, we run PicOS-OVS 2.3 in OVS mode [29] .

We surprisingly find that HO1 cannot ping HO2, even if they
are connected on the same top-of-rack switch. When we query
MED for the potential problems, MED raises an alert showing
a disagreement between the forwarding tables on the emulated
switch and the physical switch: the emulated switch has the
entries while the physical switch does not have any.

The results from the emulator make sense: it installs a
rule for ARP and a rule for ICMP, matching the expected
behavior of a L2/L3 switch. However, the physical switch

does not correctly install the flow table entry. In this case,
MED provides two points: 1) the controller does compute the
correct forwarding rules, and 2) which rules are missing from
the switch. With such information, we have a strong reason
to suspect that it is due to buggy switch software. Since we
do not have access to the switch code to debug, we report the
issue to the switch vendor, who quickly reproduced the bug
using the information we provide and confirm it [30].

Switch Bug 2: We also find an inconsistency in different
implementations of the OpenFlow protocol. In one of our
experiments, we observe an error message ofp_error_msg
from the emulator, and the emulator fail to install the flow table
entry. The physical switch, however, installs the rule without
any error.

After some debugging, we find the following reason for the
error: the controller tries to install two rules that are exactly the
same (with the same priority), using the OFPT_FLOW_MOD
message. In all of our switches, we have set the flag
of .OFPFF_CHECK_OVERLAP set to true. According to
the OpenFlow specification, the switch shall refuse the opera-
tion, and raise an error, and OVS follows this specification.
However, the physical switch silently ignore the error and
installed the entry. The switch vendor has confirmed the
inconsistency.

As the SDN standard is still evolving and the switches are
not well tested, we expect to find more bugs or issues in
these switches. TC allows for checking an OpenFlow agent
implementation against a reference implementation (in this
case, OVS), which is very useful.

F. Debugging race conditions

We demonstrate the features of Race Condition Detector
(RCD) using a real race condition of a traffic engineering
controller we develop in another project. As an example, con-
sider hosts HO1 and HO4 in Figure 4. There are multiple paths
between them. The traffic engineering controller periodically
reassigns flows from HO1 and HO4 to an alternative path. A
synchronization bug leads to packet loss sometimes, causing
unpredicatable performance problems for the latency-sensitive
applications.

For example, we change the path from HO1—E01—A02
—E02—H04 to HO1—E01—A01—E02—HO04.

The controller needs to send three events to three switches
A01, E02 and EOI respectively to complete the path change.

e Add r (match HO1 to HO4, in_port=1—Port2) at AO1

e Add r (match HO1 to HO4,in_port=3—Portl) at E02

e Change r (match HOI to HO4, in_port=1—Port3) at EO1

The buggy controller issues the three events in one shot,
without waiting for any operations to complete (i.e. waiting for
the ACK message). Due to random delays in controller-switch
communication and switch software, there are 6 possible
orderings for the three operations. It is not hard to see that four
of these orderings may cause packet loss during the transition.

MED correctly detects that these three operations are con-
current. It automatically retries all six possible orderings in the
emulator. MED reuses existing loop and reachability detectors

on each of the ordering, between any two operations. For each
ordering, MED will “single step” through the process, and
after each step, it will replay the test packets and use LRC to
detect abnormal forwarding paths. In this case, MED correctly
output an alert showing that these operations should not be
concurrent. Of course, actually fixing the bug requires more
work, and there are research projects trying to prevent these
situations from happening [7], [9].

VII. CONCLUSION AND FUTURE WORK

We presented our work on MED, a new SDN debugger that
combines the benefits of a software emulator, real network
configuration and real packets. We show that with minimal
overhead, we can capture the network states, automatically
create an emulator, and run a variety of debuggers. MED sup-
ports repeatable and low-cost experiments, which are useful in
testing processes. In contrast to existing work, MED combines
an emulation-based debugging method with the semantics
to handle non-determinism, allowing users to build powerful
debuggers. We show the effectiveness of MED in a 20-switch
SDN environment with real bug cases.

As future work, we would like to integrate MED more
deeply with existing software development tools. We believe
tools like MED can provide a convenient development envi-
ronment so that developers can better integrate the SDN com-
ponents into the cloud platform, providing improved flexibility
and performance. Inside the emulator, we would like to further
optimize the amount of states to test in non-deterministic
executions by analyzing the interdependency of messages. We
will also work on statistical learning based approaches for au-
tomatic probing, bug discovery and performance optimizations
using the MED emulator.

ACKNOWLEDGMENT

Research supported in part by the National Natural Sci-
ence Foundation of China grants 61361136003, 1000 Tal-
ent Plan grant, Tsinghua Initiative Research Program grants
20151080475 and a Google Faculty Research Award.

REFERENCES

[1] ONF Market Education Committee.Software-defined networking: the
new norm for networks, https://www.opennetworking.org/images/stories/
downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf, 2015.

[2] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown, “Automatic test

packet generation,” in Proceedings of the 8th international conference

on Emerging networking experiments and technologies. ACM, 2012,

pp. 241-252.

Troubleshooting the Network Survey, http://yuba.stanford.edu/peyman/

docs/atpg-survey.pdf, 2015.

[4] G. Altekar and I. Stoica, “Focus replay debugging effort on the control
plane,” Proc. USENIX HotDep, pp. 1-9, 2010.

[5] A. Wundsam, D. Levin, S. Seetharaman, A. Feldmann et al., “Ofrewind:

Enabling record and replay troubleshooting for networks.” in USENIX

Annual Technical Conference, 2011.

M. Canini, D. Venzano, P. Peresini, D. Kostic, J. Rexford et al., “A nice

way to test openflow applications.” in NSDI, vol. 12, 2012, pp. 127-140.

[71 H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and D. Maltz,
“zupdate: Updating data center networks with zero loss,” ACM SIG-
COMM Computer Communication Review, vol. 43, no. 4, pp. 411-422,
2013.

[3

[t}

[6

=

[8]

[9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]
[28]

[29]

(30]

M. Reitblatt, N. Foster, J. Rexford, and D. Walker, “Consistent updates
for software-defined networks: Change you can believe in!” in Proceed-
ings of the 10th ACM Workshop on Hot Topics in Networks, 2011, p. 7.
X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang,
J. Rexford, and R. Wattenhofer, “Dynamic scheduling of network
updates,” in Proceedings of SIGCOMM’2014, 2014, pp. 539-550.

N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker, “Frenetic: A network programming language,”
in ACM SIGPLAN Notices, vol. 46, no. 9. ACM, 2011, pp. 279-291.
A. Voellmy, A. Agarwal, and P. Hudak, “Nettle: Functional reactive
programming for openflow networks,” DTIC Document, Tech. Rep.,
2010.

H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. Godfrey, and S. T. King,
“Debugging the data plane with anteater,” ACM SIGCOMM Computer
Communication Review, vol. 41, no. 4, pp. 290-301, 2011.

P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:
Static checking for networks.” in NSDI, 2012, pp. 113-126.

J. A. Whittaker, J. Arbon, and J. Carollo, How Google tests software.
Addison-Wesley, 2012.

P. Phaal, S. Panchen, and N. McKee, “Inmon corporations sflow: A
method for monitoring traffic in switched and routed networks,” RFC
3176, Tech. Rep., 2001.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69-74, 2008.

N. Handigol, B. Heller, V. Jeyakumar, D. Maziéres, and N. McKeown,
“Where is the debugger for my software-defined network?” in Proceed-
ings of the first workshop on Hot topics in software defined networks.
ACM, 2012, pp. 55-60.

N. Handigol, B. Heller, V. Jeyakumar, D. Maziéres, and N. McKeown,
“I know what your packet did last hop: Using packet histories to
troubleshoot networks,” in Proc. NSDI, 2014.

K. Agarwal, E. Rozner, C. Dixon, and J. Carter, “Sdn traceroute: Tracing
sdn forwarding without changing network behavior,” in Proceedings of
the third workshop on Hot topics in software defined networking. ACM,
2014, pp. 145-150.

H. Zhang, C. Lumezanu, J. Rhee, N. Arora, Q. Xu, and G. Jiang,
“Enabling layer 2 pathlet tracing through context encoding in software-
defined networking,” in Proceedings of the third workshop on Hot topics
in software defined networking. ACM, 2014, pp. 169-174.

G. Gheorghe, T. Avanesov, M.-R. Palattella, T. Engel, and C. Popoviciu,
“Sdn-radar: Network troubleshooting combining user experience and
sdn capabilities,” in Network Softwarization (NetSoft), 2015 1st IEEE
Conference on. 1EEE, 2015, pp. 1-5.

U. C. Kozat, G. Liang, and K. Kokten, “On diagnosis of forwarding
plane via static forwarding rules in software defined networks,” in
INFOCOM, 2014 Proceedings IEEE. IEEE, 2014, pp. 1716-1724.

P. Kazemian, M. Chan, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte, “Real time network policy checking using header space
analysis.” in NSDI, 2013, pp. 99-111.

B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid
prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks. ACM, 2010,
p- 19.

Open vSwitch: An Open Virtual Switch, http://openvswitch.org/.

POX: An Operating System for Networks, http://www.noxrepo.org/pox/
about-pox/.

OpenFlow-enable commercial switch, http://www.pica8.com.

C. Scott, A. Wundsam, B. Raghavan, A. Panda, A. Or, J. Lai, E. Huang,
Z. Liu, A. El-Hassany, S. Whitlock et al., “Troubleshooting blackbox
sdn control software with minimal causal sequences,” in Proceedings of
the SIGCOMM’2014, 2014, pp. 395-406.

Network operating system that enables customers to easily migrate from
conventional networking to SDN using commodity bare metal switches,
http://www.pica8.com/company/company-overview.php, 2015.
Release-notes-for-picos, http://www.pica8.com/document/v2.3/html/
release-notes-for-picos-2.3, 2015.

